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1
Chapter 1

Introduction

The classification of different tumor types on microscopic images plays an important

role in the diagnosis and therapy of tumors. In this work methods are presented to

automate the classification of lung tumor tissue.

In clinical practice tissue sections of tumors are examined by a pathologist. Different

tissue structures have to be identified and quantized during this step. The interpreta-

tion of the tissue depends on the knowledge and skills of the pathologist and errors

could cause severe consequences for the patient.

Nowadays, the tissue sections can be digitalized which makes them available for com-

puter aided analyzing methods. This opens the way for more objective interpretation

of the tissue, which may help pathologists in their daily practice.

In this work existing tools that are used for other morphologic classification tasks

are evaluated for their suitability in the classification of lung adenocarcinoma. For this

lung tumor type new classification guidelines were recently presented in [23]. To clas-

sify lung adenocarcinoma automatically with respect to this guidelines, new analysis

methods are needed to characterize the different tissue structures. Methods based on

the discrete wavelet transform seemed promising for this task and are therefore tested

and evaluated during this work.

The first goal in this thesis is to achieve classification results with a high detection rate
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1 Introduction

of healthy lung tissue in order that it can be distinguished from tumor tissue. Further-

more the lung tumor tissue should be subclassified with respect to the new classification

guidelines of lung adenocarcinoma. The focus lies on the evaluation of image attributes

that characterize important structures of the adenocarcinoma subtypes. It is evaluated

if it is possible to improve the classification with additional analyzing methods based

on the discrete wavelet transform.

Outline of the thesis

The examination of microscopic tissue sections and the classification guidelines of lung

tumor tissue are explained in more details in chapter 2. Furthermore, in this chapter

the database of histological images and its characteristics along with difficulties in the

classification are outlined.

The following chapters describe the methods used in the lung tumor classification.

Chapter 3 introduces some general aspects of pattern recognition and the learning al-

gorithm and software used for the classification are described.

The attributes of the histological images that are used as basis for the classification are

introduced in the next chapters. Chapter 4 covers the image attributes that were al-

ready available for other classification tasks in microscopic images. One is based on

the intensity values of the images, the other on local binary patterns. In chapter 5 on

the other hand an additional image attribute based on the discrete wavelet transform is

introduced.

The attributes are compared and evaluated in chapter 6. Furthermore results of the

automatic classification of microscopic images of lung tumor tissue are presented. It

is evaluated if a classification with methods based on the discrete wavelet transform

improve the results.

In the last chapter a conclusion and an outlook to possible further research concerning

the lung tumor classification is given.
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2
Chapter 2

Medical Background

2.1 Lung Tumor

Lung carcinoma is the third most common cancer in Germany. The survival rate five

years after the diagnosis lies between 13 % and 17 % for men and 13-19% for women

[1]. For a better understanding of its pathogenesis and improvement of treatment op-

tions lung cancer is classified according to its molecular and morphologic variations.

One type of lung cancer of the bronchus is discussed in more detail in this work, the

so-called adenocarcinoma, a tumor that is derived from bronchial glands. It belongs

besides the squamous cell carcinoma and the large cell carcinoma to the ’non-small

cell lung cancer’ (NSCLC). On the other hand there is the small cell lung carcinoma

(SCLC). Currently the main treatment differentiation with respect to the histological

type is based on the classification in NSCLC and SCLC. However, the conventional

chemotherapy was refined in the last years and novel molecular markers were investi-

gated, such as, for instance, activating EGFR (epidermal-growth-factor-receptor) muta-

tions, which are related to the unregulated cell growing. Therefore ways are searched

to correlate different histological subtypes according to their response to therapy or the

presence of certain mutations.

The classification into one of the lung cancer subtypes is primarily done by histological

examination of a biopsy taken of tumor tissue or of an excised tumor. Sometimes a radi-

ological picture can give a first indication of the tumor type but appropriate treatment

decisions can only be made after the histological examination [10]. The acquisition of
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2 Medical Background

Figure 2.1: Parts of histological tissue sections of lung adenocarcinoma.

histological tissue is explained later in section 2.2.1.

The subclassification of the invasive adenocarcinoma is investigated in more detail

during this work. The adenocarcinoma is the most common histological lung cancer

subtype [23]. It consists of tumor cells emerged from gland tissue and is mostly local-

ized in the peripheral lung [10]. Microscopic images of lung adenocarcinomas can be

found in figure 2.1.

With respect to the enhanced tumor therapy and investigation of novel molecular mark-

ers, the old classification of adenocarcinoma is insufficient. Therefore a new classifica-

tion guideline to determine the different subtypes of invasive adenocarcinoma is intro-

duced in [23]. As a result the adenocarcinoma should be divided into the following five

histological subtypes: acinar, papillary, micropapillary, lepidic and solid adenocarci-

noma. Before the main characteristics of the subtypes are presented, the characteristics

of healthy lung tissue are described now.

The major tissue components in the lung are alveoli, bronchi and blood vessels.

Moreover, there is cartilage, connective tissue, nerves, serous and mucous glands. The

inhaled air streams through the trachea, passes the bronchi, which branch further into

the bronchiole until the alveoli are reached. Here the gas exchange takes place. In fig-

ure 2.2 two microscopy images of the lung are shown. Alveoli compose the largest lung

4



2.2 Database: Histological Images

Figure 2.2: Parts of histological sections of normal lung tissue.

tissue component. They are separated by thin walls which contain the capillaries. In

the left picture of figure 2.2 also a blood vessel is visible, in the right one a bronchus.

In comparison with figure 2.1 one can clearly see the differences to tumor tissue, which

has lost all air filled spaces.

Microscopy image parts of the adenocarcinoma subtypes can be seen on the left hand

side of figure 2.3. The main characteristics are described on the right hand side (sources

of the descriptions:[23, 10]). An invasive adenocarcinoma can consist of one of these

histological subtypes and also of mixtures of the subtypes. Therefore the tumor is clas-

sified according to the predominant subtype. Additionally, variations of the subtypes

may occur, for example with a production of mucin, like in the sections on figure 2.1.

In [23] a classification based on these subtypes is recommended. As a result non-

mucious lepidic adenocarcinoma has the best, the solid and micropapillary subtypes

the worst and papillary and acinar adenocarcinoma have an intermediate prognosis.

2.2 Database: Histological Images

2.2.1 Data Acquisition: Tissue Sample Processing

A tissue sample, taken for example from a biopsy, need to be processed in several steps

until it is ready for a microscopic examination. These steps are explained now.

5



2 Medical Background

acinar adenocarcinoma

Consists of round or oval shaped glands with a

central lumina.

papillary adenocarcinoma

Consists of glandular cells growing along central fi-

brovascular cores.

micropapillary adenocarcinoma

Consists of papillary nodes, which contain in con-

trast to papillary adenocarcinoma no fibrovascular

cores.

lepidic adenocarcinoma

Appears well differentiated. The tumor cells are

spread along the surface of alveolar walls, without

destroying them.

solid adenocarcinoma

Appears undifferentiated. The polygonal tumor

cells are arranged in compact formations. No acinar,

papillary, micropapillary or lepidic growth is recog-

nizable.

Figure 2.3: Histological subtypes of invasive adenocarcinoma.
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Fixation

The aim of fixation is that the tissue and cells change their natural appearance as little

as possible. Therefore the tissue is put in most cases into a formalin solution shortly

after the removal, in which it is chemically fixated [15].

Embedding

Before thin tissue section can be cut, the consistency of the sample needs to become

firmer. Therefore, the tissue is first dehydrated, for example by the substitution of wa-

ter with ethanol [15]. Afterwards the tissue is embedded for hardening for example in

a paraffin solution [15].

Sectioning

After hardening the tissue sample block can be cut into small slides with a microtome

[15]. The standard thickness of a section lies between 5 and 8 µm [11]. The sections are

placed on a microscope slide for further processing.

Staining

Staining is used to enhance contrast in the microscopic image by highlighting impor-

tant structures. Depended on the technique different parts of the tissue are highlighted.

The histological sections in this work are stained with the H.E.-method. The two used

stains are hämatoxylin and eosin. Hämatoxylin colors the cell nuclei blue, while eosin

colors the cytoplasm and collagen in red or pink.

For this work several images of tissue sections of lung adenocarcinoma were pro-

vided by Dr. Frederick Klauschen, Charité Berlin. They were digitalized with the

Hamamatsu NanoZoomer. The scanned sections are available on different magnifi-

cations with a highest resolution of 0.23 µm/pixel. The size of a scanned section on this

magnification is on average approximately 200.000 × 100.00 pixel.

All in all 22 images of lung tumor tissue sections were available for the classification

in this work. Image regions of 1024 × 1024 pixel were classified into one of the adeno-

carcinoma subtypes or into a healthy tissue class. This corresponds to a tissue area just

under 250 × 250 µm. The image regions in figure 2.3, 2.4 and 2.5 are of this size.
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2 Medical Background

Figure 2.4: Inner-class differences of acinar lung adenocarcinoma.

2.2.2 Database Characteristics

The aim in this work is to classify and quantify the different lung adenocarcinoma sub-

types in a microscopic tissue section. The main characteristics of the subtypes were

already explained in section 2.1. Now further properties and characteristics of micro-

scopic images of tumorous lung tissue are discussed.

One of the difficulties in the typification of lung adenocarcinoma is that the appearance

of one subtype often varies. Inner-class differences are for example produced by varia-

tions in the staining intensity, which can be seen in 2.4. This can occur due to variations

during the preparation procedure, slightly different section thickness or physiological

variations from different patients. But also the tissue structure itself can vary within

one class. This can also be seen in figure 2.4 in which the structures differ from each

other. These example subimages however can still clearly be assigned to the acinar

adenocarcinoma subtype. But this is not always the case. In some cases an exact classi-

fication is even for a specialist difficult to accomplish.

