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Abstract

The reconstruction of objects from blurry images has a wide range of applications, for
instance in astronomy and biomedical imaging. Assuming that the blur is spatially
invariant, image blur can be defined as a two-dimensional convolution between true
image and a point spread function. Hence, the corresponding deblurring operation
is formulated as an inverse problem called deconvolution. Often, not only the true
image is unknown, but also the available information about the point spread function
is insufficient resulting in an extremely underdetermined blind deconvolution prob-
lem. Considering multiple blurred images of the object to be reconstructed, leading
to a multiframe blind deconvolution problem, reduces underdeterminedness. To fur-
ther decrease the number of unknowns, we transfer the multiframe blind deconvolution
problem to a compact version based upon [18] where only one point spread function
has to be identified. Applying Givens rotations to this so called compact multiframe
blind deconvolution problem we derive a new expression, the compact singleframe blind
deconvolution problem, to significantly speed up computations. We examine both a
separate approach applying the APEX method [6] to solve for the point spread func-
tion and subsequently reconstruct the true image, and iterative methods, in particular
the Gauss-Newton method, to simultaneously solve the underlying problem. For reg-
ularization, the Tikhonov method with generalized cross-validation is applied. We
implement deconvolution in Matlab and present results using artificial data where
the blur is caused by Gaussian functions.
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1. Introduction

1.1. The Importance of Deblurring Images

Image blur is a widely spread problem present in image data observed by devices such
as ground-based telescopes, microscopes, and medical imaging methods, complicating
further processing and interpretation. Image deblurring, a postprocessing technique,
seeks to reconstruct the sharp image to improve accuracy of blurry image data records.
Considering the blur as spatially invariant the degraded image can be described as a
two-dimensional convolution of the true image and a point spread function.

Given a blurred image and the point spread function, the true image is detected by solv-
ing an inverse problem called deconvolution [33, p.59ff.]. The term blind deconvolution
is used if only the blurred image is given, and the true image is reconstructed with-
out complete knowledge of the point spread function. Blind deconvolution problems
are extremely underdetermined, which means that the number of possible solutions is
infinite [9, p.529ff.; 22]. Optimization methods applied to solve a blind deconvolution
problem are often trapped in local minima leading to insufficient deblurring results.
Instead of a single image, utilizing multiple images of the same object blurred with
different point spread functions helps to decrease non-uniqueness of the solution. This
approach is known as multiframe blind deconvolution [8, p.45ff.; 16].

We focus on three major areas of application concerning image deblurring. Although
astronomy has predominantly contributed to a growing interest in this field of research
over the last decades, deconvolution is also an important tool in biomedical and medical
applications such as fluorescence microscopy and computed tomography.

Astronomy Astronomical observations have been part of our entire cultural history
making astronomy the oldest field of science. Today, telescopes exploring space are
coupled with imaging devices using digital detectors, often CCD image sensors, to
record celestial objects. We distinguish between ground-based telescopes located at the
Earth’s surface, and space telescopes placed outside the Earth’s atmosphere. Figure
1.1 gives an overview of how such telescopes operate.

Light waves emitted by a star or another object in space are distorted at the Earth’s
atmosphere due to atmospheric turbulence. Hence, and because of light pollution
on Earth caused by big cities, objects recorded by ground-based telescopes appear

1
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Earth’s surface

star in space

ground-based telescope

distorted light

light emitted from star

space telescope

Earth’s atmosphere

Figure 1.1.: Ground-based telescope and space telescope. The light emitted by objects
in space is distorted while traveling through the Earth’s atmosphere causing
blurred images.

blurred. Blurring effects have been attenuated by manufacturing adaptive optics, and
by installing telescopes at high altitude, for instance on Mauna Kea in Hawaii and
on high plateaus of the Atacama Desert in Chile. However, computational postpro-
cessing of recorded images is still necessary and rather inexpensive compared to using
sophisticated hardware like adaptive optics.

Space Telescopes are located outside Earth’s atmosphere, thus able to detect undis-
torted light waves resulting in less disturbed photographs. Yet postprocessing still
remains important, for example if image quality is degraded by technical breakdown
or damage. The most famous space telescope is probably the Hubble Space Telescope
operating since 1990. In the first few years, it recorded blurry images due to a con-
struction fault. Only preprocessing yielded useful image data records, until repair was
possible [1; 3].

An astronomical imaging method using multiframe blind deconvolution is called speckle
imaging. Here, the object of interest is repeatedly recorded with short exposure time.
Because the atmospheric turbulence is constantly changing, each image in this sequence
is blurred differently. Multiframe blind deconvolution helps to reconstruct the true
image using these different observations, as for instance examined by Schulz [30].

2



1.1. The Importance of Deblurring Images

Fluorescence Microscopy The fluorescence microscope is an important tool in bi-
ology and biomedicine to visualize subcellular components and their interactions. It
is even possible to observe protein-protein interactions. Moreover, three-dimensional
views of objects can be generated by examining and merging different image slices of
a sample.

In general, fluorescence microscopy operates as follows: Fluorescent dye molecules are
added to the object of interest, for instance a medical sample of a patient’s tissue. Then,
a light source of high energy (e.g. blue light) is directed at the regarded specimen,
exciting its electrons to a higher energy state. Fluorescence occurs when the electrons
return to their ground state and light of lower energy (e.g. green light) is emitted that
can be detected through the microscope’s objective [28]. The procedure is illustrated
in Figures 1.2 (a) and (b). Since all structures of the specimen emit light, including
those that are not in focus, the observed object appears blurred.

Efforts made to technically improve this method include the invention of confocal
microscopy. This further development of fluorescence microscopy seeks to dilute image
blur by sending light through a pinhole in front of the detector, and scanning the sample
pointwise instead of illuminating the whole sample at once. The idea of attaching a
screen with a pinhole to the microscope is demonstrated in Figure 1.2 (c). In theory,
light emitted by unfocused points of the sample cannot pass through the screen and
reach the detector, hence only focused points can be observed [20; 29].

However, confocal microscopy does not yield perfect results, as the pinhole would need
to be extremely small. Image blur does not entirely vanish and signal intensity is
reduced due to installation of the pinhole [31]. Since accuracy is of particular impor-
tance in microscopy, especially in medical applications, images are further improved
by applying deconvolution techniques. For instance, Cannell et al. [5] explain a way
to estimate point spread functions experimentally, whereas Holmes et al. [17], Panka-
jakshan [26] and Pankajakshan et al. [27] concentrate on blind deconvolution.

Computed Tomography Widely-used for clinical diagnostics and in medical science,
computed tomography (CT) is one of the most important medical imaging methods in
today’s medicine. Figure 1.3 describes the general procedure of image data collection
using a CT scanner. X-rays penetrate the patient’s body and are detected on the
opposite side. Since attenuation of x-rays in the body differs depending on the type
of tissue, acquired image data shows a contrast between distinct tissues. For instance,
bones, which are less penetrable for radiation, appear white in a CT image. Soft
tissue, on the other hand, appears darker, because more radiation passes through. CT
images of various thin slices of the patient’s body are collected from different angles
to reconstruct a three-dimensional volume [35].

The higher the radiation dose an object is exposed to, the higher is the image resolution
that can be attained. A low radiation dose results in unsharp, blurry images, whereas a
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exciting light

fluorescence light

light source

sample

objective

dichroic mirror

detector

(a)

ground state

excited state

absorption of
higher energy
light excites
electrons

lower energy light
is emitted (elec-
tron returns to
ground state)

some energy is
lost internally

(b)

focal plane screen with pinhole

lenses
unfocused point

focused point

detector

(c)

Figure 1.2.: Conceptual diagram of (a) a fluorescence microscope, (b) occurrence of flu-
orescence due to electrons in the sample changing their energy state, and
(c) eliminating the detection of unfocused points by attaching a screen with
a pinhole. In (a), a dichroic mirror is a device that helps to direct light
of different energy. High energy light (e.g. blue light) is reflected, whereas
lower energy light (e.g. green light) passes the mirror.

high radiation dose is accompanied by an increasing cancer risk. Therefore, combining
low-dose x-rays and image deblurring techniques simultaneously protects the patient
from radiation and provides adequately sharp image data.

Apart from that, image deblurring is, regardless of radiation dose, applied to CT
images simply for image enhancement. For instance, Jiang et al. [21] successfully use
blind image deconvolution to enhance resolution of CT images of the temporal bone to
support the installation of cochlear implants. A cochlear implant restores or improves
auditory perception in hearing-impaired patients. Prior to surgical implantation into
the temporal bone, spiral CT images of this region are produced to help positioning
the implant. Here, it is important to distinguish the fine bony structures of middle and
inner ear. CT image resolution, however, is too low to show some important features.
Therefore, applying image deconvolution to reveal details is crucial to safely implant
the device.
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patient

detector/film

x-rays

x-ray source

Figure 1.3.: The principle of computed tomography.

1.2. How This Work Addresses the Problem

This master’s thesis was developed as part of a one-year study visit at Emory University
in Atlanta/USA. Supervised by Professor James G. Nagy and Professor Bernd Fischer,
it is a joint work between the Department of Mathematics and Computer Science at
Emory University, and the Institute of Mathematics and Image Computing at the
University of Lübeck.

In many applications, an experimental derivation of the point spread function is impre-
cise or impossible resulting in a blind deconvolution problem. Underdeterminedness of
this problem can be reduced by setting up a multiframe blind deconvolution problem.
In addition, real image data, for instance acquired by astronomical, microscopical, or
medical imaging devices as discussed above, usually consists of large images. Both,
increasing problem size due to multiple images, and large image size, involve relatively
long processing times and large memory requirements.

The aim of this work is to identify strategies for efficiently performing multiframe blind
deconvolution. Our approaches are based on the papers by Hope and Jefferies [18] and
Carasso [6]. We transform the compact multiframe blind deconvolution problem stated
by Hope and Jefferies into a singleframe problem to significantly speed up computa-
tions. Moreover, combining the derived singleframe problem with one of Carasso’s
methods, we present a direct solution method.

The thesis is structured as follows:

Chapter 2 deals with the basic principles of image deblurring. We consider the blurring
process as a two-dimensional convolution of true image and point spread function, and
describe its conversion to a matrix-vector multiplication. Subsequently, a strategy to
reconstruct the true image, given the blurred image and the point spread function,
is presented. Moreover, we give an overview of multiframe deconvolution and blind
deconvolution, two topics that are regarded in more detail in the following chapters.

5



1. Introduction

Chapter 3 focuses on solving the extremely underdetermined blind deconvolution prob-
lem, where only information about the blurred image is available. Here, two iterative
strategies as well as a direct method to obtain the deblurred image are examined.

Chapter 4 introduces the multiframe blind deconvolution problem. It is described how
the expression of this problem can be simplified under certain assumptions yielding a
more compact version. Moreover, we show that the problem can be further reduced
to a singleframe blind deconvolution problem applying Givens rotations.

Chapter 5 presents results from multiframe blind deconvolution of simulated data.
Combining information from Chapters 3 and 4, we compare iteratively obtained results
of the three regarded versions of the multiframe problem, and directly reconstruct the
sharp image from the singleframe blind deconvolution problem derived in Chapter 4.

Chapter 6 summarizes important aspects, discusses which conclusions can be drawn
from this work, and identifies potential future research.

6



2. Fundamentals of Image Deblurring

Unintentional image blur can have various sources. Both the recording device itself, for
example an unfocused camera, and external interferences, like atmospheric turbulence
or movement, result in an inaccurate, blurred image instead of depicting the real sharp
object. In this chapter we give an introduction to image deblurring, based upon the
book by Hansen et al. [16]. More precisely, we state a mathematical model for the
blurring process that involves so called point spread functions and review possible
ways of solving the deblurring problem, which is the reconstruction of the sharp image
using knowledge about blurred image and the blurring process. Moreover, we consider
fundamentals of more advanced topics like multiframe image deblurring, where several
different blurred images of the same object are used to restore the desired sharp image,
and blind image deblurring, where only the blurred image but not the blurring process
is known.

2.1. A Mathematical Model

We define the blurring process, illustrated in Figure 2.1, as a two-dimensional convo-
lution

Bps, tq “ P ps, tq˙Xps, tq

“

ż

R2
P ps1, t1qXps´ s1, t´ t1qds1dt1, (2.1)

where the functions B, P and X : R2 Ñ R` represent the blurred image, point spread
function and true image, respectively. The point spread function P that smears the
contours in the true image X cannot be stated as one specific function, since it depends
on the particular source of the blurring. In the next section we go into more detail in
terms of point spread functions.

In the following we consider images as arrays where each entry represents a pixel of a
certain gray value. This interpretation requires a discretized expression of (2.1), given
by

B “ P ˙ X

where B, P and X are arrays of the same size. Each array element bij P R` of B,

7



2. Fundamentals of Image Deblurring

Blurred Image Point Spread Function True Image

= ˙

B P X

Figure 2.1.: The blurring process.1

p1,1q

Figure 2.2.: Simplified description of an image array composed of single pixels. Each
square represents one pixel, where the dot in the center denotes the pixel
value, which is an average of the intensities in the square. From the left
upper corner where i “ 1 and j “ 1, the indices increase from left to right
and from top to bottom, respectively.

identified by subscripts i and j, is computed as

bij “
8
ÿ

i1“´8

8
ÿ

j1“´8

pi1j1xpi´i1,j´j1q. (2.2)

where pij P R` and xij P R` are elements of P and X, respectively. However, we only
want to regard image arrays containing a finite number of pixels where i “ 1, . . . ,m
and j “ 1, . . . , n as indicated in Figure 2.2.

We illustrate the two-dimensional discrete convolution of two arrays with a finite num-

1The satellite image, that appears throughout this thesis, originates from the US Air Force Phillips
Laboratory, Lasers and Imaging Directorate, Kirtland Air Force Base, New Mexico. It has been
widely used in literature for testing image deconvolution algorithms.
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2.1. A Mathematical Model

ber of elements by means of an example. Let

X “

¨

˝

x11 x12 x13
x21 x22 x23
x31 x32 x33

˛

‚, P “

¨

˝

p11 p12 p13
p21 p22 p23
p31 p32 p33

˛

‚, and B “

¨

˝

b11 b12 b13
b21 b22 b23
b31 b32 b33

˛

‚

denote the discrete 3 ˆ 3 true image, point spread function array and blurred image,
respectively. Moreover, we define

Pð “

¨

˝

p33 p32 p31
p23 p22 p21
p13 p12 p11

˛

‚

as the array P, rotated by 180˝. Then, to compute entry bij by convolving X and P,
we position array Pð on array X so that the center of Pð, p22, is located on top of xij
and add up the products of directly superposed elements. Since on the borders of X,
not every element in Pð covers an element in X, we have to impose certain boundary
conditions to avoid artifacts near the borders.

One possibility is to suppose that all elements besides xij are zero. This is referred to
as zero boundary conditions, and we expand X to

Xzero “

¨

˚

˚

˚

˚

˝

0 0 0 0 0
0 x11 x12 x13 0
0 x21 x22 x23 0
0 x31 x32 x33 0
0 0 0 0 0

˛

‹

‹

‹

‹

‚

,

in the 3ˆ 3 example. Then, element b11 of B is computed by

b11 “ p33 ¨ 0` p32 ¨ 0 ` p31 ¨ 0
` p23 ¨ 0 ` p22x11 ` p21x12

` p13 ¨ 0 ` p12x21 ` p11x22.

The remaining bij , i, j “ 1, . . . , 3 can be obtained in a similar manner.

Periodic boundary conditions assume that the image X is circularly repeated beyond
its borders, like

Xperiodic “

¨

˚

˚

˚

˚

˝

x33 x31 x32 x33 x31
x13 x11 x12 x13 x11
x23 x21 x22 x23 x21
x33 x31 x32 x33 x31
x13 x11 x12 x13 x11

˛

‹

‹

‹

‹

‚

for a 3ˆ 3 image. Here, the first component of B is given by

b11 “ p33x33 ` p32x31 ` p31x32

` p23x13 ` p22x11 ` p21x12

` p13x23 ` p12x21 ` p11x22.

