
....

Master’s Thesis

.

Spatially Variant Deconvolution

.

for Low Dose X-Ray Imaging

.

Johannes Lotz

.

Advisors

Prof. Dr. Jan Modersitzki
Institute of Mathematics and Image Computing
University of Lübeck

Prof. Dr. James G. Nagy
Department of Mathematics and Computer Science
Emory University

.

November 2011

...





MASTER’S THESIS

Spatially Variant Deconvolution
in Low Dose X-Ray Imaging

A Mathematical Model to Improve Image Resolution
in X-Ray Imaging with Thick Scintillators

submied by Johannes Lotz
Advisors Prof. Dr. Jan Modersitzki

Prof. Dr. James G. Nagy

November 2011

Institute of Mathematics and Image Computing
University of Lübeck

and
Department of Mathematics and Computer Science

Emory University





I had the great opportunity to do the research for this work at the Department of
Mathematics and Computer Science of Emory University in Atlanta, Georgia.

I want to thank

James Nagy, Ioannis Sechopoulos,
Jan Modersitzki and Bernd Fischer

for their help and support in writing this thesis and for making my stay in Atlanta
possible.





Abstract

X-ray imaging detectors are indispensable in modern medical diagnos-
tics but since their radiation is potentially harmful, the radiation dose a
patient is exposed to has to be kept as low as possible. One of the two
predominant types of x-ray detectors are indirect detectors. ey con-
tain a scintillator crystal which converts incident x-ray radiation into
light that is detected similarly to a digital photograph. One way to re-
duce the radiation dose required to produce an image in such a detector
is to increase the thickness of the scintillator. However, scaering pro-
cesses inside the scintillators cause the resulting image to be blurred.

e core of this thesis is to model the image recovery in these detectors
as a spatially variant image reconstruction problem where a high num-
ber of discretized point spread functions (PSFs) is used to describe the
image’s blur. We present a method to compute these PSFs based on a
few samples created by Monte Carlo simulations presented in [Badano
and Sempau, 2006] and evaluate the image reconstruction on artificial
data.
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Summary of Used Symbols and
Abbreviations

e following symbols and abbreviations will be used throughout this work. In our nota-
tion, bold lowercase leers are reserved for vectors. Matrices and two dimensional arrays
are printed in bold capital leers and scalars in regular leers.

d1 thickness of the amorphous scintillator layer

d2 thickness of the structured scintillator layer

x true x-ray density, continuous

p point spread function, continuous

b blurred image, continuous

n noise, continuous

s, s, t spatial coordinates

X true x-ray density, 2D array of L×M pixels

N = LM

P point spread function, 2D array

B blurred image, 2D array

N noise, 2D array

x true x-ray density, discrete vector form, x ∈ RN

p point spread function, discrete vector form

b blurred image, discrete vector form

n noise, discrete vector form

A convolution matrix associated with p

U = [u1, ...,uN ]

V = [v1, ...,vN ] unitary matrices of singular value decomposition (SVD)

Σ diagonal matrix of SVD with singular values

σi singular values ofA

Σ−
k "inverse" diagonal matrix of truncated SVD, (Σi,i)i>k = 0
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A−
k "inverted" truncated SVD ofA

xR regularized solution

ri ResidualAxi − b in the i-th step of the CG or gradient descent method

qi search direction of the CG or gradient descent method

Mi masking matrices corresponding to convolution matricesAi

W weight matrix to suppress border artifacts

F Fourier basis matrix

Λi diagonal matrix resulting from Fourier transform ofAi

C preconditioning matrix approximatingA

QE quantum efficiency

PSF point spread function
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1 Introduction

Beginning right aer the discovery of x-ray radiation in the late 19th century, radiography
has become more and more important in medicine during the last centuries [Assmus,
1995; Bernier et al., 2004]. In recent years, digital x-ray imaging has gained popularity
because it reduces the radiation dose for the patient in many cases [Strotzer et al., 1998]
and also makes it possible to offer computer-assisted diagnosis [Miller, 1999].

In medical applications, there are two classes of x-ray imaging devices that are distin-
guished by the way the incident x-ray energy is converted into an image. Direct x-ray
detectors convert incident x-ray photons into electrical charges that are directed to ca-
pacitors associated to image pixels. Indirect detectors on the other hand, contain a scin-
tillating crystal in which incident x-ray photons are converted into light that can then
be detected similarly to photographs in common digital cameras. Which of these two
detector classes should be used, depends on the application [Samei and Flynn, 2003].

While x-ray examinations are essential inmodernmedicine on the one hand, the exposure
to this kind of radiation has to be minimized on the other hand because it is known to also
cause cancer due to its ionizing properties [de González and Darby, 2004]. In current x-
ray detectors, noise in the image is increased if the radiation dose is lowered. To overcome
this trade-off, the performance of the detector has to be increased. One of the performance
metrics of x-ray detectors is the quantum efficiency (QE), which is the ratio of absorbed
to incident x-rays. In order to reduce the radiation dose the imaged patient is exposed to,
it is desirable to achieve a high quantum efficiency.

One of the principal parameters that influence the QE positively is the thickness of the
scintillator. In an ideal detector, all x-rays would be detected at the precise position at
which they enter the scintillator. However, since all detectors have a QE of less than
unity, not all incident x-rays are detected by the system. In addition, due to lateral spread
of light photons and scaering inside the crystal, some x-ray energy is detected at incor-
rect locations resulting in an increased blur in images acquired with thicker scintillators
[Nagarkar et al., 1998].

Approaches to limit the blur in the acquired image include improving the structure or
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1 Introduction

the material of the scintillator crystal. For example, in [Nagarkar et al., 1998] the authors
presented a method to build columnar structured scintillator crystals that limit lateral
spread and thus limit the blur in the acquired image. However, these approaches cannot
completely prevent the blur.

Recent progress in simulation of the scaering processes in the scintillator have been
made [Badano, 1999; Badano and Kanicki, 2001; Badano and Sempau, 2006] with the help
of Monte Carlo techniques. eir results allow a mathematical modeling of the blur in-
troduced in the image.

In this work we present a novel method to reduce the blur introduced in the acquired
image. We model the image degradation caused by the scintillator as a spatially variant
image restoration problem and introduce an interpolation framework to generalize the
computational expensive physical simulations of the scaering process. At the time of
this writing we are not aware of published computational approaches to reduce the blur
in the image acquired by thick scintillators.

It was a great pleasure to do the research for this work in Spring and Summer of 2011 at
Emory University together with Jim Nagy and Ioannis Sechopoulos. At designated points
in this work, material is taken from an article that still is in preparation.

is work is organized as follows. In Chapter 2 the fundamentals x-ray imaging are dis-
cussed. Furthermore, the physical background of x-ray imaging and the simulation of the
image degradation by scaering are outlined.

Chapter 3 deals with the mathematical forward model that describes the blurring process.
e chapter starts with an introduction into the simplified spatial invariant and the ex-
tended spatial variant model for image blur. is is the basis for an interpolation model
developed in this work, that is described in Section 3.2 and 3.3. In the following Section 3.4
we describe methods to accelerate the necessary computations.

Chapter 4 describes the details to apply the forward model to artificial x-ray imaging
data. e performance of the image restoration with the calculated PSFs from our model
is evaluated in Chapter 5. Finally, in Chapter 6 we draw the conclusions of this work and
give an outlook to future research.
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2 Digital X-Ray Imaging and Its
Simulation

In this chapter we discuss the fundamentals of the image restoration problem in digital
radiography. Aer describing the composition of an x-ray detection device, Section 2.1
follows the x-ray photons through the x-ray device from the source to the detector and
summarizes the interactions taking place on this way. e method used to simulate these
processes, especially the simulation of the interactions in the x-ray detector, is summa-
rized in Section 2.2.

2.1 Classical X-Ray Generation and Detection

is heavily simplified overview of the physics in x-ray imaging is mainly taken from the
books [Webb and Kagadis, 2003] and [Morneburg, 2010].

Radiography is a very popular tool in medical imaging, astronomy and crystallography
[Nagarkar et al., 1998]. A planar digital x-ray imaging device as it is used in manymedical
applications, consists of a radiation source that emits x-ray photons and a photodetector
that generates an image from incident x-ray photons. In the case of indirect detectors, a
scintillator first converts x-ray photons into light that is then detected by a photodetector.
A simplified layout of the image acquisition process is shown in Figure 2.1. If an object is
placed between source and detector, a part of the x-ray photons is absorbed. e aenu-
ation of the incident x-ray energy varies for different types of material and is stronger for
bones and weaker for so tissue, such that a contrast can be observed in the projection
image generated in the detector.

X-Ray source e design of the x-ray source is common in most x-ray devices. It con-
sists of an evacuated vessel that contains a negatively charged cathode and a positively
charged anode. A potential difference is applied in between the two components. e
cathode, consisting of a spirally coiled wire, is heated up to a temperature above 2000 ℃
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2 Digital X-Ray Imaging and Its Simulation

Figure 2.1: Sketch of the x-ray imaging process. X-ray photons are emied from the
detector and partly aenuated in the patient. e scintillator transforms the incident
x-ray photons into light that can be detected by a photodetector similar to those used
in digital photo cameras.

by an electric current flowing through it. At this temperature, few electrons move away
from their nuclei and are dragged towards the anode due to the potential difference.

On its way to the anode, the electrons are further accelerated such that they obtain a high
kinetic energy. Eventually, the electrons hit the anode and a small portion of their kinetic
energy is converted into x-rays. is is due to two processes, referred to as bremsstrahlung
radiation and characteristic radiation. e former occurs in interaction of the accelerated
electron with nuclei, the later in interaction with electrons in the anode.

Bremsstrahlung radiation Bremsstrahlung radiation is generated if an electron ap-
proaches a nucleus and is deflected from its path by the nucleus’ positive charge. e
electron loses parts of its energy which is reemied in form of an x-ray. Since the elec-
tron does not lose all its energy at once, it can emit several x-rays of different energies
while penetrating the outer layer of the anode. e x-ray with the highest possible energy
is generated if all of the electron’s kinetic energy is transformed into one x-ray at once.

