
Computers in Biology and Medicine 186 (2025) 109621 

A
0

Contents lists available at ScienceDirect

Computers in Biology and Medicine

journal homepage: www.elsevier.com/locate/compbiomed

Tissue concepts: Supervised foundation models in computational pathology
Till Nicke a ,∗, Jan Raphael Schäfer a , Henning Höfener a , Friedrich Feuerhake c,e ,
Dorit Merhof a,b , Fabian Kießling a,d , Johannes Lotz a

a Fraunhofer Institute for Digital Medicine MEVIS, Bremen/Lübeck/Aachen, Germany
b Institute of Image Analysis and Computer Vision, University of Regensburg, Regensburg, Germany
c Institute for Pathology, Hannover Medical School, Hannover, Germany
d Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
e Institute of Neuropathology, Medical Center – University of Freiburg, Freiburg, Germany

A R T I C L E I N F O

Keywords:
Foundation models
Computational pathology
Multi-task learning
Representation learning

A B S T R A C T

Due to the increasing workload of pathologists, the need for automation to support diagnostic tasks and
quantitative biomarker evaluation is becoming more and more apparent. Foundation models have the potential
to improve generalizability within and across centers and serve as starting points for data efficient development
of specialized yet robust AI models. However, the training of foundation models themselves is usually very
expensive in terms of data, computation, and time.

This paper proposes a supervised training method that drastically reduces these expenses. The proposed
method is based on multi-task learning to train a joint encoder, by combining 16 different classification,
segmentation, and detection tasks on a total of 912,000 patches. Since the encoder is capable of capturing the
properties of the samples, we term it the Tissue Concepts encoder.

To evaluate the performance and generalizability of the Tissue Concepts encoder across centers, classifica-
tion of whole slide images from four of the most prevalent solid cancers – breast, colon, lung, and prostate –
was used. The experiments show that the Tissue Concepts model achieve comparable performance to models
trained with self-supervision, while requiring only 6% of the amount of training patches. Furthermore, the
Tissue Concepts encoder outperforms an ImageNet pre-trained encoder on both in-domain and out-of-domain
data.

The pre-trained models and will be made available under https://github.com/FraunhoferMEVIS/Medical
MultitaskModeling.
1. Introduction

The need for diagnostic systems to help pathologists manage the
anticipated workload increases as cancer cancers worldwide are on the
rise [1]. As Sung et al. [2] estimate, breast, colorectal, prostate, and
lung cancers are among the six most common cancers types. Projections
suggest that cases of these cancers will continue to increase, posing sig-
nificant challenges due to time-consuming diagnosis, increased demand
for tumor subtyping, and personalized treatment [3–5]. Deep learning
(DL) has made significant progress in medical imaging, particularly
in the field of computational pathology (CPath). Some studies have
demonstrated that DL models even surpass human performance in
certain tasks, making them effective tools to help pathologists cope
with the increasing workload [6,7]. However, the unavailability of the
required large data sets and the needed investment of time and effort
limits the effectiveness and impact of DL models in pathology.

∗ Correspondence to: Maria-Goeppert Str. 3, 23562, Lübeck, Germany.
E-mail address: till.nicke@mevis.fraunhofer.de (T. Nicke).

Recent advances in self-supervised learning have enabled the train-
ing of deep neural networks on large amounts of unlabeled medical
data, resulting in the creation of foundation models in computer vi-
sion [8]. These models are pre-trained on a wide range of images,
primarily using self-supervision through contrastive learning or masked
image modeling. They have been shown to perform well in down-
stream tasks, including patch classification, and weakly labeled whole
slide image (WSI) classification [9,10]. Projects such as the Tissue
Cancer Genome Atlas Program (TCGA) provide an openly available
data source of thousands of WSIs for training these networks on real-
world data. This vast amount of data is necessary for self-supervised
trained networks to reach their full potential [8]. However, the amount
of resources required to create, train, and deploy such models has
raised concerns among researchers about environmental and other im-
pacts [11–13]. In addition, extended training periods of several weeks
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Fig. 1. Overview of the study. (a) Different pre-training of Tissue Concepts using multi-task learning on 16 different tasks. (b) the shared encoder is evaluated using multiple-instance
learning on WSI classification. From each WSI, patches of size 224 × 224 are extracted in an iterative windowing fashion and the latent representation is positioned at the same
spatial location as the patches. A simple CNN is trained on the latent WSIs to learn the label at the slice level.
impede development cycles and prolong research time.
Supervised learning, on the other hand, has been shown to out-

perform models trained on self-supervision in some tasks [14,15].
Although there are many annotated datasets available through chal-
lenges or other benchmarks, these datasets vary in size and contain
annotations with varying degrees of detail. This variability between the
datasets makes it challenging to condense the knowledge they contain
into a single model. One approach to integrating all of these label types
is to use multi-task learning (MTL) [16]. In [17], we recently pro-
posed a learning framework that combines the information contained
in different labeling strategies, including detection, segmentation, and
classification, and use it to train a single shared backbone model on
a large corpus of images. In the study, images from different medical
imaging domains, such as CT, X-ray, and microscopic images but also
non-medical images were included.

This paper demonstrates that training a foundation model on super-
vised signals in CPath using MTL requires less data, time, and energy
compared to models trained with self-supervision. At the same time,
the measured performance is similar to that obtained from models
trained on about 17 times more data without supervision. Following
the MTL training scheme presented in Fig. 1a, this paper presents Tissue
Concepts (TC), a robust encoder that is trained on a mixture of diverse
annotations from small and medium-sized datasets in CPath to learn
different concepts related to tissue. Considering the future prediction
of cancer cases and clinical workflow, we evaluated the performance
of the encoder on the four major cancer types, breast, colon, lung, and
prostate, for classification of entire slide images, as shown in Fig. 1b. In
addition, since models trained on one site are known to perform worse
when evaluated on different sites, we tested the performance of Tissue
Concepts using a cross-center evaluation scheme [18].

The main contributions of the paper can be summarized as follows.

• We show that diverse pre-training using MTL learns robust rep-
resentations and drastically reduces the required amount of data
compared to self-supervised approaches.

• Our evaluation of the Tissue Concepts encoder on four of the
most prevalent cancer types across multiple centers highlights the
2 
generalizability of our approach.

2. Related work

First approaches using MTL in CPath were presented by Mormont
et al. [19], and Graham et al. [20]. Mormont and colleagues converted
different datasets into 22 classification tasks to train a shared network
and contrasted the learned encoders against ImageNet weights. The
latent representations of the encoder were used to train an SVM.
They found that the representations perform equally or better than the
baseline ImageNet weights. Graham et al. then used MTL on segmen-
tation and classification tasks. This research focused on specific tasks
that were present in the pre-training. However, the evaluation of the
general-purpose encoder and the corresponding latent representations
based on whole slide image classification combined with cross-center
evaluation is still an unexplored area. In addition, general purpose
encoders in the form of foundation models have not been considered
by Graham et al. [20].

In [17], we presented a first approach using MTL to train supervised
foundation models. Using expert knowledge in the form of multi-task
learning we trained a shared model, called UMedPT, which can be
applied to various medical images. To achieve this, different imaging
domains, such as CT, X-ray, and microscopic images, were used to
train a shared backbone on classification, segmentation, and detection
tasks. Currently, the impact of tasks outside the histopathology domain
remains unclear due to the diverse pre-training of the encoder. This
impact on performance and robustness requires further investigation.

The following sections focus in more detail on two topics discussed
in this paper. Although foundation models are still largely unexplored
in terms of their application and performance, some approaches are
mentioned below.

2.1. Foundation models

A foundation model is broadly defined as being trained on a wide
variety of data and being easily adaptable to many different down-
stream tasks [21,22].
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Wang et al. [9] used data from the TCGA in combination with
data from the pathology AI platform, PAIP, to train a modified swin
transformer, called CTransPath (CTP), using self-supervision on 15
million patches. They presented an adapted contrastive loss, based
on MoCo v3 [23], which uses a memory bank to retrieve the top S
emantically relevant entries. These entries were used as additional
ositive examples for the loss calculation. The authors evaluated their
odel using patch classification, image retrieval, and weakly labeled
SI classification. Due to the large number of training images and the

low convergence of self-supervised training, they reported a training
ime of 250 h on 48 GPUs (12.000 GPU-hours).