9



2. Fundamentals of Image Deblurring

(a) Zero (b) Periodic (c) Reflexive

Figure 2.3.: Intended expansion of X if certain boundary conditions are imposed.

Using reflexive boundary conditions, the continuation beyond the boundaries of X is
the mirror image. Again, we give an illustration with respect to the 3ˆ 3 case, which
can be written as

Xreflexive “

¨

˚

˚

˚

˚

˝

x11 x11 x12 x13 x13
x11 x11 x12 x13 x13
x21 x21 x22 x23 x23
x31 x31 x32 x33 x33
x31 x31 x32 x33 x33

˛

‹

‹

‹

‹

‚

.

Similar to the previous examples,

b11 “ p33x11 ` p32x11 ` p31x12

` p23x11 ` p22x11 ` p21x12

` p13x21 ` p12x21 ` p11x22

illustrates how the first element of the blurred image is computed.

The 3 ˆ 3 case stated above can be straightforward transferred to larger matrices.
Here, an image array of size mˆ n is expanded by tm2 u in one, and by rm2 s´ 1 in the
other vertical direction. Horizontally, tn2 u columns are added on one side, and rn2 s´ 1
on the other. We illustrate the three different types of boundaries discussed above in
Figure 2.3.

2.2. The Point Spread Function

In this section we take a closer look at point spread functions that were introduced in
the previous section as provoking blurred images. We regard a discrete point spread
function (PSF) as an image that contains pixels with different gray values between 0
and 1 and whose overall entries sum up to one, that is

m
ÿ

i“1

n
ÿ

j“1
pij “ 1, where pij P r0, 1s.

10



2.3. Matrix-Vector Representation

Blur caused by atmospheric turbulence can be estimated by Gaussian blur, a PSF
whose explicit expression is known. The discrete, two-dimensional Gaussian PSF that
is given by

pij “
1

2π
?
δ

exp
"

´
1
2

´

i´k
j´l

¯T
E´1

´

i´k
j´l

¯

*

,

where
E “

ˆ

s2
1 ρ2

ρ2 s2
2

˙

and δ “ |E| “ s2
1s

2
2 ´ ρ

4,

varies for different values of s1 and s2 in width whereas parameter ρ determines its
orientation. Moreover, pk, lq, 1 ď k ď m, 1 ď l ď n describes the center of the PSF,
that is the coordinates of the brightest pixel or, equivalently, the maximum entry. If
ρ “ 0, the formula is

pij “
1

2πs1s2
exp

"

´
1
2

ˆ

pi´ kq2

s2
1

`
pj ´ lq2

s2
2

˙*

that is the PSF has a vertical and a horizontal symmetry axis. Furthermore, if s1 “
s2 “ s and ρ “ 0, then the PSF is rotationally symmetric and we get

pij “
1

2πs2 exp
"

´
1

2s2
`

pi´ kq2 ` pj ´ lq2
˘

*

.

Figure 2.4 illustrates how the choice of these parameters impacts the PSF image and
the resulting blurred image.

2.3. Matrix-Vector Representation

In the following, we consider the true image and blurred image as real-valued, two-
dimensional arrays of size mˆn whose entries represent certain gray values. We define
a vector notation, where the columns of a two-dimensional array are arranged one
below the other, as vecpXq “ x P Rmnˆ1

` and vecpBq “ b P Rmnˆ1
` . The convolution

(2.2) can be replaced by a matrix-vector multiplication

b “ vecpP ˙ Xq “ Ax (2.3)

where matrix A P Rmnˆmn` describes the blur and differs according to the imposed
boundary conditions introduced in Section 2.1.

Using this representation we can easily formulate the deblurring problem as a linear
least squares problem, that is finding vector x with

min
x
}Ax´ b}22 (2.4)

given b and A (see for example the book by Nocedal and Wright [25, p.250]). After
discussing the structure of matrix A for different boundary conditions we look at
approaches to solve the classic deblurring problem.

11



2. Fundamentals of Image Deblurring

Point Spread Function Blurred Image Parameters

s1 “ 10, s2 “ 10, ρ “ 0

s1 “ 20, s2 “ 20, ρ “ 0

s1 “ 10, s2 “ 15, ρ “ 0

s1 “ 10, s2 “ 15, ρ “ 10

Figure 2.4.: Appearance of Gaussian PSFs for different choice of parameters s1, s2 and
ρ and the corresponding blurred image (image size: 512ˆ 512).
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2.3. Matrix-Vector Representation

2.3.1. Zero Boundary Conditions

Continuing the example in Section 2.1 illustrating discrete convolution of two arrays
of size 3ˆ 3, the blurred image in vector form applying zero boundary conditions

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

b11
b12
b13
b21
b22
b23
b31
b32
b33

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

loomoon

b

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

p22 p12 p21 p11
p32 p22 p12 p31 p21 p11

p32 p22 p31 p21
p23 p13 p22 p12 p21 p11
p33 p23 p13 p32 p22 p12 p31 p21 p11

p33 p23 p32 p22 p31 p21
p23 p13 p22 p12
p33 p23 p13 p32 p22 p12

p33 p23 p32 p22

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon

A

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

x11
x12
x13
x21
x22
x23
x31
x32
x33

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

loomoon

x

forms as matrix-vector product of a block Toeplitz matrix with Toeplitz blocks (BTTB)
with vector x. In general, an N ˆ N Toeplitz matrix [19], characterized by constant
diagonals, is defined as a matrix of the form

T “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

t0 t1 t2 . . . . . . tN´1

t´1 t0 t1
. . . tN´2

t´2 t´1
. . . . . . . . . ...

... . . . . . . . . . t1 t2

t´pN´2q
. . . t´1 t0 t1

t´pN´1q . . . . . . t´2 t´1 t0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (2.5)

Various methods have been developed to efficiently solve a least squares problem
min

x
}Ax ´ b}22 where A is a BTTB matrix, and there exist algorithms for easy de-

composition of A. See for instance the research done by Chan and Jin [7], Ng [24],
and Wax and Kailath [34]. However, zero boundary conditions are only an adequate
choice if the object in image X has a black background, such that the regions close to
the boundaries are zero. In the following, we consider two boundary conditions that
model the regions outside the image boundaries more realistically.

2.3.2. Periodic Boundary Conditions

Periodic boundary conditions yield a block circulant matrix A with circulant blocks
(BCCB) that has to be substituted in representation (2.3). For instance, a blurred
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2. Fundamentals of Image Deblurring

3ˆ 3 image can be obtained by a matrix-vector product
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

b11
b12
b13
b21
b22
b23
b31
b32
b33

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

loomoon

b

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

p22 p12 p32 p21 p11 p31 p23 p13 p33
p32 p22 p12 p31 p21 p11 p33 p23 p13
p12 p32 p22 p11 p31 p21 p13 p33 p23
p23 p13 p33 p22 p12 p32 p21 p11 p31
p33 p23 p13 p32 p22 p12 p31 p21 p11
p13 p33 p23 p12 p32 p22 p11 p31 p21
p21 p11 p31 p23 p13 p33 p22 p12 p32
p31 p21 p11 p33 p23 p13 p32 p22 p12
p11 p31 p21 p13 p33 p23 p12 p32 p22

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon

A

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

x11
x12
x13
x21
x22
x23
x31
x32
x33

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

loomoon

x

between the vector representation of true image X and the BCCB matrix consisting
of a structured composition of elements of the PSF array.

Commonly, a circulant matrix C P RNˆN is described, like for example in the book
by Horn and Johnson [19], by

C “

¨

˚

˚

˚

˚

˚

˝

c1 c2 . . . . . . cN
cN c1 c2 . . . cN´1
cN´1 cN c1 . . . cN´2
...

... . . . . . . ...
c2 c3 . . . cN c1

˛

‹

‹

‹

‹

‹

‚

or, more precisely, row i, i “ 1, . . . , N is a cyclic permutation of row i “ 1 with offset
i´ 1. Thus, the whole matrix is determined by its first row. Every circulant matrix is
normal, that is CTC “ CCT , which implies that its spectral decomposition exists. In
particular, the spectral decomposition is given by

C “ F˚NΛCFN ,

where ΛC is a diagonal matrix

ΛC “ diag(λC), λC “ pλ1, λ2, . . . , λN q
T ,

containing the eigenvalues of C, and FN P CNˆN describes the discrete Fourier trans-
form (DFT) matrix [10, p.72]. The N ˆN DFT matrix

FN “

´

ωjkN

¯N´1

j,k“0
“

¨

˚

˚

˚

˚

˚

˚

˝

1 1 . . . . . . 1
1 ωN ω2

N . . . ωN´1
N

1 ω2
N ω4

N . . . ω
2pN´1q
N

...
... . . . ...

1 ωN´1
N . . . . . . ω

pN´1qpN´1q
N

˛

‹

‹

‹

‹

‹

‹

‚

, (2.6)

where ωN “ e´
2πi
N specifies an Nth root of unity, is used to formulate the discrete

Fourier transform as a matrix multiplication, which is for instance explained by Mertins

14



2.3. Matrix-Vector Representation

[23]. The matrix F˚N is defined by the conjugate transpose of the DFT matrix multi-
plied by 1

N

F˚N “

˜

ω´jkN

N

¸N´1

j,k“0

“
1
N

¨

˚

˚

˚

˚

˚

˚

˝

1 1 . . . . . . 1
1 ωN ω´2

N . . . ω
´pN´1q
N

1 ω´2
N ω´4

N . . . ω
´2pN´1q
N

...
... . . . ...

1 ω
´pN´1q
N . . . . . . ω

´pN´1qpN´1q
N

˛

‹

‹

‹

‹

‹

‹

‚

,

that is F˚NFN “ IN . Multiplied by a vector, F˚N performs the inverse discrete Fourier
transform.

As illustrated above for an image of size 3ˆ 3, the PSF matrix

A “

¨

˚

˚

˚

˚

˝

C1 C2 . . . Cn

Cn
. . . . . . ...

... . . . . . . C2
C2 . . . Cn C1

˛

‹

‹

‹

‹

‚

P Rmnˆmn`

contains circulant matrices Ci P Rmˆm` , i “ 1, . . . , n which are themselves arranged
circulantly. As in the case of a circulant matrix, a BCCB matrix is still normal and
thus diagonalizable by a unitary matrix. According to Davis [10, p.185], A can be
decomposed as

A “ pFn b Fmq
˚ΛApFn b Fmq (2.7)

where b represents the Kronecker product and pFn b Fmq describes the two-dimen-
sional DFT matrix. For convenience, we define F :“ pFnbFmq and denote the matrix
containing the eigenvalues of A by

Λ :“ ΛA “ diag pλq , λ “ pλ1, λ2, . . . , λmnq
T (2.8)

since this decomposition of matrix A is often used in the subsequent sections. As
for the one-dimensional discrete Fourier transform, it holds F˚F “ I where F˚ is the
inverse two-dimensional DFT matrix.

In the following we show that the eigenvalues of A can be easily obtained. First,

A “ F˚ΛF ðñ FA “ ΛF.

Examining the DFT matrix in (2.6) we discover that the first column f1 of F P Cmnˆmn,
the Kronecker product of two one-dimensional DFT matrices, entirely consists of ones.
From that it follows

Fa1 “ Λf1

ðñ Fa1 “ Λ1mn “ λ,
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2. Fundamentals of Image Deblurring

where 1mn is a column vector of ones. Hence, we receive the eigenvalues of A by the
Fourier transform of its first column. By inspecting matrix A one observes that the
first column a1 written columnwise into an array Pcirc P Rmˆn` is equivalent to applying
a circular shift to the PSF array P. In particular, the rows in P are circularly shifted
pk´1q up and the columns pl´1q to the left where index pk, lq P N2 denotes the center
of array P. Formally, making use of Matlab notation to simplify the expression and
due to later application, we define

reshape(a1,m, n) “ Pcirc “ circshift(P, 1´ [k, l])

where the circular shift is computed componentwise as

pcircij “ pmodpi´pk`1q,mq`1,modpj´pl`1q,nq`1

for i “ 1, . . . ,m and j “ 1, . . . , n.

As a result, b “ F˚ΛFx can be computed very efficiently without explicitly con-
structing matrix A, and using for instance Fast Fourier Transforms (FFT) to perform
DFT matrix multiplications. In the following, we denote the Fourier transform of a
matrix using the hat accent. For instance, let arrays X,B of size m ˆ n be the true
and blurred image and x “ vecpXq,b “ vecpBq P Rmnˆ1

` the corresponding vector
notation, as stated above. Then

x̂ :“ Fx
b̂ :“ Fb (2.9)

and reshaped arrays X̂ and B̂ denote the two-dimensional Fourier transform of true
and blurred image, respectively.

Similar to inducing zero boundary conditions, assuming an image to be repeated pe-
riodically beyond its borders is rather unrealistic for a taken picture. Nonetheless, a
great advantage involving periodic boundary conditions is that we can significantly
speed up computations by a transfer to the Fourier domain. Due to this property, we
make use of periodic boundary conditions in the course of our work towards efficiently
deblurring images.

The Gaussian point spread function frequently appears throughout this thesis as a
canonical example for the blur in our model problems. In the following, we want to
take a closer look at the eigenvalues of the Gaussian PSF. As stated above, these can
be obtained by applying the discrete Fourier transform to the point spread function
array.

2.3.3. Excursus: Analysis of the Gaussian PSF

In this section we examine the Gaussian point spread function introduced in Section
2.2 with respect to its eigenvalues. From the previous section it is known that for
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s1 “ 3, s2 “ 2.75, ρ “ 2.5 s1 “ 2, s2 “ 1.75, ρ “ 1.5 s1 “ 1, s2 “ 0.75, ρ “ 0.5
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Figure 2.5.: Gaussian PSFs of different width and corresponding eigenvalues of A (image
size: 32ˆ 32).

periodic boundary conditions

b “ Ax
ô b̂ “ Λx̂
ô b̂ “ diagpFpcircqx̂ (2.10)

that is the eigenvalues of the BCCB matrix A are given by the DFT of the circular
shifted point spread function Pcirc. According to González and Woods [14, Ch.4], the
spectrum of a Fourier transform is invariant to translation of the corresponding image.
Hence, the spectrum of the Fourier transform of the PSF, |Fp|, is equivalent to the
spectrum of the circshifted Fourier transform given by |Fpcirc|. Then, following (2.10),
both spectra are equal to the absolute eigenvalues of A located on the diagonal of
|Λ|.

In Figure 2.5 we illustrate Gaussian point spread functions of different width and
corresponding absolute eigenvalues. The first row shows the PSFs, opposed below to
the centered spectra of their Fourier transforms. The centered view can be achieved
by either multiplying the PSF P by p´1qi`j for i “ 1, . . . ,m and j “ 1, . . . , n and
subsequently performing the Fourier transform, or by applying a circular shift to the
spectrum as described in the previous section. The comparison shows that the nar-
rower the PSF, the wider the spectrum of its Fourier transform. This implies that
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2. Fundamentals of Image Deblurring

s1 “ 3, s2 “ 3, ρ “ 0 s1 “ 3, s2 “ 4, ρ “ 0 s1 “ 3, s2 “ 3, ρ “ 1
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Figure 2.6.: Gaussian PSFs of similar width and corresponding eigenvalues of A (image
size: 32ˆ 32).

the absolute eigenvalues of a narrow point spread function decrease slower than the
eigenvalues of a wider PSF, which is also reflected in the plot at the bottom of Figure
2.5 comparing the absolute eigenvalues arranged in descending order. Moreover, one
observes that the spectra are rotated by the same angle as P, but in opposite direction,
as explained in González and Woods [14, Ch.4].

On the other hand, Figure 2.6 shows a rotationally symmetric (s1 “ s2, ρ “ 0), an
elliptic-shaped (s1 ‰ s2, ρ “ 0) and a skew-shaped (s1 ‰ s2, ρ ‰ 0) Gaussian point
spread function of approximately the same width. Again, we illustrate the spectrum
below each PSF, respectively. Here, we observe that the eigenvalues decrease with
similar speed.