Characteristic Radiation If an accelerated electron collides with an electron located
in one of the inner shells of an anode atom, the inner electron can be ejected from the
atom. In this case, the hole in the electron shell resulting from the missing electron is
filled by an electron from a higher shell that loses potential energy in form of an x-ray,
this is called characteristic radiation. In contrast to bremsstrahlung radiation that emits
a continuous spectrum of x-ray energies, characteristic radiation only generates x-rays
of specific discrete energies corresponding to the difference of potential energy between
two electron shells. erefore, the energy paern of this kind of radiation is characteristic
for the anode’s material.

e x-rays generated in the anode are generated in all directions, but all x-rays except for
those emied in the direction of the x-ray tube output window are absorbed by the x-ray
tube’s shielding. e output window is positioned so that the x-rays that travel through it
are emied towards a detector. If an object is inserted into the path between emier and
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2.1 Classical X-Ray Generation and Detection

detector, the x-ray photon can either be scaered, absorbed or not interact with the object
at all. e contrast in the image that is generated in the detector is due to the difference
in the amount of x-ray photons that are absorbed or scaered by the different tissues in
the body and hence do not reach the detector.

2.1.1 Scaering and Absorption

e two ways of scaering of the x-ray photon that occur in x-ray imaging are coherent
(or Rayleigh) scaering and incoherent or Compton scaering. Coherent scaering is a
non-ionizing interaction with the object’s electrons. e kinetic energy of an x-ray pho-
ton is completely absorbed and converted into an oscillation of an electron that reradiates
the same amount of energy in form of an x-ray. e new x-ray photon is emied into
a random direction. Compton scaering occurs if an x-ray photon hits an electron that
absorbs a portion of the photons energy and is ejected. During the collision, the x-ray
photon’s path and its energy is altered.

If the x-ray photon hits a tightly bound electron in the object, a large amount or all of
its kinetic energy is absorbed and its remaining energy is likely to be lost in subsequent
collisions before leaving the object. In this case, the x-ray photon is absorbed. A small
amount of characteristic x-ray radiation is generated in this process, but is also absorbed
in the object due to its low energy.

ose x-ray photons that are neither absorbed nor scaered leave the object without any
interaction and hit the detector. e two most important classes of detectors are those
with direct conversion on the one hand, where x-ray photons are converted directly into
electric charges and those with indirect conversion on the other hand [Chotas et al., 1999].
We focus on the second class, in which striking x-ray photons are first converted into visi-
ble light which can be detected by a thin-film-transistor (TFT) or a charge-coupled device
(CCD) [Chotas et al., 1999]. Results from [Samei and Flynn, 2003] show that radiogra-
phy devices with indirect conversion have a high efficiency, especially in clinical seings
where the detected image has low contrast and is degraded by noise.

2.1.2 Crystal Scintillators

e materials used in indirect detectors can emit a small quantity of light when they are
hit by some kind of radiation. is property is called luminescence and can be observed
in some organic crystals and liquids, but also in other inorganic materials such as gases,
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2 Digital X-Ray Imaging and Its Simulation

plastics and glasses [Leo, 1994]. Inmanymodern x-ray detectors a doped crystal of cesium
iodide (CsI) is used. In this work, we consider a thallium-doped cesium iodide scintillator.
A tiny flash of light is emied if an x-ray photon hits an electron in the scintillator and
transfers enough energy to push it to a higher energy level. During the subsequent inverse
transition back to a lower energy level the electron reemits parts of its energy in form
of visible light that can be detected using a photomultiplier. If the reemission occurs
instantly, this property is also referred to as fluorescence and more details can be found
in [Leo, 1994, p. 157].

Scintillators, especially in the crystalline form that we consider, allow the use of light
sensors very similar to the ones used in today’s digital photo cameras to measure incident
x-rays and their energy.

A disadvantage of crystal scintillators is the limiting trade-off between spatial resolution
and radiation stopping power [Nagarkar et al., 1998]. An x-ray photon entering the scin-
tillator can be scaered from its path by the same x-ray-maer interactions described
above. In addition, the emied light photon is also subject to scaering once it has been
generated inside the scintillator. For this reason, a thick crystal results in a loss of spatial
resolution but in a gain in QE. e loss of spatial resolution can be described as a blur in
the resulting image. To overcome this limitation, Nagarkar et al. [Nagarkar et al., 1998]
proposed a columnar crystal that limits the scaering processes to a narrow region. A
simplified scheme of the x-ray detector is shown in in Figure 2.2.

An important observation for the model that will be developed later in this work is that
the characteristics of the scaering depends on the angle in which the x-ray photons
hit the scintillator. e le photon beam in Figure 2.2 scaers in average symmetrically
around its center which does not hold for the right photon beam. Figure 2.3 illustrates
the difference in the images resulting from the two x-ray photon beams together with
corresponding profile plots.

Although the columnar structure reduces the scaering in the crystal, it cannot com-
pletely do away with the blur in the image and a significant amount of scaering is still
present. is can also be observed in the images in Figure 2.3 that would only show a
very narrow spot if no scaering would occur in the scintillator. e blur occurring in
the acquired images limits the thickness of the crystal and therefore also limits the x-ray
stopping power in today’s x-ray detectors. Table 2.1 shows the increase of QE in thicker
scintillators for two different x-ray energies, measured in kVp describing the peak en-
ergy of the x-ray spectrum. Scintillation based x-ray detectors as they are currently used
for example in digital mammography work with scintillator thicknesses of up to 0.2 mm
[Smith, 2003; Baldelli et al., 2010]. At this thickness, less than 60 % of the x-ray photon
energy that is incident on a the scintillator interacts with it. e remaining 40 % leave the
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2.1 Classical X-Ray Generation and Detection

...
d1
.

d2

.....

x-ray source

..

x-ray photon beam

...

scintillator crystal

...
photodetector

.

Figure 2.2: Schematic model of the x-ray-detector and the scaering of light photons.
e scintillator consists of a structured layer of thickness d2 and an amorphous layer
of thickness d1. Two exemplary x-ray photon beams are shown with the resulting
schematic scaering (doed lines) of the generated light photons.

Figure 2.3: Simulated images and their profile plots resulting from two photon beams
hiing a scintillator of thickness 1.5 mm in different angles. e profile plots in the
second row show the main diagonal of the image. Le: Photon beam hiing the center
of the scintillator perpendicularly. Right: Photon beam hiing the scintillator at a wider
angle.
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2 Digital X-Ray Imaging and Its Simulation

Table 2.1: Estimated quantum efficiency for varying scintillator thickness from 0.2 to 2
mm for the two x-ray energy spectra considered in this work.

CsI ickness (mm) QE at 80kVp QE at 120kVp
0.200 56.4% 37.9%
0.600 88.5% 69.6%
0.800 93.6% 77.3%
1.200 97.8% 86.5%
1.600 99.2% 91.5%
2.000 99.7% 94.4%

scintillator undetected. Depending on the energy spectrum used this percentage can also
be worse. At an energy spectrum of 120kVp, less than 40% of the x-ray photons that the
patient has been exposed to can be detected. Fortunately, this number can be increased to
more than 90% if thicker scintillators could be used in clinical seings. In order to lower
the radiation dose for a patient, thick scintillator crystals with high stopping power could
be used if we were able to avoid the blur in the image.

2.2 Simulation of Light and X-Ray Scaering

As a first step, we simulate the processes in the scintillator crystal with a tool called
MANTIS proposed by Badano and Sempau in [Badano and Sempau, 2006]. eir model
combines the Monte Carlo approaches of two soware packages called Penelope [Salvat,
Fernández-Varea, Acosta, and Sempau, 2003] and Detect-II [Badano and Kanicki, 2001;
Badano, 1999]. Penelope is used to model the interactions of electrons and x-rays with
maer. is includes the effects of x-rays and electrons on maer described in the previ-
ous chapter as well as other interactions out of scope of this work. Detect-II models the
optical transport inside the crystal but also at the boundaries between the columns and
towards the photodetector.

e processes inside the scintillator cannot be modeled analytically but only on a statis-
tical basis. is means that for, say, a collision of two particles, e.g. an x-ray photon and
an electron, the outcome depends on parameters that are not explicitly known but that
follow a certain probability distribution. To obtain a reliable approximation of the result
of a series of such collisions, the series has to be simulated repeatedly while changing
the probabilistic parameters randomly, according to its probability distribution. is is
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2.2 Simulation of Light and X-Ray Scaering

done in a Monte Carlo experiment. Using random numbers, a Monte Carlo experiment
samples outcomes for each of the processes involved in the particle transport in the scin-
tillator according to their probabilities. If a sufficiently high number of these samples is
computed, the combined outcomes constitute a good estimate for the location and energy
of the light photons leaving the scintillator. As this work deals mostly with the images
resulting from such simulations, the reader is referred to the original paper [Badano and
Sempau, 2006] or to [Binder and Heermann, 2010] for a discussion of these models.
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3 Mathematical Methods for Image
Restoration

In this chapter, we extend the previously described simulations to model the blurring in-
troduced in the scintillator as an image restoration problem. e first section explains
the basic model to describe the image restoration problem and introduces different reg-
ularization methods to deal with noisy images. In the previous chapter we have shown
that the scaering inside the scintillator depends on the position at which it is hit by
incident x-ray photons. In Section 3.2 we extend the image restoration model to take
this dependency into account. To compute this extended model, a higher number of PSFs
than available from the Monte Carlo simulations with MANTIS are needed. Section 3.3
presents a new method to calculate these PSFs based on few simulated samples. In Sec-
tion 3.4 methods to accelerate the computation by taking advantage of the structure of
the mathematical model are discussed.

