Talk: Stephen Keeling

A.o. Univ.-Prof. Mag. Dr. Stephen L. Keeling (Institut für Mathematik und wissenschaftliches Rechnen, Karl-Franzens Universität Graz) hält einen Vortrag zum Thema "Higher Order Mulitphase Image Segmentation and Registration"

Am Mittwoch, den

28.9.2011 um 17 Uhr c.t.

wird A.o. Univ.-Prof. Mag. Dr. Stephen L. Keeling vom Institut für Mathematik und wissenschaftliches Rechnen, Karl-Franzens Universität Graz, in der

MIC-Arena im MFC 2, Maria-Goeppert-Str. 1 A, 23562 Lübeck

einen Vortrag zum Thema "Higher Order Multiphase Image Segmentation and Registration" halten.


Ab 16.30 Uhr begrüßen wir Sie zu einem Kolloquiumskaffee.
Wie immer freuen wir uns auf eine rege Beteiligung.


Abstract:
Based upon successes with higher order regularization for image restoration using the Graz developed Total Generalized Variation (TGV), we seek to develop counterparts for image segmentation and registration. For segmentation, an image approximation is conceived in terms of a sum of multiple phase functions which are supported on disjoint sets. The boundaries of these supports de!ne the image edges, and each phase function is smoothed independently on connected components of its support with higher order regularization. By contrast, familiar piecewise constant segmentations correspond to a very strong 1rst order regularization applied simultaneously to all connected components of the support of each phase function. Advantages of the proposed segmentation approach will be elucidated with computational examples. After de!ning the edge set in terms of the phase function decomposition, images are registered in a contrast invariant fashion by registering their edge sets. Registration of edge sets is performed by transforming each edge set to a diffuse surface using blurring, and then by registering the diffuse surfaces with progressively less blurring.
Results will be shown for an epicardial matching problem in which Purkinje Fibers of one epicardium are to be mapped to the other. Convergence and discretization issues will also be addressed.