Campanella et al. [10], presented a comparable approach, training
a tiny vision transformer (ViT) using standard DINO, and a ViT base
model using standard masked autoencoding (MAE), both trained on
bout 3 billion patches. The authors report a training time of over 3000
PU-hours for the models that were evaluated on a variety of tasks

ranging from disease detection to outcome prediction. The evaluation
lso included images scanned at a different hospital from the training

slides.
Chen et al. [24] present a general purpose foundation model that

leverages over 100 million patches from 100.000 WSI slides across
20 major cancer types. They train a large ViT on patches, that were
collected in an internal dataset, using DINOv2 [25]. They evaluate the
model on 34 Tasks and find that it surpasses the previous baselines on
most of them. The model was trained on 24 80 GB GPUs.

Overall, all of the presented models rely on large image databases
nd require long training times, which contributes to increased CO2

emissions. The presented TC encoder and MTL training aim to reduce
the need for large amounts of data while maintaining the desired per-
formance. In addition, cross-center evaluation is needed to accurately
assess models’ performances.

2.2. Weakly labeled WSI classification

Learning from WSIs that are only labeled on a case basis, or that
have only one endpoint, is challenging because training on the entire
image at once typically exceeds the GPU memory. In addition, since
a WSI provides only one sample, many WSIs are needed to effec-
ively train a deep learning model. Classification of such gigapixel
mages is therefore typically performed using multiple instance learning
MIL) [26,27]. Using MIL involves two parts: first, extracting features
rom patches of the WSI using a pre-trained encoder to convert them
nto their latent representations, and second, aggregating features from
 WSI using a trainable MIL head to predict the given label [28].

Therefore, robust encoders are needed to obtain patch representations
that facilitate the second step of MIL [29]. In this paper, MIL is used as
an evaluation procedure to test the representativeness of the encoder’s
features. The following presents the most commonly used approaches
that focus on solving the second stage of MIL using either attention or
onvolution-based methods.

Lu et al. [30] introduced CLAM, a clustering-constrained attention
MIL algorithm. The authors trained an attention-based head on features
extracted from patches of a WSI to classify the corresponding labels.
The attention was then used to identify subregions of high diagnostic
value, which in turn were used to classify the entire slide. In addition,
instance-level clustering was applied over the representative regions to
constrain and refine the feature space.

Shao et al. [31] proposed TransMIL, an attention-based correlation
method for solving weakly labeled classification tasks. The method
ses differently sized convolutional layers to apply additional pyra-
id position encoding information between the attention modules.
his allows the attention layers to aggregate morphological features,
hile the Pyramid Position Encoding Generator (PPEG) encodes spatial

nformation.
Tellez et al. [32] proposed neural image compression to train on

ntire WSIs. The authors trained an autoencoder on patches and used
 s

3 
the resulting encoder for feature extraction. The patches extracted in
the image domain were encoded and their latent representations were
placed in the same spatial location. This effectively compressed the
ntire WSI into a smaller latent image with more channels, while

preserving the spatial relationship between the individual patches. A
small CNN was then trained on the compressed WSIs to predict the
abel of the WSI. In a second version of this approach the same authors
sed multi-task learning on four classification tasks to train the feature
xtractor [33]. The effect of segmentation and detection tasks, as well
s more diverse pre-training, remained a point of further investigation
nd are part of the research presented in this paper.

All presented methods propose different aggregation methods to
learn the desired label predictions based on the extracted features
and thus work with the features extracted by the TC encoder. As
an evaluation method, we adapted the convolution-based aggregation
method presented by Tellez et al. [32] and also applied an attention-
based approach based on Ilse et al. [34], which are further described
in Section 4.3.

3. Methods

Multi-task learning was used to train the Tissue Concepts encoder
n 14 small and medium-sized datasets. The pre-training datasets and

the procedure used during this phase are described in the following sec-
ions. In addition, the evaluation datasets, MIL head, and corresponding
raining are explained in detail.

3.1. Pre-training datasets

To pre-train the shared encoder, a total of 14 data sources were
collected and distributed over 16 tasks. All data sources with cor-
responding number of patches and WSIs, as well as their tasks are
presented in Table 1. The NCT-CRC-HE 100k, Panda, TUH, Breakhis,
and Arvaniti datasets have been designated as patch-level classification
tasks by their respective curators. Data from the PANDA dataset was
used for classification and segmentation tasks, where the patches in
PANDA were 20 patches per WSI, sampled of a total of 4000 WSIs. To
increase data diversity, the Breakhis dataset was used at both 40x and
100x magnification. Conic and MiDoG were included as detection tasks,
while Conic also served as a segmentation task. Other datasets used
for segmentation were the SemiCOL training dataset, Arvaniti, Peso,
Schoemig-Markiefka, PANDA, TIGER, CRAG, BCSS, and HubMap. Each
of the mentioned datasets is described in more detail in Appendix A. In
total, about 912,000 patches from around 7000 WSIs were used during
the training. The training data consisted of about 100,000 patches from
colorectal, 680,000 patches from prostate, and 10,000 patches from
breast tissue. In addition, a small number of spleen, liver, and skin
tissue slides were included, which are marked as ‘‘various’’ in Table 1.

All patches were extracted or scaled to 224 × 224 pixels, resulting
n a resolution of approximately 1 to 0.5 micron per pixel (MPP). In
ddition, standard augmentation, such as random rotation, distortion,
lurring, brightness, contrast, and hue changes were applied during
re-training.

3.2. Encoder training

The shared backbone was trained using multi-task learning with all
f the above data sources [17]. In the MTL pipeline, each task was

solved by a shallow task-specific head (𝜃𝑡) that received input from
larger, shared modules (𝜃𝑠ℎ𝑎𝑟𝑒𝑑). Fig. 1a gives a brief overview of the
ifferent blocks in the architecture. The shared blocks are shown in the
lue area, while the individual tasks are shown in green. During train-
ng, all tasks were treated equally and were processed iteratively within
he training loop. For each task the task-specific loss was computed and
ccumulated on the total loss. Formally, the total loss 𝑡𝑜𝑡𝑎𝑙(𝑋 , 𝑌 ) for a

et of tasks 𝑋 = (𝑋1,… , 𝑋𝑇 ) of task specific images 𝑋𝑡 = (𝑥𝑡,1,… , 𝑥𝑡,𝑁 )
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Table 1
Overview of the datasets used in the training of the ‘‘Tissue Concepts’’ encoder (purpose ‘‘training’’), the ablation study (‘‘ablation’’), and in the validation experiments

(‘‘validation’’).
Dataset # WSIs # Patches Organ Task Type Purpose

NCT-CRC-HE 100K [35] 86 100 000 Colorectal Classification training
Crag [36,37] 14 173 Colorectal Segmentation training
SemiCOL [38] 20 1759 Colorectal Segmentation training
Conic [39,40] 291 4981 Colon Detection training
Conic [39,40] 291 4981 Colon Segmentation training
Arvaniti [41] 641 2000 Prostate Classification training
Peso [42] 62 392 Prostate Segmentation training
Schoemig-Markiefka [43] 1177 600 000 Prostate Classification training
PANDA [44] 2000 40 000 Prostate Classification training
PANDA [44] 2000 40 000 Prostate Segmentation training
TUH [45] 136 3720 Breast Classification training
TIGER [46] 151 1876 Breast Segmentation training
BCSS [47] 18 139 Breast Segmentation training
BreakHis [48] 82 4076 Breast Classification training
MiDoG [49] 49 405 Various Detection training
HubMap [50] 315 1260 Various Segmentation training

Total 7042 912 157 Various Various training

Bach [51] 400 400 Breast Classification ablation

BRACS [52] 547 5 566 906 Breast MIL validation
Panda [44] 10 000 98 928 234 Prostate MIL validation
SemiCOL [38] 499 1 436 065 Colorectal MIL validation
TCGA-NSCLC [53,54] 1006 12 641 437 Lung MIL validation

Total 12 052 118.572.642 Various MIL validation
t
o

d
m
f

e

d
w
1
w

and corresponding labels 𝑌𝑡 = (𝑦𝑡,1,… , 𝑦𝑡,𝑁 ) is computed as

𝑡𝑜𝑡𝑎𝑙(𝑋 , 𝑌 ) =
𝑇
∑

𝑡=1
𝑡(𝜃𝑡(𝜃𝑠ℎ𝑎𝑟𝑒𝑑 (𝑋𝑡)), 𝑌𝑡) (1)

where the loss of the task 𝑡 is calculated based on the output of the task
specific head 𝜃𝑡 that received its’ input from a shared network structure
𝜃𝑠ℎ𝑎𝑟𝑒𝑑 . 𝑋𝑡 and 𝑌𝑡 describe the task-specific batch input images and the
corresponding labels respectively. While the task-specific parameters
𝜃𝑡 in Eq. (1) changed, depending on which task was being processed,
the shared parameters 𝜃𝑠ℎ𝑎𝑟𝑒𝑑 were task-independent. Since all tasks
contributed equally to the total loss, multiple cycles through all tasks
can be performed by performing gradient accumulation before an
ptimization step is performed.