Furthermore the adenocarcinoma subtypes have to be distinguished from other tissue

types that can occur in lung tissue. Some of these are shown in figure 2.5. Parts of

biopsies of lung tumors also include healthy tissue. This can be lung specific tissue like

alveoli or bronchi, as well as other healthy tissue like blood vessels, cartilage or glan-

dular tissue. Often, there are also immune reactions in combination with a tumor. This

goes along with the appearance of lymphocytes, macrophages or fibrosis. All of this

tissue types and cells have to be recognized as well as the adenocarcinoma subtypes to

distinguish between healthy and tumorous tissue and are therefore also considered in

the classification task in this work.

All in all 14 tissue classes are distinguished in this work, containing the five adenocar-
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2.2 Database: Histological Images

(a) Normal alveolar lung

parenchyma.

(b) Normal bronchus. (c) Blood vessel. (d) Cartilage.

(e) Glandular tissue. (f) Fibrosis. (g) Macophage

inflitrates.

(h) Lymphocytes.

Figure 2.5: Histological images of healthy tissue inside the lung. Besides lung specific tissue, like aveoli

or brochni, also other tissues have to be distinguished from the adenocarinoma types.

cinoma subtypes of figure 2.3, mucious adenocarcinoma and the healthy tissue classes

shown in figure 2.5.
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Chapter 3

Pattern Recognition in Histological

Images

Like explained in the previous chapter the discrimination of different tissue classes in

histological images is not an easy task and in many cases the types are not clearly dis-

tinguishable. This is due to the great variability of the tissue, even if it has the same

type. A pathologist needs a lot of experience to give reliable results. The same holds, if

the tissue should be classified automatically. If one want to create an algorithm for this

classification task, it should somehow gain experience, like the pathologist, by training

on many examples. This procedure is called machine learning. The main aspects are

explained now, more details can for example found in [24].

The goal of machine learning is to solve a given problem with example data or past

experience using an algorithm. Pattern Recognition in particular deals with the classi-

fication of data into several groups. This can be done using example data for which the

group of each example, the class or label, is already known. In a first step an algorithm

is trained with this data. It determines which characteristics or values of the several

attributes of the examples, the so called features, are similar given a particular class.

Afterwards the trained algorithm can be used to determine the classes of a second data

set, which is not labeled. This method is called supervised learning. In figure 3.1 an

example of a data set with two classes is visualized. Possible discrimination curves of

two classifiers for this data are shown. In this two dimensional example a new data
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3 Pattern Recognition in Histological Images

class 1 

class 2 

new sample 

classifier 1 

classifier 2 

Figure 3.1: Example classification results of two classifiers.

point is classified depending on which side of the discrimination curve it lays. In the

image this new sample is denoted with a green border. The true underlying class is the

blue one. With classifier 1 the sample is correct classified, with classifier 2 it is not.

Example data can also be classified using an unsupervised learning algorithm. In this

case the example data is not yet grouped into different classes, but unlabeled. The al-

gorithm defines by itself, which examples have similar characteristics and are therefore

identified as one class.

The classification of the lung tumor classes in this work is done with a supervised

learning algorithm. Before the algorithm is trained some aspects have to be considered.

The training data set should be a representative set of examples, which covers as many

variations of one class as possible. Secondly, the learning algorithm and its parameters

should be chosen in a way that it does not overfit the data. Overfitting means that the

algorithm can classify the training data set very well, but fails if it is applied to new

data. This often happens when the algorithm is trained too much. In figure 3.1 an ex-

ample of overfitting can be seen. Classifier 2 perfectly discriminates the training data

but classifies the new sample wrong. Classifier 1 on the other hand has errors on the

12



3.1 Random Forest Classifier

Tree 1 

.... 

Tree N 

class vote 1 

class vote N 

new sample 

s vo

s vote

class votes of all trees 

final decision 

Figure 3.2: Schematic illustration of the classification of a new sample with random forests.

training data, but the new sample is nonetheless classified correct. This is one of the

main challenges in pattern recognition: The algorithm should perform as well as possi-

ble on the training data and new data.

3.1 Random Forest Classifier

The random forests learning algorithm, introduced by L. Breiman [2], is used in this

work to classify the different lung tumor tissues. It consists of many decision trees,

which assign the most popular class to an input vector.

In a decision tree the leave nodes represent class labels and at the branch nodes condi-

tions are set to the features that lead to this labels. A new sample is routed down the

tree according to the values of its features. It is assigned to the class it reaches at the leaf

node. There are several methods to build a decision tree. Some are for example given

13



3 Pattern Recognition in Histological Images

in [24].

A single decision tree is fast but also tends to overfit the data. With random forests

this weakness is disposed by using many decision trees on randomized subsets of the

training data. The generation of random forests is explained now.

Let’s assume we have a training data set with N examples and M features. Each tree in

the forest is built using a new training set of size N, where the examples are selected at

random with replacement form the original training data set. At each node m << M

features are chosen randomly and used to find the best split. Each tree is fully grown

and not pruned. For a new sample a label is assigned with each of these trees. This is

illustrated in figure 3.2. The final prediction of the random forest is the class with the

most votes of all trees.

According to [2] the error rate of a random forest depends on two things. First, the

correlation between the trees in the forest. If the correlation gets higher, the error rate

increases. And secondly the error rate of each individual tree. If it is kept low, the error

rate of the random forest is also decreasing. These two points are adjustable with the

choice of m. If m is reduced, the correlation between the trees is reduced but at the same

time the error rate of the individual trees is increased, and vice versa if m is increased.

So the goal is to find a compromise, where the final error rate is ’optimal’. According to

[2] m = int(log2M + 1) is a good choice and therefore used in this work. The number

of trees used is 25.

3.2 Classification Software: HistoCAD

The classification of histological lung tumor tissue is done with the application His-

toCAD. It was developed by André Homeyer at Fraunhofer MeVis. With HistoCAD

histological images can be analyzed and classified according to the tissue characteris-

tics that are relevant for a certain diagnostic task.

A screenshot of the software is shown in figure 3.3. On the left hand side an image

of a microscopic tissue section is displayed. This image is already preprocessed auto-

matically. During preprocessing the image is overlaid with a grid from which tiles with

no tissue are removed. This segmentation is based on the intensity values of the tiles.

14



3.2 Classification Software: HistoCAD

Figure 3.3: Screenshot of HistoCAD.

If a tile contains too little color information is it declared as background and removed.

For the lung tumor classification an expanded segmentation is used. Additionally tiles

are kept whose neighbors achieve the necessary intensity values in order to reduce

segmentation gaps in alveolar tissue. The tile size in the lung tumor classification is

1024× 1024 pixel.

With the panel shown on the right hand side of figure 3.3 the user can select images and

start the classification of their tiles. Therefore the images have to be ’analyzed’, which

means that for every tile of the images different features are calculated. The available

features are based on intensity values and local binary patterns. For the lung tumor

classification wavelet based features were implemented additionally. These image at-

tributes are explained in the next sections. All features can be calculated on different

magnifications that are available with histological images and on different color chan-

nels. In order to keep the software complexity low the features are selected by the

developer with respect to a certain diagnostic task and cannot be changed by the user.

15



3 Pattern Recognition in Histological Images

After the images are analyzed a learning algorithm can be trained. The training data

can be built by the user by selecting tiles and refer them to a class. In this way also

an existing training set can be extended, for example by adding falsely classified tiles

with their true class to the training set. For simplicity of the application the appropri-

ate learning algorithm is also chosen by the developer. In the lung tumor classification

random forests are used to classify the tiles. Other available learning algorithms are

Nearest Neighbor and Naive Bayes, see [24] for more information.

The classification result is visualized in different colors for each tissue class. For ex-

ample the lung tumor tissue section in figure 3.3 has mainly been classified as normal

alveolar lung parenchyma (green), papillary adenocarcinoma (orange) and mucious

adenocarcinoma (pink). In the lung tumor classification the HistoCAD software ad-

ditionally displays the ratios of the five lung adenocarcinomas as well as the overall

tumor ratio after the classification.

16
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Chapter 4

Extraction of Characteristic Features

in Histological Images

In this chapter the features used for the lung tumor classification are described. First a

short introduction to feature extraction in histological images is given. In the sections

4.2 and 4.3 the features are described which were already available for other classifi-

cation tasks in HistoCAD. The new feature, which was implemented specially for the

lung tumor classification in this work, is explained in the next chapter. The last part of

this chapter deals with feature selection methods.

4.1 Introduction to Texture Features

The aim of this work is to characterize histological tissue samples automatically with a

classification algorithm. For this the tissue section is overlaid with a grid and each tile is

classified separately, like explained in chapter 3.2. The classifier was already described,

now the focus lies on the feature vector which is used as basis for the classification.

Theoretically the image tile can be classified using all image pixels. However, this

would result in a huge input data set, which contains a lot of redundant information.

The better way is to extract special features from the image, which describe the main

characteristics more precisely with less values. These extracted features are combined

to a feature vector. The chosen features should be discriminating and as independent

as possible to achieve good classification results. But besides this the calculation time
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4 Extraction of Characteristic Features in Histological Images

should not be disregarded. Working with histological images often means working

with huge data sets, as explained in chapter 2. It is not unlikely that one image of a

tissue section has a size of 200 000 x 100 000 pixels. With a tile size of 1024x1024 pixel

this results in approximately 20 000 image regions. This means that the texture features

have to be calculated a lot of times and this in the best case in a few minutes. It follows

that the calculation of the texture features should not be too complex. A feature that

improves the classification result is practically only valuable if the calculation can be

done in a short time.

Dependent on the task, there are many possible attributes of the image that can be

used as feature vector. For example one can extract certain properties of the image, like

edges, the luminance or the occurrence of a particular color value. In this work the im-

ages are histological, which makes the texture an important attribute. In the literature

many different texture features can be found. For example simple statistical texture

features like color histograms and co-occurrence matrices. Often used are also Garbor

filters and features based on the discrete wavelet transform, where it is tried to capture

the image structures in a similar way like in the model of the human visual system.

Especially texture features based on wavelets are very common. With them high classi-

fication accuracies can be achieved, whereas their complexity, for example in compari-

son to Garbor filters or co-occurrence matrices, is low [20]. Especially in the analysis of

histological images they are often used and show are great promise for good classifica-

tion results for this kind of images [12, 13].