3.1 Image Acquisition as a Fredholm Integral Equation

We define the function x : R2 → R as a model for the underlying but but inaccessible
true x-ray intensity that occurs just before the x-rays reach the scintillator. is is the
image that would occur at the upper red frame in Figure 2.2. Furthermore, we define
p : R2 × R2 → R as the point spread function (PSF) that is used to define the blurring
operation. In some cases it can be given analytically by a specific function, but in most
cases it has to be determined experimentally or by simulations. e PSF is the response
of a system to a point source, an input image that consists of only one very bright and
narrow point. is kind of input, for example, can be achieved by an extremely narrow
photon beam, as the ones mentioned in Section 2.1.2. e result of the blurring process is
contaminated by some kind of additive noise that is defined as n : R2 → R. e resulting
light photon density is defined as the function b : R2 → R. is is the signal that is
acquired at the location of the lower red frame in Figure 2.2 by a photodetector. Given
this data, the aim of this work is to reconstruct the true image modeled by x. Following
[Nagy et al., 1998] we model the blurring process by the Fredholm integral equation of

11



3 Mathematical Methods for Image Restoration

thefirst kind ∫
Ω
p(s, t)x(t) dt+ n(s) = b(s). (3.1)

Here, s ∈ R2 are spatial coordinates and Ω is the region containing the area of the detec-
tor, thus the region of support of b.

Fredholm integral equations of the first kind are common in image processing and many
other fields, see for example [Hansen, 1992]. ey consist of a kernel p and an unknown
function x in the integral whose boundaries do not depend on s. e right hand side b is
oen a result of a measurement.

One of the challenges in solving the integral in Equation (3.1) is the spatial variance, that
is discussed in detail in Section 3.2. e main point is that the PSF p depends not only
on the position in the image but also on the position of the center of the corresponding
point source.

However, to beer discuss the discretization and regularization in the following pages,
spatial variance can be neglected. We first consider the simplified spatially invariant
case, where the same point spread function is applied to all locations of the ground truth
image, such that

p(s, t) = p(s− t).

Since we are dealing with digitally recorded images and discrete pixel values, we dis-
cretize the integral equation. e photodetector basically consists of very small cells that
correspond to the pixels in the image it produces such that the cell Cl,m corresponds to the
(l,m)-th pixel. We denote the edge length of each cell with δ and illustrate the discretiza-
tion in Figure 3.1. In each of these cells, the incident light photons are summed up during
the image detection. Because the location closest to all counted incident photons of each
cell is its center, we use a cell centered grid where each cell in the grid corresponds to a
cell in the detector.

We denote a vertical, vector-like representation of this array with a small leer b and a
two dimensional representation with capital leerB. Each cell Cl,m of this array collects
the energy of all incident photons inside its boundary. erefore, the l,m-th entry of the
discretized signal arrayB(l,m) corresponds to the integral

B(l,m) = b(l +mL) =

∫
Cl,m

b(s) ds, l = 1, ..., L, m = 1, ...,M

over the domain of the cell Cl,m of the continuous signal b(s).

12



3.1 Image Acquisition as a Fredholm Integral Equation

....
s(2)

.

s(1)

.

Cl,m

..

(l − 1
2 )δ

.
(m− 1

2 )δ
.

(m+ 1
2 )δ

.

δ

.

δ

Figure 3.1: Cell centered grid corresponding to the cells in the photodetector.
Each cell Cl,m (in gray) of dimension δ × δ is centered around the coordinates(
(l − 1

2)δ, (m− 1
2)δ

)
.

We define the two-dimensional arrays

X ∈ RL×M as the discretized x-ray density, the model for the true image,

P ∈ RL×M as the discretized PSF,

B ∈ RL×M as the discretized photon density, the blurred image and

N ∈ RL×M as noise.

Note that we use matrix notation to beer describe the data stored in these arrays but that
these arrays do not necessarily have any operator properties. WithN = LM the vertical
arrays can be represented as vectors x,p,b,n ∈ RN analog to the two dimensional
arrays above.

3.1.1 Discrete Convolution

e discretized blurring operation can be wrien as a discrete convolution. To introduce
the convolution we consider the one dimensional case with discrete functions xc, pc :
Z → R that represent the arrays x and p but have additional information about the
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3 Mathematical Methods for Image Restoration

entries with indices l < 1 or l > N that are outside the boundaries of the arrays. e
discrete function bc : Z → R representing b is the result of the discrete convolution

bc = pc ∗ xc with

bc(l) =
inf∑

k=− inf

pc(l − k)xc(k) (3.2)

[Mertins, 1996]. We apply the convolution on the data stored in arrays x and p. Assump-
tions for data outside the boundaries are called boundary conditions and their choice
depends on the data that they are applied to.

Two possible choices are zero boundary conditions and circular boundary conditions.
Zero boundary conditions means that all values outside the boundary are assumed to be
zero whereas with circular boundary conditions the array is "wrapped around" such that
its last entry is followed directly by its first entry.

Figure 3.2 shows an illustration of the discrete convolution with zero boundary condi-
tions. e array p is flipped and shied above x, beginning with one overlapping entry.
To compute the first entry of b, the values of the overlapping entries are multiplied. Sub-
sequently, the shi is increased by one. Each pair of overlapping entries is multiplied and
all the products are summed up to obtain the next value of b.

Each value of b is a linear combination of the elements of x weighted by entries of p.
erefore, the convolution can also be wrien as a matrix multiplication of x with a ma-
trix A ∈ RN×N , where each row of A contains a differently shied copy of p. If zero
boundary conditions are assumed, the non-overlapping entries of p are ignored and the
remaining entries ofA are filled with zeros. In the case of circular boundary conditions,
the array p is wrapped around in each row such that all the entries of A are filled. e
matrix in the two dimensional case, its structure and the resulting consequences are dis-
cussed in Section 3.4.

Using the convolution, the discrete blurring process defined by a PSF P of the image X,
represented inA and x can be wrien as

b = Ax+ n.

A certain amount of x-ray radiation will pass the object in most cases such that the de-
tected image bwill have much greater values than the magnitude of the possibly negative
noise n. erefore, it is possible to neglect non-negativity constraints on b or x.

For later reference, we summarize the simplified model of the image blurring process as
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3.1 Image Acquisition as a Fredholm Integral Equation
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Figure 3.2: One dimensional discrete convolution of arrays p and x with zero boundary
conditions resulting in an array b. e array p is flipped and shied subsequently over
x such that the overlap increases. e values of two overlapping entries are multiplied
and added up to obtain a value of b at each step.

follows.

Spatially invariant blur. e acquisition of an image b ∈ RN that is degraded by
spatially invariant blur defined by a matrix A ∈ RN×N is modeled by the linear
system

b = Ax+ n, (3.3)

with unknown noise n.

ere are numerous approaches to solve image restoration problems similar to Equa-
tion (3.3). ese include SVD and Conjugate Gradient type methods [Hansen, 1998] that
are discussed in this chapter but also e.g. SOR based methods [Strakhov and Vorontsov,
2008]. Problems arising from integral equations like (3.1) are ill-posed since the blurring
kernel represented by the PSF has smoothing properties that naturally eliminate edges
and other high frequency components [Hansen, 1998]. e inverse operation of deblur-
ring the image will thus increase the high frequency components present in the blurred
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3 Mathematical Methods for Image Restoration

image. Unfortunately, also high frequency perturbations such as noise and round-off er-
rors as they are inevitable in data acquisition and discretization would be amplified by a
naive inverse operation [Hansen, Nagy, and O'Leary, 2006].

3.1.2 Regularization of the Reconstruction Problem

In order to discuss the problems arising in the reconstruction of images affected by noise,
we first give a numerical example that illustrates the need for regularization and then de-
scribe the singular value decomposition that can be used to analyze the spectral properties
of the image restoration problem.

To stress the importance of regularization, we consider the exemplary system

Ax = b where (3.4)

A =

1 σ2
σ3

 and b =

 1
0
b3

 .

e eigenvalues of A are set to small arbitrary values of σ2 = 0.1 and σ3 = 0.001. e
solution x = [1 0 b3/σ3]

T of the unperturbed system can be computed easily. We now
add a perturbation that can also be seen as noise and obtain1 σ2

σ3

 x̃ =

 1
0
b3

+

0.010.01
0.01


⇒ x̃ =

1 1
σ2

1
σ3

 1
0
b3

+

0.010.01
0.01


=

 1
0

b3/σ3

+

 0.01
0.01/0.1
0.01/0.001

 =

 1
0

b3/σ3

+

0.010.1
10

 . (3.5)

e result of this computation shows that regularization is necessary as the relative error
∥x̂−x∥2
∥x∥2 ≫ 1 is large for small values of b3.

Singular Value Decomposition

Before discussing the actual regularization we analyze the spectral properties of general
matrices using a singular value decomposition as described in [Hansen et al., 2006].
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3.1 Image Acquisition as a Fredholm Integral Equation

A decomposition of a matrixA into factors

A = UTΣV

whereΣ = diag(σ1, ..., σN ), σ1 ≥ σ2 ≥ ... ≥ σN

and U = [u1, ...,uN ] and V = [v1, ...,vN ] ∈ RN×N are orthogonal matrices is defined
as a singular value decomposition (SVD). Such a decomposition can be used to write the
inverse matrixA−1 as

A−1 = VTΣ−1U with Σ−1 = diag(
1

σ1
, ...,

1

σN
).

With this expression, the solution x of the systemAx = b can be wrien as

x = A−1b

= VTΣ−1Ub

=

N∑
i=1

uT
i b

σi
vi (3.6)

As mentioned before, noise is an inevitable factor in digital image detection. In Equa-
tion (3.6) we see that the solution x is composed of vectors vi that are weighted by fac-
tors (uT

i b)/σi. e oscillations in vi tend to increase with increasing i. ey can lead to
amplified noise in the resulting image which of course is unwanted.

Common approaches to regularize the solution of image restoration problems and to re-
duce the influence of noise and numerical errors to the solution include truncated singular
value decomposition (TSVD) [Hansen, 1990] and also iterative approaches such as the CG
method [Hestenes and Stiefel, 1952; Hanke et al., 1993]. Another well known method is
Tikhonov regularization [Tikhonov and Arsenin, 1977] that we will not discuss in this
work.

e idea common to the TSVD method discussed in the next section and also to the other
regularization approaches discussed in Section 3.1.3 is to damp the influence of smaller
singular values. e information in the regularized solution is preserved using the singu-
lar vectors vk, k ≪ N , corresponding to larger singular values.

Truncated SVD

e truncated SVD (TSVD) uses the decomposition ofA into singular vectors to compute
a regularized solution. erefore, the representation of the inverse of A in the SVD in
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3 Mathematical Methods for Image Restoration

Equation (3.6) is modified to obtain a regularized, spectrally truncated "inverse" matrix

A−
k = VTΣ−

k U,

where only the k largest singular values are considered by seing

Σ−
k = diag(

1

σ1
, ...,

1

σk
, 0, .., 0), k < N.