We explain that behavior regarding the one-dimensional case which may be interpreted
as a line of intersection through the center of the two-dimensional PSF. The Fourier
transform of a one-dimensional Gaussian function fpxq “ e´ax

2 ,

Fre´ax2
spξq “

c

π

a
e
´π2ξ2
a ,

is a Gaussian function as well.

The larger we choose parameter a, the narrower the Gaussian and the wider its Fourier
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2.3. Matrix-Vector Representation

transform. We give an example to demonstrate that fact in Figure 2.7.
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(a) Narrow Gaussian function (left) and corresponding Fourier transform
(right) with a “ 20.
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(b) Wide Gaussian function (left) and corresponding Fourier transform (right)
with a “ 0.5.

Figure 2.7.: Comparison of different one-dimensional Gaussian functions and Fourier
transforms.

The same holds for higher dimensional Gaussian functions. This implies that for every
Gaussian PSF, the Fourier transform is a Gaussian PSF of different width, and thus
positive and real. Therefore, all eigenvalues of A are positive and real. Summing up,
we can assume that the eigenvalues of a narrow Gaussian PSF decrease slower than
the eigenvalues of a wider Gaussian PSF.

Moreover, further experiments with Gaussian PSFs indicate that for the eigenvalues as
they appear in Λ “ diagpλq where λ “ pλ1, . . . , λmnq

T , the absolute value of eigenvalue
λi of the narrowest PSF is larger than the absolute value of eigenvalue λi of less narrow
PSFs for all i “ 1, . . . ,mn. This is illustrated in Figure 2.8 which corresponds to the
example in Figure 2.5.
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Figure 2.8.: Top: Absolute eigenvalues in the same order as they appear in Λ corre-
sponding to the three exemplary PSFs in Figure 2.5. Bottom: Identification
of the PSF corresponding to the maximum absolute eigenvalue at position
i “ 1, . . . ,mn marked with a magenta cross, respectively. One observes that
the narrowest PSF contains the componentwise maximum absolute eigen-
values.

20



2.3. Matrix-Vector Representation

(a) X (b) B (zero)

(c) B (periodic) (d) B (reflexive)

Figure 2.9.: True image X and corresponding blurred images using zero, periodic and
reflexive boundary conditions, respectively (image size: 512 ˆ 512, blur:
Gaussian with s1 “ s2 “ 10, ρ “ 0).

2.3.4. Reflexive Boundary Conditions

Regarding the satellite image we used in our illustrations above, zero, periodic and
reflexive boundary conditions can be applied due to its black background. On the
contrary, Figure 2.9 illustrates an image where modelling of the blurring process using
reflexive boundary conditions is advisable, since zero and periodic extension results in
improper pixel values or artifacts close to the borders of the blurred image.

In the reflexive case, the blurring matrix A consists of the sum of four matrices,

• a block Toeplitz matrix with Toeplitz blocks (BTTB),

• a block Toeplitz matrix with Hankel blocks (BTHB),

• a block Hankel matrix with Toeplitz blocks (BHTB),

• and a block Hankel matrix with Hankel blocks (BHHB).

The format of a Toeplitz matrix is described in (2.5). In contrast, an N ˆN Hankel
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2. Fundamentals of Image Deblurring

matrix [19] exhibits the structure

H “

¨

˚

˚

˚

˚

˚

˚

˝

h0 h1 h2 . . . hN´1
h1 h2 h3 . . . hN

h2 h3
. . . hN`1

...
... . . . ...

hN´1 hN hN`1 . . . h2pN´1q

˛

‹

‹

‹

‹

‹

‹

‚

.

The blurring process of a 3ˆ 3 image employing reflexive boundary conditions can be
described by

b “ rA1 `A2 `A3 `A4sx,

where x,b P R9ˆ1
` and blurring matrix A P R9ˆ9

` is composed of the sum of

A1 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

p22 p21 p12 p11
p23 p22 p21 p13 p12 p11

p23 p22 p13 p12
p32 p31 p22 p21 p12 p11
p33 p32 p31 p23 p22 p21 p13 p12 p11

p33 p32 p23 p22 p13 p12
p32 p31 p22 p21
p33 p32 p31 p23 p22 p21

p33 p32 p23 p22

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

A2 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

p23 p13

p21 p11
p33 p23 p13

p31 p21 p11
p33 p23

p31 p21

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

22



2.3. Matrix-Vector Representation

A3 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

p32 p31
p33 p32 p31

p33 p32

p12 p11
p13 p12 p11

p13 p12

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

A4 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

p33

p31

p13

p11

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

which are BTTB, BTHB, BHTB and BHHB matrices, respectively.

The spectral decomposition of A can be computed very efficiently using the discrete
cosine transform if the underlying PSF is doubly symmetric. Imagining two lines,
one drawn horizontally, the other vertically, through the center of the two-dimensional
PSF image, the PSF is called doubly symmetric if both lines are symmetry axes. For
instance, these demands are met by a Gaussian PSF with s1 and s2 arbitrarily chosen
and ρ “ 0. The diagonalization is similar to applying periodic boundary conditions
and is given by

A “ KTΛK,

where Λ is, as defined in (2.8), a diagonal matrix containing the eigenvalues of A and
K describes the two-dimensional DCT (discrete cosine transform) matrix. For more
details concerning reflexive boundary conditions, see the book by Hansen et al. [16].

Supposing that an image is repeated reflexively beyond its borders is, in many cases,
more realistic than inducing zero or periodic boundary conditions. On the other hand,
efficient implementation of the method is limited due to symmetry constraints regard-
ing the PSF.

In the following, we limit our studies to periodic boundary conditions. This is rea-
sonable, since due to the spectral decomposition, fast computations can be performed
in the Fourier domain. Moreover, there are no restrictions regarding the PSF, as is
the case for reflexive boundary conditions. Given these facts, we accept little artifacts
based on unrealistic continuation beyond the image’s borders.
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Blurred Image Point Spread Function True Image

= ˙ ?
B P X

Figure 2.10.: The classic deconvolution problem.

2.4. Solving the Deblurring Problem

In the previous section we described the blurring process as a matrix-vector multipli-
cation Ax “ b with true image x, blurred image b and blurring matrix A. Next,
we concentrate on solving the deblurring problem illustrated in Figure 2.10, that is to
determine the sharp image x given A and b. This challenge is called a linear inverse
problem. The solution can be explicitly stated as x “ A´1b if matrix A is square and
nonsingular. However, this formula does not yield the true image x but a version that
involves errors due to ill-conditioning of A.

2.4.1. Noise and Errors

In addition to undesired effects caused by an ill-conditioned matrix A, the recording
process has an impact on the solution. Due to the fact that a picture is taken by
a mechanical device, we have to assume that the blurred image is contaminated by
a certain amount of noise. Moreover, image quantization leads to inaccuracies. We
model these perturbations as additive noise

Ax “ b “ bexact ` e,

where e P Rmnˆ1. The solution

x “ A´1bexact `A´1e

indicates that the exact solution is influenced by a term A´1e called inverted noise.
The larger the inverted noise part compared to the exact solution, the more inaccurate
the reconstruction. The impact of errors and noise on the solution can be decreased
using regularization methods.
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2.4.2. Tikhonov Regularization Using Generalized Cross-Validation

As introduced in Section 2.4.1, solving the optimization problem

min
x
}Ax´ b}22 “ min

x
}Ax´ pbexact ` eq}22

is difficult, because simply minimizing the expression above yields a solution influenced
by noise. Regularization seeks to find a balance between a good least squares fit
and a solution containing a small inverted noise component. A simple but efficient
regularization method that we examine below is called Tikhonov regularization [11].

First, consider the singular value decomposition (SVD) of a nonsingular PSF matrix
A P RNˆN` ,

A “ UΣVT ,

where U P RNˆN and V P RNˆN are orthogonal matrices and Σ P RNˆN is a
diagonal matrix containing the singular values σi, i “ 1, . . . , N of A in decreasing
order σ1 ě σ2 ě . . . ě σN ą 0 . Hence, a naive reconstruction, x “ A´1b, can be
written as

x “ VΣ´1UTb “
N
ÿ

i“1

uTi b
σi

vi

where ui and vi, i “ 1, . . . , N define the columns of U and V, respectively. As
shown by Hansen et al. [16], the |uTi b| decay until a noise plateau is reached, where
uTi b « uTi bexact above and uTi b « uTi e below this level. Thus very small singular
values σi correspond to the part of b that is contaminated by noise, and x becomes
large when it contains a large amount of inverted noise.

Using Tikhonov regularization we constrain the size of x by adding the weighted norm
of x, as a so called regularization term to the optimization problem. The Tikhonov
regularized expression of the minimization problem is then given by

min
x

 

}Ax´ b}22 ` ε2}x}22
(

(2.11)

with regularization parameter ε ą 0. Expression (2.11) is equivalent to the form

min
x

#

›

›

›

›

ˆ

A
εIN

˙

x´
ˆ

b
0

˙›

›

›

›

2

2

+

(2.12)

which allows us to choose one of numerous numerical methods for least squares prob-
lems to solve the regularized problem.

A difficult problem, however, is to select a regularization parameter ε that adequately
weights the regularization term. In the following, we describe an often used method
to find the regularization parameter called generalized cross-validation [13; 16].
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The generalized cross-validation (GCV) functional is defined by

Gpεq “
}pIN ´AVΦΣ´1UT qb}22
ptrpIN ´AVΦΣ´1UT qq2

, (2.13)

where IN P RNˆN is the identity matrix. Moreover, trp¨q denotes the trace, that is the
sum of the diagonal elements of a square matrix [19, p.40], and matrix Φ P RNˆN is
a diagonal matrix given by

Φ “ diag pφq , φ “

ˆ

σ2
1

σ2
1 ` ε

2 , . . . ,
σ2
N

σ2
N ` ε

2 , 0, . . . , 0
˙T

with singular values σi, i “ 1, . . . , N of matrix A. The perfect parameter with respect
to the GCV method is an ε ą 0 that minimizes (2.13). In the book by Hansen et al.
[16], it is described how the minimum of the GCV functional Gpεq can be efficiently
determined. Algebraic simplifications lead to an expression whose minimum can be
found using the Matlab function fminbnd. Similarly, the GCV functional can be set
up using spectral decomposition instead of SVD.

Now that we have described a regularization and a parameter choice method, we turn
our attention to finally solving the deblurring problem. We illustrate one possible
method to compute x using normal equations below.

2.4.3. The Method of Normal Equations

Again, we consider the problem of calculating a vector x that minimizes

}Ax´ b}22, (2.14)

where matrix A P RMˆN , M ě N , is not necessarily square. The method of normal
equations is a simple but fast approach to solve such a least squares problem for x.
Expression (2.14) can equally be stated as

pAx´ bqT pAx´ bq. (2.15)

To optimize, we differentiate (2.15) with respect to x and set the result equal to zero.
These steps yield equation

ATAx´ATb “ 0

whose rearranged form
ATAx “ ATb

is called the normal equation. Let ATA “ M P RNˆN and ATb “ y P RNˆ1. The
advantage of formulating the normal equation is that it leads to a system of equations
Mx “ y with a square and in many cases much smaller matrix. On the other hand, if
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A is ill-conditioned, the condition number is squared in matrix M leading to numerical
difficulties [12, p.239].

In particular, applying the method of normal equations to the Tikhonov regularized
optimization problem in (2.12) we receive the equation

pATA` ε2IN qx “ ATb. (2.16)

However, for many applications in image processing A is a dense matrix and the
product ATA still large. Hence, solving (2.16) for x is computationally expensive.

Assuming boundary conditions to be periodic or reflexive, as described in Sections
2.3.2 and 2.3.4 respectively, we can reduce computational complexity of the image
deblurring problem. For instance, in the periodic case the spectral decomposition of
A P RNˆN` consists of DFT matrices and diagonal matrix as given in (2.7). Thus, the
normal equation can be written in Fourier representation as

pΛ˚Λ` ε2IN q
looooooomooooooon

M̂ε

x̂ “ Λ˚b̂, (2.17)

where diagonal matrix Λ˚ contains the complex conjugates of the eigenvalues of A.
Since overall matrix M̂ε is also a diagonal matrix, computations can be performed very
efficiently. Similarly, in the case of reflexive boundary conditions, we can compute x
using the DCT, provided the PSF satisfies the required symmetry conditions.

Algorithm 2.1 summarizes the regularized reconstruction of x using the Tikhonov
method with GCV.

Tikhonov Method and GCV

1 function ε = GCV(A,b)
2

3 ε = argmin(G(ε)) % G(ε) as defined in (2.13)
4

5 function x = Tikhonov(A,b,ε)
6

7 x = (ATA+ε2IN)´1ATb

Algorithm 2.1
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2. Fundamentals of Image Deblurring

Blurred Images Point Spread Functions True Image

...

“

...

˙ ?

B1

B2

Bp

P1

P2

Pp

X

Figure 2.11.: The multiframe deconvolution problem.

2.5. Multiframe Image Deblurring

Multiframe image deblurring expands the image deblurring challenge from (2.4) to a
problem where we try to reconstruct an image given not only one but multiple variably
blurred images of the same object. Figure 2.11 illustrates the multiframe blurring
problem for p different frames. Various applications, especially in astronomy, make this
an important problem in image processing. For instance, multiframe deconvolution is a
useful postprocessing tool for data obtained by the Large Binocular Telescope (LBT).
Compared to classic deconvolution that only uses one observed image, simultaneously
deconvolving images taken with different orientation of the LBT can improve spatial
resolution of the reconstructed object (Bertero and Boccacci [2]).

We can formulate multiframe image deblurring as an extremely overdetermined least
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2.5. Multiframe Image Deblurring

squares problem

min
x

p
ÿ

j“1
}Ajx´ bj}22 “ min

x

›

›

›

›

›

›

›

¨

˚

˝

A1
...

Ap

˛

‹

‚

x´

¨

˚

˝

b1
...

bp

˛

‹

‚

›

›

›

›

›

›

›

2

2

, (2.18)

where the true image is given by x P Rmnˆ1
` and the multiple blurred images, cor-

responding to the blur matrices A1, . . . ,Ap P Rmnˆmn` , are denoted by b1, . . . ,bp P
Rmnˆ1
` .

In the following, we induce periodic boundary conditions in order to substitute Aj with
its spectral decomposition F˚ΛjF (see (2.7)). As a result, the optimization problem
can be restated as

min
x̂

›

›

›

›

›

›

›

¨

˚

˝

Λ1
...

Λp

˛

‹

‚

x̂´

¨

˚

˝

b̂1
...

b̂p

˛

‹

‚

›

›

›

›

›

›

›

2

2

(2.19)

where Λj “ diag
´

λpjq
¯

, λpjq “
´

λ
pjq
1 , . . . , λ

pjq
mn

¯T
. The expressions x̂ and

´

b̂1; . . . ; b̂p
¯

describe the Fourier transform of true and blurred images respectively.

Compared to (2.18), formulation (2.19) simplifies the problem. Instead of full matrices
Aj the matrix pΛ1; . . . ; Λpq P Cmnpˆmn is sparse, consisting only of blocks of diagonal
matrices.

Thus, the normal equation of (2.19) can be written in Fourier representation as
p
ÿ

j“1
Λ˚jΛjx̂ “

p
ÿ

j“1
Λ˚j b̂j

where diagonal matrix Λ˚j contains the complex conjugates of the eigenvalues of A.
Equivalently, this expression can be stated as a single matrix-vector multiplication

¨

˚

˝

Λ1
...

Λp

˛

‹

‚

˚¨

˚

˝

Λ1
...

Λp

˛

‹

‚

looooooomooooooon

M̂p1:pq

x̂ “

¨

˚

˝

Λ1
...