For this reason wavelet based features are evaluated for their suitability as an additional

texture feature for the lung tumor classification part of the HistoCAD application. All

in all three different kinds of features are used for the classification, where two were

already available. The first comprises statistics of the pixel values and the second is

based on local binary patterns. They are described in the next two sections. The texture

feature based on wavelets is described in the next chapter.
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4.2 Intensity Attributes

R = 1, P = 4 R = 1, P = 8 R = 1.5, P = 12 R = 2, P = 16 R = 3, P = 24

Figure 4.1: Different examples of the pixels used for the calculation of a local binary pattern. The P

neighbor pixels lie on a circle with radius R around the center pixel.

4.2 Intensity Attributes

The most simple texture features in HistoCAD are based on the intensity statistics of

the pixels in an image region. At the same time they are already very discriminative

features, which can be seen later in chapter 6. For a predefined image region the fol-

lowing intensity statistics are calculated and used as texture feature: minimum value,

maximum value, sum of all values, mean, standard deviation, lower quartile, median

and upper quartile.

The discriminative power of the simple image statistics can be explained with the spe-

cial characteristics of microscopic images. The histological stains highlight different

structures in the tissue with different colors. This means a lot of information about

the tissue is given by its color. Therefore a lot of information is also revealed by the

intensity statistics of the image.

4.3 Local Binary Patterns

One of the texture features used in this work to classify the histological images are

local binary patterns, which are described in [19]. These texture features are theoreti-

cally very simple and effective at the same time. Advantages are that the local binary

patterns are gray scale and rotation invariant and can be calculated on different resolu-

tions. The main idea is to determine a pattern from the circular neighborhood of a pixel

in an image region. The occurrences of different patterns in this region are stored in a

histogram which gives the feature vector.

A local binary pattern of an image region it calculated with a center pixel gc and P

19



4 Extraction of Characteristic Features in Histological Images

Figure 4.2: A possible 3× 3 image region on the left hand side and its resulting local binary pattern on

the right. A black dot refers to the binary number 0 and a white one to 1.

neighboring pixels g0, ..., gP−1 on a circle with radius R around the center. With different

choices of P and R, one can adapt the resolution of the pattern to particular character-

istics of the image texture. This is shown in figure 4.1. Points that do not directly lie in

the center of a pixel are determined with interpolation. In this work an image region of

size 3× 3 is used as a pattern, which corresponds to P = 8 and R = 1, see the second

image in figure 4.1.

With these pixels the local binary pattern is calculated as follows. First the center pixel

is subtracted from each of the circularly distributed neighbor pixels. Afterwards it is

determined whether the neighbor pixels gp(p ∈ {0, ..., P− 1}) have smaller or greater

gray values than the center pixel gc. The result is encoded in a binary number where 1

corresponds to a gray value greater than the center value and 0 to a smaller value. An

additional factor 2p encodes the position. An example is given in figure 4.2. A 3× 3 ex-

ample image region is on the left hand side, the corresponding binary pattern 111010102

on the right side. The whole spatial structure of the image region is characterized by the

sum of the weighted binary number or in other words by converting the binary number

to a decimal number. In this example it holds that LBP8,1(’example pattern’) = 87.

Mathematically a local binary pattern of an image region is described with:

LBPP,R =
P−1

∑
p=0

s(gp − gc)2p,

with

s(x) =







1, x ≥ 0

0, x < 0
.

The pattern is gray scale invariant because the difference taken in the first step is not

affected by changes in the luminance. However, the pattern is not yet rotation invariant.
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4.3 Local Binary Patterns

0 1 2 3 4 5 6 7 8

Figure 4.3: The 9 ’uniform’ local binary patterns.

This is due to the factor 2p which makes it possible to detect the exact position of the

binary values in the pattern.

Rotation invariance is achieved by detecting only ’uniform’ patterns. These are pat-

terns have only a limited number of transitions from 0 to 1 or vice versa. Due to [19]

these uniform patterns are with over 90 % the most common in examined surface struc-

tures. For this a uniformity measure U(’pattern’) is introduced, which detects the num-

ber of 0/1 transitions in the pattern. A local binary pattern is called uniform if the

number of bitwise 0/1 changes is smaller or equal 2. This results in 9 different uni-

form patterns, shown in figure 4.3. Each of these patterns detects a particular image

structure. For example the uniform patterns #0 and #8 detect dark and bright spots

respectively, whereas #4 detects edges.

The operator for gray-scale and rotation invariant texture description is given by

LBPriu2
P,R =







P−1

∑
p=0

s(gp − gc), if U(LBPP,R) ≤ 2

P + 1, otherwise,

where

U(LBPP,R) = |s(gP−1 − gc)− s(g0 − gc)|+
P−1

∑
P=1

∣
∣s(gp − gc)− s(gp−1 − gc)

∣
∣.

The superscript riu2 describes that rotation invariant uniform patterns are used, where

the uniform patterns contain lower or equal to 2 bitwise 0/1 changes.

The final local binary texture feature of an image is determined with an occurrence

histogram of the 10 different local binary patterns LBPriu2
P,R in the image. An evaluation

of this texture feature is given in chapter 6.
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4 Extraction of Characteristic Features in Histological Images

4.4 Feature Selection

In the lung tumor classification task in HistoCAD the described features can be calcu-

lated on the different magnifications that are available with every histological image

and on different color channels. Calculating all possible feature goes along with an im-

mense increase in image-analysis time and is therefore not practicable. Thus, a method

is needed to select just as many features to solve the classification task in an appropri-

ate way whereas the calculation time is kept low. Removing irrelevant and redundant

information from the feature set may additionally allow the classification algorithm to

operate faster and more effectively. In some cases feature selection also improves the

classification accuracy.

The first step in the selection of an appropriate feature subset is the definition of a mea-

sure that determines the quality of the subset. There are several approaches for this

measure. For example one can determine the performance of the classifier for the sub-

sets and choose the one with the best. In this work a measure is used which determines

the dependencies of the feature to each other and the classes. It is described in section

4.4.1.

After a validation method for a feature subset is selected, the best subset has to be

found. Therefore the space of all possible subsets has to be searched. In most cases an

exhaustive search is impracticable because the feature set is too big. Therefore the space

is typically searched greedily. One greedy feature selection method is the forward se-

lection. It starts with zero features and adds new features in each step until the addition

does not improve the quality measure. A similar method starts with the full feature set

and reduces it in each step. It stops if the elimination of features does not improve the

selection. This method is called backward elimination. More feature selection methods

can be found for example in [24]. In this work the feature set is selected with forward

selection in combination with a correlation based subset measure which is explained

now.

4.4.1 Correlation-based Feature Selection

M. Hall developed in [8] a correlation-based feature selector (CFS). The goal was to

create a feature selection method that eliminates redundant features whereas features
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4.4 Feature Selection

that are highly predictive of the class are kept. He states:

”A good feature subset is one that contains features highly correlated with (predictive of) the

class, yet uncorrelated (not predictive of) each other.” [8, p.52]

Based on this thesis he built a measure MS to evaluate a feature subset S:

MS =
krc f√

k+k(k−1)r f f

,

where k is the number of features in S, rc f the mean class-feature correlation ( f ∈ S) and

r f f the feature-feature inter-correlation. To calculate MS the training data is first dis-

cretized before the class-feature and feature-feature correlations are determined with

symmetric uncertainty. With one of the greedy search strategies explained above the

feature subset with the highest MS is found.

In this work the feature selection is done with Rapid Miner [18]. Rapid Miner, for-

merly named YALE (Yet Another Learning Environment) is a data mining software that

provides a lot of methods for machine learning procedures. Amongst others it contains

methods for data preprocessing, visualization, modeling and evaluation. Furthermore

the machine learning algorithms of WEKA [9] can be included. This extension also con-

tains an implementation of correlation based feature selection.

With this tools a work flow is built in this work to select an appropriate feature subset

using forward selection in combination with CFS. The results can be found in chapter 6.

23





5
Chapter 5

Wavelets and Their Application in

Feature Extraction

In this chapter an additional texture feature is presented which was implemented for

the texture classification in the histological approach. It uses the information in the

image given by the discrete wavelet transform. Wavelet based features are often used

in texture classification, for example in [12, 13, 4, 16]. Research on texture analysis

has shown that with methods based on wavelets high classification accuracies can be

achieved [21]. Because the discrete wavelet transform is based on multiresolution, it

gives the opportunity to asses scale dependent information of the texture. This is es-

pecially useful in the analysis of complex structures, like histological images. Here

the differences of images are often only recognizable if they are compared on different

resolutions. Furthermore, in [12] a wavelet based feature is proposed which detects

anisotropic structures in an image. This gives the possibility to distinguish certain tis-

sue structures, like fibrosis, more clearly from other tissues that are not oriented in a

preferred direction.

This chapter is structured as follows. First an introduction to the theory of the dis-

crete wavelet transform is given. This description is at some points kept short and

not every detail is explained, only the ones needed to understand the interpretation of

the transform and its implementation. Deeper information about the discrete wavelet

transform or wavelets in general can be found in the literature, for example in [7, 3, 22].
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5 Wavelets and Their Application in Feature Extraction

In section 5.2 the filterbank implementation of the discrete wavelet transform is de-

scribed. It requires a basic understanding of filters and convolution, which is not dis-

cussed here. Afterwards, influences of the choice of different wavelet bases are dis-

cussed in chapter 5.3. The calculation of wavelet based features and their interpretation

is described in the last part of this chapter.

5.1 Introduction to the Discrete Wavelet Transform

If one sees an image, the human visual system first recognizes the main information of

the picture. Details are not captured with the first look but one can already determine

the main aspects of the image. Only with longer observation one sees more and more

details until the whole image is recognized.

With the discrete wavelet transform it is possible to transfer this idea to the analysis

of functions. A function f is first captured at a coarse scale and then the details are

determined by going on finer and finer scales. To derive the calculation of the dis-

crete wavelet transform f is described on different scales. For this vector spaces are

needed which correspond to these scales. The union of these spaces gives the ’whole

space’ in which the original function f lives. In the continuous case this ’whole space’

is generally given by the Hilbert space L2(R). This approach is called multiresolution.