If we calculate an approximation of the true image using the truncated SVD with

xR = A−
k b

= VTΣ−
k Ub

=

k∑
i=1

uT
i b

σi
vi

the high frequency components v∗
ib for i > k corresponding to smaller singular values

ofA are not part of the solution.

With this first regularization technique at hand, we can again consider the example from
the Equations (3.4) - (3.5) and compute a regularized solution with k = 2.

e regularized solution xR then is

xR =

1 1
σ2

0

 1
0
b3

+

0.010.01
0.01


=

10
0

+

0.010.1
0

 (3.7)

Comparing the regularized solution xR with the exact solution x = [1 0 b3/σ3]
T by

computing the relative error er = ∥xR−x∥2
∥x∥2 , we note that the error mainly depends on

b3/σ3. Two cases can be distinguished.

• For b3 ≈ 0 we observe that x ≈ xR. ©
• For b3 ≫ 0 the relative error approaches er → 1 and the regularized solution is a
worse approximation than in the first case. §
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3.1 Image Acquisition as a Fredholm Integral Equation

Discrete Picard Condition

Whether a regularized solution is a good approximation for the true solution can be deter-
mined as follows. In [Hansen, 1990] the discrete Picard condition is introduced and Hansen
shows that if this condition is satisfied, then the regularized solution xR of a noise per-
turbed system approximates the solution of the corresponding unperturbed system.

e discrete Picard condition is satisfied if the coefficients uT
ib on the average

decay faster than the singular values σi which means that the factors (uT
ib)/σi

decay for increasing i.

Again, coming back to the example in Equation (3.7) we note that a singular value de-
composition of A consists of the singular vectors u1 = v1 = e1, u2 = v2 = e2 and
u3 = v3 = e3 such that

A =

1 σ2
σ3

 =

1 1
1

1 σ2
σ3

1 1
1

 = UTΣV. (3.8)

With this decomposition in mind we can check if the two cases for b3 discussed above
satisfy the discrete Picard condition and conclude the numerical example by finding:

• For b3 ≈ 0 the discrete Picard condition is satisfied because σ2 > σ3 = 0.001 >
0 = eT2b = eT3b. In this case we observe that x ≈ xR. ©

• For b3 ≫ 0 the discrete Picard condition is violated because σ2 > σ3 = 0.001 ≪
b3 = eT3b. In this case, the exact solution has a large value in its third component
that cannot be covered by the regularized solution. §

e discrete Picard condition introduces a trade-off between spectral properties in the
image and magnitude of the blur introduced by the PSF. For example for PSFs of Gaus-
sian shape, broader PSFs lead to increased blur and their singular values decay faster than
those of narrower PSFs [Hansen et al., 2006]. is means that the reconstruction of im-
ages containing structures corresponding to higher frequencies is limited if the image is
strongly blurred. In this section, we have seen that if the discrete Picard condition is
satisfied, regularization can improve the solution dramatically.
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3 Mathematical Methods for Image Restoration

3.1.3 Conjugate Gradients Related Methods

Another regularization method that leads essentially to similar results as TSVD, is to
use an iterative solver such as the method of conjugate gradients (CG) or other Krylov
subspace methods and to stop the iteration early [Hanke, 2001]. is is particularly useful
if the system cannot be solved directly as it oen occurs in large linear systems because
memory consumption and processing time do not scale very well in direct solvers [Benzi,
2002]. In this work, we focus on the LSQRmethod presented in [Paige and Saunders, 1982]
as it has proven to be one of the most efficient methods to solve large ill-posed problems
[Hanke, 2001]. As we will discuss in the following section, this algorithm has regularizing
properties that are very similar to those of the TSVDmethodwithout explicitly calculating
the decomposition.

Before discussing its regularizing properties, we will first introduce the CG method from
an optimization point of view starting with the method of gradient descent. is part is
mostly taken from [Nocedal and Wright, 1999].

e Conjugate Gradients (CG) method [Hestenes and Stiefel, 1952] solves linear systems
Ax = b with symmetric and positive definite matrices A ∈ RN×N . It can be derived
from the following method of gradient descent applied to the objective function

f =
1

2
xTAx− bTx → min (3.9)

which has the same unique solution as the linear system.

Listing 3.1: Gradient Descent

1 choose arbitrary x0

2 for i=1:k
3 ri = Axi−1 − b % calculate the gradient
4 qi = −ri % choose search direction
5 α = (rT

iqi)/(q
T
iAqi) % calculate step length

6 xi = xi−1 + αqi % iterate
7 end

Here, the search direction is the direction of the negative gradient which is also called
the direction of steepest descent. At each iteration the one dimensional minimizer along
f(α) = xi + αqi of the objective function in Equation (3.9) is computed.

e CG methods is similar but the search direction qi is chosen differently. Given a set
{q1, · · · ,qN} of N non-zero directions that are conjugated with respect to A such that
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3.1 Image Acquisition as a Fredholm Integral Equation

qT
i Aqj = 0, ∀i ̸= j, the solution of the linear system can be computed in N steps in

exact arithmetic.

In this process which is based on the Lanczos method [Saad, 1996, p. 175], the iterates xi

are elements of an extending Krylov subspace

xi ∈ x0 + span
{
r0,Ar0, ...,A

i−1r0
}

and an orthogonal basis for this subspace is constructed.

e directions are computed as a linear combination of the residual ri and the previous
direction

qi = −ri + βiqi−1. (3.10)

Enforcing conjugacy, the coefficients βi are defined by multiplying qT
i−1A to (3.10) such

that

qT
i−1Aqi = (qT

i−1A)(−ri + βiqi−1)

⇒ βiqi−1Aqi−1 = qi−1Ari

⇒ βi =
qi−1Ari

qi−1Aqi−1
.

e CG method is very efficient because only the vector qi−1 is needed to compute qi

which is automatically conjugated to the previous directions as well.

By induction, it can be shown, that

• the directionsqi, i = 1, ..., N of the CGmethod are indeed conjugatedwith respect
toA,

• the residuals are orthogonal rTi rj = 0 for i ̸= j and

• qi and ri are contained in the Krylov subspace of degree i, defined as

Ki(r0,A) = span{r0,Ar0, ...,A
ir0}.

A proof can be found in [Nocedal and Wright, 1999, p. 109].
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LSQR Method

In many applications, the matrixA is not symmetric. If the CG method is applied to the
system

ATAx = ATb (3.11)

the resulting method is known as CGNE. Due to the additional multiplication with the
transpose, the condition number is squared compared to the original system and the con-
vergence can slow down [Saad, 1996, p. 195]. An alternative that, in exact arithmetic,
produces the same results is the LSQR method [Paige and Saunders, 1982]. It is also based
on the Lanczos method but instead considers the system[

IN A
AT 0

] [
r
x

]
=

[
b
0

]
which has the same solution as the normal equation in Equation (3.11) and does not in-
crease the condition number.

Regularizing Properties of the LSQR Method

In the following paragraphs we describe the regularizing properties of the LSQR method
as reported in [Chung and Nagy, 2010]. LSQR is based on the Lanczos bidiagonalization
procedure [Golub and Kahan, 1965] and transforms thematrixA ∈ RN×N iteratively into
a bidiagonal matrix Gk ∈ Rk×k. Aer k iterations that depend on the right hand side b
the LSQR-algorithm results in the factorization intomatricesTk ∈ Rm×k, Uk ∈ Rm×k+1

with orthonormal columns and the bidiagonal matrixGk such that

ATk = UkGk. (3.12)

e singular values of Gk approximate the singular values of A [Doicu et al., 2010] de-
pending on their relative spread. In early iterations, those singular values with the highest
relative spread are the ones that are best approximated [Golub et al., 1981].

For image restoration problems, the singular values ofA decay to zero and build clusters
near zero. To illustrate this, we show the spectrum of an exemplary PSF in Figure 3.3.
e top plot shows a cluster of singular values close to zero while the boom plot shows
a relatively large spread between the larger singular values. As the relative spread for
these small singular values is very low due to the clustering, larger singular values are
approximated first.
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Figure 3.3: Linear (top) and semilogarithmic (boom) histogram plot of the spectrum of
an examplary PSF showing a large cluster of singular value close to zero and several
smaller clusters. Singular values are scaled to [0 1].
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Hence, LSQR leads to a similar result as the truncated SVD with the difference that the
filtering is more abrupt if the TSVD is used. e number of iteration steps k of the LSQR
method can be used as a regularization parameter.

3.2 Modeling Spatial Variance in the X-Ray Image
Acquisition

In Section 3.1 the blurring process has been modeled as a spatially invariant convolution.
However, the construction of the scintillator detector described in Section 2.1.2 requires
a more complex model that supports different blur on different positions on the detector.
In this section we introduce a spatially variant model that extends the simplified spatial
invariant model in Equation (3.3).

We consider again the Fredholm integral equation from Equation (3.1)∫
Ω
p(s, t)x(t) dt+ n(s) = b(s)

but discretize it without the simplification p(s, t) = p(s− t).

e unsimplified integral equation leads to the spatially variant model described in [Nagy
et al., 1998], where the PSF depends on the position of the point source. Different parts of
the acquired image have been affected by different point spread functions. ese parts of
the image are isolated by premultiplying a diagonal masking matrixMi ∈ RN×N with

(Mi)j,j =

{
1 if pixel j belongs to region i

0 otherwise.
(3.13)

which leads to a piecewise constant approximation of the spatial variance. Inside a region,
spatial invariance is assumed. Using masks, these regions can be as small as an individual
pixel which allows a fine grained approximation. Furthermore this model can be extended
to a linear or higher order approximation by liing the restriction to binary values inMi.
With this assumption we can extend the forward model to calculate the blurred image b
from a known true image x and known matricesAi andMi. With simulated noise n the
blurring process can be modeled as

b =

k∑
i=1

AiMix+ n, (3.14)

whereAi encodes the PSF corresponding to the point source located at the center of the
i-th region and k is the overall number of regions.
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3.3 Smooth Transitions Between Spatially Variant Point Spread Functions

3.3 Smooth Transitions Between Spatially Variant Point
Spread Functions

To compute the blurred image according to the spatially variant model, a high number of
PSFs is needed. e process of generating PSFs with MANTIS using Monte Carlo simu-
lations described in Section 2.2 is computationally very expensive because each photon
has to be simulated individually. For this reason, it is impractical to compute all the PSFs
with this method.