Λp

˛

‹

‚

˚¨

˚

˝

b̂1
...

b̂p

˛

‹

‚

(2.20)

where matrix-matrix product M̂p1:pq P Rmnˆmn is a diagonal matrix. The ith entry of
the diagonal is given by

m̂
p1:pq
ii “

p
ÿ

j“1
|λ
pjq
i |

2

where i “ 1, . . . ,mn. Due to the fact that some eigenvalues are very close to zero,
matrix M̂p1:pq is ill-conditioned leading to numerical errors in the direct solution that we
obtain by rearranging equation (2.20) for x̂. To receive a reasonable solution we have
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2. Fundamentals of Image Deblurring

Blurred Image Point Spread Function True Image

= ? ˙ ?
B P X

Figure 2.12.: The blind deconvolution problem.

to introduce regularization such as the previously described Tikhonov regularization.
According to (2.17), the Tikhonov regularized expression of the Fourier representation
is given by

´

M̂p1:pq ` ε2Imn
¯

loooooooooomoooooooooon

M̂p1:pq
ε

x̂ “

¨

˚

˝

Λ1
...

Λp

˛

‹

‚

˚¨

˚

˝

b̂1
...

b̂p

˛

‹

‚

.

with diagonal matrix M̂p1:pq
ε .

2.6. Blind Image Deblurring

In a general blind deconvolution problem as demonstrated in Figure 2.12, only the
blurred image is known and we want to reconstruct the true image and PSF. In par-
ticular, we have to solve the underdetermined optimization problem

min
x,y

}Apyqx´ b}22. (2.21)

with true image x P Rmnˆ1
` , blurred image b P Rmnˆ1

` , and PSF matrix A P Rmnˆmn`

non-linearly depending on a certain number of parameters that are collected in vector
y. Although the type of the PSF, for instance Gaussian, is known, the parameters
that precisely define the PSF, like y “ rs1; s2; ρs for a Gaussian PSF, are unknown.

This is a complicated, ill-posed and ill-conditioned problem. As for the classic image
deconvolution and the multiframe problem, using regularization, here the Tikhonov
method stated above, is crucial to obtain a satisfactory reconstruction.

According to Kundur and Hatzinakos [22] there are two different approaches to solve
a blind image deconvolution problem:
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2.6. Blind Image Deblurring

1. Determine PSF matrix A separately (prior to image restoration). Subsequently,
use classical deblurring approaches to obtain an approximation of x.

2. Simultaneously reconstruct PSF matrix A and true image x.

In Section 3.1 we examine an approach that falls in the first category where the PSF
is determined using the so called APEX method [6]. Methods belonging to the second
category are discussed in Section 3.2.
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3. Approaches for Blind Deconvolution

In the following we analyze two different approaches to solve the blind deconvolution
problem (2.21) introduced in the previous section. First, we consider a method to
separately compute the point spread function and deblur the image. Moreover, we
examine ways to simultaneously reconstruct the PSF and true image using iterative
methods.

3.1. Separate Computation of PSF and Reconstructed Image

One option to tackle the blind deconvolution problem is to first apply a method that
determines the PSF. This results in a classic deconvolution problem as given in (2.4)
where the blurred image and cause of the blur are known and we seek to reconstruct
sharp image x. We illustrate this stepwise approach in Figure 3.1. Below, we examine
an interesting technique, the APEX method [6], that can be used to complete the first
step.

underlying problem min
x,A

}Ax´ b}22

step 1 compute A

new problem min
x
}Ax´ b}22

step 2 compute x

Figure 3.1.: Direct model for solving the blind deconvolution problem. A and x are
computed separately.
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3. Approaches for Blind Deconvolution

3.1.1. APEX Method

In Carasso [6] an algorithm for blind deconvolution, the so called APEX method, has
been developed to estimate the PSF using information of the blurred image. For this
purpose, the PSF has to be symmetric Lévy stable. We define a symmetric Lévy stable
PSF as a function whose Fourier transform is given by

P̂α,β : R2 Ñ R`, P̂α,βpξ, ηq “

ż

R2
P ps, tq exp t´2πipsξ ` tηqu

“ exp
!

´α
`

ξ2 ` η2˘β
)

(3.1)

where α ą 0 and 0 ă β ď 1. For instance, this group includes Gaussian PSFs for
β “ 1, Lorentzian PSFs for β “ 1

2 and long-exposure atmospheric turbulence blur for
β “ 5

6 .

It is known from above, that we can express the blurring process by a matrix-vector
multiplication b “ Ax, and by applying periodic boundary conditions the equation
can be rewritten as b̂ “ Λx̂ where Λ is the diagonal matrix of eigenvalues of A.
Moreover, we previously described that the diagonal of Λ containing the eigenvalues is
equal to the vector representation of the two-dimensional DFT of the circshifted point
spread function corresponding to matrix A.

We define an array representation of expression (3.1) for symmetric Lévy stable PSFs
by

P̂ “ exp
!

´α
`

Ξ2 `H2˘β
)

, (3.2)

where

Ξ “ 1m b ξ P Nmˆn

H “ η b 1Tn P Nmˆn

and

ξ “
´

´

Qn

2

U

` 1,´
Qn

2

U

` 2, . . . , 0, . . . ,
Yn

2

]

´ 1,
Yn

2

]¯

P N1ˆn

η “
´

´

Qm

2

U

` 1,´
Qm

2

U

` 2, . . . , 0, . . . ,
Ym

2

]

´ 1,
Ym

2

]¯

P N1ˆm.

Note that the exponential function and squaring are applied elementwise.

Since the Fourier transformed PSF P̂ stated in (3.1) is real and positive, its discretized
form P̂ has only real and positive entries, as well. Therefore, P̂ and the Fourier
transform of circshifted PSF, P̂circ, are the same and we can substitute Λ by a point-
wise multiplication by P̂

B̂ “ P̂d X̂ (3.3)

where B, P and X are m ˆ n sized blurred image, point spread function and true
image, respectively, and d denotes the elementwise multiplication of two arrays.
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3.1. Separate Computation of PSF and Reconstructed Image

In Chapter 2, Section 2.3.2, we regarded the structure of the DFT matrix F. We
discovered, that F has one row and one column consisting of ones, and all other entries
are located in the interval r´1, 1r. Since X, B, and P are supposed to have only
non-negative entries, the maximum entry of X̂, B̂, and P̂ results from multiplying the
row of ones with vectors x, b, and p, respectively. Hence, the maximum value of the
Fourier transforms of the true image, blurred image, and the PSF is located at the
same array position. Moreover, it is known from Chapter 2, Section 2.2, that the sum
of all entries of the PSF array is equal to one, which coincides with the maximum value
of P̂. Thus, according to (3.3), the maximum value of X̂ and B̂ is the same.

Dividing equation (3.3) by γ “ maxpB̂q “ maxpX̂q

B̂
γ
“ P̂d X̂

γ
ô B̂γ “ P̂d X̂γ (3.4)

we define by B̂γ :“ B̂
γ and X̂γ :“ X̂

γ the normalized Fourier transforms of blurred and
true image. Taking the logarithm of (3.4) yields equation

log |B̂γ | “ log |P̂| ` log |X̂γ | (3.5)

denoting by log |B̂γ |, log |P̂|, and log |X̂γ | the elementwise absolute and subsequently
logarithmized pixel values of B̂γ , P̂, and X̂γ , respectively.

Then, substituting P̂ by array representation of the expression for symmetric Lévy sta-
ble PSFs stated in (3.2) the equation describing the blurring process can be converted
to

log |B̂γ | “ ´α
`

Ξ2 `H2˘β ` log |X̂γ |, (3.6)

where all operations are componentwise, as well.

Next, we consider log |B̂γ
`X

m
2
\

, 1 : n
˘

|, the row through the center of array log |B̂γ |.
According to (3.6), the middle row can be stated as

log
ˇ

ˇ

ˇ
B̂γ

´Ym

2

]

, 1 : n
¯ˇ

ˇ

ˇ
“

´ α
´

Ξ2
´Ym

2

]

, 1 : n
¯

`H2
´Ym

2

]

, 1 : n
¯¯β

` log
ˇ

ˇ

ˇ
X̂γ

´Ym

2

]

, 1 : n
¯ˇ

ˇ

ˇ

which simplifies to

log
ˇ

ˇ

ˇ
B̂γ

´Ym

2

]

, 1 : n
¯ˇ

ˇ

ˇ
“ ´αΞ2β

´Ym

2

]

, 1 : n
¯

` log
ˇ

ˇ

ˇ
X̂γ

´Ym

2

]

, 1 : n
¯ˇ

ˇ

ˇ
, (3.7)

since row
X

m
2
\

of H contains only zero values.

Plotting the entries of log |B̂γ
`X

m
2
\

, 1 : n
˘

| against the n equidistant values

´

Qn

2

U

` 1,´
Qn

2

U

` 2, . . . , 0, . . . ,
Yn

2

]

´ 1,
Yn

2

]

,
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3. Approaches for Blind Deconvolution

as illustrated in Figure 3.2 (b) for the blurred image in Figure 3.2 (a), we detect the
interval r´ω, ωs, with N Q ω ď

X

n
2
\

, for which log |B̂γ
`X

m
2
\

, 1 : n
˘

| lies above the noise
level, and define a vector

ξω “ p´ω,´ω ` 1, . . . , 0, . . . , ω ´ 1, ωq P N1ˆp2ω`1q

containing a section from the center of ξ.

(a) Blurred Image B

´200 0 200

´40

´30

´20

´10

0

ξ

lo
g|

B̂
γ
pX
m 2
\

,1
:n
q|

´82 82

(b) Entries of log |B̂γ
p
X

m
2

\

, 1 : nq| plotted
against ξ. The area above noise level is lo-
cated between the green lines.

´50 0 50´40

´30

´20

´10

0

ξω

lo
g|

B̂
γ
pX
m 2
\

,P
n 2
T

´
ω

:P

n 2
T

`
ω
q|

(c) Entries of log
ˇ

ˇ

ˇ
B̂γ

`X

m
2

\

,
P

n
2

T

´ ω :
P

n
2

T

` ω
˘

ˇ

ˇ

ˇ

plotted against ξω

Figure 3.2.: Blurred image (a), corresponding ray through the logarithmized Fourier
transform of B (b), and the area in (b) above noise level (c).
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3.1. Separate Computation of PSF and Reconstructed Image
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0

ξω

´
0.
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1ξ

2 ω

A “ 0
A “ 2
A “ 4
A “ 6
A “ 8

Figure 3.3.: ´αpξωq2β ´ A plotted against ξω for different A , where α “ 0.001 and
β “ 1.

That is, for the horizontal line through the center, restricted to this interval, we get

log
ˇ

ˇ

ˇ
B̂γ

´Ym

2

]

,
Qn

2

U

´ ω :
Qn

2

U

` ω
¯ˇ

ˇ

ˇ

“ ´αΞ2β
´Ym

2

]

,
Qn

2

U

´ ω :
Qn

2

U

` ω
¯

loooooooooooooooooooooomoooooooooooooooooooooon

´αξ2β
ω

` log
ˇ

ˇ

ˇ
X̂γ

´Ym

2

]

,
Qn

2

U

´ ω :
Qn

2

U

` ω
¯
ˇ

ˇ

ˇ
(3.8)

where the expression for the mid-row of P̂ simplifies through substitution by vector
ξω. One observes that for the example image illustrated in Figure 3.2, the part of the
plot in (b) that is located above noise level lies approximately in the interval r´82, 82s,
that is ω « 82. For the reconstruction of the PSF, we only regard this cut-out above
noise level which is shown in Figure 3.2 (c).

As we do not know the true image, we have no information about log |X̂γ | besides that
the array elements lie on the interval s ´ 8, 0s. Therefore, the last summand in (3.8)
is replaced by a constant ´A “ ´A 1T2ω`1 P R1ˆp2ω`1q yielding equation

log
ˇ

ˇ

ˇ
B̂γ

´Ym

2

]

,
Qn

2

U

´ ω :
Qn

2

U

` ω
¯ˇ

ˇ

ˇ
“ ´αξ2β

ω ´A (3.9)

where A ą 0 is a scalar. Plotting the right hand side of (3.9), ´αξ2β
ω ´A, against ξω,

scalar A defines the apex of the curve, as illustrated in Figure 3.3. The name APEX
method is deduced from this fact. Note that introducing A implies that the equation
is no longer valid for ξi “ 0.

Now, to approximate the PSF we previously specify a value for A and obtain param-
eters α and β by solving the nonlinear least squares problem

min
α,β

›

›

›
log

ˇ

ˇ

ˇ
B̂γ

´Ym

2

]

,
Qn

2

U

´ ω :
Qn

2

U

` ω
¯ˇ

ˇ

ˇ
` αξ2β

ω `A
›

›

›

2

2
(3.10)
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3. Approaches for Blind Deconvolution

that can be substituted into expression (3.1) yielding an estimate of the PSF for the
blind deblurring problem.

Below, we give an example for image reconstruction using a point spread function
estimate computed by means of the APEX method. Moreover, we expand on this
method for the case when β “ 1, that is for Gaussian PSFs.

Reconstructing x The APEX method yields an approximation of the PSF matrix
A causing the blur in the observed image b. Hence, the blind deconvolution problem
simplifies to a deconvolution problem discussed in Chapter 2 where only x is unknown.
According to Section 2.4, we solve the least squares problem directly using Tikhonov
regularization with generalized cross-validation.

In Figure 3.4, we give an example of deblurring the image from Figure 3.2 using the
APEX method. First, log |B̂γ

`X

m
2
\

, 1 : n
˘

| is plotted against ξ, as illustrated in sub-
figure (a). The part of the plot in (a) that is located above the noise level is displayed
in subfigure (b). In subfigure (b), the cut-out plot is approximated by ´αξ2β

ω ´ A
plotted against ξω, which is equivalent to solving optimization problem (3.10). Subse-
quently, the obtained parameters α and β are used to calculate the PSF. Subfigure (c)
illustrates horizontal intersections through both the true and reconstructed PSF. Both
plots overlap almost completely. To the right of the plot of intersection lines, images
of the true and reconstructed PSF are shown in subfigures (d) and (e). Having deter-
mined the PSF applying the APEX method, we receive the deblurred image solving a
non-blind deconvolution problem. True, blurred and deblurred image are compared at
the bottom of Figure 3.4.

Implementation We implemented the APEX method including a Matlab GUI to
interactively solve the curve fitting problem. Figure 3.5 shows the graphical user in-
terface for deblurring problems involving rotational symmetric Gaussian PSFs. The
blue curve on the left hand side depicts, as in the previous part of this section, the
part of the horizontal ray through the center of log |B̂γ | above noise level. On the
left bottom, apex A , that is the height of the approximated curve, can be controlled.
After a value for A has been chosen, a nonlinear least squares fit is executed utilizing
Matlab’s lsqcurvefit function. The resulting approximation is shown as the red
curve. If the approximation is satisfactory, pressing the button “Use this Approxima-
tion” initiates the computation of the point spread function with parameter α, and
finally the deblurring of the image that is displayed on the right hand side. Controlling
the apex through a GUI allows a very precise adjustment which is crucial since even
small changes in the apex can result in huge changes in the deblurred image, which is
illustrated by a sequence of images deblurred with different A in Appendix A.2.

So far, the APEX method can only be used if the point spread function to be re-
constructed is rotationally symmetric. In the next paragraph, we extend the APEX
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3.1. Separate Computation of PSF and Reconstructed Image
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, 1 : nq|, and subsequent re-
construction of the true image.
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3. Approaches for Blind Deconvolution

Figure 3.5.: Matlab GUI for performing image deblurring using the APEX method.

method to double symmetric Gaussian PSFs.

Generalization for Gaussian PSFs Within the framework of this thesis we confined
our studies to Gaussian point spread functions. Thus, β “ 1 and function (3.1) sim-
plifies to

P̂αpξ, ηq “ exp
 

´α
`

ξ2 ` η2˘( (3.11)

for α ą 0. Since we are not only interested in rotational symmetric PSFs (s1 “
s2, ρ “ 0; see Section 2.2), we generalize expression (3.11) to the double symmetric
formulation

P̂α1,α2pξ, ηq “ exp
 

´
`

α1ξ
2 ` α2η

2˘( (3.12)

where α1, α2 ą 0 (s1 ‰ s2, ρ “ 0; see Section 2.2).