The usage of multiresolution in the context of the discrete wavelet transform was first

published by Mallat and Meyer in 1988/99, see e.g. [17], and the main aspects are sum-

marized now.

Let’s assume that we want to represent a signal f (t) ∈ L2(R) at different scales. For

the most purposes it is sufficient to consider only resolutions along the dyadic sequence

(2j)j∈Z. In this work, the coarsest scale corresponds to j = 0. With increasing j, the

scale gets finer. In the discrete case this means that the number of discretization points

double whereas their distance halves.

For the explanation of multiresolution let’s take a simple example signal f (t), given by

f (t) =







3, 0 ≤ t < 1
2

1, 1
2 ≤ t ≤ 1

0, otherwise

.
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Figure 5.1: Example signal and its decomposition with the Haar wavelet.

The signal is shown in figure 5.1a. This signal is first approximated at the coarsest scale.

This means that f (t) ∈ L2(R) is projected onto another vector space V0.

For the approximation a set of basis functions of V0 is needed. Therefore we need

the so-called scaling function φ(t) ∈ L2(R). V0 is then defined as the space with all

combinations of φ(t) and its shifts φ(t− k), k ∈ Z. We can choose for example

φ(t) =







1, 0 ≤ t ≤ 1

0, otherwise
.

This scaling function is called Haar-scaling function. With this φ(t), V0 contains all

functions that are constant on intervals of length 1. The original signal f (t) can now

be approximated at the coarse scale with j = 0 with a linear combination of the basis

functions:

f0(t) = ∑
k

a0(k)φ(t− k) , (k ∈ Z),

where f0(t) ∈ V0 is the approximation of f at resolution 20 and a0(k) ∈ R.

The best approximation of the example signal at resolution 20 is given if the Haar basis
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5 Wavelets and Their Application in Feature Extraction

function is multiplied with 2. It holds that

f0(t) = 2 · φ(t) =







2, 0 ≤ t ≤ 1

0, otherwise
,

which is shown in figure 5.1b.

To represent f (t) at other resolutions 2j, it is projected onto other vector spaces V2j .

The orthonormal bases of this spaces are build by additionally dilating φ(t). The dila-

tions and translations of φ(t) are given by φ2j,k(t) =
√

2jφ(2jt− k), k ∈ Z. It holds that

there exists a φ(t) ∈ L2(R) such that

{φ2j,k(t)}k∈Z is an orthonormal basis of V2j . [17] (5.1)

That means f (t) can be approximated at any resolution 2j with:

f2j(t) = ∑
k

aj(k)
√

2jφ(2jt− k) , (k ∈ Z),

where f2j(t) ∈ V2j is the approximation of f (t) at resolution 2j. The coefficients aj(k)

are given with aj(k) = 〈 f , φ2j,k〉.

Note that the accuracy of the approximation is closely connected to the properties of

φ. If φ is for example a rectangular function, like in our example, the approximation of

a step function is very good but in contrary a smooth function cannot be approximated

very well.

Lets now take a closer look at the vector spaces V2j . They have to satisfy some prop-

erties to from a multiresolution approximation of L2(R), given in [17]. For example it

is necessary that

V2j ⊂ V2j+1 , ∀j ∈ Z

and

f (t) ∈ V2j ⇔ f (2t) ∈ V2j+1 .
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5.1 Introduction to the Discrete Wavelet Transform

This means that the spaces at different resolutions are nested and that the elements

in one space are scaled versions of the elements in the next space. It follows that if

φ(t) ∈ V0, it also holds that φ(t) is in V1. Because of (5.1), φ(t) can be expressed in the

vector space V1 as a linear combination of φ21,n(t):

φ(t) =
√

2 ∑
n

h0(n)φ(2t− n), n ∈ Z. (5.2)

This equation is called dilation equation or refinement equation [22]. The coefficients

h0 are a low-pass filter with ∑n h0(n) =
√

2 and are called scaling function coefficients

[22]. They are needed to calculate the discrete wavelet transform of a signal, which will

be described later.

But how to choose the scaling function φ(t) and how do we get the coefficients h0?

One can see that (5.2) is like an differential equation with coefficients h0 and solution

φ(t) that probably not even exists. So one can choose h0 and try to solve the equation

to determine the φ(t). But as described later this section, it is not necessary for the dis-

crete wavelet transform to have a closed form for the scaling function φ(t). The goal is

to choose h0 in a way, that the scaling function has nice properties in order that it gives

good a approximation of the original data. Ingrid Daubechies showed that it is possible

to derive properties of the scaling function by properties of the scaling function coeffi-

cients [6].

The coefficients derived by Daubechies will be presented later in section 5.3. Now the

role of the wavelet function in the discrete wavelet transform will be explained.

If the function f (t) is approximated at a certain resolution, some information gets

lost. To extract this lost information, the differences of the approximations at two suc-

cessive resolutions 2j and 2j+1 have to be known. For the example from the beginning

the difference between the original and the approximated signal can easily be deter-

mined by looking at the plots of these two function in figure 5.1. The difference is

shown in figure 5.1c.

To determine the difference mathematically, the orthogonal complement of V0 is needed

[17]. LetW0 be this vector space for which holds:

V1 = V0 ⊕W0,
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5 Wavelets and Their Application in Feature Extraction

which means that ∀ f1 ∈ V1 ∃ f0 ∈ V0, g0 ∈ W0: f1 = f0 + g0. That means the infor-

mation that is lost by going from V1 to the coarser resolution in V0 is represented by

the vector space W0. In general the vector space W2j contains the details of the sig-

nal at resolution 2j. It follows that the ’whole space’ L2(R) can now be represented by

combining the approximation in V0 with the details inW2j , i.e.

L2(R) = V0 ⊕W0 ⊕W1 ⊕W2 ⊕ ... (5.3)

To calculate the details of f (t) at resolution 2j in the vector space W2j , again a set

of basis functions is needed. Let ψ(t) ∈ L2(R) be the so-called wavelet function. The

basis can be build with dilations and translations of ψ given by ψ2j,k(t) =
√

2jψ2jt− k.

It holds that there exists a ψ(t) such that

{ψ2j,k(t)}k∈Z is an orthonormal basis ofW2j . [17] (5.4)

That means the details of f (t) can be calculated at any resolution 2j with:

g2j(t) = ∑
k

dj(k)
√

2jψ(2jt− k) , (k ∈ Z),

where g2j(t) ∈ W2j is the detail function of f (t) that is lost by going from resolution 2j

to 2j+1. The coefficients dj(k) are given with dj(k) = 〈 f , ψ2j,k〉.
Let’s go back to our example and look again at the difference of the original function

and its approximation in figure 5.1c. Here

g0(t) =







1, 0 ≤ t < 1
2

−1, 1
2 ≤ t ≤ 1

0, otherwise

.

The basis function for the approximation was the Haar-scaling function. The corre-

sponding wavelet function is the Haar wavelet given by

ψ(t) =







1, 0 ≤ t < 1
2

−1, 1
2 ≤ t ≤ 1

0, otherwise

.

This means that the details are given by
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5.1 Introduction to the Discrete Wavelet Transform

g0(t) = 1 · ψ(t).

Note that g0(t) ∈ W0 is orthogonal to f0(t) ∈ V0, like wanted in the construction ofW0.

From W0 ⊂ V1 and (5.1) follows that the wavelet function ψ(t) can be written as a

linear combination of φ2j,n:

ψ(t) =
√

2 ∑
n

h1(n)φ(2t− n), n ∈ Z. (5.5)

Equation 5.5 is called wavelet equation. The coefficients h1 are called wavelet func-

tion coefficients. They are a high pass filter and it holds that ∑k h1(k) = 0 [22]. The

wavelet equation (5.5) shows that the wavelet function, which determines the details

of f , can be directly calculated from the scaling function. Also the coefficients can be

calculated from the scaling function coefficients. In practice the scaling and wavelet

function coefficients are commonly chosen finite. In this case it holds that for h1 with

length N:

h1(n) = (−1)nh0(N − 1− n). [3]

According to (5.3) a function f (t) ∈ L2(R) can now be rewritten by deriving first its

approximation on a coarse scale with the scaling function φ(t) and then adding the lost

details with the wavelet function ψ(t). That means we have

f (t) = ∑
k

a0(k)φ(t− k)

︸ ︷︷ ︸

approx. at coarse scale (j=0)

+∑
j

√
2j ∑

k

dj(k)ψ(2
jt− k)

︸ ︷︷ ︸

details

. (5.6)

For the example this means:

f (t) = 2 · φ(t) + 1 · ψ(t).

Now the aim from the beginning of this section is reached: A function is transformed

in a way that it is first captured at a coarse scale and then the details are determined by

going on finer scales.

In most applications the original function f is a discrete signal either because it is

sampled or its discrete from the beginning, like an image. That means the highest
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5 Wavelets and Their Application in Feature Extraction

resolution is equal to the sample level. The coefficients aj(k) and dj(k) that are needed

for the wavelet expansion form the wanted discrete wavelet transform. Like mentioned

before, a closed from of the scaling function φ is not needed to determine the coefficients

aj. The same holds for the wavelet function ψ and dj. Instead the coefficients can be

derived without the use of φ and ψ using filterbanks [17]. This will be described in the

next section.

5.2 Filterbank Implementation of the Discrete Wavelet

Transform

Mallat showed, that it is possible to compute the coefficients aj and dj of equation (5.6)

by a convolution followed by downsampling. The coefficients aj which are needed

for the calculation of the approximation of the original function at resolution 2j can

be determined by a convolution of aj+1 with ĥ0 and downsampling the output by two

[17]. ĥ0 is the mirror filter of the scaling function coefficients h0, i.e. ĥ0(n) = h0(−n).