In this section we present an interpolation approach that computes PSFs for arbitrary
locations on the detector based on a few a priori known samples. Two of these samples
are shown in the le and right image in Figure 3.4. e aim is to calculate a smooth
transition consisting of intermediate PSFs between two or more PSF samples.

A direct pixelwise interpolation was analyzed first. Here, each pixel of the interpolated
image is calculated independently of its neighbors based on the pixels in the PSF samples.
is approach produces moving artifacts that are shown in the center image in Figure 3.4.
is behavior is opposed to smooth transitions in the sense expected from the physical
model. Figure 3.4 also shows that the main obstacle for a successful pixelwise interpola-
tion is the narrower of the two circular shapes. Our strategy is therefore to first remove
this shape and use the direct interpolation on the remaining image.

..

Figure 3.4: Moving artifacts occurring in direct pixel-wise interpolation. Le and right
images are PSF samples simulated with MANTIS. e center image is the result of a
direct pixelwise interpolation.

e following scheme first calculates PSFs for point sources on a straight line from the
detector center to its lower right corner. Aerwards, PSFs corresponding to point sources
on any straight line subtending the detector center can be obtained by rotating the PSFs
by the same angle the line is rotated. erefore only few samples corresponding to point
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source positions on a straight line are needed to calculate all remaining PSFs. In the
following paragraphs we assume this line to connect the upper le with the lower right
corner of the image.

Let P ∈ Rm×n be the array containing the discretized PSF and assume that this array
is square such that m = n. We extract a vector p̄ = diag(P) containing the diagonal
elements from the image corresponding to the line connecting all point source positions.
From the diagonal p̄we calculate a setSp̄ containing the locations of certain local maxima
(or peaks) by comparing neighboring pixel values and enforcing a minimal distance dmin

between two candidate peaks such that

Sp̄ := {i ∈ {1, ..., N} | p̄(i) > p̄(i+ 1) > ... > p̄(i+ dmin),

p̄(i) > p̄(i− 1) > ... > p̄(i− dmin)}.

Examination of various PSF has shown that the centers of the two circular shapes usually
correspond to the two highest peaks. eir coordinates s1, s2 ∈ {1, ..., N} are obtained
from Sp̄ by

s1 = min {i ∈ Sp̄ | p̄(i) ≥ p̄(j)∀i ̸= j ∈ Sp̄}
s2 = min {i ∈ Sp̄ \ {s1} | p̄(i) ≥ p̄(j) ∀i ̸= j ∈ Sp̄ \ {s1}},

where taking the minimal index assures that only one value is returned if more than one
local maximum has the same height.

e height of the local maxima is not sufficient to decide which one is narrower. For cases
where the two peaks are very close together, even the location has shown to be unreliable.
We select the narrower Gaussian by comparing the right differential quotients

s∗ = argmax
s1,s2

(p̄(si)− p̄(si + ϵ)) , ϵ ∈ N.

and choosing the steeper one. As s∗ is defined on the main diagonal of the PSF array. this
leads to the position s∗ = (s∗, s∗) of the narrow Gaussian shape in the two dimensional
point spread function image P. Aer the location of the narrow peak is determined, it is
removed from the image. To this aim, a region of radius ρ around s∗ is chosen. e pixel
values in this region are set by cubic interpolation based on the region {x ∈ R2, ρ2 <
∥x − s∗∥22 ≤ (2ρ)2} surrounding the peak. e resulting images without the narrow
Gaussian can now be interpolated pixelwise because the moving artifacts do no longer
occur. However, the resulting images are incomplete because the narrow Gaussian is
missing.
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To restore the narrow Gaussians in the pixel-wise interpolated images, their positions are
interpolated based on their positions in the sample images. A model Gaussian with fixed
width is added to the images at this position.

At this point, arbitrary PSFs corresponding to point sources on a straight line can be
computed. e remaining PSF whose point sources are not located at this line can be
obtained by rotation. Figure 3.5 shows an illustration of the interpolation scheme.

..

original image

.

removal of
thin Gaussian

.interpolation of thin
Gaussian's coordinates

.recentering of
broad Gaussian

.

direct pixel-wise
interpolation

.

creation of thin
Gaussians from
model function

.

adding thin Gaus-
sian and directly
interpolated image

.

rotating images

Figure 3.5: Interpolation scheme for PSF images.

3.3.1 Compensation of Boundary Artifacts

A disadvantage of the piecewise constant discretization of spatial variance is the resulting
difference between adjacent PSFs occuring at the interface between regions. However,
these artifacts can be compensated as shown below.

Being independent of the image, the artifacts can be minimized with the help of a diag-
onal weight matrix W ∈ RN×N that is premultiplied to Equation (3.14) resulting in the
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updated forward model

b = W−1
k∑

i=1

AiMix+ n.

e diagonal of W = diag(w) can be computed by initializing W as the identity and
applying the blur matrix to an hypothetical true image 1 ∈ RN consisting of only ones
such that

w = A1.

In this section we have presented a model to describe the image acquisition processes in
terms of a discrete linear system, that can be summarized as follows.

Discretized spatially variant blur. e acquisition of an image b ∈ RN that
is degraded by spatially variant blur defined by matrices W−1Ai ∈ RN×N and
regions of the image selected by masking matrices Mi is modeled by the linear
system

b = Ax+ n = W−1
k∑

i=1

AiMix+ n, (3.15)

from the hypothetical true image x with unknown noise n.

3.4 Fourier Transform for Fast Matrix Multiplication

In Section 3.2 the image acquisition process has been modeled as a linear system rep-
resented by a blurring matrix A =

∑k
i=1AiMi. Regularizing methods like the LSQR

algorithm that use this model to reconstruct an approximation of the underlying true im-
age have been described in Section 3.1.3. In Equation (3.15), the matrix multiplication
AiMix has to be evaluated k times, where k is the total number of regions used to ap-
proximate spatial variance. As the error in the approximation is lower for smaller regions,
this number can be high. For typical images of at least 200× 200 pixels, matrices of size
40000 × 40000 have to be computed if the calculations are executed in the matrix form
shown in Equation (3.15). e following section describes methods to accelerate these
calculations.
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3.4 Fourier Transform for Fast Matrix Multiplication

e matrices Ai are usually dense. Building these matrices in memory and computing
the matrix-vector product is therefore computationally expensive but can be performed
efficiently in O(N log(N)) operations using discrete Fourier transforms [Brigham and
Morrow, 1967]. e multiplication of the image vector x with the blurring matrix Ai is
identical to the two-dimensional convolution of the image X with the PSF Pi ∈ RL×M

as described in Section 3.1 [Hansen et al., 2006].

Assuming circular boundary conditions, Ai ∈ RLM×LM from Equation (3.15) is a block
circulant matrix with circulant blocks Tk ∈ RM×M of the form

Ai =



TL
2

TL
2
−1 . . . T 1 T L . . . TL

2
+1

TL
2
+1 TL

2

. . .
...

. . . . . .

T 1
. . .

T L
. . .

...
. . .

TL
2
−1 TL

2


where

T k =



pM
2
,k pM

2
−1,k . . . p 1,k p M,k . . . pM

2
+1,k

pM
2
+1,k pM

2
,k

. . .
...

. . . . . .

p M,k
. . .

p 1,k
. . .

...
. . .

pM
2
−1,k pM

2
,k


and pk,l = Pi(k,l) is the (k, l)-th element of the PSF in matrix form. Due to this particular
structure, there exists a diagonalization of the matrix A such that

Ai = F∗ΛiF ⇔ FAi = ΛiF

⇒ FAi(:, 1) = ΛiF(:, 1) = Λi1,

where the entries of the diagonal matrix Λi ∈ CN×N are identical to the discrete two-
dimensional Fourier transform of the first column of Ai [Davis, 1994]. F is the discrete
two-dimensional discrete Fourier transform matrix. Taking the block circulant structure
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into account, the first column ofAi is identical to the circular shied and vectorized array
Pi that represents the PSF [Hansen et al., 2006].

Other than circular boundary conditions can be used by embedding the image in a larger
imagewhere the pixels out side the original image domain are determined according to the
desired boundary condition. For instance, zero boundary conditions can be implemented
by embedding the images in a larger image consisting of zeros [Nagy et al., 2004]. is
can be combined with an overlap-add approach as described in [Oppenheim and Schafer,
1975] where small patches of the image are treated separately. is will be presented in
Section 3.4.2. With the resulting larger, zero padded images, all calculations can be done
assuming circular boundary conditions. is approach is used for a first evaluation of the
methods presented in this work and will be extended in future work.

Finally, the complete blurring matrix is assembled in the equation

b = Ax = W−1F∗
k∑

i=1

ΛiFMi x. (3.16)

In each iteration of the LSQR method described in Section 3.1.3, a multiplication with the
transpose ofA has to be computed. In this transpose matrix multiplication

ATx =

k∑
i=1

MiF
∗Λ∗

i FW−1 x.

the diagonal masking matrix Mi is premultiplied to each summand. For this reason the
non-zero region of the result is known before the computation which makes it easier to
compute the convolution.

3.4.1 Fast Fourier Transform

e computation of Equation (3.16) requires one forward and one backward Fourier trans-
form for each masked region. As we will see, the direct computation of the discrete
Fourier transform is inefficient and a number of algorithms for faster and more effi-
cient computation have been developed. ese algorithms are commonly summarized
as Fast Fourier Transforms (FFT). As they are important tools used in many applications
[Bracewell, 1978], we give an overview of their principles in the next section. e descrip-
tion is mostly based on the books [Proakis and Manolakis, 1996] and [Mertins, 1996].
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To perform the Fourier transform, the FFTW implementation is used [Frigo and Johnson,
2005]. FFTW libraries are included in M and are also available for a variety of pro-
gramming languages. e library consists of different FFT algorithms and uses a planner
to select the most appropriate algorithm for each data set. Most of the commonly used
FFT algorithms are based on a divide-and-conquer approach where the problem is decom-
posed into smaller problems. We assume a signal x = (x(j))j=1:N of length N = LM,
where L,M ∈ N. e direct one-dimensional discrete Fourier Transform (DFT) can be
wrien as a matrix multiplication of the Fourier basis matrix F ∈ CN×N with the dis-
crete signal x ∈ CN :

Fx =

N−1∑
j=0

x(j)e−i2πjk/N


k=0,1,...,N−1

=

N−1∑
j=0

x(j)W kj
N


k=0,1,...,N−1

(3.17)

=


1 1 · · · 1

1 WN · · · WN−1
N

...
...