Using the notation from above, we can rewrite B “ P ˙ X as

log |B̂γ | “ ´
`

α1Ξ2 ` α2H2˘` log |X̂γ |

according to (3.6). Compared to the Gaussian rotational symmetric case, there are
not only one (α), but two (α1, α2) unknowns to be searched for in order to estimate
the PSF. As previously, we consider the horizontal line through the center in interval
r´ω1, ω1s above noise level

log
ˇ

ˇ

ˇ
B̂γ

´Ym

2

]

,
Qn

2

U

´ ω1 :
Qn

2

U

` ω1

¯ˇ

ˇ

ˇ
« ´α1ξ2

ω1 ´A1
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3.2. Simultaneous Computation of PSF and Reconstructed image

where A1 “ A11T2ω1`1, A1 P R`, resulting in an expression that involves only α1. We
obtain an expression that only contains parameter α2, but not α1, by setting up an
expression for the vertical line through the center,

log
ˇ

ˇ

ˇ
B̂γ

´Qm

2

U

´ ω2 :
Qm

2

U

` ω2,
Yn

2

]¯
ˇ

ˇ

ˇ
« ´α2η2

ω2 ´A2,

with A2 “ A21T2ω2`1, A2 P R`, and where ηω2 “ p´ω2, . . . , ω2q P N1ˆp2ω2`1q according
to ξω1 .

Thus, we have to solve two similar least squares problems

min
α1

›

›

›
log

ˇ

ˇ

ˇ
B̂γ

´Ym

2

]

,
Qn

2

U

´ ω1 :
Qn

2

U

` ω1

¯ˇ

ˇ

ˇ
` α1ξ2

ω1 `A1

›

›

›

2

2

min
α2

›

›

›
log

ˇ

ˇ

ˇ
B̂γ

´Qm

2

U

´ ω2 :
Qm

2

U

` ω2,
Yn

2

]¯
ˇ

ˇ

ˇ
` α2η2

ω2 `A2

›

›

›

2

2

that are independent of each other. The estimated values for α1 and α2 are then
substituted in (3.12) to calculate the PSF.

We designed a GUI similar to the one in Figure 3.5 for the double symmetric case
adding a second box on the left hand side where the second parameter can be chosen.
A detailed description of experiments and results is given in Section 5.2.

3.2. Simultaneous Computation of PSF and Reconstructed
image

In this section we present two methods to simultaneously calculate an approximation
of the point spread function and sharp image x. As an introduction to this topic, we
first consider the simple and intuitive alternating least squares (ALS) method. Sec-
ond, a more complicated yet more effective method, using the Gauss-Newton method,
is introduced. Both approaches, the alternating least squares method and the Gauss-
Newton approach, are iterative methods that require an initial value for the PSF.
Furthermore, we include Tikhonov regularization (Section 2.4.2) in both algorithms
due to ill-posedness of the deconvolution problem and impose periodic boundary con-
ditions. A flowchart in Figure 3.6 illustrates the general approach to iteratively solve
blind deconvolution problems.

3.2.1. Alternating Least Squares Method

The alternating least squares method is a simple algorithm to solve (2.21) where ap-
proximations for the true image and PSF are computed in turn. First, we specify an
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3. Approaches for Blind Deconvolution

underlying problem min
x,y

}Apyqx´ b}22

choose initial value for y

min
x
}Ax´ b}22

iteration i “ i` 1 compute x

min
y
}Apyqx´ b}22

compute y, Apyq

i “ 0

Figure 3.6.: Iterative model for solving the blind deconvolution problem. A and x are
computed simultaneously.

initial value for parameters that define a PSF, for instance s1, s2 and ρ for a Gaus-
sian PSF. Then, Tikhonov regularization with generalized cross-validation is applied
to solve the linear least squares problem

min
x
}Ax´ b}22 “ min

x̂
}Λx̂´ b̂}22.

We can calculate x̂ very efficiently from the Fourier representation of the problem
and subsequently use the inverse Fourier transform to obtain x. Next, we again ap-
ply Tikhonov regularization with generalized cross-validation but to solve a slightly
different linear least squares problem

min
A
}Ax´ b}22 “ min

Λ
}Λx̂´ b̂}22

which is equivalent to
min

λ
}diagpx̂qλ´ b̂}22

where λ “ diagpΛq “ pλ1, . . . , λN q
T . That means, the nonlinear least squares problem

min
y
}Apyqx ´ b}22 is regarded as the linear least squares problem min

λ
}diagpx̂qλ ´

b̂}22. Both least squares approximation steps are repeated until a satisfying solution is
achieved. The ALS method is illustrated in pseudocode in Algorithm 3.1.
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3.2. Simultaneous Computation of PSF and Reconstructed image

Alternating Least Squares

1 function x = ALS(A,b)
2

3 choose initial guess A to the PSF
4 choose number of iterations n
5 for i = 1,. . .,n
6 ε1 = GCV(A,b) % see Algorithm 2.1 ...
7 x̂ = Tikhonov(Λ,b̂,ε1) % for GCV and Tikhonov
8 x = F˚x̂
9 ε2 = GCV(diag(x),b)

10 λ = Tikhonov(diag(x̂),b̂,ε2)
11 A = F˚ΛF
12 end
13

Algorithm 3.1

3.2.2. Gauss-Newton Method

Another approach for blind deconvolution uses the Gauss-Newton method to solve
the nonlinear subproblem min

y
}Apyqx ´ b}22. We give a general introduction into

the Gauss-Newton method, and subsequently explain the overall blind deconvolution
algorithm.

The Gauss-Newton method has proved to be worthwhile in solving an optimization
problem

min
x
fpxq, f : Rn Ñ R (3.13)

for an objective f having a special structure

fpxq “ 1
2}rpxq}

2
2

with x P Rn and residual r : Rn Ñ Rm [25, p.254ff.].

We can motivate the Gauss-Newton method as follows: The residual is approximated
by a Taylor expansion of first order at a fixed position xk

fpxk ` dkq “
1
2}rpxk ` dk

looomooon

xk`1

q}22

«
1
2}rpxkq ` Jrpxkqdk}22 “: mkpdkq (3.14)
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3. Approaches for Blind Deconvolution

where Jr describes the Jacobian matrix

Jrpxq “

¨

˚

˚

˝

Br1pxq
Bx1

. . . Br1pxq
Bxn... . . . ...

Brmpxq
Bx1

. . . Brmpxq
Bxn

˛

‹

‹

‚

of residual rpxq. We search for a vector dk minimizing (3.14), that is we want to solve
the optimization problem

min
dk

mkpdkq.

Therefore, the gradient of mk with respect to dk,

∇mkpdkq “ JTr pxkqrpxkq ` JTr pxkqJrpxkqdk,

is set equal to zero. Rearranging yields a system of equations

JTr pxkqJrpxkqdk “ ´JTr pxkqrpxkq. (3.15)

The vector dk P Rn, obtained through solving (3.15), minimizes mk, but not exactly
fpxk ` dkq due to approximations in (3.14). However, we suppose that dk indicates
the direction leading to a minimum and choose it as the so called descent direction.
Starting at xk we search along direction dk for a vector xk`1 that yields a smaller
value for fpxk ` dkq, that is we determine a scalar ak P R, ak ą 0, and define

xk`1 “ xk ` akdk

such that
fpxk`1q ď fpxkq.

Scalar ak indicates how far we have to walk along descent direction dk to decrease the
function value as much as possible. ak is called step length and can be computed using
line search methods described in the book by Nocedal and Wright [25, p.30ff.].

Considering the blind deconvolution problem supposing that what causes the blur is
a Gaussian PSF with parameters y “ ps1, s2, ρq

T the optimization problem according
to (3.13) is given by

min
y
}Apyqx´ b}22

and the residual is defined as rpyq “ Apyqx ´ b with A P RNˆN` and x,b P RNˆ1
` .

Thus, in this particular case the Jacobian matrix is set up as

Jrpyq “

¨

˚

˚

˝

Br1pyq
Bs1

Br1pyq
Bs2

Br1pyq
Bρ

...
BrN pyq
Bs1

BrN pyq
Bs2

BrN pyq
Bρ

˛

‹

‹

‚
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3.2. Simultaneous Computation of PSF and Reconstructed image

where r P RN . We use finite differences to approximate the partial derivatives (see
[15, p.629 ff.]).

Algorithm 3.2 describes solving the blind deconvolution problem using the Gauss-
Newton method in pseudocode. Lines 3 to 4 describe the initialization where an initial
guess for y is chosen and Apyqx “ b is solved for x using Tikhonov regularization with
GCV. Then, for a preset number of iterations (line 5 to 15), the following is executed:
The descent direction d is determined solving JTr Jrd “ ´JTr r. We choose the step
length to be equal to one and update y in line 8. Subsequently, x is computed again
applying Tikhonov regularization with GCV. A simple line search is performed in lines
10 to 14 where in every iteration of the while-loop the step length is divided by two,
y is updated and a new vector x is determined.

In Section 5.1, we give some results for applying the Gauss-Newton method to decon-
volution problems.

Gauss-Newton Method

1 function [x,A(y)] = GaussNewton(A(y),b)
2

3 choose initial guess for y = y0
4 choose number of iterations n
5 r = computeResidual(y0,b)
6 for i = 1,. . .,n
7 solve JTr (yi´1)Jr(yi´1)d = -JTr (yi´1)r for d % descent direction
8 a = 1 % step length
9 yi = yi´1 + ad

10 r = computeResidual(yi,b)
11 while f(yi) > f(yi´1) % line search
12 a = a

2
13 yi = yi´1 + ad
14 r = computeResidual(yi,b)
15 end
16 end
17

18

19 function r = computeResidual(y,b)
20

21 ε = GCV(A(y),b) % see Algorithm 2.1 ...
22 x̂ = Tikhonov(Λ(y),b̂,ε) % for Tikhonov and GCV
23 x = F˚x̂
24 r = b - A(y)x

Algorithm 3.2
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4. Multiframe Blind Deconvolution

A blind deconvolution problem where multiple blurred images bj P Rmnˆ1
` , j “ 1, . . . , p

of the same object have to be taken into account is called multiframe blind deconvo-
lution. Combining Sections 2.5 and 2.6, multiframe blind deconvolution seeks to find
a solution for the extremely underdetermined optimization problem

min
x,yj

p
ÿ

j“1
}Apyjqx´ bj}22 “ min

x,yj

›

›

›

›

›

›

›

¨

˚

˝

Apy1q
...

Apypq

˛

‹

‚

x´

¨

˚

˝

b1
...

bp

˛

‹

‚

›

›

›

›

›

›

›

2

2

, (4.1)

in which not only the true image x P Rmnˆ1
` , but also all p point spread function

matrices Aj :“ Apyjq P Rmnˆmn` , j “ 1, . . . , p are unknown.

One way of solving the multiframe blind deconvolution problem is to use the Gauss-
Newton method with Tikhonov regularization and GCV. The algorithm for multiframe
blind deconvolution differs slightly from Algorithm 3.2 that deals with the singleframe
blind deconvolution problem. For instance, let us assume that the blur is induced
by Gaussian PSFs such that yj “ pspjq1 , s

pjq
2 , ρpjqqT for j “ 1, . . . , p. Then, vector y “

py1; . . . ; ypq P R3pˆ1 contains the yj one below the other. The Gauss-Newton algorithm
requires an initial value y0 for y. Given y, the approximated true image is obtained
solving problem (4.1) for x using Tikhonov regularization with GCV. Moreover, y is
updated as stated in the algorithm in Section 3.2.2 where the Jacobian matrix now
has the size mnpˆ 3p and is given by

Jrpyq “
ˆ

Brspyq
Byptq

˙

s“1,...,mnp
t“1,...,3p

with residual r P Rmnpˆ1.

The ALS method from Section 3.2.1 can be expanded to be used in the multiframe case
as well. However, we cannot recommend to apply the APEX method introduced in
Section 3.1.1 to the multiframe blind deconvolution problem. Using APEX, every PSF
has to be computed individually yielding a multiframe deconvolution problem as given
in (2.18). Especially for a large number of frames, approximating the point spread
functions is a cumbersome procedure since the APEX parameter has to be adjusted
independently for every frame. Besides, another restriction is that we can only use the
APEX method for Gaussian point spread functions where ρ “ 0.
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4. Multiframe Blind Deconvolution

In the following, we want to take a short look at the structure of the linear system of
equations that is solved using Tikhonov regularization to update x during each Gauss-
Newton iteration. Similar to Section 2.3.2 the system of equations can be stated in
the Fourier domain

¨

˚

˝

Λ1
...

Λp

˛

‹

‚

x̂ “

¨

˚

˝

b̂1
...

b̂p

˛

‹

‚

, (4.2)

assuming periodic boundary conditions. The Tikhonov method solves the normal
equation of (4.2) for x̂. The corresponding system of equations

¨

˚

˝

Λ1
...

Λp

˛

‹

‚

˚¨

˚

˝

Λ1
...

Λp

˛

‹

‚

x̂ “

¨

˚

˝

Λ1
...

Λp

˛

‹

‚

˚¨

˚

˝

b̂1
...

b̂p

˛

‹

‚

is underdetermined consisting of pp ` 1qmn unknowns and mn equations. In the
following we describe methods to simplify expression (4.1), provided the point spread
functions in our model satisfy certain characteristics.

4.1. Compact Multiframe Blind Deconvolution

Hope and Jefferies [18] introduce a method to reduce inverse problem (4.1) to a problem
where only one of the Apyjq, j “ 1, . . . , p and x have to be determined. Therefore, they
assume that there exists one PSF whose Fourier transform is nonzero everywhere that
the Fourier transform of x is nonzero. As a result of the decreased underdeterminedness
of the multiframe blind deconvolution problem, computational costs can be reduced
which is especially helpful for large data sets.

Assuming periodic boundary conditions as defined in Section 2.3.2 allows us to express
Apyjq by its spectral decomposition Apyjq “ F˚ΛpyjqF. In the following, let Aj :“
Apyjq and Λj :“ Λpyjq for simplicity. Comparing matrices Λj , we denote the matrix
which is nonzero at every position where the other Λj have nonzero entries with Λk,
supposing that such a matrix exists. Then, frame k is referred to as the control frame.
Mathematically speaking,

pΛkqi,i ‰ 0 if there exists a j such that pΛjqi,i ‰ 0

where pΛkqi,i and pΛjqi,i describe the i-th diagonal element, respectively.

Then

Aj “ F˚ΛjF
“ F˚ΛjΛ`k ΛkF
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4.1. Compact Multiframe Blind Deconvolution

where

Λ`k “

$

&

%

1
λ
pkq
i

if λpkqi ‰ 0

0 if λpkqi “ 0

is the pseudoinverse of Λk. Hence, we can write the objective of optimization problem
(4.1) as

p
ÿ

j“1
}Ajx´ bj}22 “ }Akx´ bk}22 `

p
ÿ

j“1
j‰k

}Ajx´ bj}22

“ }F˚ΛkFx´ bk}22 `
p
ÿ

j“1
j‰k

}F˚ΛjΛ`k ΛkFx´ bj}22

“ }Λkx̂´ b̂k}22 `
p
ÿ

j“1
j‰k

}ΛjΛ`k Λkx̂´ b̂j}22. (4.3)

From Section 2.3.2 we know that the Fourier representation of the blurring process
is given by b̂j “ Λjx̂ and define diagpb̂jq “ diag

ˆ

´

b̂
pjq
1 , . . . , b̂

pjq
mn

¯T
˙

as the diagonal

matrix containing vector b̂j and

diagpb̂jq` “

$

&

%

1
b̂
pjq
i

if b̂pjqi ‰ 0

0 if b̂pjqi “ 0

as its pseudoinverse, where i “ 1, . . . ,mn. Similarly, let diagpx̂q “ diag
´

px̂1, . . . , x̂mnq
T
¯

and
diagpx̂q` “

" 1
x̂i

if x̂i ‰ 0
0 if x̂i “ 0

hold for vector x̂. Then we can state the Fourier representation of the blurring process
as

Λjdiagpx̂q “ diagpb̂jq
ñ Λj “ diagpb̂jqdiagpx̂q` (4.4)

and in the same way

Λkdiagpx̂q “ diagpb̂kq
ñ Λ`k “ diagpb̂kq`diagpx̂q (4.5)

for j “ k. Therefore, the product of (4.4) and (4.5) can be written as

ΛjΛ`k “ diagpb̂jqdiagpb̂kq`

since the nonzero entries of diagpx̂q divide out.
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4. Multiframe Blind Deconvolution

Substituting into (4.3) yields

}Λkx̂´ b̂k}22 `
p
ÿ

j“1
j‰k

}diagpb̂jqdiagpb̂kq`Λkx̂´ b̂j}22. (4.6)

where only x̂ and Λk are unknown. We rearrange (4.6) to obtain an expression con-
sisting of only one norm, similar to the multiframe problem in (4.1). For simplicity of
writing we suppose that k “ 1. Then, in the Fourier domain, the least squares problem
with objective (4.6) can be stated as

min
x̂,yk

¨

˚

˚

˚

˚

˝

›

›

›

›

›

›

›

›

›

¨

˚

˚

˚

˝

I
D2
...