The tasks themselves were divided into classification, segmentation,
nd detection. All tasks shared the same encoder, which yielded a
eature pyramid with four feature maps at different perceptual levels.
he feature pyramid was further processed depending on the task.
Classification tasks received a globally average pooled version of

the lowest feature pyramid level from the encoder. Each task-specific
classification head consisted of 20% dropout followed by a linear layer,
mapping from the dimension of the latent space to the number of
classes. By minimizing the cross-entropy loss, each head learned to
predict the task-specific classes.

Segmentation tasks consisted of a shared U-Net style decoder that
eceived features from all levels of the shared encoder. Each individual
egmentation task was then processed by a 1 × 1 convolutional layer
perating on the output of the last decoder level. A combination of dice

and focal loss was minimized by each segmentation head.
The detection tasks also consisted of a shared U-Net style decoder

hat received features from all levels of the shared encoder to extract
patially relevant feature maps. Unlike the segmentation tasks head,
he detection task head consisted of an FCOS detection head, which
inimized the corresponding losses.

Since transformer-based approaches are currently dominant in the
literature we chose a tiny swin transformer as shared encoder [55,56]
further denoted as TC-Swin). The encoder shares the same latent
imension with CTransPath, 768, and has 27.5M trainable parameters.
dditionally, we compared the attention-based backbone to a tiny
onvNeXt architecture that shares a similar number of parameters
nd latent dimension but follows a convolution-based approach [57]
 o

4 
(further denoted as TC-Conv). Both networks were initialized with
the corresponding ImageNet-1k weights which were imported from
he torchvision library [58]. During pre-training, the networks were
ptimized for 5 million steps until convergence, where one step was

defined as computing the loss for one batch of one task. AdamW
optimizer [59] was used with a constant learning rate of 10−4, a weight
ecay of 0.01, and a gradient accumulation of 128 steps. In total, the
odels were trained for 160 h on one NVidia RTX A5000 GPU and the

inal models were used for evaluation.

4. Evaluation

This section first establishes a comparison between UMedPT and TC
using a sample efficiency experiment as an ablation study. Then, the
valuation datasets and corresponding tasks are presented, and the MIL

head training procedure is described.

4.1. Ablation study

To determine whether a multi-domain encoder, UMedPT, or a his-
tology specific encoder, TC-Swin, performs better on unseen histology
data, we measured the sample efficiency on an unseen, in-domain
dataset. In this experiment, the frozen encoder generated latent rep-
resentations for all patches in the downstream dataset. These latent
representations were then used as input to a random forest model.
Sample efficiency was measured by establishing of a fixed training and
validation split. Different subsets of images per class were systemat-
ically sampled from the training split to serve as training examples
for the random forest. Each model was consecutively evaluated on the
designated test split. This training-validation process was repeated 10
times with different seed values for robustness in the analyses and
the F1-score was reported. We compared TC-Swin to the base Swin
transformer encoder presented in [17]. Additionally, ImageNet weights
from torchvision were used as baseline for a tiny swin transformer.

The BACH challenge dataset [51] is a breast tumor classification
ataset consisting of 400 images of 2048 × 1536 pixels at 0.25 MPP,
hich are equally divided into 4 classes. Images were center cropped to
024 × 1024 pixels and downsampled to 224 × 224 pixels. The dataset
as split 80/20 into a training and test subset. From the training split
f the BACH dataset, sets of 1, 3, 5, 10, 25, and max 46 images per class
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Fig. 2. Sample efficiency for encoders of different specificity on the BACH patch
lassification dataset. Each boxplot represents 10 repetitions. The TC-Swin encoder is
ompared to the tiny swin transformer ImageNet weights and a small swin transformer
f UMedPT [17]. The F1-scores are plotted against increasing numbers of images per

class to examine sample efficiency.

were sampled using 10 different seeds. For each training, the random
forest was evaluated on the left out test set.

Fig. 2 shows that the domain-specific encoder outperforms the
multi-domain encoder and the pre-trained ImageNet encoder in terms
f sample efficiency. The TC-Swin encoder showed higher F1-scores

compared to the multi-domain encoder and to ImageNet. With three
mages per class, TC-Swin’s mean F1-score was at 0.531, while UMedPT
nd ImageNet were at 0.496 and 0.423, respectively. With 10 images
er class, the TC-Swin encoder showed a mean F1-score of 0.673, while
medPT and ImageNet showed values of 0.628 and 0.566, respectively.
sing the maximum number of available training images per class,

he differences in reported performance are similar. While TC-Swin
chieved 0.816, UmedPT and ImageNet achieved mean F1-scores of
.762 and 0.662, respectively.

The TC-Swin encoder outperforms the multi-domain medical en-
oder UMedPT even though the later was trained with more images
verall. In particular, with 5 or more images per class, the features
btained from the TC encoder provide better performance than the
mageNet and UMedPT features. When considering 1 and 3 images per
lass, UMedPT shows similar performance to the TC encoder, but also
hows a higher variance over the 10 seeds. Therefore, we excluded
he UMedPT encoder from further evaluation and focused on the TC
ncoder instead.

4.2. Evaluation datasets

We compared the TC encoder to the current state of the art for
ach organ, referred to as the external baseline, as well as to the
esults obtained using the features of the publicly available CTransPath
ncoder [9]. In addition, we use the Swin transformer model with
mageNet weights without further training as an additional baseline.

The learned representations of Tissue Concepts were evaluated
sing weakly labeled WSI classification tasks. Breast, prostate, and
aolorectal tissue represent tissues within the training domain, lung
ancer tissue was deliberately chosen to represent tissues outside the
raining domain. The architecture and learning schedule as described
n Section 4.3, was used during the training of each MIL head. Where

possible, multi-site datasets were split so that evaluation sites were not
included in the training. The feature extractors were evaluated on the
following datasets for each organ:

Breast Cancer: The BReAst Cancer Subtyping (BRACS) dataset
consists of 547 WSIs from 189 patients which are already divided into
raining (395), validation (87) and test (65) splits [52]. According

to Pati et al. [60], the WSIs were obtained at the Department of
Pathology at the National Cancer Institute - IRCCS-Fondazione Pas-
cale, Naples, Italy, and were scanned with an Aperio AT2 scanner
5 
at a resolution of 0.25 μm per pixel (mpp). Each WSI is assigned
to one of 7 different classes: normal, benign, usual ductal hyperpla-
sia (UDH), atypical ductal hyperplasia (ADH), flat epithelial atypia
(FEA), ductal carcinoma in situ (DCIS), and invasive. In addition, Pati
et al. [60] grouped the different types of breast carcinoma into four
coarser classes: normal, non-cancerous, precancerous, and cancerous.
Furthermore, binary classification between invasive and non-invasive
breast cancer was also performed by Pati et al. [60]. The authors
also presented a trained model, HACT-Net, and applied it to this
ataset. They reported the weighted F1-score for all of the classification
roblems mentioned above which we used as an external baseline
nd also reported the weighted F1-score in the BRACS experiments.
dditionally, following Maier-Hein et al. [61], we reported accuracy

as multi-class metric and area under the receiver operating curve
(AUC) as multi-threshold metric. For the evaluation of the TC-encoder,
three experiments were created form the dataset, similarly to the
approach proposed by Pati et al. [60]. The first experiment consisted
f differentiating between normal and cancerous tissue slides. The
econd experiment focused on more fine-grained classification between
ormal, non-cancerous, precancerous, and cancerous tissues. Finally,
he third experiment for breast cancer aimed at predicting one of the
even sub-types provided.
Prostate Cancer: The Prostate cANcer graDe Assessment (PANDA)

challenge provides 10 616 openly available WSIs from two different
centers, Karolinska and Radboud [44]. Each of the WSIs was assigned
an ISUP score resulting from the primary and secondary Gleason pat-
tern. The score ranges from 0 to 5, with 0 representing normal tissue
and higher numbers representing more severe prostate cancer. This
information was used to create binary classification task or evaluation,
where the task consists of differentiating between normal (ISUP 0)
and cancerous tissue (ISUP > 0). To test cross-center performance and
overall performance, three different experiments were created from this
dataset. First, the entire set of images obtained from the Radboud UMC

as used as both the training and validation set, using a split ratio of
0% for training and 10% for validation. All images provided by the
arolinska Institute were used as the hold-out test set. In a subsequent
xperiment, the roles of training and test centers were swapped. In

addition, a 5-fold cross-validation experiment involving both centers
was conducted. We note that a small percentage of the dataset in
the form of pre-selected patches were used during pre-training of the
encoder, however, the task-specific head was discarded. To evaluate the
effect of possible data leakage [62] an additional encoder was trained
without the PANDA dataset in pre-training and evaluated only on this
task. Mahdi Behzadi et al. [63] used this dataset in a k-fold cross-
validation to evaluate the performance of their model and reported
the accuracy and area under the curve for binary classification. Their
reported results serve as an external baseline. Mahdi Behzadi et al.
[63] reported the accuracy and AUC of their algorithm on the dataset.
To be comparable, we also report these metrics in our experiments.
Additionally, we report the F1-score as per-class metric, as suggested
by Maier-Hein et al. [61].