...

1 WN−1
N · · · W

(N−1)2

N

x, whereWN = e−i2π/N .

e computation of Equation (3.17) needs N2 complex multiplications and N(N − 1)
additions such that the computational complexity is O(N2).

Reordering the vector x(j) into an arrayX(l,m) with

j = l +mL

l, p = 0, ..., L− 1

m, q = 0, ...,M − 1

the above statement can be rewrien as

X̂(p, q) =
L−1∑
l=0

M−1∑
m=0

X(l,m)W
(Mp+q)(mL+l)
N (3.18)

to compute an array containing the Fourier transform of x in the same array structure.
We observe that

W
(Mp+q)(mL+l)
N = WMpmL

N WMpl
N W qmL

N W ql
N

and simplify the factors

WMpmL
N = WNpm

N = e−i2π = 1,

WMpl
N = W pl

N/M = W pl
L ,

W qmL
N = W qm

N/L = W qm
M
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3 Mathematical Methods for Image Restoration

such that Equation (3.18) can be wrien as

X̂(p, q) =

L−1∑
l=0

M−1∑
m=0

X(l,m)W pl
L W qm

M W ql
N

=

L−1∑
l=0

W pl
L

[
M−1∑
m=0

X(l,m)W qm
M

]
︸ ︷︷ ︸
=Y(l,q),computed LM times

W ql
N

=

L−1∑
l=0

W pl
L Y(l, q)W ql

N︸ ︷︷ ︸
LM multiplications

.

e decomposed transform needsO(LM2) operations (multiplications and additions) for
the inner brace with the M-point DFT,LM = N multiplications andO(L2M) operations
for the L-point DFT in the last line. Together, the computational complexity of the de-
composed DFT is

O(LM2) +O(N) +O(L2M)

=O(N(M + L+ 1)) = O(N(M + L)).

Assuming that the signal length is a power of 2, N = 2k, k ∈ N, which can be achieved
easily by zero padding, the decomposition can be repeated log2(N) times with M = 2.
erefore, using the FFT algorithm, the computational complexity of the DFT can be
reduced to

O(N(M + L)) = O(N(2 + 2 + ... + 2︸ ︷︷ ︸
log2(N)−2 times

)) = O(N log2(N))

compared to O(N2) in Equation (3.18).

e two dimensional DFT of an image can be obtained by first transforming each column
by a one dimensional DFT and then transforming the rows of the result again in a second
step. Hence, the two-dimensional DFT matrix FLM ∈ CN×N can be constructed with
a Kronecker product from two one-dimensional DFT matrices FL ∈ CL×L and FM ∈
CM×M [Hansen et al., 2006] by

FLM = FM ⊗ FL.

In practice, the Kronecker product does not have to be evaluated. To compute the DFT of
an image, the one dimensional FFT algorithm is applied first to the image’s columns and
then to the rows of the result or vice versa.
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3.4 Fourier Transform for Fast Matrix Multiplication

In conclusion, the computational cost to compute a two-dimensional Fourier transform
using the FFT algorithm on images of size of a power of two is O(N log2(N)), where N
is the number of pixels in the image.

3.4.2 Modified Overlap-Add to Reduce the Problem Size

e previous section has shown that the computational cost of the convolution can be
lowered dramatically using the Fast Fourier Transform. In this section we show how we
can take advantage of the structure of the point spread functions and the masked vectors
Mix. e values of the discretized PSFs near the boundaries are close to zero. If values
below a threshold are neglected, these images can be considered to have limited support.
Binary masked imagesMix are also zero outside the selected region.

We take advantage of the structure of the PSFs and the masked images by using the
overlap-add approach described in [Oppenheim and Schafer, 1975, p. 113] to decom-
pose the convolution in Equation (3.15). Furthermore, if the spatial variance of the PSFs
is taken into account, the overlap add method can be slightly modified to use different
convolution kernels.

Given an array p ∈ RN and an interval S ⊂ [1, N ] such that p(l) = 0 for l /∈ S and an
image vector x ∈ RN , the one dimensional convolution with zero-boundary conditions

b =

∑
j∈S

p(j)x(l − j)


l=1,..,N

can be decomposed with help of a partitioning of the interval [1, ..., N ] into smaller in-
tervals Mi ⊂ [1, N ] with ∪Mi = [1, N ] and Mi ∩ Mj = ∅ for i ̸= j. Given such a
partitioning, the image vector x can be decomposed into vectors xi ∈ RN such that

xi(l) =

{
x(l) if l ∈ Mi

0 otherwise

and the convolution can be wrien as a sum of smaller convolutions

b =

k∑
i=1

∑
j∈S

p(j) xi(l − j)


l=1,..,N

. (3.19)
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3 Mathematical Methods for Image Restoration

e inner brace in Equation (3.19) can be evaluated in a few operations because only a
few summands are non-zero due to the limited support of xi(l − j) .

e original overlap-add method takes advantage of the limited region of support of the
PSF by spliing up the computation into several smaller problems, each computing the
convolution of a partition of the image with the same PSF and adding up the individual
results. In the spatial variant case with masked imagesMix the non-zero region of these
vectors is relatively small. Furthermore, each of these masked images is convoluted with
a different PSF.

e modification of the overlap-add method for spatial variance can be understood in
two ways. First, only regarding each inner summand in Equation (3.19) separately, the
image’s partitioning can be chosen according to the masking matricesMi such that only
one of the partitioned vectors xi is non-zero and the outer sum has to be evaluated only
once. Alternatively, now regarding the entire convolution, Equation (3.15) could also be
interpreted as a modified overlap-add method, where the point spread function for each
region is different.

3.4.3 Preconditioning of the Iteration Matrix

Before discussing the application of the methods developed in this thesis to simulated x-
ray data, we want to focus on the possibility to speed up the computations by modifying
the linear system in Equation (3.16).

As discussed in Section 3.1.3, the convergence of the LSQR method can be very fast if the
eigenvalues ofA are organized in clusters. One way to accelerate the convergence of the
iteration is to modify the system

b = Ax = W−1
k∑

i=1

AiMix

such that the clustering of the eigenvalues of A is increased but the solution stays the
same. One way to achieve this is to multiply both sides of the linear system by a matrix
C−1 such thatC ≈ A such that the system is easier to solve [Benzi, 2002].

e one PSF that is most similar to every other PSF corresponds to a point source located
at the detector center (cf. Figure 2.3, le image). Numerical experiments have shown
that this PSF can be used as a basis for a preconditioner as it is approximately symmetric
and represents common features from all PSFs. LetAs be the circular convolution matrix
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3.4 Fourier Transform for Fast Matrix Multiplication

encoding this symmetric PSF. As this matrix also has small singular values, noise would be
amplified by its inverse if it was applied directly as a preconditioner. erefore, we chose
a preconditioning matrix C ≈ As = F∗ΛsF that is based on As but that is spectrally
truncated with

C = F∗ΛC F,where

(ΛC)i,i =

{
(Λs)i,i if (Λs)i,i > τ

1 otherwise
.

is preconditioner can be applied to Equation (3.14) and we obtain a new system of the
form

C−1b = W−1
k∑

i=1

F∗Λ−1
C ΛiFMi x.

Numerical experiments have shown that the reduction in the number of iterations is most
noticeable if the preconditioner is used on linear systems that are larger than the ones used
in the image reconstruction problem analyzed in this work. For systems corresponding to
image sizes of 200×200 pixels only a few number of iterations are needed to solve the un-
preconditioned system and the benefit from the preconditioning is limited. Furthermore,
the choice of the parameter τ is not obvious as too small values lead to an amplification of
noise but larger values limit the improvements in convergence speed. For these reasons,
preconditioning is not further analyzed in this thesis but future work could benefit from
further analysis.
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4 Application of the Forward Model to
Artificial X-Ray Imaging Data

is chapter deals with the application of the forward model to create a blurred image b
from a hypothetical true image x. erefore, the application of the point spread function
interpolation and the model for the image blurring process in a simulated x-ray detector
are described. In these simulations, different scintillator thicknesses and energy parame-
ters are used. e results of the backward problem consisting of the reconstruction of an
approximated image x̂ from an acquired image b are are presented in Chapter 5.

e following four steps are executed in the forward model to simulate an acquired image
bhighres originating from a known high resolution true image xhighres.

1. Generate 6 PSF samples with MANTIS according to scintillator thickness and en-
ergy parameter. Choose the position of high resolution true test paern stored in
an array xhighres on the detector.

2. Create 128 × 128 point spread functions Pi, i = 1, ..., 1282 from 6 samples by
interpolation and rotation.

3. Create masksMi and select corresponding PSFs.

4. Blur xhighres ↷ bhighres = Axhighres.

e details for each step are given in the following sections.

Point Spread Functions Describing the Image Degradation

e basis for our evaluations are sets of six PSF images, each set corresponding to a sim-
ulated x-ray imaging system with the parameters shown in Table 4.1 that were computed
with MANTIS in the scope of the joint work with James Nagy and Ioannis Sechopoulos.
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4 Application of the Forward Model to Artificial X-Ray Imaging Data

Table 4.1: Parameters used to simulate the x-ray imaging device. Each pair of scintillator
thickness and x-ray energy parameter is used to create 6 PSFs with MANTIS.