Dp

˛

‹

‹

‹

‚

Λpykqx̂´

¨

˚

˚

˚

˝

b̂k
b̂2
...

b̂p

˛

‹

‹

‹

‚

›

›

›

›

›

›

›

›

›

2

2

˛

‹

‹

‹

‹

‚

,

where Dj , j “ 2, . . . , p is defined by the product of diagonal matrices

Dj “ diagpb̂jqdiagpb̂kq` for j ‰ k.

Again, one possibility of solving for true image x and point spread function of control
frame k is to apply the Gauss-Newton method with Tikhonov regularization. The
objective of the compact problem consists of merely one PSF implying that y P R3ˆ1

regarding Gaussian blur. Residual r, however, is still as large as for the former multi-
frame problem resulting in a Jacobian matrix

Jrpyq “
ˆ

Brspyq
Byptq

˙

s“1,...,mnp
t“1,...,3

of size mnp ˆ 3. We can also use ALS to approach the compact multiframe blind
deconvolution problem, and APEX is suitable as well, since only one point spread
function has to be estimated.

The normal equation used to solve the problem for x is given by
¨

˚

˚

˚

˝

¨

˚

˚

˚

˝

I
D2
...

Dp

˛

‹

‹

‹

‚

Λk

˛

‹

‹

‹

‚

˚¨

˚

˚

˚

˝

I
D2
...

Dp

˛

‹

‹

‹

‚

Λkx̂ “

¨

˚

˚

˚

˝

¨

˚

˚

˚

˝

I
D2
...

Dp

˛

‹

‹

‹

‚

Λk

˛

‹

‹

‹

‚

˚¨

˚

˚

˚

˝

b̂k
b̂2
...

b̂p

˛

‹

‹

‹

‚

. (4.7)

That is, the system of equations has 2mn unknowns and mn equations. In the next
section we illustrate that the problem can be reduced even further, into a system with
only a single frame.
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4.2. Reduction to Single Frame Blind Deconvolution

4.2. Reduction to Single Frame Blind Deconvolution

Above, assuming the existence of a control frame the unknowns in the multiframe
blind deconvolution problem could be reduced from p point spread functions and true
image x P Rmnˆ1

` to only a single point spread function and x. The large matrix in
expression (4.7), pI; D2; . . . ; Dpq P Cmnpˆmn, contains an identity matrix I P Rmnˆmn
right on top and diagonal matrices Dj P Cmnˆmn arranged one below the other.

To reduce problem (4.7) further we eliminate the diagonal matrices D2, . . . ,Dp in this
large matrix composed of diagonal matrices using Givens rotations.

4.2.1. Givens Rotation

In general, a Givens rotation is an orthogonal matrix

G “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1
˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. . .
c . . . s i
... . . . ...
´s . . . c k

. . .
1

i k

P RNˆN

where s “ sinpθq, c “ cospθq for θ P r0, 2πq. Multiplying GT with a vector z P RN such
that GT z “ w yields vector w P RN with

wj “

$

’

&

’

%

czi ´ szk, if j “ i,

szi ` czk, if j “ k, and
zj , else,

that is only two entries in z are modified. To induce a zero at position k in w we set

s “ ´
zk

b

z2
i ` z

2
k

and

c “
zi

b

z2
i ` z

2
k

resulting in wi “
b

z2
i ` z

2
k and wk “ 0 [12; 32].

Generally, to force n ă N entries in z to be zero the vector is multiplied by product
QT “ GT

n . . .GT
1 of the particular Givens matrices such that QT z “ w. Matrix Q is
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4. Multiframe Blind Deconvolution

orthogonal as well, since it is the product of n orthogonal matrices. As with vectors,
entries can be eliminated in matrices.

As mentioned above, our goal is to transform a matrix of size mnp ˆmn consisting
of p diagonal matrices into a matrix of the same size that only contains one diagonal
matrix and zeros elsewhere. Applying Givens rotations this matrix can likewise be
regarded as a vector of size mnpˆ 1, since every row contains only one entry unequal
to zero. In the following, we give a small example illustrating this problem.

Consider a matrix

A “

¨

˚

˚

˝

a1 0
0 a2
a3 0
0 a4

˛

‹

‹

‚

P R4ˆ2

comprising two diagonal matrices of size 2ˆ 2. In the following, we regard this matrix
as a vector

a “

¨

˚

˚

˝

a1
a2
a3
a4

˛

‹

‹

‚

P R4ˆ1.

Then to eliminate a3 we compute a1 = GT
1 a “ p

a

a2
1 ` a

2
3, a2, 0, a4q

T with Givens
rotation matrix

GT
1 “

¨

˚

˚

˝

c1 0 ´s1 0
0 1 0 0
s1 0 c1 0
0 0 0 1

˛

‹

‹

‚

where s1 “ ´ a3?
a2

1`a
2
3
and c1 “

a1?
a2

1`a
2
3
. Subsequently, a4 is eliminated performing

rotation GT
2 a1 “ p

a

a2
1 ` a

2
3,
a

a2
2 ` a

2
4, 0, 0qT with

GT
2 “

¨

˚

˚

˝

1 0 0 0
0 c2 0 ´s2
0 0 1 0
0 s2 0 c2

˛

‹

‹

‚

where s2 “ ´
a4?
a2

2`a
2
4
and c2 “

a2?
a2

2`a
2
4
. The overall rotation can be described by

QTa “ GT
2 GT

1 a “

¨

˚

˚

˝

a

a2
1 ` a

2
3

a

a2
2 ` a

2
4

0
0

˛

‹

‹

‚

.

Above, we illustrated Givens rotations as a useful tool to induce zeros in a matrix
containing real values. However, applying Givens rotations to vectors or matrices with
complex entries, as they might occur in the optimization problem (4.7), slightly differs
from the real case. We summarize the differences in the following paragraph.
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4.2. Reduction to Single Frame Blind Deconvolution

Complex-Valued Givens Rotations Eliminating entries in a complex-valued vector
z P CN requires a few adjustments of the Givens rotation method stated above. Com-
plex Givens rotations are defined by unitary matrices of the form

G “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1
˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. . .
c . . . s i
... . . . ...
´s̄ . . . c k

. . .
1

i k

P CNˆN

similar to the real case but where s̄ describes the complex conjugate. The entry zk in
z is eliminated through multiplication by the adjoint matrix of G such that G˚z “ w.
Therefore, we set

s “ signpziq
z̄k

a

|zi|2 ` |zk|2
and

c “
|zi|

a

|zi|2 ` |zk|2

according to Bindel et al. [4] where

signpzq “
#

z
|z| if z ‰ 0
1 else

for z P C. Hence, entry wi “ signpziq
a

|zi|2 ` |zk|2 and, as designated, wk “ 0.

4.2.2. The Compact Single Frame Blind Deconvolution Problem

As described above, Givens rotations are equivalent to finding a unitary matrix Q such
that

Q˚

¨

˚

˚

˚

˝

I
D2
...

Dp

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˝

D
0
...
0

˛

‹

‹

‹

‚

,
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4. Multiframe Blind Deconvolution

where D P Cmnˆmn is a diagonal matrix and the entries below D are equal to zero.
Now, the unitary matrix Q˚ is multiplied to both sides of the system of equations

Q˚

¨

˚

˚

˚

˝

I
D2
...

Dp

˛

‹

‹

‹

‚

Λkx̂ “ Q˚

¨

˚

˚

˚

˝

b̂k
b̂2
...

b̂p

˛

‹

‹

‹

‚

¨

˚

˚

˚

˝

D
0
...
0

˛

‹

‹

‹

‚

Λkx̂ “

¨

˚

˚

˚

˚

˝

ˆ̃bk
ˆ̃b2
...

ˆ̃bp

˛

‹

‹

‹

‹

‚

denoting with ˆ̃bj the vector b̂j modified by multiplication with unitary matrix Q˚.
Equivalently, the least squares problem becomes
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}DΛpykqx̂´ ˆ̃bk}22, (4.8)

that is we reduced the multiframe blind deconvolution problem to a single frame prob-
lem. As for multiframe and compact multiframe blind deconvolution we solve this
problem using Gauss-Newton and the Tikhonov regularization method as illustrated
in Algorithm 3.2. Alternatively, ALS or the APEX method can be applied. Similar
to the compact multiframe problem from Section 4.1, the APEX method is acceptable
here since only one PSF has to be approximated. In the following chapter, we illus-
trate some results comparing approaches to solve the three problems, multiframe blind
deconvolution, compact multiframe deconvolution and compact single frame blind de-
convolution.
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5. Experiments and Results

5.1. Iterative Approach: Gauss-Newton Method

We solve multiframe blind deconvolution (4.3), compact multiframe blind deconvolu-
tion (4.6) and single frame blind deconvolution problem (4.8) for artificially generated
data applying the Gauss-Newton method with Tikhonov regularization to the normal
equation. All restorations are performed using Matlab. To create the test data con-
sisting of p frames, we blur one sharp image of size 256 ˆ 256 with p Gaussian PSFs,
and add a certain percentage of Gaussian noise to the blurred image.

We choose parameters s1, s2 and ρ determining width and orientation of the PSF
such that sp1q1 ă s

p2q
1 ă . . . ă s

ppq
1 , sp1q2 ă s

p2q
2 ă . . . ă s

ppq
2 and ρp1q ă ρp2q ă . . . ă

ρppq implying that the PSF of the first frame is the narrowest one, as explained in
Section 2.3.3, and the corresponding PSF matrix A has the componentwise maximum
eigenvalues and hence the most nonzero (or the least very small) eigenvalues compared
to the other frame’s PSFs. Hence, a control frame, namely the first one, exists for this
model according to Section 4.1. A point spread function data set comprising of 10
frames is shown in Figure 5.1. One observes that the s1, s2 and ρ specified below each
image are increasing from frame to frame, and so does the width of the point spread
function from PSF 1 to PSF 10.

The Gauss-Newton method requires an initial choice for the point spread functions re-
garding the multiframe blind deconvolution problem, and for the point spread function
of the control frame if we solve the compact multiframe and the compact single frame
problem. Based on experience, we set the initial guess for all point spread functions to
a PSF defined by sp0q1 , sp0q2 and ρp0q that is slightly wider than the widest in the model
stated above, such that sppq1 ă s

p0q
1 , sppq2 ă s

p0q
2 and ρppq ă ρp0q.

Figure 5.2 compares the three approaches, multiframe blind deconvolution (MFBD),
compact multiframe blind deconvolution (CMF) and compact single frame deconvo-
lution (CSF), with respect to the reconstruction of true image X. Here, we apply
the Gauss-Newton algorithm with Tikhonov regularization to a data set consisting of
p “ 10 frames where no noise is added to the blurred images. The first column of
Figure 5.2 shows the mean of the blurred images B1, . . . ,B10 for MFBD and CMF,
and the Givens-rotated blurred image of the control frame B̃1. In the mid-column,
the deblurred images are illustrated. Numbers above blurred and deblurred images
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PSF 1 PSF 2 PSF 10

. . .

s1 “ 4.0231

s2 “ 4.1411

ρ “ 0.54746

s1 “ 4.1037

s2 “ 4.1604

ρ “ 0.59196

s1 “ 6.8041

s2 “ 6.5385

ρ “ 1.4103

Figure 5.1.: Point spread functions of the model problem, where the values s1, s2 and
ρ increase from PSF 1 to PSF 10. s1 and s2 are random values between 4
and 7. ρ is randomly chosen between 0.5 and 1.5.

indicate the relative error Ex “
}xapprox´xtrue}22

}xtrue}22
of blurred or approximated image with

respect to the true image that is displayed in the last column for comparison. Both,
relative error and a glance at blurred and deblurred images indicate an improvement in
the reconstruction compared with the blurred object for all three approaches. Among
the three deblurred images one detects only slight differences.

In addition to image X, the algorithm yields the corresponding approximation to
the 10 point spread functions regarding MFBD, and the point spread function of the
control frame if we consider the CMF and CSF problem. In Figure 5.3, we illustrate
on the left the true point spread function of the first frame, described by PSF 1. As
explained above, we choose the initial PSF to be slightly wider than the widest point
spread function, PSF 10, that is shown in Figure 5.1. The initial PSF used in these
experiments is given next to the true PSF. The right hand side of Figure 5.3 indicates
the results for PSF 1 according to the approximation of the true images in Figure
5.2. Above each image, the parameters y “ ps1, s2, ρq

T are stated. As regarding the
reconstructed images, the point spread functions are similar for MFBD, CMF and
CSF, and represent a good approximation of the true PSF.

In fact, 7 iterations of the Gauss-Newton algorithm lead to the results in Figures 5.2
and 5.3. The upper plot in Figure 5.4 shows the relative error Ex of reconstructed
image X for MFBD, CMF and CSF in each iteration. Below, the relative error for the
PSF, Ep “

}papprox´ptrue}22
}ptrue}22

, is illustrated. One observes that the error for both, image
and PSF, decreases from iteration to iteration resulting in a stepwise improvement of
the reconstructions. The relative error of the reconstructed image nearly matches for
MFBD and CMF, and is for each iteration slightly smaller for the CSF problem. On
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5.1. Iterative Approach: Gauss-Newton Method

the other hand, the relative error of the PSF approximation is almost the same for
CMF and CSF, but smaller for the classic multiframe blind deconvolution problem.
We stop after 7 iterations, since for more iterations the image error increases again.

Experiments With Added Noise Moreover, we apply the Gauss-Newton algorithm
with Tikhonov regularization to a data set where 1% of Gaussian white noise is added
to the blurred images B1, . . . ,B10. The effects can be observed in the deblurred images
in Figure 5.5. Especially the CMF approach experiences difficulties with the added
noise. Whereas the relative errors of the deblurred images are similar for MFBD and
CSF, CMF yields a larger error and a less precise reconstruction. As for the case
without noise, we illustrate the reconstructed PSF of the first frame in Figure 5.6 and
the relative errors of reconstructed image and point spread function for each iteration
in Figure 5.7. In contrast to MFBD and CMF where we perform 7 iterations as in the
noise-free case, the relative error of the image reconstructed using the CSF approach
increases again after 6 iterations.

Computing Time Figure 5.8 shows two plots comparing the performance of MFBD,
CMF and CSF. In the upper figure, the elapsed time per Gauss-Newton iteration is
plotted against the number of frames. For MFBD and CMF, the time increases with
the number of frames. In contrast, the time for CSF is constant since the size of
the least squares problem remains the same. Below, we illustrate the time for seven
iterations of the algorithm including for CSF the performance of the Givens rotations.
The time for the Givens rotation appears to be negligibly small, since except for the
sevenfold time, both figures look similar.