The same holds for the detail coefficients, which can be computed by convolving the

coefficients aj+1 with the mirror filter of the wavelet coefficients ĥ1 and downsampling

the output by 2. In formulas this means

aj(k) = (ĥ0 ∗ aj+1)(k) ↓ 2,

dj(k) = (ĥ1 ∗ aj+1)(k) ↓ 2,

where ↓ 2 denotes the downsampling. This equations can be rewritten in terms of the

scaling function coefficients h0 and wavelet function coefficients h1 by writing out the

convolution equation

aj(k) = ∑
m

ĥ0(2k−m)aj+1(m) = ∑
m

h0(m− 2k)aj+1(m), (5.7)

dj(k) = ∑
m

ĥ1(2k−m)aj+1(m) = ∑
m

h1(m− 2k)aj+1(m). (5.8)

The filter h0 is a low pass filter, so the coefficients aj give the averages at resolution 2j,

the filter h1 on the other hand is a high pass filter, so dj give the differences at resolution

2j.
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5.2 Filterbank Implementation of the Discrete Wavelet Transform

xj

h1 ↓2

h0 ↓2 aj−1

h1 ↓2

h0 ↓2

dj−1

aj−2

dj−2

Figure 5.2: Filterbank diagram of two decomposition steps of the 1D discrete wavelet transform.

With equations 5.7 and 5.8 it is possible to compute the discrete wavelet transform

of a signal. Let x be the original one dimensional discrete signal of length N with

N = 2j, j ∈ N. For example x = [3, 5, 1, 8], with N = 4 = 22. As an example this signal

is now decomposed with the Haar wavelet. The corresponding scaling and wavelet

coefficients are given with

h0 = 1√
2
[1, 1],

h1 = 1√
2
[1,−1].

The filterbank diagram of the discrete wavelet transform till the level 2 is shown in

figure (5.2). First, the original signal at resolution 2j is decomposed into average coeffi-

cients aj−1 and detail coefficients dj−1 at the next coarser resolution 2j−1. In the exam-

ple this coarser resolution is 21. The average coefficients are calculated with a2 ∗ ĥ0 =

a2 ∗ h0 = 1√
2
[3, 8, 6, 9, 8], were a2 = x. From this every second value is taken in the

downsampling step, which means that a1 = 1√
2
[8, 9]. The detail coefficients at this reso-

lution, d1, are calculated analog with the filter h1. The whole decomposed signal at this

resolution is [a1, d1] =
1√
2
[8, 9,−2, 7].

With every convolution step, the length of the signal is halved. In the second step the

coefficients aj−1 are decomposed further into average and detail coefficients at the next

coarser scale. In the example this second decomposition is given with [a0, d0, d1] =

[ 17
2 ,− 1

2 ,− 2√
2
, 7√

2
]. The signal can be decomposed until j = 0 where just one coefficient

a0 remains, like in the second decomposition in the example.

With the detail coefficients the whole original signal x can be reconstructed from this

a0, like in equation (5.6). This can also be done with a filterbank implementation. The

reconstruction is not discussed here, because it is not needed for the development of a

feature. But for example in image compression, the most popular application of the dis-
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5 Wavelets and Their Application in Feature Extraction

crete wavelet transform, reconstruction and in particular the term perfect reconstruction

play an important role.

5.2.1 Boundary Conditions

By convolving a signal with a finite filter, the boundary values of the signal x(0), ...,

x(N − 1) must be considered. For example the last average coefficient of the first de-

composition aj−1(
N
2 − 1) is due to equation (5.7) calculated with

aj−1(N/2− 1) = ∑
m

h0(m− (N − 2))aj(m)

= h0(0)aj(N − 2) + h0(1)aj(N − 1) + h0(2)aj(N) + h0(3)aj(N + 1),

where aj = x. But aj(N) and aj(N + 1) are not defined because x is a finite signal. To

calculate aj−1(
N
2 − 1) a boundary condition has to be defined. In this work symmetric

extension is used as boundary condition. That means the last values of x a mirrored.

Thus, the value aj−1(
N
2 − 1) can be calculated with

aj−1(
N

2
− 1) = h0(0)aj(N − 2) + h0(1)aj(N − 1) + h0(2)aj(N − 1)

+ h0(3)aj(N − 2).

Analogous the last detail coefficient dj(
N
2 − 1) is calculated with

dj−1(
N

2
− 1) = h1(0)aj(N − 2) + h1(1)aj(N − 1) + h1(2)aj(N − 1)

+ h1(3)aj(N − 2).

This condition is used because it is easy so implement. Furthermore it does not produce

artifacts at the end of the transformed signal, which can occur for example with zero

padding.

5.2.2 Two Dimensional Transform

With the described discrete wavelet transform it is possible to transform one dimen-

sional signals. But in most applications and also in this work, the aim is to transform

images, which are two dimensional. If the scaling function, and with is the whole mul-

tiresolution approximation, is separable, the 1D theory of the discrete wavelet trans-

form can easily be transferred into the 2D situation. Because this it is very similar to
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Figure 5.3: Filterbank diagram of the first decomposition level of the 2D discrete wavelet transform.

the 1D case, the theory for the two dimensional discrete wavelet transform is skipped

here. It can be found for example in [17]. Here only the two dimensional filterbank

implementation is discussed.

The filterbank design of the discrete wavelet transform of images is shown in fig-

ure 5.3. It consists of one dimensional transforms, performed first on the rows and

afterwards on the columns of the image. The input image is denoted as X with size

N × N, N = 2j. First the rows of X are low-pass filtered with the one dimensional

filter h0 which is denoted by hr
0 in the filterbank diagram and high-pass filtered with

h1, denoted by hr
1. Afterwards the same is done with the columns, but for each part,

the low-pass filtered as well as the high-pass filtered, separately. It follows that the

transformed image contains four different filtered versions of the original image. One

part, denoted by A, is low-pass filtered on rows and columns. That means it contains

the averages of the original image on a coarser resolution. Three parts, denoted by Dv,

Dh and Dd, give the details of the original image. The size of the transformed image

stays the same like the size of the original image. This is due to the fact that after every

convolution and downsampling the length of a vector halves, as described in the one

dimensional case. In the 2D case the convolution plus downsampling is performed on

the rows and the columns. That means that the parts of the first transformation level

Aj+1, Dv
j+1, Dh

j+1 and Dd
j+1 have the size N

2 × N
2 . The whole transformed image, which

consists of this four parts has again size N × N. This is illustrated in figure 5.4.
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Figure 5.4: Schema of the 2D discrete wavelet decomposition

Lets now come to the interpretation of the two dimensional discrete wavelet trans-

form. The four parts of the decomposition A, Dv, Dh and Dd all contain different in-

formation of the original image. The subband A contains the averages, like already

discussed. This is because a low-pass filter lets low frequencies pass and attenuates

higher frequencies. On the other hand a high-pass filter lets high frequencies pass and

attenuates the low ones. If the high-pass is only performed on the columns, the ver-

tical high frequencies are passed by the filter. This means that the subband Dv gives

the vertical high frequencies and horizontal low frequencies, because the rows are low-

pass filtered and the columns high-pass filtered. Thus the Dv part of the transformed

images highlights the vertical edges of the original image. Analogous the Dh part gives

the horizontal edges and Dd the high frequencies in both vertical and horizontal direc-

tions, which correspond to diagonal edges. This is shown with a simple test image in

figure 5.5.

This interpretation of the two dimensional discrete wavelet transform is important for

the understanding of the feature discussed in section 5.4.

5.3 Wavelet Bases

In this section the choice of the scaling function φ(t) and the wavelet function ψ(t) is

discussed. Closed forms of these functions are not needed for the calculation of the

discrete wavelet transform, as shown in the previous sections. Furthermore, character-

istics of the scaling function as well as the wavelet function can be determined indirectly
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5.3 Wavelet Bases

Figure 5.5: 2D discrete wavelet transform of a test image. On the left hand side the original image is

shown, in the middle the first level decomposition and on the right the second level. The

image is transformed with Daubechies D4 filter, see section5.3.1.

through properties of the corresponding coefficients h0 and h1.

In the theory of the wavelet transform described above, the wavelet and scaling func-

tion have to be orthogonal in order that a signal can be decomposed without loss of

information. A family of wavelets constructed by I. Daubechies with this property is

presented in the first part of this section. However, in the application of wavelets in

feature extraction symmetric wavelets are often used. Livens pointed out in [14], that

symmetry is an important property for a wavelet basis, because with it is at least guar-

anteed that the same feature is obtained if the image is turned upside down. With

biorthogonal wavelets it is possible to achieve this property. They are described in sec-

tion 5.3.2.

In the last part of this section the wavelet bases used in this work to built a texture

feature are given.

5.3.1 Orthogonal Wavelets

Ingrid Daubechies derived scaling function coefficients that produce orthonormal wavelets

with compact support and a high number of vanishing moments [6]. The number of

vanishing moments of a wavelet function ψ indicates which polynomials can be com-

pletely represented by the scaling function, without any loss of information. For exam-

ple, this is important in the application of wavelets in image compression. For the con-

struction of wavelet based features it is more important that the wavelets have compact

support. From this property follows that the scaling and wavelet function coefficients

h0 and h1 are finite. This is necessary for the implementation of the discrete wavelet
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Figure 5.6: Daubechies Scaling- and Wavelet function for different N.
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transform.

Daubechies constructed different scaling functions with N coefficients h0 and N/2 van-

ishing moments. Some examples are shown in figure 5.6. The wavelet with N = 2 is

also known under the name Haar-wavelet. The corresponding coefficients for N = 2

and N = 4 are

• N = 2 (Haar-Wavelet):

h0 = 1√
2
(1, 1)

h1 = 1√
2
(1,−1)

• N = 4:

h0 = 1
4
√

2
(1 +

√
3, 3 +

√
3, 3−

√
3, 1−

√
3)

h1 = 1
4
√

2
(1−

√
3,−3 +

√
3, 3 +

√
3,−1−

√
3)

These filters are examples, which can be used for an orthogonal multiresolution anal-

ysis. In the orthogonal case the same filters are used for decomposition and recon-

struction, thus they cannot be symmetric, except for N = 2 [5]. If symmetric filters are

wanted, one has to give up orthogonality. This is described in the next section.