Parameter Value
detector size 41cm× 41cm
scintillator thickness (d1, d2) inmm (0.1, 0.5), (0.1, 1.0), (0.1, 1.5), (0.1, 2.0)

(0.05, 0.5), (0.15, 1.5), (0.2, 2.0)
x-ray energy 65.0 keV, 57.5 keV
distance of point source from center 0cm, 5cm, 10cm, 15cm, 22cm ,29cm
resolution of point spread function 20 µm/pixel

e point sources corresponding to these samples are located between the center of the
detector surface and its lower right corner. e PSF consists basically of two Gaussians,
one broader in the center and the other very narrow located towards the lower right cor-
ner of the image. See Figure 4.1 for a visualization of these images and their respective
point source positions.

e interpolation framework introduced in Section 3.3 will be used to calculate the tran-
sitions between the PSF image samples. To determine how many PSFs are necessary to
simulate the blur caused by the x-ray imaging system, we make the following assump-
tions. Due to the construction of the detector as shown in Figure 2.2, the shape of the
PSF is rotated if the position of the point source changes on a circle around the center.
If the distance of the point source to the center of the detector increases, the narrower
Gaussian is moved in the same direction as the point source and the broader of the two
Gaussians gets stretched towards the narrower one. Numerical experiments have shown
that the PSF does not change significantly if the point source moves less than 2mm in
radial direction or less than 3◦ in angular direction, which corresponds to using 128×128
different PSFs.

Circular Masking to Discretize Spatial Variance

For each of the PSF images created by the interpolation framework, the corresponding
region in the image is selected by a diagonal masking matrix. e masking matrices are
defined according to the assumptions of local spatial invariance. As the two parameters
that influence the shape of the PSF are distance of the point source from the detector
center and the angle on the circle around the center, the difference of the PSFs can be
described best in a polar coordinate system. On a detector of a size of 41cm× 41cm, we
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Listing 4.1: Matrix multiply with two-dimensional Fourier transforms inMATLAB pseudo
code.

1 for i=1:k
2 c=findCenter(P(:,:,i))
3 B = B + ifft2(fft2(circshift(P(:,:,i),1-c)) .* fft2(M(:,:,i).*X)))
4 end
5 B=B./W + simulateNoise()

produce 128 × 128 regions that are shown in Figure 4.2. However, the blurring process
has been implemented in a Cartesian and not in a polar grid to prevent discretization
errors that would occur especially in the detector center.

Implementation of Matrix Multiplications

With the PSF images and the masking matrices, all the information needed to simulate the
image blur caused by the x-ray detector is given. Because of the previously introduced
circular masks, the modified overlap-add method introduced in Section 3.4.2 has to be
extended slightly to cope with non-rectangular regions.

To implement the overlap-add method on non-rectangular regions, these regions are em-
bedded in the smallest possible rectangle. To find this rectangle, the masked region is
projected orthogonally onto each axis. e minimal rectangle resulting from the pro-
jected coordinates is extended at each edge by the size of the minimal rectangle contain-
ing the point spread function. Every pixel outside of the resulting region can be set to
zero, reducing the computation time spent on the Fourier transform dramatically.

To reduce the computational cost, we do not build up the matrices Ai, Mi or W. e
diagonal masking and weighting matrices Mi and W can be applied by element-wise
multiplication of the diagonal to the image. In the pseudo code below, each mask is stored
in a slice M(:,:,i), i = 1, ..., k of a three dimensional array M such that the masking can
be achieved by element wise multiplication with the image stored in an two dimensional
array X. Using an FFT algorithm on the masked image and the PSFs Pi stored in slices
P(:,:,i) of a three dimensional array P, Equation (3.16) can be implemented as shown
in Listing 4.1.
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4 Application of the Forward Model to Artificial X-Ray Imaging Data

....
(a) 0 cm

....
(b) 5 cm

....
(c) 10 cm

....
(d) 15 cm

....
(e) 22 cm

....
() 29 cm

Figure 4.1: Initial Point spread functions generated using MANTIS with given distances
of the point source (red dot) to the detector center.

..

.

..

Figure 4.2: Plot of regions in which spatial invariance is assumed. Each cell corresponds to
a region that is selected by a diagonalmaskingmatrixMi. e plot shows themagnified
center region of the detector marked by the red box.
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Resolution Levels to Model Discretized Image Acquisition

To fully reproduce the behavior of the x-ray detector, the limited resolution of the pho-
todetector and the perturbations caused by noise have to be taken into account.

In order to precisely simulate this part of the physics of the x-ray detector, both PSFs and
blurred images are created in a resolution of 20µm/pixel which is approximately ten times
higher than in realistic imaging situations. To realistically simulate an acquired image
using different scintillator thicknesses, the ideal images are blurred with the interpolated
PSFs at the high resolution conditions (20 µm/pixel) and then binned to the pixels size of
the detector being studied (200 µm/pixel). Next, the appropriate values of noise are added
based on Saunders’ algorithm [Saunders Jr and Samei, 2003]. e appropriate simulation
of noise occurring in an x-ray detector involves detailed knowledge of the detector physics
and is not in the scope of this thesis but part of the joint workwith JamesNagy and Ioannis
Sechopoulos.
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5 Evaluation of Calculated PSFs and
Restored Images

In this chapter, the calculated PSFs and the image restoration developed in this work is
evaluated. In Section 5.1 the interpolation scheme is tested by comparing the interpo-
lated PSF images with simulations generated additionally with MANTIS. In the second
part, in Section 5.2, deblurred images resulting from the image reconstruction method
are evaluated in terms of relative error and different image features.

5.1 Interpolation of Spatially Variant Point Spread
Functions

To test the PSF interpolation method, we compare a PSF that has been predicted by our
algorithmwith the corresponding PSF created byMonte Carlo simulations. e difference
image in Figure 5.1 shows that the approximate form of the PSF is very similar to the
simulated PSF created with MANTIS. Only the position of the narrow peak tends to be
shied slightly if the point source is more distant from the detector center. e largest
difference between the two PSF images is below 20% of the maximal pixel value in the
simulated PSF. As shown in Figure 5.2, images blurred by each of these PSFs do not show
any visual differences.

5.2 Reconstruction of Simulated X-Ray Images

In the rest of this chapter, results for a simulated x-ray reconstruction are presented. In
the first part, the improvement of the relative error of the reconstructed image is ana-
lyzed for different scintillator thicknesses and detector parameters. In the second part
we analyze the contrast transfer function of the reconstructed image and also observe an
improvement in the image’s quality.
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5 Evaluation of Calculated PSFs and Restored Images

(a) interpolated PSF (Pintp) (b) simulated PSF (Pmc) (c) difference image
( |Pintp−Pmc|

max(Pmc)
)

(d) interpolated PSF (Pintp) (e) simulated PSF (Pmc) () difference image
( |Pintp−Pmc|

max(Pmc)
)

Figure 5.1: Comparison of simulated and interpolated PSFs. Distance from detector center:
(a - c) 5.3 cm (d -) 12.4 cm.

To test the reconstruction method, we use an artificial image consisting of line paerns
of different frequencies. is test paern has 16 equally sized blocks, each of a different
spatial frequency, ranging from 0.25 to 4.5 line pairs per millimeter. e contrast of this
image is chosen to be 60%. See Figure 5.3a for details.

We first generate an approximation of the acquired image by blurring the test image with
128×128 PSFs (in radial and angular direction) at a resolution of 20 µm/pixel (2100×2100
pixels), which is ten times higher than the resolution that is available to currently used
general radiography x-ray detectors. In a clinical application, it is impossible to measure
all the information involved in the image acquisition which means that not all of it is
available for the reconstruction. We take this loss of information into account and show
that the method developed in this work can still reconstruct a good approximation to
the underlying true image with a lower number of point spread functions and at a lower
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5.2 Reconstruction of Simulated X-Ray Images

(a) blurred with interpolated PSF (Bintp) (b) blurred with simulated PSF (Bmc)

Figure 5.2: Test paern blurred spatially invariant with estimated and simulated PSF at
distance from detector center of 12.4 cm. e images show no visual difference, the
relative error is below 1%.

image resolution.

To lower the resolution we use binning on both the interpolated PSF images and the
acquired image, which is consistent to the physical image detection process in which all
light photons leaving the scintillator are summed up in pixels. We use quadratic bins with
sizes of 10× 10 pixels to lower the image size to 210× 210 pixels. Colored noise is added
to the low resolution acquired image to account for inaccuracies introduced by the digital
photodetector as previously described.

e algorithm presented in Chapter 4 to compute the forwardmodel can be extendedwith
the reconstruction in steps 5 and 6. e complete algorithm to simulate image degradation
and perform a reconstruction is summarized as follows.

1. Generate 6 PSF samples with MANTIS according to scintillator thickness and en-
ergy parameter. Choose the position of high resolution true test paern stored in
an array xhighres on the detector.

2. Create 128 × 128 point spread functions Pi, i = 1, ..., 1282 from 6 samples by
interpolation and rotation.
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5 Evaluation of Calculated PSFs and Restored Images

3. Create masksMi and select corresponding PSFs.

4. Blur xhighres ↷ bhighres = Axhighres.

5. Downsample bhighres and add realistic noise bhighres
+n↷ b.

6. Deblur b ↷ x̂ with the original number and also with a lower number of PSFs.

e resulting reconstructed image is compared to a downsampled true image xtrue to
evaluate the quality of the reconstruction.

(a)

......

(b)

Figure 5.3: Test paern consisting of lines of different frequencies (a), placed at different
distances from the detector center (b).

5.2.1 Analysis of the Relative Error

To evaluate the success of our model on different parts of the image, we blur and recon-
struct the test paern at different positions on the detector as shown in Figure 5.3b. At
each step of an LSQR iteration we calculate the relative error between the current iterate
xstep and the known true image xtrue which is obtained by downsampling xhighres,

e2 =
∥xstep − xtrue∥2

∥xtrue∥2
.
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5.2 Reconstruction of Simulated X-Ray Images

We analyze the relative error in the reconstructed image at different positions on the
detector and for different scintillator thicknesses.

e error curves in Figure 5.4 show an increasing separation if the test paern is moved
towards the edge of the detector ((a) to (d)). is is mainly caused by the stronger de-
formation of the image in these regions due to the broader PSFs (cf. Figure 4.1) and the
increased difference between PSFs of neighboring grid cells. At a larger distance from the
detector center, the point spread functions have a larger effect and a coarser discretization
of the spatial variance increases the approximation error. For further analysis, we focus
on a distance of 11.88 cm from the detector.