Summarizing, the CSF approach performs best with respect to our model problem.
In the noise-free case all three methods yield approximately the same results, whereas
CMF experiences problems when noise is added resulting in a less accurate reconstruc-
tion than obtained using MFBD or CSF. Moreover, the CSF method has the advantage
that its computational costs are lowest compared to MFBD and CMF. However, the
presented results leave some questions unanswered. For instance, how the control frame
can be determined, what happens if one of the frames 2 to 10 are chosen as control
frame, though these frames actually do not satisfy the requirements of being control
frame, or if the multiframe approach yields an improvement in the solution compared
to the classic blind deconvolution problem. In Section 5.1.1 we regard these questions
with respect to the data set used above and three slightly modified data sets.
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Mean Blurred Image Deblurred Image True Image

E “ 0.43672 E “ 0.25813

MFBD

E “ 0.43672 E “ 0.25806

CMF

E “ 1.5494 E “ 0.27068

CSF

Figure 5.2.: Results for applying 7 iterations of the Gauss-Newton method to the mul-
tiframe (MFBD), the compact multiframe (CMF), and the compact single
frame deconvolution problem (CSF), respectively. The number of frames is
p “ 10 and we did not add noise to the problem. In fact, the blurred image
corresponding to the CSF problem in row 3 shows the blurred image of the
control frame after Givens rotation.

58



5.1. Iterative Approach: Gauss-Newton Method

Approximated PSF 1
MFBD

y “ r4.2182, 4.0216, 0.76613s

True PSF 1 Initial PSF 1
CMF

y “ r4.0231, 4.1411, 0.54746s y “ r8.8041, 8.5385, 2.4103s y “ r4.2178, 4.0483, 0.76745s

CSF
y “ r4.1883, 4.0761, 0.87419s

Figure 5.3.: Comparison of reconstructed PSF of frame 1 for MFBD, CMF and CSF.
These results correspond to Figure 5.2 (data set with 10 frames, no noise
added, 7 iterations of the Gauss-Newton algorithm).
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Figure 5.4.: Relative Image and PSF errors corresponding to the results in Figure 5.2.
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Mean Blurred Image Deblurred Image True Image

E “ 0.43672 E “ 0.27207

MFBD

E “ 0.43672 E “ 0.35149

CMF

E “ 1.5495 E “ 0.2933

CSF

Figure 5.5.: Results for applying the Gauss-Newton method to the MFBD (7 iterations),
CMF (7 iterations), and the CSF problem (6 iterations), respectively. The
number of frames is p “ 10 and we added 1% noise to the problem. In fact,
the blurred image corresponding to the CSF problem in row 3 shows the
blurred image of the control frame after Givens rotation.
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Approximated PSF 1
MFBD

y “ r4.1838, 3.922, 0.91609s

True PSF 1 Initial PSF 1
CMF

y “ r4.0231, 4.1411, 0.54746s y “ r8.8041, 8.5385, 2.4103s y “ r4.0233, 3.7874, 0.92417s

CSF
y “ r4.6506, 4.3859, 0.77686s

Figure 5.6.: Comparison of reconstructed PSF of frame 1 for MFBD, CMF and CSF.
These results correspond to Figure 5.5 (data set with 10 frames, 1% noise
added, 7 (MFBD) or 6 (CMF, CSF) iterations of the Gauss-Newton algo-
rithm).
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Figure 5.7.: Relative Image and PSF errors corresponding to the results in Figure 5.5.
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Figure 5.8.: Above, we measured the time it takes to execute one iteration of the algo-
rithm that solves the blind deconvolution problem using the Gauss-Newton
method and Tikhonov regularization with GCV (Algorithm 3.2) for the
three approaches MFBD, CMF and CSF ignoring runtime for Givens ro-
tation. Below, we determined for the same algorithm the time it takes to
perform 7 iterations including preprocessing for CSF where Givens rotation
is applied.
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5.1. Iterative Approach: Gauss-Newton Method

5.1.1. Additional Results

We solve the MFBD, CMF and CSF problem using the Gauss-Newton approach for
four slightly different model problems, each containing ten frames. True image is the
satellite image from the previous section. For each data set, the optimization procedure
is performed ten times, each time with a different frame as control frame for CMF and
CSF. For comparison, we solve the classic singleframe blind deconvolution problem for
frames one to ten.

The results are illustrated in Figures 5.9, 5.10, 5.11 and 5.12. In each figure, the PSFs
used to obtain the blurred images are shown in (a). Moreover, we plot the minimum
relative error of the reconstructed image for each choice of control frame (1, . . . , 10)
for MFBD, CMF and CSF, respectively. We also plot the minimum relative image
error that we receive with singleframe blind deconvolution (BD) of frames one to ten.
Subfigure (b) shows these results without noise, whereas in (c) 1% noise is added to
the problem.

Figure 5.9 deals with the model problem from above where the true image has been
blurred with ten different Gaussian PSFs whose parameters s1 and s2 are randomly
chosen between 4 and 7, and ρ randomly between 0.5 and 1.5. Moreover, the pa-
rameters are sorted such that sp1q1 ă s

p2q
1 ă . . . ă s

p10q
1 , sp1q2 ă s

p2q
2 ă . . . ă s

p10q
2 and

ρp1q ă ρp2q ă . . . ă ρp10q. Therefore, we choose the first frame as control frame, because
its matrix A has componentwise the least close-to-zero eigenvalues. One observes that
solving the BD problem, the image error increases from frame one to ten, since the
frames are sorted from least to most blurred. The MFBD error is constant, because it
uses all frames. For the problem without added noise, the correct choice of the control
frame does not seem important, since CMF and CSF error plots are similar to the
MFBD plot. However, adding noise the image error increases from frame one to ten
for CMF and CSF.

In Figure 5.10 we regard a data set where the PSF parameters s1 and s2 are randomly
chosen between 4 and 7, and ρ randomly between 0.5 and 1.5. The parameters are
unsorted, hence there does not exist a control frame, since none of the PSF matrices
A has componentwise the least close-to-zero eigenvalues. In subfigure (b) where the
results without added noise are illustrated, one observes that the minimum errors for
MFBD, CMF and CSF do not differ much. Thus, changing the control frame does not
result in major changes of the image error. On the other hand, subfigure (c) shows,
that adding noise to the problem significantly influences CMF and CSF whose minimal
relative errors are relatively large compared to MFBD.

Figure 5.11 considers a data set with ten different Gaussian PSFs whose parameters
s1 and s2 are randomly chosen between 5 and 6, and ρ randomly between 0.5 and 1.5.
As for the first data set, the parameters are sorted such that sp1q1 ă s

p2q
1 ă . . . ă s

p10q
1 ,

s
p1q
2 ă s

p2q
2 ă . . . ă s

p10q
2 and ρp1q ă ρp2q ă . . . ă ρp10q. Hence following the rule from

above, control frame is the first one. The plots behave similar to the plots in Figure
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5.9, but narrowing the interval from which we choose the PSF parameters decreases
the image error differences. Similar effects can be observed comparing Figure 5.10 to
Figure 5.12 where the data set consists of ten different Gaussian PSFs whose (unsorted)
parameters s1 and s2 are randomly chosen between 5 and 6, and ρ randomly between
0.5 and 1.5.

In a blind deconvolution problem, the PSFs are actually unknown. According to our
results, one way to determine the control frame is to choose the frame that belongs to
the least blurred image. If the PSFs are very similar, as in the data sets considered
in Figures 5.11 and 5.12, the results are also similar and every frame may be chosen
as control frame. However, if the frame chosen as control frame does not satisfy the
requirements of a control frame, information may be lost which reduces accuracy in
the reconstructed image.

The comparison between the multiframe approaches (MFBD, CMF and CSF) and the
classic singleframe approach (BD) shows, that for our simple model, taking the least
blurred frame and performing singleframe blind deconvolution can be an advantage.
However, if it is not obvious which one to choose, it is advisable to deblur the ten frames
simultaneously using multiframe blind deconvolution, instead of trying singleframe
blind deconvolution with every of the ten frames.
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PSF 1 PSF 2 PSF 10

. . .

r4.0231, 4.1411, 0.54746s r4.1037, 4.1604, 0.59196s r6.8041, 6.5385, 1.4103s

(a) s1, s2 randomly chosen between 4 and 7, ρ randomly chosen between
0.5 and 1.5, and sorted in ascending order. (Equal to Figure 5.1.)
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(b) No noise added
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(c) 1% noise added

Figure 5.9.: Gauss-Newton approach applied to MFBD, CMF, CSF and BD for the
model problem derived from the PSFs in (a). (b) and (c) show the minimum
image error plotted against the chosen control frame.
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PSF 1 PSF 2 PSF 10

. . .

r4.6569, 4.1411, 1.0269s r6.0366, 6.0379, 0.5920s r6.7913, 6.5385, 1.2361s

(a) s1, s2 randomly chosen between 4 and 7, ρ randomly chosen between
0.5 and 1.5.
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Figure 5.10.: Gauss-Newton approach applied to MFBD, CMF, CSF and BD for the
model problem derived from the PSFs in (a). (b) and (c) show the mini-
mum image error plotted against the chosen control frame.
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PSF 1 PSF 2 PSF 10

. . .

r5.0077, 5.0470, 0.5475s r5.0346, 5.0535, 0.5920s r5.9347, 5.8462, 1.4103

(a) s1, s2 randomly chosen between 5 and 6, ρ randomly chosen between
0.5 and 1.5, and sorted in ascending order.
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(b) No noise added
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Figure 5.11.: Gauss-Newton approach applied to MFBD, CMF, CSF and BD for the
model problem derived from the PSFs in (a). (b) and (c) show the mini-
mum image error plotted against the chosen control frame.
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PSF 1 PSF 2 PSF 10

. . .

r5.2190, 5.0470, 1.0269s r5.6789, 5.6793, 0.5920s r5.9304, 5.8462, 1.2361s

(a) s1, s2 randomly chosen between 5 and 6, ρ randomly chosen between
0.5 and 1.5.
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(b) No noise added
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Figure 5.12.: Gauss-Newton approach applied to MFBD, CMF, CSF and BD for the
model problem derived from the PSFs in (a). (b) and (c) show the mini-
mum image error plotted against the chosen control frame.
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5.2. Direct Approach: APEX Method

In comparison to the iterative approach using Gauss-Newton, we solve the CSF op-
timization problem (4.8) directly. Therefore, we approximate the PSF of the control
frame by means of the APEX method introduced in Section 3.1.1, and reconstruct the
sharp image using Tikhonov regularization with GCV.

Again, we design a model problem consisting of ten frames of size 256ˆ 256 blurring
a sharp image X with ten Gaussian PSFs of different width obtaining ten varyingly
blurred images B1, . . . ,B10. Here, the width of the point spread functions increases
from frame to frame, that is 0 ă α

p1q
1 ă α

p2q
1 ă . . . ă α

p10q
1 and 0 ă α

p1q
2 ă α

p2q
2 ă . . . ă

α
p10q
2 , such that the first one is the control frame. The point spread functions used to

obtain the data set of blurred images are shown in Figure 5.13.

Throughout this thesis, we came across two different expressions for Gaussian PSFs.
First, the Gaussian function described in Section 2.2 with parameters s1, s2 and ρ, and
second, the Fourier transform of a Gaussian PSF as a special case of Lévy stable PSFs
with parameters α1 and α2 given in (3.12). As explained in 3.1.1, the APEX method
uses this second expression. To derive the Gaussian PSF from its Fourier transform,
we apply Matlab’s ifft2 to the Fourier transform representation and scale the result
such that the sum of all entries is equal to one. Since the second Gaussian PSF version
cannot be modified with respect to its orientation, we set ρ “ 0 in the first Gaussian
PSF version for a better comparison between both functions. From this we deduce
that α “ 2s2π2

mn for a PSF array of size m ˆ n. Hence, the point spread functions in
Figure 5.13 most closely approximate the point spread functions we use to build the
model problem for the Gauss-Newton experiments illustrated in Figure 5.1, except
for the orientation given by ρ. Next, we set up the CMF problem (4.6) and transfer
it into CSF expression (4.8) applying Givens rotations. Seeking to reconstruct both
unknowns, PSF of the control frame and true image, we first apply the APEX method
to blurred image B1 to estimate the PSF. Figure 5.14 illustrates logarithmized mid-row
and mid-column of the image’s Fourier transform. According to Section 3.1.1, we only
consider the region of both plots in which they lie above noise level. In this case we
cut out intervals r´82, 82s and r´80, 80s, respectively. In contrast to the example in
Section 3.1.1, Figure 3.4, we consider a Gaussian PSF with two different parameters
α1 and α2. Thus we have to look at both horizontal and vertical ray, as explained in
Section 3.1.1.

Figure 5.15 shows a picture of the Matlab GUI used to approximate both plots by a
function fpxq “ ´αx2´A where A can be adjusted. Subsequently, the corresponding
PSF and deblurred image are computed. We discover that the formation of artifacts
in the deblurred image decreases with increasing apex value A . However, reducing
artifacts by choosing large values for A is accompanied by an increasing smoothness.
Therefore, we have to find a balance between artifacts and blur.
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PSF 1 PSF 2 PSF 10

. . .

α1 “ 0.004875

α2 “ 0.0051652

α1 “ 0.0050723

α2 “ 0.0052133

α1 “ 0.013944

α2 “ 0.012877

Figure 5.13.: Point spread functions of the multiframe model problem for experiments
using the APEX Method. α1 and α2 increase from PSF 1 to PSF 10. The
parameters are random values between 0.0048 and 0.0148

The error plot illustrated in Figure 5.16 shows relative image and PSF errors for apex
values between 0 and 10. Though the image error is minimal at around A “ 2.5,
the deblurred image shows severe artifacts. Also for A “ 4.5 where the PSF error
roughly attains its minimum, the reconstruction still exhibits perturbations along the
satellite’s borders. A transition between a perturbed and a smoothed image can be
observed at around A “ 6.5.

In Figure 5.17, we compare true and approximated point spread functions for A “ 4.5
and A “ 6.5. The corresponding deblurred images are illustrated in Figure 5.18.

Experiments With Added Noise Furthermore, we examine the reconstruction of
point spread function and true image for a data set with 1% Gaussian white noise
added to the blurred images B1, . . . ,B10. As above, Figure 5.19 indicates horizontal
and vertical rays through the center of log |B̂1|. One observes that the intervals for
which the plots lie above noise level, in particular r´23, 23s and r´27, 27s, are much
smaller than for the noise-free case.

The Matlab GUI in Figure 5.20 shows how only a fraction of both plots is used to
reconstruct the point spread function. For an apex value A above 5, the approx-
imating curve fpxq “ ´αx2 ´ A becomes a horizontal line leading to impractical
reconstructions.

Apex value A “ 3 yields the best results, which is supported by the error plots in
Figure 5.21. Figure 5.22 shows the reconstructed PSF and compares it to the true
PSF. We use the PSF approximation to compute a reconstruction of the true image
illustrated in Figure 5.23.
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In conclusion, we can see that image deblurring using the APEX method can also work
well if the blurry images are perturbed by a certain amount of noise.

Computing Time and Comments As examined above in Section 5.1 presenting ex-
periments and results using the Gauss-Newton method, the Givens-rotation step can
be computed in a fraction of a second for an image of size 256ˆ 256. User-interaction
is required by choosing an appropriate interval above noise level regarding the plots
in Figure 5.14 and 5.19. Furthermore, the Matlab GUI involves a certain amount
of interactivity. Each curve fit and the subsequent deblurring are computed instan-
taneously. However, trying to find the perfect apex value can be difficult and time-
consuming.

73



5. Experiments and Results
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Figure 5.14.: Blurred image of frame 1 and corresponding horizontal and vertical rays
through its logarithmized Fourier transform.

Figure 5.15.: Matlab GUI
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Figure 5.16.: Relative error for reconstructed PSF and corresponding image for different
apex values.

Approximated PSF True PSF

A “ 4.5
EP “ 0.0083586

A “ 6.5
EP “ 0.06685

α1 “ 0.00499206

α2 “ 0.0044308

α1 “ 0.0052388

α2 “ 0.0047244

α1 “ 0.004875

α2 “ 0.0051652

Figure 5.17.: PSFs approximated using APEX Method with apex values A “ 4.5 and
A “ 6.5, respectively.
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Blurred Image B̃1

EX “ 1.5784
True Image X

Deblurred Image

A “ 4.5
EX “ 0.26745

Deblurred Image

A “ 6.5
EX “ 0.28288

Figure 5.18.: Reconstructed images using PSFs approximated with APEX method for
deblurring. The corresponding PSFs are illustrated in Figure 5.17.
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Figure 5.19.: Blurred image of frame 1 and corresponding horizontal and vertical rays
through its logarithmized Fourier transform (Noise).