5.3.2 Biorthogonal Wavelets

With biorthogonal bases is it possible to construct symmetric wavelets. They were

developed by Cohen, Daubechies and Feaveau [5] and are commonly called CDF-

wavelets.

Symmetry can not be achieved by using the same filters for decomposition and re-

construction like in the orthogonal case. Therefore dual pairs of scaling and wavelet

functions are constructed. That means different filters are used for decomposition and

reconstruction. Although the reconstruction is not needed in the particular application

of wavelets as feature, it is also mentioned at this point, because it is important in the

development of symmetric wavelets.

The multiresolution theory of the orthogonal case has to be modified to get symmet-

ric wavelets. The multiresolution vector spaces needed for reconstruction of the signal

now differ from the ones needed for decomposition. The approximation of the signal
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5 Wavelets and Their Application in Feature Extraction

is done in the vector spaces {Ṽ2j}j∈Z, the reconstruction in the vector spaces {V2j}j∈Z.

The bases of this vector spaces are given by φ̃2j,k and φ2j,k. The same holds for the cal-

culation of the details in {W̃2j}j∈Z and {W2j}j∈Z respectively. They have the bases ψ̃2j,k

and ψ2j,k. Again, W̃2j is a complement of Ṽ2j in Ṽ2j+1 and W2j is a complement of V2j in

V2j+1 , but this time they are not orthogonal [5]. Instead each scaling space is orthogonal

to the dual wavelet space:

V2j ⊥ W̃2j and W2j ⊥ Ṽ2j . [22]

Again, the scaling and wavelet functions are constructed using the filter coefficients.

The coefficients are related to the functions with:

φ̃(t) =
√

2 ∑
n

h0φ̃(2t− n), ψ̃(t) =
√

2 ∑
n

h1ψ̃(2t− n),

φ(t) =
√

2 ∑
n

f0φ(2t− n), ψ(t) =
√

2 ∑
n

f1ψ(2t− n). [5]

The filters h0, h1 for decomposition and f0 and f1 for reconstruction are chosen in a way

that perfect reconstruction is possible. Therefore it must hold that

h1(n) = (−1)n+1 f0(−n),

f1(n) = (−1)n+1h0(−n). [5]

The properties of the dual scaling and wavelet functions are again determined with the

filter coefficients. The dual CDF-wavelets ψ̃ and ψ are built in a way that they have

compact support and p̃ and p vanishing moments. Additionally these wavelets can be

symmetric. The filters with four vanishing moments in decomposition and reconstruc-

tion are given in table 5.1 [5]. In this work they are denoted with ’biorthogonal 4.4’. The

resulting scaling and wavelet functions are given in figure 5.7.

5.3.3 Choice of the Wavelets Basis for Feature Extraction

In this work three different wavelet bases were tested regarding to their suitability as

basis for the wavelet features presented in the next section. The first one is the Haar

wavelet because it just contains two filter coefficients and is therefore of low complex-

ity. As second basis the Daubechies wavelet with 4 vanishing moments (D4) is tested.

It has better approximation characteristics than Haar, whereas the filter length is still
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5.3 Wavelet Bases

n h0/
√

2 h1/
√

2

0 0.602949018236 -0.557543526229

1,-1 0.266864118443 0.295635881557

2,-2 -0.078223266529 0.028771763114

3,-3 -0.016864118443 -0.045635881557

4,-4 0.026748757411 0

Table 5.1: Decomposition filter coefficients of biorthogonal wavelets with four vanishing moments ψ̃

and ψ. They can be also found in [5].
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Figure 5.7: Dual scaling and wavelet functions of biorthogonal 4.4 wavelets.
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low. As the third and final tested basis a symmetric wavelet is chosen with 4,4 vanish-

ing moments, denoted as biorthogonal 4.4. This wavelet basis is often used to build a

texture feature, for example in [12]. The results of the comparison of the different bases

can be found in chapter 6.

5.4 Wavelet Based Features

After the theory and implementation of the discrete wavelet transform were explained

in the previous sections, now the wavelet transform as feature will be discussed. Theo-

retically one can use the whole wavelet coefficients as feature vector, but this would im-

ply a huge feature vector and a decreasing classification accuracy. Instead the features

should be build in a way that they highlight characteristic properties of the different

texture classes whilst simultaneously the dimensionality is kept low.

A common feature is the l1-norm of the detail coefficients. It is for example used in

[12] and [13]. In this work two features a build using the l1-norm of the detail coeffi-

cients, which were also used in a similar way in [12].

First, the image is decomposed J times up to the resolution 2j−J , where N = 2j is the

sampling resolution. The decomposition results in 6 different detail coefficient images

for each orientation denoted by Dh
i , Dv

i and Dd
i (i = 1, ..., 6), here the i indicates the de-

composition level. For each of these detail images, the l1-norm, i.e. the mean absolute

coefficient (MAC), is calculated with

MAC(o, i) = l1(Do
i ) = ∑

kx ,ky

∣
∣do

i (kx, ky)
∣
∣,

with i = 1, ..., 6, o ∈ {h, v, d} and where do
i (kx, ky) denotes the image value of Do

i at

position (kx, ky).

With this 2 different feature sets are build:

f1(i) = ∑
o

MAC(o, i),

f2(i) = |MAC(h, i)−MAC(v, i)|+ MAC(d, i) +
MAC(h, i) + MAC(v, i)

2
,

with i = 1, ..., 6 and o ∈ {h, v, d}.

42



5.4 Wavelet Based Features

Figure 5.8: Discrete Wavelet Transform of two test images containing circles with different sizes and

the resulting wavelet features f1 and f2.
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5 Wavelets and Their Application in Feature Extraction

The first feature f1 captures the mean absolute coefficient of each decomposition level

i, i.e. the sum of the detail information lost by going down on this level. This lost in-

formation contains basically edges, which can also be explained with the calculation of

the detail coefficients with low- and high-pass filters, see 5.2.2. With increasing decom-

position level, the amount of lost information changes depending on the appearance

of the image on the particular resolution. This can be seen in figure 5.8. Two test im-

ages containing circles with different sizes are shown in the first column. Their discrete

wavelet transform calculated with the Haar basis and corresponding wavelet features

are shown in the next columns. The wavelet features show two main differences. First,

the values are higher for the second image. This can be explained with the higher

amount of edges in this image. Furthermore, the features for both images are zero up

to a certain decomposition level. This is because at that resolution the images are sam-

pled at such a coarse scale that the resulting images are completely white and contain

no edges. For the first image the features are zero after the sixth decomposition. For the

second images the whole information is already represented with five decompositions.

Afterwards there are no details left and the features are zero.

The second feature f2 describes anisotropic structures. This is due to the fact, that

each of the detail coefficients and with it their MAC varies in a different way if the main

orientation of the image structure changes. This is illustrated with four test images in

figure 5.9. The test images are in the first column, their decomposition in the second and

the resulting MACs and features f1 and f2 in the last two columns. The first test image

at the top is not anisotropic, it contains circles. The other three contain lines, which are

oriented in horizontal, vertical or diagonal direction. One can see in the decomposition

images that on each level the detail coefficients correspond to a particular direction.

This is due to the two the different filters, as already explained in the previous section.

It follows that also the MACs of the detail coefficient image parts differ. Horizontal lines

lead to high MAC(h, i), while MAC(v, i) and MAC(d, i) are low. Vertical lines on the

other hand lead to low MAC(h, i) and MAC(d, i) and high MAC(v, i). This affects the

feature f2, in both cases the first summand increases. With diagonal lines the MACs of

all directions increase, whereas the values of MAC(h, i) and MAC(v, i) are very similar.

Thus, the first summand gets very small and the last summands are increasing. All in

all the feature f2 should increase if the structure in the image has a preferred direction.
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5.4 Wavelet Based Features

Figure 5.9: MACs and the resulting wavelet features f1 and f2 for different test images.
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6
Chapter 6

Results

6.1 Feature Evaluation

In this section the features presented in the previous sections are compared and ana-

lyzed. First the choice of the wavelet basis is evaluated by comparing the wavelet fea-

tures calculated with Haar, Daubechies 4 or biorthogonal 4.4 wavelet basis. Secondly

the intensity attributes, local binary patterns and wavelet features for two example im-

ages of adenocarcinoma subtypes are shown and compared. The wavelet features are

additionally interpreted for other classes. Afterwards the discriminative power of the

three feature types are compared by classifying the microscopic lung tumor tiles with

just one feature type at once.

6.1.1 Evaluation of the Basis for the Wavelet Feature

Like mentioned in 5.3.3, three wavelet bases were tested: Haar wavelets, Daubechies

wavelets with four vanishing moments and biorthogonal wavelets with four vanish-

ing moments for the decomposition and reconstruction wavelet. The wavelet features

were calculated with each of the three bases for 20 image regions of every tumor class.

Additionally the features were calculated for the alveolar lung tissue class (in the plots

named ’normal’) and fibrous tissue because these two classes are the most common

healthy tissue classes that occur next to the tumor classes. The size of the test images

was 1024 × 1024 pixel on the highest magnification. This size is equal to the tile size of
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Figure 6.1: Comparison of the wavelet feature f1 with Haar, Daubechies 4 and biorthogonal 4.4 wavelet

basis. The normalized mean value of the feature for 20 test images for each class is shown.
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(a) Lepidic adenocarcinoma (b) Acinar adenocarcinoma

Figure 6.2: Example images of lepidic and acinar adenocarcinoma.

the final classification with HistoCAD.

The results of f1 till the decomposition level i = 3 are shown in figure 6.1. In this

figure the mean of the 20 test images for each class is plotted. Additionally these values

are normalized in order to be comparable. The plots show, that the differences between

the wavelet bases are not significant. For each basis the resulting feature is similar

for a particular class. The same holds for the second feature f2 and if the images are

decomposed further. Because of these results the Haar basis is used from here on. It

has the smallest filter length and has therefore the lowest complexity.