Colorectal Cancer: During the SemiCOL challenge, a dataset of 499
SIs from 4 different centers was provided as training dataset. The

hallenge task was to predict whether a given slide contained cancerous
issue or normal tissue. During the challenge, we used a modified model
resented in [17] as an initial starting point and further fine-tuned
n several colon and colorectal tasks. Using the learned encoder to

extract features from the WSI, a MIL head was successively trained on
these features. This resulted in an external test AUC of 0.99. In the
xperiments presented in this paper, the challenge training data was

split by slide provider, effectively creating four smaller subsets of the
original challenge dataset. For the evaluation presented in this paper,
four different experiments were conducted. Images from one center
were used as training examples (90/10), while images from the other
hree centers served as the hold out test set. By treating each center
as training provider once, and using the other three centers as test
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centers, four different configurations were created. We note that a small
percentage of patch data of the dataset was used during pre-training
of the encoder, however, the task-specific head was discarded. To the
best of our knowledge, there is no other publication reporting results
on this specific dataset, so we are unable to report an external baseline.
Since the dataset is balanced with regard to the class distribution for
each center in all splits, we reported the Accuracy, F1-Score and AUC
as metrics, following Maier-Hein et al. [61].

Lung Cancer: The TCGA-NSCLC dataset contains two subtypes of
lung cancer which are lung squamous cell carcinoma (TCGA-LUSC
[53]), and lung adenocarcinoma (TCGA-LUAD [54]) in 1006 (512
USC, 494 LUAD) slides from over 40 different sites. Two training

and testing scenarios were created from the TCGA-NSCLC dataset.
ne experiment focused on corss-center evaluation. In this scenario,

the three largest contributors (Johns Hopkins, International Genomics
onsortium, and Asterand) were selected to serve as the training and
alidation subset providers. The remaining 39 sites were selected to

serve as hold out test set. This split resulted in 340 training slides
(90/10 split) and 666 test slides. In addition, a 5-fold cross-validation
experiment was performed on the entire dataset to increase training set
diversity, again using a 90/10 training and validation split. The objec-
tive of each experiment was to distinguish between slides containing
lung adenocarcinoma and those containing squamous cell carcinoma
(LUAD vs. LUSC). The obtained results were compared to the results
reported by Shao et al. [31] and Wang et al. [9]. To be comparable, the
accuracy and AUC, as reported by the external baselines, were selected
as metrics. Additionally, the F1-score was reported.

4.3. Training of the MIL head

Following medical diagnoses, WSIs are often only labeled at the
patient or slide level. To address this, we used MIL to train slide-level
lassification heads for the respective evaluation tasks. The WSIs were
ompressed into latent images, by the respective frozen encoder, as

suggested by Tellez et al. [32]. During this process, all patches of a
SI were extracted with a size of 224 × 224 at about 0.5 MPP.
Using the exact same architecture for aggregation as presented

y Tellez et al. [32], we found that training the proposed MIL head left
oom for improvement in terms of training stability and convergence
peed. The selection and adaptation were motivated by the prior perfor-
ance on the SemiCOL challenge [38]. There, we fine-tuned UMedPT

nd trained the small MIL head on WSI classification. On an external,
multi-center test set, this pipeline achieved an AUC of 0.998.

To aggregate the latent WSIs, a small CNN with global max pooling,
was used. The initial layer utilized a 1 × 1 convolution, reducing the
latent WSIs’ 768 channel to 16. Following this, 3 × 3 convolutions
with a stride of 2, and padding of 1 doubling in depth each time were
applied. Instance normalization, leaky ReLU activation, and 10% 2D
dropout were applied in the convolutional layers. The lowest feature
pyramid of 64 channels was globally max pooled, followed by one
hidden linear layer and a classification layer. This resulted in 19 250
total trainable parameters. The convolutional layers were initialized
by drawing from a Kaiming normal distribution with a fixed seed.
Additionally, we tested an attention-based approach by replacing the
max pooling layer with an attention pooling layer, as suggested by Ilse
et al. [34]. Overall, we found similar results with both approaches
cross all organs. The results using an ABMIL aggregation head can be
ound in Appendix B.1.

The same architecture was used over all evaluation datasets. To
avoid overfitting, a label smoothing of 0.1 was used while minimizing
the cross-entropy loss. The MIL head was trained using the AdamW
optimizer with a constant learning rate of 10−4 and a weight decay
f 0.01 for 100 epochs, while monitoring the validation loss. The best

performing model was used for testing. During training, additional
augmentations were applied to each latent WSI. Since each latent
WSI was treated as a 768-channel image, random flipping, mirroring,
and resizing with nearest neighbor interpolation were applied during
training. This resulted in high-dimensional latent WSI representations
with sizes ranging from 32 × 32 to 224 × 224.
 w
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Table 2
Breast: Tissue-specific model performance when applied to the BRACS challenge data.

he model consist of organ-specific head and frozen encoders: ImageNet, CTP, TC-Swin,
C-Conv. The table shows mean weighted F1 score, AUC and standard deviation over
 different runs for different problem formulations. The best score is shown in bold.
Problem Model wF1 AUC

2-class

Pati et al. [60] 0.96 –

ImageNet 𝟎.𝟗𝟔𝟎 ± 0.02 0.994 ± 0.003
CTP 0.954 ± 0.02 𝟎.𝟗𝟗𝟕 ± 0.001
TC-Swin 0.951 ± 0.02 0.992 ± 0.001
TC-Conv 0.921 ± 0.02 0.989 ± 0.006

4-class

Pati et al. [60] 0.84 –

ImageNet 0.490 ± 0.033 0.777 ± 0.01
CTP 𝟎.𝟔𝟏𝟑 ± 0.03 0.829 ± 0.01
TC-Swin 0.545 ± 0.04 0.83 ± 0.01
TC-Conv 0.555 ± 0.03 𝟎.𝟖𝟑𝟕 ± 0.02

7-class

Pati et al. [60] 0.69 –

ImageNet 0.349 ± 0.01 0.711 ± 0.002
CTP 0.3989 ± 0.02 0.755 ± 0.01
TC-Swin 𝟎.𝟒𝟎𝟓 ± 0.02 𝟎.𝟕𝟔𝟗 ± 0.02
TC-Conv 0.378 ± 0.02 0.764 ± 0.02

5. Results

An overview of the obtained results is given in Fig. 3, where all
tasks are presented with corresponding test AUC scores over 5 runs.
The results show that the TC encoder, although trained with less data,
performs as well as, or better than the CTransPath encoder, given the
selected tasks. The Swin transformer with ImageNet weights exhibit the
lowest overall performance and the largest variance across all tasks.
All reported results were obtained using the default parameters of
the corresponding functions from the scitkit-learn library [64]. In the
ollowing, the results on the different organs are examined in more
etail.

5.1. Breast cancer

Table 2 shows the results for the three sub-problems of the BRACS
lassification challenge, including the weighted F1-score and the AUC
core for each. For the binary classification problem, ImageNet weights
chieve the highest weighted F1-score on average with 0.960, which is
omparable to the external baseline of 0.96. CTP and TC-Swin show
imilar performance with average wF1-scores of 0.954 and 0.951,

respectively. The TC-Conv encoder performs almost three percentage
points worse than the TC-Swin encoder. Overall, all tested encoders
result in similar AUC values.