Figure 5.20.: Matlab GUI (Added Noise)
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Figure 5.21.: Relative error for reconstructed PSF and corresponding image for different
apex values (Noise).
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A “ 3
EP “ 0.053741

α1 “ 0.0047406
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α2 “ 0.0051652

Figure 5.22.: PSFs approximated using APEX Method with apex values A “ 3 (Noise).
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Blurred Image B̃1

EX “ 1.5784
True Image X

Deblurred Image

A “ 3
EX “ 0.29773

Figure 5.23.: Reconstructed images using PSFs approximated with APEX method for
deblurring. The corresponding PSFs are illustrated in Figure 5.22.
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6. Summary, Conclusion, and Outlook

This work has reviewed efficient direct and iterative approaches solving the blind de-
convolution problem, transferred these concepts to the multiframe blind deconvolution
problem, and examined and developed methods simplifying the multiframe blind de-
convolution problem to significantly accelerate computations.

For blind deconvolution, we have presented the iterative alternating least squares and
Gauss-Newton methods, as well as a direct strategy using the APEX method to es-
timate the point spread function. In each case, the Tikhonov method with GCV
provides a regularized solution, and we impose periodic boundary conditions allowing
fast computations in the Fourier domain.

The Gauss-Newton method requires an initial guess for the parameters defining the
point spread function, which is difficult to figure out in practice. Here, we described
the algorithm in the case of Gaussian PSFs with parameters s1, s2 and ρ, but it can be
similarly applied to problems where the blur is caused by other PSFs. However, it is
necessary to know which parameters the point spread function depends on and how.

Unfortunately, applying the APEX method involves limitations regarding the PSF. For
Gaussian PSFs, a special case of Lévy stable PSFs, we derived a method to reconstruct
doubly symmetric PSFs, but in general, only rotationally symmetric Lévy stable PSFs
can be obtained. Furthermore, the APEX method requires user interaction, which
takes up additional time. On the other hand, regarding a test problem where all these
requirements are met, we receive very good results and computation times are short.
Another advantage is, that the only input taken by the algorithm is the blurred image.
An initial guess for point spread function or true image is not necessary.

Considering multiframe blind deconvolution instead of blind deconvolution, the un-
derdeterminedness of the problem can be slightly decreased. We solved the problem
using Gauss-Newton with Tikhonov regularization. The problem size increases with
the number of frames, and so does the computation time. Likewise, the more frames
a problem counts, the less advisable it is to approximate every frame’s PSF with
the APEX method, since manually selecting an apex value for each frame is a time-
consuming procedure.

Given that a control frame exists, the multiframe blind deconvolution problem can
be simplified to compact multiframe blind deconvolution, depending only on the PSF
of the control frame. We solved the compact problem using Gauss-Newton as well
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as APEX. Gauss-Newton iterations are performed significantly faster than before, but
time still increases with the number of frames. The APEX method is also a good choice,
since only one PSF has to be estimated. Applying Givens rotations, we reduced the
compact multiframe blind deconvolution to a singleframe problem. Due to decreased
problem size, computations could be further accelerated. All experiments with artificial
data yielded satisfactory results.

The presented approaches show several areas for future development. First, user-
friendliness and speed of the APEX method can be improved by automating the inter-
active parameter choices. Moreover, the transfer from multiframe to compact multi-
frame blind deconvolution shows possibilities for further development. In cases where
no single control frame can be detected, we might consider a combination of frames.
In addition, it would be interesting to substitute our version of the Tikhonov method
for another regularized solving method that does not explicitly solve normal equations
to improve stability of numerical computations. Furthermore, we assumed the image
to be periodically repeated beyond its border, which leads to artifacts in cases where
objects or patterns close to the borders are not similar to opposite borders. This,
however, does not often occur in real image data. Reflexive boundary conditions, on
the other hand, are better suited for images with objects near the boundaries. Hence,
adapting the methods to be used with reflexive boundary conditions instead of peri-
odic boundary conditions and comparing the results might also be worth investigating.
Finally, it would be interesting to run tests with real image data.
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A.1. List of Symbols and Abbreviations

Image Symbols

PSF Point spread function

B Blurred image

X True image

P PSF

s1, s2, ρ P R Gaussian PSF parameters (width and orientation)

pk, lq Center of PSF

y Column vector containing parameters of PSF, e.g. s1, s2, and ρ

B,X,P P Rmˆn` Array representation of B, X, and P

B̂, X̂, P̂ P Cmˆn Fourier transform of B, X, and P

b,x,p P Rmnˆ1
` Vector representation of B,X, and P

b̂, x̂, p̂ P Cmnˆ1 Vector representation of B̂, X̂, P̂

Pð P rotated by 180˝

Pcirc Circshifted array P

XBC Expanded X, e.g. with zeros, circularly or reflexive

bexact P Rmnˆ1
` Blurred image without noise in vector representation

e P Rmnˆ1 Error, noise
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Linear Algebra Symbols

1N N ˆ 1 vector of ones

IN N ˆN identity matrix

vi Element i of vector v

mij Element pi, jq of matrix M

mi Column i of matrix M

Matrix and Array Operations

vecp¨q Vector representation (stacking columns of array)

diagp¨q If input is matrix: diagonal of a matrix; if input is vector:
diagonal matrix with vector on diagonal

trp¨q Trace of a matrix

M˚ Complex conjugate transpose of a matrix M

M` Pseudoinverse of a matrix

M1 bM2 Kronecker product of two matrices

Special Matrices

BTTB Block Toeplitz matrix with Toeplitz blocks

BTHB Block Toeplitz matrix with Hankel blocks

BHTB Block Hankel matrix with Toeplitz blocks

BHHB Block Hankel matrix with Hankel blocks

BCCB Block circulant matrix with circulant blocks

A P Rmnˆmn` PSF matrix
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T N ˆN Toeplitz matrix

C N ˆN circulant matrix

H N ˆN Hankel matrix

ΛC Diagonal matrix of eigenvalues λi, i “ 1, . . . , N of C

Λ,ΛA Diagonal matrix of eigenvalues λi, i “ 1, . . . ,mn of A

U Matrix containing left singular vectors ui of A

V Matrix containing right singular vectors vi of A

Σ Diagonal matrix of singular values σi, i “ 1, . . . ,mn of A

D P Cmnˆmn Diagonal matrix

Fourier and Cosine Transform

DFT Discrete Fourier transform

FFT Fast Fourier Transform

DCT Discrete Cosine Transform

FN ,F˚N 1D DFT matrix and inverse DFT matrix of size N ˆN

F “ Fn b Fm,F˚ 2D DFT matrix and inverse DFT matrix of size mnˆmn

F Continuous Fourier transform

K DCT matrix

Regularization

GCV Generalized cross-validation

ε Regularization parameter

Φ Diagonal matrix where φii “ σ2
i

σ2
i`ε
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APEX Method

P̂α,β Fourier transform of Lévy stable PSF (α ą 0, 0 ă β ď 1)

X̂γ , B̂γ Normalized Fourier transform of X,B

logpX̂γq, logpB̂γq Element-wise logarithm of X̂γ , B̂γ

ξ P N1ˆn Vector containing the equidistant values between
´rn2 s` 1, . . . , tn2 u

η P N1ˆm Vector containing the equidistant values between
´rm2 s` 1, . . . , tm2 u

Ξ P Nnˆm Matrix where every row is vector ξ

H P Nnˆm Matrix where every column is vector η

A ,A Apex value, and vector containing apex value at every position

Iterative Methods

ALS Alternating least squares

r Residual

Jr Jacobian matrix of r

d Descent direction

a Step length

Givens Rotation

G Givens rotation

Q Product of Givens rotations G1, . . . ,Gn

b̃ Givens rotated vector b
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Other Symbols and Abbreviations

CCD Charge-coupled device

LBT Large Binocular Telescope

MFBD Multiframe blind deconvolution

CMF Compact multiframe blind deconvolution

CSF Compact single frame blind deconvolution

Ex Relative error of true image X

Ep Relative error of true PSF P
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A.2. GUI for the APEX Method

A “ 2.5

A “ 3.5

A “ 4.5
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A “ 5.5

A “ 6.5

A “ 7.5

90



Bibliography

[1] H.M. Adorf. Restoring HST faint object camera images. In European Southern
Observatory Conference and Workshop Proceedings, volume 38, pages 151–160,
1991.

[2] M. Bertero and P. Boccacci. Image restoration methods for the large binocular
telescope (LBT). Astronomy and Astrophysics Supplement Series, 147(2):323–333,
2000.

[3] D.S.C. Biggs. Accelerated Iterative Blind Deconvolution. PhD thesis, University
of Auckland, 1998.

[4] D. Bindel, J. Demmel, W. Kahan, and O. Marques. On computing Givens ro-
tations reliably and efficiently. ACM Transactions on Mathematical Software
(TOMS), 28(2):206–238, 2002.

[5] M.B. Cannell, A. McMorland, and C. Soeller. Image enhancement by decon-
volution. In J.P. Pawley, editor, Handbook of Biological Confocal Microscopy,
chapter 25, pages 488–500. Springer, 2006.

[6] A.S. Carasso. Direct blind deconvolution. SIAM Journal on Applied Mathematics,
61(6):1980–2007, 2001.

[7] R.H. Chan and X.Q. Jin. An Introduction to Iterative Toeplitz Solvers. Funda-
mentals of Algorithms. SIAM, Society for Industrial and Applied Mathematics,
2007.

[8] J. Chung, S. Knepper, and J.G. Nagy. Large-scale inverse problems in imaging.
In O. Scherzer, editor, Handbook of Mathematical Methods in Imaging, chapter 2,
pages 43–86. Springer, 2010.

[9] G. Cristóbal, P. Schelkens, and H. Thienpont. Optical and Digital Image Process-
ing: Fundamentals and Applications. Wiley, 2011.

[10] P.J. Davis. Circulant Matrices. Chelsea Publishing Community, 1994.

[11] H.W. Engl, M. Hanke, and A. Neubauer. Regularization of Inverse Problems.
Mathematics and Its Applications. Springer, 1996.

91



Bibliography

[12] G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins University
Press, third edition, 1996.

[13] G.H. Golub, M. Heath, and G. Wahba. Generalized cross-validation as a method
for choosing a good ridge parameter. Technometrics, 21(2):215–223, 1979.

[14] R.C. González and R.E. Woods. Digital Image Processing. Prentice Hall, 2008.

[15] M. Hanke-Bourgeois. Grundlagen der numerischen Mathematik und des wis-
senschaftlichen Rechnens. Vieweg + Teubner, 2006.

[16] P.C. Hansen, J.G. Nagy, and D.P. O’Leary. Deblurring Images: Matrices, Spectra,
and Filtering. Fundamentals of Algorithms. SIAM, Society for Industrial and
Applied Mathematics, 2006.

[17] T.J. Holmes, D.S.C. Biggs, and A. Abu-Tarif. Blind deconvolution. In J.P. Pawley,
editor, Handbook of Biological Confocal Microscopy, chapter 24, pages 468–487.
Springer, 2006.

[18] D.A. Hope and S.M. Jefferies. Compact multi-frame blind deconvolution. Optics
Letters, 36(6):867–869, 2011.

[19] R.A. Horn and C.R. Johnson. Matrix Analysis. Cambridge University Press, 1990.

[20] S. Inoué. Foundations of confocal scanned imaging in light microscopy. In J.P.
Pawley, editor, Handbook of Biological Confocal Microscopy, chapter 1, pages 1–
19. Springer, 2006.

[21] M. Jiang, G. Wang, M.W. Skinner, J.T. Rubinstein, and M.W. Vannier. Blind
deblurring of spiral CT images. IEEE Transactions on Medical Imaging, 22(7):
837–845, 2003.

[22] D. Kundur and D. Hatzinakos. Blind image deconvolution. IEEE Signal Process-
ing Magazine, 13(3):43–64, 1996.

[23] A. Mertins. Signal Analysis: Wavelets, Filter Banks, Time-Frequency Transforms,
and Applications. Wiley, 1999.

[24] M.K. Ng. Iterative Methods for Toeplitz Systems. Numerical Mathematics and
Scientific Computation. Oxford University Press, 2004.

[25] J. Nocedal and S.J. Wright. Numerical Optimization. Springer, 2006.

[26] P. Pankajakshan. Blind Deconvolution for Confocal Laser Scanning Microscopy.
PhD thesis, University of Wisconsin, 2010.

92



Bibliography

[27] P. Pankajakshan, B. Zhang, L. Blanc-Féraud, Z. Kam, J.C. Olivo-Marin, and
J. Zerubia. Blind deconvolution for diffraction-limited fluorescence microscopy.
In 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano
to Macro, pages 740–743. IEEE, 2008.

[28] JS Ploem and HJ Tanke. Introduction to Fluorescence Microscopy. Oxford Uni-
versity Press, 1987.

[29] V. Prasad, D. Semwogerere, and E.R. Weeks. Confocal microscopy of colloids.
Journal of Physics: Condensed Matter, 19:113102–113126, 2007.

[30] T.J. Schulz. Multiframe blind deconvolution of astronomical images. Journal of
the Optical Society of America, 10(5):1064–1073, 1993.

[31] P.J. Shaw. Comparison of widefield/deconvolution and confocal microscopy for
three-dimensional imaging. In J.P. Pawley, editor, Handbook of Biological Confocal
Microscopy, chapter 23, pages 453–467. Springer, 2006.

[32] G.W. Stewart. Matrix Algorithms. SIAM, Society for Industrial and Applied
Mathematics, 1998.

[33] C.R. Vogel. Computational Methods for Inverse Problems. Frontiers in Applied
Mathematics. SIAM, Society for Industrial and Applied Mathematics, 2002.

[34] M. Wax and T. Kailath. Efficient inversion of Toeplitz-block Toeplitz matrix.
IEEE Transactions on Acoustics, Speech and Signal Processing, 31(5):1218–1221,
1983.

[35] A.R. Webb. Introduction to Biomedical Imaging. IEEE Press Series in Biomedical
Engineering. Wiley, 2003.

93


	1 Introduction
	1.1 The Importance of Deblurring Images
	1.2 How This Work Addresses the Problem

	2 Fundamentals of Image Deblurring
	2.1 A Mathematical Model
	2.2 The Point Spread Function
	2.3 Matrix-Vector Representation
	2.3.1 Zero Boundary Conditions
	2.3.2 Periodic Boundary Conditions
	2.3.3 Excursus: Analysis of the Gaussian PSF
	2.3.4 Reflexive Boundary Conditions

	2.4 Solving the Deblurring Problem
	2.4.1 Noise and Errors
	2.4.2 Tikhonov Regularization Using Generalized Cross-Validation
	2.4.3 The Method of Normal Equations

	2.5 Multiframe Image Deblurring
	2.6 Blind Image Deblurring

	3 Approaches for Blind Deconvolution
	3.1 Separate Computation of PSF and Reconstructed Image
	3.1.1 APEX Method

	3.2 Simultaneous Computation of PSF and Reconstructed image
	3.2.1 Alternating Least Squares Method
	3.2.2 Gauss-Newton Method


	4 Multiframe Blind Deconvolution
	4.1 Compact Multiframe Blind Deconvolution
	4.2 Reduction to Single Frame Blind Deconvolution
	4.2.1 Givens Rotation
	4.2.2 The Compact Single Frame Blind Deconvolution Problem


	5 Experiments and Results
	5.1 Iterative Approach: Gauss-Newton Method
	5.1.1 Additional Results

	5.2 Direct Approach: APEX Method

	6 Summary, Conclusion, and Outlook
	A Appendix
	A.1 List of Symbols and Abbreviations
	A.2 GUI for the APEX Method

	Bibliography