6.1.2 Comparison of Different Features on Histological Images of Lung

Tumors

As an example, the resulting feature vectors of the intensity, LBP and wavelet attributes

of tiles of lepidic and acinar lung adenocarcinoma are shown and discussed now. The

image tiles are shown in figure 6.2. As described in chapter 2 lepidic adonocarcinoma

still appears differentiated. Tumor cells are spread on the walls of the alveoli without

destroying them. The acinar subtype on the other hand consists of glandular structures

with a central lumina. The differences of this two subtypes are clear visible by the

human eye.

The resulting feature vectors of the example images calculated on the red color chan-
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(a) Feature vectors of the lepidic adenocarcinoma example image shown in figure 6.2a.
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(b) Feature vectors of the acinar adenocarcinoma example image shown in figure 6.2b.

Figure 6.3: Comparison of intensity attributes, local binary patterns and wavelet based features for

lepidic and acinar adenocarcinoma.
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Figure 6.4: Direct comparison of the wavelet features for lepidic and acinar adenocarcinoma.

nel are shown in figure 6.3. The wavelet based features f1 and f2 are in this example

calculated with the Haar basis and the images are decomposed 6 times.

Differences between the feature vectors of the two subtypes can be seen in all three

cases. Because the lumina of the alveoli are not filled with tumor cells in the lepidic

subtype. This image has more bright parts than the image with acinar adenocarci-

noma. This is also reflected in the intensity attributes. The values for median, lower

and upper quartile are higher in the image with lepidic tissue. Furthermore the pattern

#8 of the local binary patterns occurs more often for this image. This pattern detects

bright spots or areas. On the other hand the occurrences of pattern #3, #4 and #5 are

significantly increased for the acinar subtype. These three patterns recognize edges in

an image, where the intensity of the edge is neglected. The high occurrence of these

patterns can be explained with higher density of the tissue which goes along with more

color changes.

By looking at the wavelet features of the two images one recognizes the increasing

decomposition level goes along with decreasing feature values. This is the result of the

coarsening of the resolution. With a coarser resolution the details of the images increase

which results in decreasing values f1 and f2. The differences between the wavelet fea-

ture of lepidic and acinar tissue can be seen more clearly in figure 6.4. In these plots the

mean values of f1 and f2 for 20 example images of the two tumor classes are shown.

Generally the wavelet features for the acinar subtype are higher than the ones for the

lepidic adenocarcinoma. This is again because the lepidic tissue contains less structure
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Figure 6.5: Predictive power of wavelet based features. Mean and standard deviation for f1 for eight

different classes.

because of the remaining alveolar lumina. With increasing decomposition level the val-

ues decrease in both cases, whereas the values for the lepidic subtype decrease slower.

For the decomposition level i = 6 the feature in the lepidic case are actually higher than

in the acinar case. This is due to the different kinds of edges in the two images. The still

recognizable alveolar walls in the lepidic subtype are wide edges, that are also captured

at a coarser resolution. The edges in the acinar subtypes on the other hand are finer, be-

cause they originate mainly from slight changes in the color. They are not captured at a

coarse scale. The observations in the development of the wavelets features hold for the

feature f1 as well as for f2. To determine the differences between these feature now the

results for more classes are compared.

Altogether the wavelet features f1 and f2 were calculated till the decomposition level

i = 6 for 20 example images of each of the six tumor classes and additionally for the

classes fibrosis and normal alveolar lung parenchyma. The resulting mean and stan-
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Figure 6.6: Predictive power of wavelet based features. Mean and standard deviation for f2 for eight

different classes.

dard deviation are shown in figure 6.5 ( f1) and 6.6 ( f2). f1 reaches on the first decom-

position level the highest values for the classes acinar and solid adenocarcinoma, and

fibrosis. These three classes all contain tissue with a high cell density, which explains

the high feature values. On the coarsest resolution on the other hand the highest val-

ues for f1 belong to lepidic, papillary and micropapillary adenocarcinoma. These are

tissues which tend to have more luminal spaces between the cell structures and have

therefore edges which are more outstanding and can also be recognized on a coarser

resolution. This is also the case for normal alveolar lung parenchyma. Although the

values for this tissue class are comparatively low for each i, they increase for example

relatively to the values of solid adenocarinoma. All in all it is possible to discriminate

these classes with the wavelet feature f1.

The comparison of f2 for the eight classes is shown in figure 6.6. This feature was build

to detect structures that are oriented in a preferred direction, like for example fibrous
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tissue. In the results can be seen, that for f2(1)- f2(4) the highest values belong to fi-

brous tissue. Relatively to the other classes the values for this class are higher, but in

consideration of the variances the differences to f1 are low. That means the property

that f2 detects anisotropic structures cannot be confirmed in this test.

6.1.3 Classification Accuracy with one Feature Type

In this part it is tested how much classification accuracy can be achieved if just one of

the three image features is used. That means the accuracy of a classification just with

intensity attributes, local binary patterns or wavelet features is determined and the re-

sults are compared. This is done to determine which feature type is important for a

good classification. The tests are solely based on an evaluation of example data with

Rapid Miner.

The example data set contains 11.976 tiles that are selected uniformly distributed

from the ground truth of the 22 histological images of lung adenocarcinoma. The inten-

sity, local binary pattern or wavelet feature vectors are calculated on each of the RGB

color channels on different magnifications. Additionally the feature vectors are calcu-

lated on the three HSV color channels, because this color space is not as correlated as

the RGB space. Additionally, hue, saturation and intensity may give more relevant in-

formation of the images. All in all the features are calculated on 6 color channels for 6×,

12×, 25× and 50× magnification which correspond to images sizes of 16×16, 32×32,

64×64 and 128×128 pixels. Higher magnifications are omitted, because the calculation

time would be too high. The wavelet features are calculated till the decomposition level

i = 3 for 6×, i = 4 for 12×, i = 5 for 25× and i = 6 for 50×magnification.

With this data set the performance of each attribute is determined with Rapid Miner

as follows. First a feature selection procedure is performed on the example data set

using correlation based feature selection in combination with forward selection for in-

tensity attributes, local binary patterns and wavelet features separately. Afterwards,

the data set is split into two sets of equal size. One is used for training, the other for

testing. The learning algorithm is the random forest implemented in Rapid Miner with
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6.2 Classification with HistoCAD

attribute accuracy # calculated features # selected features

intensity attributes 74.0 % 144 29

local binary patterns 71.4 % 210 47

wavelet features 69.7 % 192 48

Table 6.1: Comparison of the classification accuracy of intensity, LBP and wavelets attributes

25 decision trees, and int(log2M + 1) features considered at each node to find the best

split, where M is the number of features. With the trained algorithm the test set is clas-

sified and the accuracy is determined.

The results can be found in table 6.1. It can be seen that the classification just with

intensity attributes achieves the best classification accuracy while simultaneously us-

ing the smallest feature set. The classification just with features based on local binary

patterns or wavelets require larger feature sets but the accuracy is lower. The classifi-

cation just with local binary patterns produces a little better results. This verifies the

assumption of chapter 4, that a lot of information in histological images is given by the

color intensity.

6.2 Classification with HistoCAD

In this section the classification of lung tumor tissue with HistoCAD with two feature

sets is compared. The first set contains just the attributes that where already avail-

able for other classification task in HistoCAD: the intensity attributes and local binary

patterns. In the following this feature set is called ’feature set 1’. The second set addi-

tionally contains wavelet features, it is named ’feature set 2’. It is compared if a better

classification result can be achieved if wavelet features are included.

The feature sets contain all feature vectors calculated on 6 color channels (RGB and

HSV) and 6×, 12×, 25× and 50×magnification, feature set 1 without wavelet features,

feature set 2 with. The wavelet features are calculated till the same decomposition lev-

els like in section 6.1.3. On both sets the same feature selection procedure is performed.

First, the best subset is found with Rapid Miner using correlation based feature selec-
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tion in combination with forward selection for an example data set containing 11.976

tiles, like in 6.1.3. During this procedure not all features of a feature vector are selected.

Let’s take an example: The feature vector of the intensity attributes contains 8 values

(min, max, sum, mean, standard deviation, median, lower quartile, upper quartile). But

it is possible that just the minimum is selected during the feature selection procedure.

Nonetheless the full feature vector has to be calculated. Because of that the selected

subset is further reduced, in order that not so many feature vectors have to be calcu-

lated and the calculation time is decreased. The classification accuracy decreases in this

step, but only as many features are eliminated that the accuracy determined with Rapid

Miner decreases not more than 2%.

In the following the best feature subset of feature set 1 is called ’subset 1’. The best

subset of feature set 2, which contains wavelet features, is called ’subset 2’.

Each of the resulting subsets is integrated in HistoCAD and the lung tumor data

set containing 22 tissue section is classified. The training samples are taken out of the

ground truth set by Dr. Frederick Klauschen, where tiles that cannot clearly be assigned

to one class are taken out. For some images the ground truth is only available for parts

of the image and a full ground truth is only available for 9 of the 22 images. The train-

ing example tiles are taken uniformly distributed from this ground truth, were two of

the images with full ground truth are left out for evaluation purposes. Altogether the

training set contains round about 12.000 tiles.

For some of the images the results of the classification are evaluated with the ground

truth that was not used to create the testing set. In the next section some problems are

described that have to be taken into account during the validation. The results of the

classification are presented and compared subsequently.

6.2.1 Validation Difficulties

The ground truth for the determination of the classification accuracy has to be set by

hand. For each tile the class has to be determined. Because this procedure needs a lot

of time, a full ground truth is only available for 9 of the 22 images.

Although the ground truth is set by a pathologist, it may contain errors. This has two
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6.2 Classification with HistoCAD

(a) Ground truth: fibrous

adenocarcinoma

(b) Ground truth: acinar

adenocarcinoma

(c) Ground truth: solid

adenocarcinoma

Figure 6.7: Three tiles with tissue areas that look very much alike, but are in the ground truth referred

to different classes.

main reasons. In some cases a tissue area cannot clearly be assigned to a particular

class and the classification depends a lot on the subjective interpretation of the tissue.