Considering the more fine-grained classification of the given WSIs,
one of the encoders matches the reported performance of the external
aseline HACT-Net with a weighted F1-score of 0.84. The two TC
ncoders outperform the ImageNet weights on the four- and seven-class
roblem formulations. On the four-class problem, CTP achieves a mean
eighted F1-score of 0.613, approximately 6 percentage points higher

han the two TC encoders. However, when considering the AUC, all
f the foundation models perform equally with a mean AUC of about
.83. For the more detailed seven-class problem, the TC-Swin encoder
chieves the highest mean weighted F1 and AUC scores out of all the
ested models with 0.40 and 0.76, respectively.

Overall, the performance of all four encoders tested decreases sig-
ificantly as the problem formulation becomes more fine-grained. Al-
hough the external baseline performance also declines, the decline is
ot as steep as that observed with the foundation models and ImageNet
eights.
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Fig. 3. Organ-specific model performance when applied to downstream data. Models consist of organ-specific head and frozen encoders: ImageNet, CTP, TC-Swin, TC-Conv. While
breast, colorectal, and prostate tissue was included in the pre-training, no lung tissue has been used during encoder pre-training of TC. ‘‘Breast’’ shows the results on three
different classification tasks based on the BRACS dataset. ‘‘Colon’’ shows the cross-center performance between sites of the SemiCol challenge when trained on one center and
evaluated on the others. ‘‘Lung’’ shows a 5-fold cross-validation and a cross-center evaluation. ‘‘Prostate’’ shows the performance on two cross-center evaluations as well as a 5-fold
cross-validation from the Panda-challenge dataset. Boxes cover the inter-quartile-range, the median is marked by a horizontal line.
Table 3
Prostate: Tissue-specific model performance when applied to the PANDA challenge data. The model consist of organ-specific head and frozen
encoders: ImageNet, CTP, TC-Swin, TC-Conv, TC-Swin-NoPanda. The table shows mean weighted Accuracy, F1 score, AUC, and standard
deviations over 5 different runs for 5-fold cross-validation and cross-center transfer performance. The best score is shown in bold.
Clinic Model Acc F1 AUC

External Mahdi Behzadi et al. [63] 0.95 0.93 –

5 fold

ImgNet 0.900± 0.01 0.877± 0.01 0.958± 0.01
CTP 0.936± 0.01 0.921± 0.01 0.979± 0.01
TC-Swin 0.942 ± 0.01 0.928 ± 0.01 0.983 ± 0.01
TC-Conv 𝟎.𝟗𝟓𝟕 ± 0.05 𝟎.𝟗𝟒𝟕 ± 0.06 𝟎.𝟗𝟗𝟎 ± 0.01
TC-Swin-NoPand 0.932 ± 0.01 0.918 ± 0.01 0.975 ± 0.003

Karolinska → Radboud

ImgNet 0.658± 0.15 0.529± 0.08 0.648± 0.08
CTP 0.819± 0.01 0.524± 0.04 0.825± 0.03
TC-Swin 0.896± 0.01 0.829 ± 0.01 0.914± 0.02
TC-Conv 𝟎.𝟗𝟎𝟎 ± 0.05 𝟎.𝟖𝟒𝟓 ± 0.06 𝟎.𝟗𝟓𝟖 ± 0.01
TC-Swin-NoPanda 0.865 ± 0.07 0.758 ± 0.08 0.924 ± 0.01

Radboud → Karolinska

ImgNet 0.646± 0.01 0.577± 0.04 0.697± 0.02
CTP 0.678± 0.03 0.512± 0.11 0.834± 0.03
TC-Swin 𝟎.𝟖𝟒𝟔 ± 0.02 𝟎.𝟖𝟒𝟐 ± 0.02 0.926± 0.01
TC-Conv 0.764± 0.05 0.646± 0.06 𝟎.𝟗𝟓𝟖 ± 0.01
TC-Swin-NoPanda 0.821 ± 0.07 0.807 ± 0.06 0.875 ± 0.007
7 
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Table 4
Colorectal: Tissue-specific model performance when applied to the SemiCOL challenge
ata. The model consist of organ-specific MIL head and frozen encoders: ImageNet, CTP,
C-Swin, TC-Conv. The table shows mean accuracy, F1 score, AUC, and the respective
tandard deviations over 5 different runs. Each model was trained on images from one
ite and evaluated on all images from the remaining sites. The best score is shown in
old.
Clinic Model Acc F1 Auc

LMU

ImgNet 0.877± 0.05 0.875± 0.06 0.961± 0.01
CTP 0.967± 0.01 0.964± 0.01 0.991± 0.004
TC-Swin 0.948± 0.03 0.948± 0.03 0.987± 0.01
TC-Conv 0.921± 0.02 0.919± 0.02 0.979± 0.01

UBERN

ImgNet 0.734± 0.09 0.709± 0.11 0.939± 0.02
CTP 0.860± 0.08 0.854± 0.09 0.985± 0.01
TC-Swin 0.943± 0.02 0.944± 0.02 0.987± 0.01
TC-Conv 0.943± 0.01 0.943± 0.01 0.986± 0.01

UKK

ImgNet 0.890± 0.02 0.889± 0.02 0.960± 0.01
CTP 0.962± 0.01 0.962± 0.01 0.993± 0.01
TC-Swin 0.955± 0.01 0.953± 0.01 0.989± 0.01
TC-Conv 0.925± 0.02 0.925± 0.01 0.978± 0.01

WNS

ImgNet 0.936± 0.02 0.926± 0.02 0.984± 0.004
CTP 0.989± 0.01 0.989± 0.01 0.998± 0.001
TC-Swin 0.967± 0.01 0.966± 0.01 0.993± 0.01
TC-Conv 0.973± 0.01 0.973± 0.01 0.995± 0.01

Average

ImgNet 0.859± 0.09 0.852± 0.1 0.962± 0.02
CTP 0.944± 0.06 0.943± 0.01 𝟎.𝟗𝟗𝟐 ± 0.01
TC-Swin 𝟎.𝟗𝟓𝟑 ± 0.02 𝟎.𝟗𝟓𝟑 ± 0.02 0.989± 0.01
TC-Conv 0.941± 0.02 0.940± 0.02 0.984± 0.01

5.2. Prostate cancer

Table 3 shows the results obtained of five runs on the PANDA
ataset with cross-center and mixed evaluation. The ‘clinic’ column
ndicates different settings, where ‘‘Karolinska → Radboud’’ refers to

the MIL head being trained on data from the Karolinska Institute and
evaluated on data from the Radboud Clinic. The additional encoder
TC-Swin-NoPanda was trained without PANDA data in the pretraining.

When comparing the results obtained in the 5-fold cross-validation
ith the external baseline, both TC encoders show performances that
ere close to the external baseline, with TC-Conv slightly surpassing

t with a mean accuracy of 0.957. The mean accuracies of CTP and
mageNet are 2 and 5 percentage points below the selected baseline,
espectively. All foundation models outperform the pure ImageNet
ncoder by at least three percentage points. In terms of accuracy and
UC scores, two TC encoders slightly outperform the CTP weights by
ne percentage point with mean acc of 0.936 and mean auc of 0.979.
hen training the TC-Swin encoder without the PANDA dataset, a

light drop in performance can be observed, resulting in similar metrics
ompared to the CTP encoder.

In the cross-center evaluation, the performance of all models de-
creases compared to an in-center evaluation. CTP achieves a mean
accuracy of 0.819 when transferring decision boundaries from the
Karolinska site to Radboud subset. The opposite scenario results in a de-
crease of 14 percentage points (0.678 mean acc). Furthermore, an even
steeper drop in mean accuracy and AUC from 5-fold cross-validation to
cross-center validation is observed when using the ImageNet weights
(from 0.900 to 0.658). All TC encoders are capable of extracting robust
features. The TC-Swin encoder (from 0.942 to 0.846) shows more
stable performance than the TC-Conv encoder (from 0.957 to 0.764)
when compared to the metrics reported in the cross-center evaluation.
The TC-Swin encoder trained without panda shows slightly lower per-
formance on average to the TC-Swin encoder trained with PANDA.
Independently of including the PANDA dataset in the pre-training, all
TC-based encoders show a stronger cross-center performance over CTP.