A similar observation can be made in Figure 5.5. e scintillator thickness is increasing
from (a) to (c) and from (d) to (). As the scintillator size increases, the PSFs broaden and
the spatial variance decreases. is correlation seems surprising at first, but is explained
by the two different Gaussian shapes in the PSFs. In thinner scintillator crystals, the
expression of the main Gaussian is weaker and the narrowGaussian has a larger influence
on the quality of the blur. is increases the spatial variance in the blur, causing a higher
approximation error in coarse approximations. We choose the scintillator used in (e) in
Figure 5.5 as an intermediate example for further analysis.

Furthermore, we choose 16 × 16 (red line, dashed −−) as the number of PSF to use for
the reconstruction. is choice offers good error reduction while still using only 1

64 of
the PSFs used in the forward model, hence respecting the fact that not all information
will be available in the reconstruction. In particular we observe, that the error is signifi-
cantly lower compared to the case where only one PSF is used and spatially invariance is
assumed.

We also calculated a total variation based error measure

eTV =
TV(xstep − xtrue)

TV(xtrue)
, where

TV(x) = ∥∂x
∂x

∥1 + ∥∂x
∂y

∥1.

Using central differences, ∂x
∂x and ∂x

∂y approximate the derivative along the first and sec-
ond dimension of the two dimensional array represented by the vector x. In contrast to
the two norm e2 of the relative error calculated above, total variation based error mea-
sures such as eTV beer distinguish oscillating error paerns [Aubert and Aujol, 2005]
which are undesirable in some situations. is error measure shows similar results to the
plots of e2 shown in Figure 5.6. e minimum of the total variation based error curves is
obtained at an earlier iteration which is due to larger influence of noise to eTV than to e2.
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Figure 5.4: Relative error per LSQR iteration for different numbers of PSFs at different
detector locations: (solid line, blue) 128 × 128 PSFs, (dashed line −−, red) 16 × 16
PSFs, (point-dashed ·−, green) 8 × 8 PSFs , (doed · · · , purple) 1 PSF at detector cen-
ter. Distance of test paern from center growing from (a)-(d). PSFs simulated with a
scintillator thickness of d1 = 0.15mm and d2 = 1.5mm.
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(b) d1 = 0.1mm, d2 = 1.5mm
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(c) d1 = 0.1mm, d2 = 2.0mm,
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Figure 5.5: Relative error per LSQR iteration for different numbers of PSFs for different
scintillator parameters: (solid line, blue) 128×128 PSFs, (dashed line−−, red) 16×16
PSFs, (point-dashed ·−, green) 8× 8 PSFs , (doed · · · , purple) 1 PSF at detector center.
Scintillator parameters growing from (a)-(c) and (d)-(). Test image at distance of 11.88
cm from detector center. is figure is continued on the following page.

49



5 Evaluation of Calculated PSFs and Restored Images

.....
0
.

5
.

10
.

0.1

.

0.15

.

0.2

.

iterations

.

. ..128x128 psfs

. ..16x16 psfs

. ..8x8 psfs

. ..1 psf (center)

(e) d1 = 0.15mm, d2 = 1.5mm

.....
0
.

5
.

10
.

0.1

.

0.15

.

0.2

.

iterations

.

re
la
ti
ve

er
ro
r

.

. ..128x128 psfs

. ..16x16 psfs

. ..8x8 psfs

. ..1 psf (center)

() d1 = 0.2mm, d2 = 2.0mm

Figure 5.5: Continued from previous page: Relative error per LSQR iteration for different
numbers of PSFs for different scintillator parameters: (solid line, blue) 128×128 PSFs,
(dashed line −−, red) 16× 16 PSFs, (point-dashed ·−, green) 8× 8 PSFs , (doed · · · ,
purple) 1 PSF at detector center. Scintillator parameters Scintillator parameters growing
from (a)-(c) and (d)-(). Test image at distance of 11.88 cm from detector center.

e iteration number can be interpreted as the regularization parameter such that earlier
iterations are likely to contain less noise.

5.2.2 Improvements in Image Contrast

e reconstructed image also allows beer isolation of the individual lines, as it can be
seen in a profile plot in Figure 5.7. e profile plot shows a columnwise average of 3 rows
from the first four paerns. To be able to measure the improvement reliably, we calculate
contrast transfer functions of all line paerns. We define the contrast transfer function
c(x,xtrue,R) of an image x limited to the rectangular region defined by the index set
R ⊂ {1, ..., N} as

c(x,xtrue,R) =
avgmax(x,R)− avgmin(x,R)

avgmax(xtrue,R)− avgmin(xtrue,R)
, where

avgmax(x,R) = mean({x(n) |n ∈ R, x(n) > mean(x)}) and
avgmin(x,R) = mean({x(n) |n ∈ R, x(n) < mean(x)}).
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Figure 5.6: Comparison of a total variation based error measure with the relative error
for the same reconstruction parameters for different scintillator parameters: (solid line,
blue) 128×128 PSFs, (dashed line−−, red) 16×16 PSFs, (point-dashed ·−, green) 8×8
PSFs , (doed · · · , purple) 1 PSF at detector center. of 17.82 cm from detector center.

e contrast transfer functions in Figure 5.8 show that the reconstructed image enhances
the contrast in line paerns up to a frequency of about 2 line pairs per millimeter. A com-
parison of the reconstructed images from the 2mm-thick scintillator with the acquired
images from the thinner 0.5mm-scintillator, shows that the contrast transfer function is
still improved for low line pair frequencies. is remarkable result shows that our recon-
struction algorithm can indeed be used to partly compensate undesired effects of thicker
scintillator crystals. Contrast improvement is unlikely for line pair frequencies beyond
the Nyquist frequency of 1

2·20µm = 2.5 mm−1. Finer paerns are neither distinguishable
in the acquired nor in the reconstructed image. As a conclusion, Figure 5.9 shows the
true image next to the acquired and reconstructed images. e magnification shows the
visual improvement due to the reconstruction.
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Figure 5.7: Profile through the first four line paerns of the reconstructed image af-
ter 3 iterations. (solid line, blue) true image, (dashed line −−, red) reconstructed
image, (point-dashed ·−, green) acquired image before reconstruction. Scintillator:
d1 = 0.15mm, d2 = 1.5mm. Distance from center of detector: 11.88 cm. 16 × 16
PSFs used for reconstruction.
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Figure 5.8: Contrast transfer functions for paerns up to the Nyquist frequency of
2.5lp/mm of the acquired and reconstructed image for 3 scintillator thicknesses. (solid
line, red) reconstructed image, (dashed −−, green) acquired image before reconstruc-
tion. Scintillator thickness from top to boom in each color: (circular markers)
d2 = 0.5mm, (square markers) d2 = 1.5mm, (trianglular markers) d2 = 2.0mm. Dis-
tance from center of detector: 11.88 cm. 16× 16 PSFs used for reconstruction.
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(a) Ground truth. (b) Acquired image. (c) Reconstructed image.

..

(d) Ground truth (magnified).

..

(e) Acquired image (magn.).

..

() Reconstructed img. (magn.).

Figure 5.9: Images involved in reconstruction: (a) Ground truth image x, (b) acquired,
blurred image b, (c) reconstructed image x̂ and magnifications (d)-(). Scintillator pa-
rameters: d1 = 0.15mm, d2 = 1.5mm. 16 × 16 PSFs. Test image at distance of 11.88
cm from detector center. e tenth line paern in each of (a), (b), and (c) corresponds to
2.5 line pair per mm spatial frequency, which is the Nyquist frequency of the simulated
photodetector.
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6 Conclusion and Outlook

Crystal scintillators arewidely used in digital radiography [Moore, 2001; Samei and Flynn,
2003] and are not only important in clinical but also in industrial applications [Franco
et al., 2011; Kim et al., 2009]. In this work, we have modeled the blur introduced in the
acquired images by these detectors as an image restoration problem based on spatially
variant deconvolution. Using this model, we have developed a method to reconstruct
image degradation caused by thick scintillators. e results suggest that the construction
of x-ray detectors with higher quantum efficiency is possible due to the recovery of image
quality by the presented algorithm. is could be beneficial in medical diagnostics as the
radiation dose to patients examined with these detectors is significantly lower.

For given x-ray detector parameters, a small number of PSF images can be simulated by
Monte Carlo methods. With the interpolation framework developed in this work, the
remaining information required to perform an image reconstruction can be estimated
in form of additional PSFs. e presented spatially variant deconvolution approach has
proved to be superior to a simple spatially invariant reconstruction and to increase image
quality and contrast in the reconstructed image.

Most importantly, the compensation is superior to the quality of images that were record-
ed conventionally with thinner scintillators. is result suggests that our method can be
used to increase the quantum efficiency of x-ray detectors and to lower the radiation dose
a patient has to be exposed to.

In future work, the approximation of the spatial variance of p(s, t) by a piecewise con-
stant model could be improved. is could be extended to linear or higher order approx-
imations. Furthermore, all computations have been implemented with Fourier methods
which enforces circular boundary conditions on the images. Different boundary con-
ditions can be used by extending the image beyond the boundaries and calculating the
convolution with the resulting larger images. If different boundary conditions are used,
other implementations could be studied that might not require an extension of the im-
age.

In the evaluations of the reconstruction process the underlying ground truth image is
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always known such that the error of the approximation can be calculated exactly and
the optimal number of iterations of the LSQR algorithm can be determined by an error
measure. However, if real life test data is used in future work, the true image will not
be available and reliable stopping criteria will be needed. Possible methods such as the
L-curve [Hanke and Nagy, 1996] could be investigated. e same applies to error bounds
of the approximated solution that have not been addressed.

e possibilities of preconditioning the iteration matrix have only been covered very
briefly and further development such as in [Nagy et al., 1998] could improve the con-
vergence rate while maintaining the regularizing properties of the LSQR method.

e presented results are based upon simulations and artificial data. We are looking for-
ward to test the presented methods on real-life data. Such tests are one of the next steps
to evaluate the performance of our method on the way towards its application in a clinical
seing. e current results have been presented to industrial partners and were evaluated
positively.
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