See for example figure 6.7. The three images look very alike because all of them contain

fibrous tissue. But the images 6.7b and 6.7c are assigned to the acinar and solid subtype

respectively. Image 6.7b certainly contains lumina that indicate acinar adenocarcinoma

as well as image 6.7c contains cells that refer to the solid subtype, but this differences are

small. The threshold at which point these images are assigned to one class or another is

a subjective decision. At the same time it is not totally false, if all of these three images

are classified as fibrous tissue by the classification algorithm, although the ground truth

is different.

The second difficulty with the ground truth is that each tile has to be assigned to

a particular class, although it may contain different classes. Examples can be seen in

figure 6.8. Image 6.8a contains fibrous tissue as well as acinar adenocarcinoma, image

6.8b contains in the upper left corner cartilage, in the bottom right one glandular tissue

and image 6.8c contains in the bottom left corner normal alveolar lung parenchyma

that changes in the upper right corner to papillary adenocarcinoma. All of these cases

have to be referred to one particular class to define the ground truth. If the learning

algorithm classifies these tiles into the other class that the one of the ground truth, this

is treated as an error, but in truth it is not completely wrong. This have to be kept in

mind during the determination of the classification accuracy. The values can only give
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6 Results

(a) (b) (c)

Figure 6.8: Three tiles with tissue areas that contain different classes.

an indication of the accuracy.

6.2.2 Classification Results

The classification accuracy for the 9 images with available ground truth with the fea-

ture subset 1 is 67.16 %. With the feature set containing wavelet features a slightly

better accuracy of 68.01 % could be achieved. If just the accuracy for the tumor classes

is observed, the classification with subset 1 achieves 61.26 %, with subset 2 64.27 %.

More detailed classification results can be seen in tables 6.2 and 6.3, in which the con-

fusion matrices for the classification with the two feature sets are shown. One can see

that the classes normal alveolar lung parenchyma and lepidic adenocarcinoma have for

both feature sets a very high true positive rate. On the other hand normal bronchi and

micropapillary have very low true positive rates. This can be explained with the very

low number of example tiles. Furthermore one can see that some classes are commonly

mislabeled to another class. Macrophage infiltrates for example are often predicted as

normal alveolar lung parenchyma or fibrosis, most likely because macrophages often

occur in combination with these classes. A high misclassification rate can also be seen

with papillary adenocarcinoma. With feature subset 1 a lot of tiles are wrongly classi-

fied as normal alveolar lung parenchyma, acinar- or mucious adenocarcinoma. At least

the wrong classification to mucious is reduced by including wavelet features. Also the

other case, that tiles that are in truth mucious but are labeled as papillary, could be re-

duced.
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6 Results

The classification accuracies for each of the whole slide images separately can be seen

in figure 6.4. The best result for both feature sets is achieved for image no. 9. The re-

sult achieved with feature subset 2 can be seen in figure 6.9. Normal alveolar lung

parenchyma (green) is detected by the classification algorithm as well as lepidic adeno-

carcinoma (violet) which is the dominant subtype in this tumor section.

The accuracy with feature subset 2 of image no. 5 is over 10 % lower than the one of

image no. 9, but in figure 6.10 one can see that the result is still very good. Again, the

most tiles containing normal alveolar lung parenchyma are classified correctly by the

algorithm. Furthermore the detected predominant adenocarcinoma subtype is papil-

lary (orange). This corresponds to the ground truth.

For the images no. 3 and no.7 the worst classification accuracies are achieved. These

are the two image from which no tiles are used for the generation of the training sample

set, which is one explanation of the low accuracy values.

The highest difference in the accuracy occurs for image no. 3. The classification results

with both feature sets and the ground truth for a part of this image is shown in figure

6.11. The main difference is that with feature subset 1 big areas that belong in truth to

the papillary subtype (orange) are classified as mucious (pink).

An important aspect for the feature set used to classify the lung tumor sections is

the calculation time. One factor for this is the number of used features. In table 6.6 all

features of feature subset 1 and 2 are listed. In the notation of the feature vectors chan-

nel 1,2,3 name the RGB color channels and 3,4,5 the HSV color channels respectively.

The first feature set without wavelet features contains 72 features, the second set with

wavelet features 96. Furthermore it stands out that the chosen features are very equal

in both cases. For example the intensity attributes on channel 2 and magnification 6 are

omitted in both sets.

To build the feature sets 11 features vectors have to be calculated in both cases.

Nonetheless one can see in figure 6.5, in which the calculation time for 3 images is

shown, that the calculation time of feature subset 1, which does not contain wavelet

features, is considerably shorter.
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6 Results

image no. accuracy with subset 1 accuracy with subset 2

(without wavelet features) (with wavelet features)

1 74 % 76 %

2 67 % 65 %

3 46 % 50 %

4 79 % 81 %

5 77 % 73 %

6 73 % 70 %

7 52 % 54 %

8 60 % 61 %

9 88 % 87 %

Table 6.4: Comparison of the classification accuracy of the subset including wavelet features with the

one without wavelets for each image with available ground truth.

image. number of calc. time subset 1 calc. time subset 2

classified tiles (without wavelet features) (with wavelet features)

a 6935 1:14 1:27

b 8878 1:23 2:17

c 15796 3:25 4:43

Table 6.5: Calculation time (in min:sec) for 3 histological images of different size.
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6.2 Classification with HistoCAD

(a) Classification result.

(b) Ground truth.

Figure 6.9: Part of the classification result with HistoCAD of image no. 9.
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6 Results

(a) Classification result.

(b) Ground truth.

Figure 6.10: Part of the classification result with HistoCAD of image no. 5.
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6.2 Classification with HistoCAD

(a) Classification result with wavelets. (b) Classification result without wavelets.

(c) Ground truth.

Figure 6.11: Part of the classification result with HistoCAD of image no. 3.
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6 Results

feature vector chosen in subset 1 chosen in subset 2

(without wavelet features) (with wavelet features)

mag-6-channel-0-intensity-attributes min, max, mean, min, max, mean, lower

stddev, lower quartile quartile, upper quartile

mag-6-channel-3-intensity-attributes min, stddev, median, min, median, upper

upper quartile quartile

mag-12-channel-0-intensity-attributes max, stddev, median, max, lower quartile,

upper quartile median, upper quartile

mag-25-channel-0-intensity-attributes max, stddev, median, max, stddev, median,

lower- , upper quartile lower- , upper quartile

mag-25-channel-3-intensity-attributes mean, stddev, lower —-

quartile

mag-12-channel-0-lbp-attributes pattern #3, #4, #5, #7, #8 pattern #3, #4, #5, #7, #8

mag-12-channel-1-lbp-attributes pattern #4, #5, #7, #8 pattern #3, #4, #5, #7, #8

mag-12-channel-4-lbp-attributes pattern #3, #4, #5 —-

mag-25-channel-1-lbp-attributes pattern #1, #5, #6, #7 pattern #1, #4, #5, #7

mag-50-channel-0-lbp-attributes pattern #2, #3, #5 —-

mag-50-channel-1-lbp-attributes pattern #1, #5, #8 —-

mag-50-channel-3-lbp-attributes —- pattern #4, #5, #7, #8

mag-6-channel-3-wavelet-attributes —- f1(1), f1(2), f1(3)

mag-25-channel-3-wavelet-attributes —- f1(3), f1(4), f1(5),

f2(4), f2(6)

mag-50-channel-3-wavelet-attributes —- f1(1), f1(2), f1(3), f1(4),

f1(5), f2(3), f2(4), f2(5)

Table 6.6: Selected features for the feature subsets 1 and 2.
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7
Chapter 7

Conclusion and Outlook

The aim of this work was to classify tissue sections of lung adenocarcinoma automat-

ically and it was evaluated if the classification can be improved by including wavelet

based image features.

The first goal was to achieve a good differentiation between tumor tissue and healthy

lung tissue. The classification results show that this is possible. The presented meth-

ods achieve true positive rates of over 90% for normal alveolar lung parenchyma. This

tissue class comprises the greatest part of healthy lung tissue and should therefore not

falsely be classified as tumor. With this high detection rate it can be distinguished to

lung tumor tissue.

However, the classification of lung adenocarcinoma into its different subtypes is still

a challenge. The mean accuracy among all histological images is approximately 67

%. The mean accuracy just for the adenocarcinoma subtypes is 61.26 % for the classi-

fication without and 64.27 % with wavelet features. This is insufficient for a reliable

automatic classification. For lepidic adenocarcinoma very good classification results

could be achieved, whereas the results for the papillary subtype contain still a lot of

misclassifications. This shows that a complete automatic classification is, at this point,

impossible. The task is too complex.

For an improvement of the classification an additional texture feature based on wavelets

was introduced in this work. Although better classification results for some tumor
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7 Conclusion and Outlook

classes were achieved by including these features, the overall accuracy is not signif-

icantly improved. The local binary patterns, which were already available for other

classification tasks, are already a good simple texture feature. Additionally including

wavelet based features is in this application not profitable, because the considerably

increased calculation time does not go along with an adequate improvement of the

classification accuracy.

Probably, a sufficient classification accuracy of the lung adenocarcinoma subtypes

could be achieved with a semi-automatic classification. In this scenario the classifica-

tion algorithm pre-classifies the data. Afterwards a pathologist could correct falsely

classified tiles. These tiles are added to the training data set and the classification is

repeated. This semi-automatic approach has to main advantages. First, the training

data set could interactively be improved by adding new characteristic tiles of a tumor

class or tiles that are difficult to classify, which were possibly not available in the first

training data set. Secondly, this method would still help the pathologist in the quanti-

zation of the tumor types. The pathologist does not have to determine the occurrence

of a tumor type by hand because this is already given with the classification result.

Furthermore, a better classification result could be achieved by taking different tile

sizes into account. With a smaller tile size class borders could be captured more clearly

and the error in tiles which include different classes could be reduced. But this has to

be done by considering the calculation time. One idea is to calculate the feature on the

current tile size while the classification is done on a finer grid.
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