5.3. Colorectal cancer

Table 4 presents the results per trained center on the SemiCOL
challenge dataset. The ‘clinic’ column indicates the training center.
8 
Table 5
Lung: Tissue-specific model performance when applied to the TCGA-NSCLC dataset.
The model consist of organ-specific MIL head and frozen encoders: ImageNet, CTP,
TC-Swin, TC-Conv. The table shows mean weighted accuracy, F1 score, AUC, and the
respective standard deviations over 5 different runs. Each model was trained in a 5-fold
cross-validation and in a cross-center setting using the 3 main contributing centers for
training and the remaining as hold out test set.

Evaluation Model Acc F1 AUC

External Shao et al. [31] 0.884 – 0.961
Wang et al. [9] 0.912 – 0.973

5-fold

ImgNet 0.838± 0.02 0.834± 0.02 0.926± 0.02
CTP 𝟎.𝟗𝟎𝟐 ± 0.02 0.899± 0.02 𝟎.𝟗𝟔𝟓 ± 0.01
TC-Swin 0.878± 0.02 0.875± 0.02 0.949± 0.01
TC-Conv 0.852± 0.01 0.847± 0.01 0.925± 0.01

Cross-center

ImgNet 0.733± 0.01 0.721± 0.01 0.817± 0.01
CTP 𝟎.𝟖𝟓𝟒 ± 0.01 0.850± 0.01 𝟎.𝟗𝟐𝟒 ± 0.01
TC-Swin 0.785± 0.01 0.778± 0.01 0.863± 0.01
TC-Conv 0.763± 0.01 0.759± 0.01 0.832± 0.01

The averaged results are shown at the bottom of the table for orien-
ation. On average the TC-Swin encoder showed higher mean accuracy
0.953) compared to the TC-Conv (0.941) and CTP (0.944) encoders,
s well as higher F1-scores. In terms of AUC, all three encoders show
pproximately the same performance on average.

When looking at the performance on individual clinics, the trans-
er from UBERN to other clinics seems to be the most challenging.
mageNet (0.734) and CTP (0.860) both showed a performance about
0 percentage points lower than the performance on other centers.
owever, both TC encoders were able to extract features that allowed

the transfer of the learned classification to other centers (TC-Swin:
0.943, TC-Conv: 0.943). The performance when trained on data from
the UBERN clinic is similar to that when trained on data from other
linics.

Looking at performance on other clinics, there is a slight discrep-
ncy in mean accuracy and AUC score between CTP and TC. CTP consis-

tently achieves slightly higher scores of approximately one percentage
point over the TC-Swin encoder.

5.4. Lung cancer

Table 5 shows the results of the 5-fold cross-validation and the cross-
center evaluation on the TCGA-NSCLC dataset. Despite the absence of
lung cancer images in the pre-training, both TC encoders outperform
the ImageNet weights in the cross-center and 5-fold cross-validation
tasks. The CTP encoder achieves the highest mean accuracy of 0.902,
which is about 2 percentage points better than the TC-Swin of 0.878.
The CTP encoder was pretrained using the TCGA-NSCLC dataset and
its performance achieved when evaluating the CTP in our pipeline is
similar to the external baseline reported by Wang et al. [9] (0.902 vs.
0.912). The TC-Swin encoder shows comparable performance earlier
results reported by Shao et al. [31], with an accuracy of 0.878 vs. 0.884
nd an AUC of 0.949 vs. 0.961.

As expected, both models TC-models show weaker performance
when evaluated across centers, compared to mixed-center 5-fold cross-
validation. Both TC encoders outperform the ImageNet-based encoder.
The CTP encoder was pre-trained to extract features from this dataset
and outperforms all other models in the cross-center evaluation.

As an additional experiment, the UNI [24] encoder was compared
o the other models using the ABMIL aggregation head and showed
imilar results to the other encoders. The detailed results can be found

in Appendix B.1.

6. Discussion

This paper demonstrates that MTL is an effective method for train-
ing foundation models on supervised signals in CPath. We tested the
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MTL-trained Tissue Concepts encoders on breast, prostate, colorectal,
nd lung cancers and found that the performance of the encoders is
omparable to a self-supervised model. This comparable performance
as achieved with only 6% of the data and resources: training TC

equired only 912,000 patches, compared to 15 million patches used
n [9]’s self-supervised approach. Less data and shorter training enable
aster development and research cycles.

Further development and scaling of the foundation models in CPath
ill inevitably contribute to extended CO2 emissions. The TC encoders
ere trained for 160 h on a single Nvidia RTX A5000 in Europe. This

orresponds to an estimated 18.91 kg of CO2 emissions [65]. Most self-
supervised approaches exceed these emissions by orders of magnitude
ue to larger training datasets, longer convergence times, and the use
f multiple GPUs. Training such a model for the same amount of time
n 48 NVIDIA V100s, a common number of GPUs for training large
oundation models, results in 2004 kg of CO2 during training. Overall,
epending on the GPU, one training of an MTL-based model produces
nly 0.9% to 2.25% of the CO2 emissions of an SSL-based training while
roviding similar performance.

Even though, performance generally is comparable, there are two
differences between TC and CTP in organ specific performance. One is
the difference on the prostate dataset. While a small amount of patches
f this dataset were present during the pre-training of original TC
ncoder, the vast amount of patches used during testing were unseen.
verall, a lot of prostate patches were used during the pre-training
f TC, as mentioned in Section 3.1. This large proportion of prostate
issue during pre-training may have led to the better performance on
his organ and it likely prevented a larger reduction of the encoder’s
erformance when omitting the small amount of PANDA data during
re-training. This raises the question if organ-specific fine-tuning of
C encoders can lead to better performance on specific organs when
onsidering cross-center evaluation and testing on unseen datasets.
his question is further justified by the differences in organ specific
erformance between foundation models and external baselines.

Another clear difference in performance between CTransPath and
Tissue Concepts was observed for lung cancer in the 5-fold cross-
validation and cross-center validation. This difference most likely arises
due to the out-of-domain nature of lung cancer tissue in TC pre-training.
However, training on pathology images instead of non-medical im-
ges improved performance when comparing Tissue Concepts weights
o ImageNet weights. Scaling the Tissue Concepts pre-training with
ore data should be considered to overcome the current limitations.

mportantly, balancing different tasks, tissue types, and magnifica-
ions during pre-training is important to effectively scale and apply
ulti-task learning in the CPath domain.

In the present study, only frozen encoders were considered. While
fine-tuning these foundation models can lead to better adapting to
pecific tasks, more research is needed on the balance between data
pecificity and variation, and the amount of data is required. In [17]
e found that a fine-tuned foundation model encoder outperformed a

ine-tuned ImageNet-base model on all tasks in terms of data efficiency
and F1-score. Similar results can be expected for TC encoders and CPath
pecific problems, but this remains an open question to be investigated
urther. Additionally, this study focuses on solving MIL problems which

occur frequently in diagnostic or prognostic tasks. While MIL tasks are
clinically motivated, the individual performance of the segmentation,
and detection branches in the multi-task trained model need to be
onsidered in future evaluations.

Overall, the results show that the more domain-specific pre-training
of Tissue Concepts encoders is advantageous for solving domain-
specific tasks compared to the more general, multi-domain pre-trained
encoders. A question that remains to be answered is the performance
difference between foundation models and models trained on one
specific organ. This will be part of future research.
9 
7. Conclusion

In this paper, we propose to train a foundation model for CPath on
upervised signals using multi-task learning to reduce the need for large
orpora of data, computation time, and resources during training. The
roposed method shows comparable results to a model trained using
elf-supervision while relying on a fraction of the training patches.

In addition, we found that, although trained on large amounts of
ata, existing models still exhibit a loss of performance when applied
cross centers. Better cross-center generalization is crucial to facilitate
roader clinical application and needs to be further addressed in future
esearch.

In order to effectively scale multi-task learning of foundation mod-
els, questions regarding the balance of tasks and tissue types need
to be answered. Organ-specific fine-tuning might create robust and
high-performing encoders for specific problems but needs to be further
explored.
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Appendix A. Training datasets

NCT-CRC-HE 100k
The NCT-CRC-HE 100k dataset consists of 100.000 non-overlapping

patches from 86 H&E stained human colorectal cancer and normal
WSIs. The patches are of size 224 × 224 and have a resolution of
0.5 μm per pixel (MPP). Nine different tissue classes were present in this
classification dataset. The dataset is available under https://zenodo.
org/records/1214456.

Conic

https://www.cancer.gov/tcga
https://www.cancer.gov/tcga
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This dataset is based in the Lizard Dataset [40]. It contains 4981
H&E stained, non-overlapping patches of colon tissue at 256 × 256
pixels. The segmentation masks were generated using the Hover-Net
The dataset is available under https://conic-challenge.grand-challenge.
org/.

CRAG
The CRAG dataset consists of 213 H&E stained patches from colon

issue of 38 WSIs. The patches are of size 1512 × 1512 at a resolution
of 0.5 MPP. During preprocessing the patches and masks were further
ropped into non overlapping 224 × 224 tiles with 1MPP resolu-
ion. The original 173/40 patch train/val split was maintained. The
ataset is available under https://warwick.ac.uk/fac/sci/dcs/research/
ia/data/mildnet with corresponding login.
SemiCol
The training data from the SemiCOL challenge is divided into two

parts. One contains manual segmentation masks, which were used in
the pre-training of the encoder. The other part contains weakly labeled
ata, which was described in 3.1. The 20 sparsly annotated slides were

obtained from the university hospital in Cologne (Hamamatsu S360)
and from the university hospital LMU in Munich (Leica GT450). Both
sides scanned at 0.5 MPP and provided 10 slides each. Patches with
annotations were extracted from the provided images and scaled to 1
MPP and 224 × 224 pixels. More details about the data can be found
here https://www.semicol.org/data/.

Arvaniti
The Arvaniti TMA dataset consists of prostate tissue microarrays,

which were scanned at 0.23 MPP resolution at the University Hospi-
tal Zurich using a Hamamatsu NanoZoomer-XR Digital slide scanner.
Patches of 1024 × 1024 were cut out from the foreground and scaled
to 224 × 224. The major class of the mask was selected to serve as
patch label. The dataset is available under https://dataverse.harvard.
edu/dataset.xhtml?persistentId=doi:10.7910/DVN/OCYCMP.

Peso
The PESO dataset consists of 102 WSIs, which were scanned at 20x

round 0.48 MPP with a 3DHistech Pannoramic Flash II 250 scanner.
rom the H&E stained prostate slides were, patches were extracted and
caled to 1 MPP of size 224 × 224. The corresponding masks were used
s targets. The dataset is available under https://zenodo.org/records/

1485967.
Schoemig-Markiefka
This prostate dataset contains 6 sub-datasets, each containing

20.000 patches. All of the patches were scanned at approximately
.25 MPP with at least 4 different scanners. Each sub-dataset contains
0.000 patches with tumor tissue, 50.000 patches with non-neoplastic
landular prostate tissue and 20.000 patches with non-glandular tissue.
n our training the patches were scaled accordingly. 5 of the sub-
atasets were used for pre-training, while 1 was used for validation
he dataset is available under: http://zenodo.org, Deposits: 4 789 576

(Dataset 1–4) and 4 904 569 (Datasets 5–6).
Panda
This prostate dataset was already described in 3.1. From the slides,

atches of 224 × 224 were extracted. The labels for the patches were
enerated from the corresponding masks. The dataset is available under

https://www.kaggle.com/c/prostate-cancer-grade-assessment/data.
TUH
The Temple University digital pathology corpus consists of over

505 annotated images of breast tissue. The labels range from artifact
and background annotations to specific breast cancer annotations like
invasive ductal carcinoma. All WSIs of the 296 patients are scanned
at 0.5 MPP with corresponding annotations. From the 3505 slides 136
xhibited quality annotations that were used in the training. Fixed
0 patches per WSI were sampled. Details about the download can
e found here https://isip.piconepress.com/projects/nsf_dpath/html/

downloads.shtml.
Tiger
10 
This breast cancer dataset contains H&E stained patches from tumor
infiltrating lymphocytes. The patches were extracted from 151 TCGA-
BRCA slides at f0.25 MPP. Manual annotations for 7 different classes

ere used as masks. Patches and masks were scaled to 224 × 224 pixels.
The dataset is available under https://tiger.grand-challenge.org/Data/.

BCSS
The BCSS dataset was contained as part of the TIGER challenge.

nnotations provided through the challenge were used as segmenta-
tions masks. These annotations were derived from the original BCSS
dataset. All images were scaled same as patches from the Tiger dataset
mentioned above. 124 slides from BCSS and NuCLS were annotated,
where some of the annotations were grouped. The dataset is available
under https://tiger.grand-challenge.org/Data/.

BreakHis
The breakhis dataset contains H&E stained patches from 82 patients

at different magnifications. The patches are of size 700 × 460 and were
scaled accordingly to 1 MPP resolution. The classes for this dataset were
derived from the original dataset. A two-class benign/malignant split
is possible, however, the more fine-grained 8 class dataset was used.
This dataset is available under https://web.inf.ufpr.br/vri/databases/
breast-cancer-histopathological-database-breakhis/.

MiDoG
The MIDOG 2022 challenge dataset contains 405 tumor cases across

six different tumor types. During training the 44 lung cancer cases were
xcluded. The cases were patchified and scaled to 224 × 224 pixels with

approximately 1 MPP. The dataset is available under https://zenodo.
org/records/6547151.

HubMap
The HubMap dataset contains 351 cases from different organs.

atches were extracted from the foreground containing annotation
masks and scaled to 1 MPP of 224 × 224 pixels. Only large intestine

as used during training. The dataset can be found under https://www.
kaggle.com/datasets/dingyan/hubmap-data.

Appendix B. MIL head architecture

To aggregate the latent WSIs, as described in Section 2.2, a small
NN with global max pooling, based on Tellez et al. [32] was used.

The initial layer utilized a 1 × 1 convolution, reducing the latent WSIs’
768 channel to 16. Following this, 3 × 3 convolutions with a stride
of 2, and padding of 1 doubling in depth each time were applied.
nstance normalization, leaky ReLU activation, and 10% 2D dropout
ere applied in the convolutional layers. The lowest feature pyramid
f 64 channels was globally max pooled, followed by one hidden linear

layer and a classification layer. This resulted in 19 250 total trainable
parameters. The convolutional layers were initialized by drawing from
a Kaiming normal distribution with a fixed seed.

B.1. ABMIL results and comparison to the UNI encoder

A different aggregation approach was proposed by Ilse et al. [34]
under the term ‘‘Attention-based Deep Multiple Instance Learning’’.
For comparison, the following tables present the results obtained by
using an attention based multiple instance learning aggregation head
instead of a maximum pooling aggregation head. The results were
ollected over three runs and averaged. Additionally, the experiments

were repeated using the UNI [24] foundation model.
Overall, we observed similar results between the different encoders

nd aggregation techniques across all organs (see Tables B.6–B.9).

Data availability

The trained models, scripts, and notebooks to reproduce the results
ill be made publicly available upon publication. The pre-training

ramework to build the pipeline will be avail- able as a python package.
he links to all datasets are men- tioned in the appendix with a
orresponding description.
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Table B.6
Breast: Tissue-specific model performance when applied to the BRACS challenge data. The model consist of
organ-specific head and frozen encoders: ImageNet, CTP, TC-Swin, TC-Conv, UNI. The table shows mean
F1 score, AUC, Balanced Accuracy, and standard deviation over 3 different runs for different problem
formulations. All results were obtained using an ABMIL aggregation head.

Problem Model F1 AUC b ACC

2-class

Pati et al. [60] 0.96 – –

ImageNet 0.888 ± 0.04 0.968 ± 0.002 0.865 ± 0.05
CTP 0.884 ± 0.05 0.990 ± 0.001 0.853 ± 0.06
TC-Swin 0.874 ± 0.02 0.983 ± 0.02 0.833 ± 0.05
TC-Conv 0.893 ± 0.09 0.990 ± 0.001 0.870 ± 0.001
UNI 0.930 ± 0.03 0.992 ± 0.006 0.901 ± 0.04

4-class

Pati et al. [60] 0.84 – –

ImageNet 0.283 ± 0.01 0.677 ± 0.05 0.357 ± 0.02
CTP 0.329 ± 0.01 0.759 ± 0.01 0.414 ± 0.01
TC-Swin 0.313 ± 0.04 0.735 ± 0.05 0.381 ± 0.04
TC-Conv 0.276 ± 0.01 0.699 ± 0.01 0.347 ± 0.02
UNI 0.287 ± 0.02 0.711 ± 0.06 0.357 ± 0.02

7-class

Pati et al. [60] 0.69 – –

ImageNet 0.189 ± 0.01 0.667 ± 0.001 0.275 ± 0.01
CTP 0.186 ± 0.007 0.698 ± 0.001 0.278 ± 0.01
TC-Swin 0.180 ± 0.01 0.685 ± 0.02 0.275 ± 0.009
TC-Conv 0.115 ± 0.06 0.580 ± 0.06 0.194 ± 0.08
UNI 0.183 ± 0.03 0.674 ± 0.02 0.269 ± 0.01
Table B.7
Prostate: Tissue-specific model performance when applied to the PANDA challenge data. The model consist of organ-specific head and frozen
encoders: ImageNet, CTP, TC-Swin, TC-Conv. The table shows mean weighted Accuracy, F1 score, AUC, balanced Accuracy, and standard
deviations over 3 different runs for 5-fold cross-validation and cross-center transfer performance. All results were obtained using an ABMIL
aggregation head.

Clinic Model Acc F1 AUC Balanced Acc

External Mahdi Behzadi et al. [63] 0.95 0.93 – –

5 fold

ImgNet 0.823 ± 0.07 0.793 ± 0.06 0.900 ± 0.03 0.819 ± 0.06
CTP 0.865 ± 0.03 0.834 ± 0.05 0.924 ± 0.04 0.847 ± 0.06
TC-Swin 0.923 ± 0.01 0.905 ± 0.02 0.970 ± 0.01 0.913 ± 0.03
TC-Conv 0.923 ± 0.02 0.904 ± 0.02 0.9690.02 0.914 ± 0.03
UNI 0.944 ± 0.01 0.931 ± 0.01 0.982 ± 0.01 0.939 ± 0.02

Karolinska → Radboud

ImgNet 0.595 ± 0.07 0.576 ± 0.06 0.662 ± 0.07 0.618 ± 0.07
CTP 0.819 ± 0.02 0.605 ± 0.02 0.825 ± 0.01 0.627 ± 0.02
TC-Swin 0.902 ± 0.01 0.857 ± 0.01 0.948 ± 0.01 0.904 ± 0.01
TC-Conv 0.726 ± 0.01 0.684 ± 0.01 0.919 ± 0.01 0.816 ± 0.01
UNI 0.748 ± 0.01 0.702 ± 0.01 0.893 ± 0.02 0.825 ± 0.01

Radboud → Karolinska

ImgNet 0.572 ± 0.07 0.572 ± 0.07 0.668 ± 0.04 0.626 ± 0.07
CTP 0.676 ± 0.03 0.583 ± 0.07 0.729 ± 0.01 0.595 ± 0.03
TC-Swin 0.896 ± 0.01 0.891 ± 0.01 0.969 ± 0.04 0.915 ± 0.01
TC-Conv 0.654 ± 0.05 0.676 ± 0.06 0.898 ± 0.01 0.902 ± 0.01
UNI 0.662 ± 0.01 0.661 ± 0.01 0.871 ± 0.02 0.738 ± 0.02
Table B.8
Colorectal: Tissue-specific model performance when applied to the SemiCOL challenge data. The model
consist of organ-specific MIL head and frozen encoders: ImageNet, CTP, TC-Swin, TC-Conv, UNI. The table
shows mean accuracy, F1 score, AUC, Balanced Accuracy, and the respective standard deviations over 3
different runs. Each model was trained on images from one site and evaluated on all images from the
remaining sites. All results were obtained using an ABMIL aggregation head.

Clinic Model Acc F1 Auc Balanced Acc

LMU

ImgNet 0.678 ± 0.12 0.646 ± 0.16 0.741 ± 0.16 0.678 ± 0.12
CTP 0.925 ± 0.01 0.925 ± 0.01 0.985 ± 0.005 0.925 ± 0.01
TC-Swin 0.873 ± 0.06 0.871 ± 0.07 0.934 ± 0.07 0.873 ± 0.06
TC-Conv 0.913 ± 0.06 0.912 ± 0.06 0.981 ± 0.02 0.913 ± 0.06
UNI 0.807 ± 0.03 0.802 ± 0.04 0.939 ± 0.02 0.809 ± 0.03

UBERN

ImgNet 0.793 ± 0.18 0.793 ± 0.18 0.838 ± 0.20 0.793 ± 0.18
CTP 0.820 ± 0.03 0.819 ± 0.04 0.914 ± 0.02 0.820 ± 0.03
TC-Swin 0.915 ± 0.01 0.915 ± 0.01 0.973 ± 0.01 0.915 ± 0.01
TC-Conv 0.947 ± 0.01 0.947 ± 0.01 0.984 ± 0.01 0.947 ± 0.01
UNI 0.905 ± 0.04 0.904 ± 0.04 0.956 ± 0.03 0.905 ± 0.04

UKK

ImgNet 0.865 ± 0.064 0.864 ± 0.064 0.927 ± 0.067 0.866 ± 0.064
CTP 0.901 ± 0.104 0.897 ± 0.109 0.979 ± 0.024 0.901 ± 0.103
TC-Swin 0.809 ± 0.099 0.799 ± 0.112 0.965 ± 0.027 0.809 ± 0.098

(continued on next page)
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Table B.8 (continued).
Clinic Model Acc F1 Auc Balanced Acc

TC-Conv 0.892 ± 0.050 0.892 ± 0.050 0.953 ± 0.050 0.892 ± 0.050
UNI 0.835 ± 0.082 0.833 ± 0.082 0.935 ± 0.68 0.834 ± 0.081

WNS

ImgNet 0.801 ± 0.22 0.801 ± 0.22 0.857 ± 0.22 0.801 ± 0.22
CTP 0.962 ± 0.01 0.962 ± 0.01 0.992 ± 0.02 0.962 ± 0.01
TC-Swin 0.949 ± 0.02 0.949 ± 0.02 0.993 ± 0.02 0.949 ± 0.02
TC-Conv 0.960 ± 0.01 0.960 ± 0.01 0.994 ± 0.01 0.960 ± 0.01
UNI 0.964 ± 0.02 0.964 ± 0.02 0.993 ± 0.01 0.964 ± 0.02

Average

ImgNet 0.783 ± 0.16 0.774 ± 0.16 0.839 ± 0.15 0.783 ± 0.14
CTP 0.902 ± 0.07 0.901 ± 0.07 0.968 ± 0.04 0.902 ± 0.07
TC-Swin 0.887 ± 0.09 0.884 ± 0.09 0.966 ± 0.07 0.887 ± 0.09
TC-Conv 0.900 ± 0.08 0.899 ± 0.08 0.955 ± 0.04 0.900 ± 0.08
UNI 0.88 ± 0.08 0.880 ± 0.08 0.958 ± 0.04 0.882 ± 0.08
Table B.9
Lung: Tissue-specific model performance when applied to the TCGA-NSCLC dataset. The model consist of organ-specific MIL head and frozen
encoders: ImageNet, CTP, TC-Swin, TC-Conv, UNI. The table shows mean accuracy, F1 score, AUC, Balanced Accuracy, and the respective
standard deviations over 3 different runs. Each model was trained in a 5-fold cross-validation and in a cross-center setting using the 3 main
contributing centers for training and the remaining as hold out test set. All results were obtained using an ABMIL aggregation head.

Evaluation Model Acc F1 AUC Balanced Acc

External Shao et al. [31] 0.884 – 0.961 –
Wang et al. [9] 0.912 – 0.973 –

5-fold

ImgNet 0.803 ± 0.0001 0.807 ± 0.0001 0.0890 ± 0.0001 0.801 ± 0.0001
CTP 0.889 ± 0.001 0.888 ± 0.001 0.954 ± 0.001 0.887 ± 0.001
TC-Swin 0.843 ± 0.001 0.830 ± 0.001 0.947 ± 0.001 0.840 ± 0.001
TC-Conv 0.865 ± 0.001 0.864 ± 0.001 0.933 ± 0.001 0.865 ± 0.001
UNI 0.924 ± 0.001 0.923 ± 0.001 0.970 ± 0.001 0.920 ± 0.001

Cross-center

ImgNet 0.723 ± 0.0001 0.720 ± 0.0001 0.777 ± 0.0001 0.720 ± 0.0001
CTP 0.804 ± 0.0001 0.802 ± 0.0001 0.891 ± 0.0001 0.801 ± 0.0001
TC-Swin 0.786 ± 0.0001 0.772 ± 0.0001 0.859 ± 0.0001 0.771 ± 0.0001
TC-Conv 0.720 ± 0.0001 0.718 ± 0.0001 0.784 ± 0.0001 0.719 ± 0.0001
UNI 0.857 ± 0.0001 0.855 ± 0.0001 0.917 ± 0.0001 0.852 ± 0.0001
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