
Non-smoothHigher-orderOptimization on
Manifolds

Master thesis

im Rahmen des Studiengangs
Scienti�c Computing und Applied Mathematics

der Technische Universität Berlin, Technische Universiteit Delft

Vorgelegt von
Willem Diepeveen

Ausgegeben und betreut von

Prof. Dr. Jan Lellmann
Institute of Mathematics and Image Computing

September 12, 2020

Kurzfassung
In dieser Arbeit wird ein Optimierungsverfahren höherer Ordnung zur Lösung nichtglat-
ter Variationsprobleme auf Riemannschen Mannigfaltigkeiten vorgestellt. Dazu wird die
Riemannsche Semismooth Newton (RSSN)-Methode auf ein nichtglattes nichtlineares
Optimalitätssystem angewandt, das auf kürzlich veröffentlichten Arbeiten basiert. Ins-
besondere wird ein ein neues lokales Konvergenzresultat für eine inexakte Variante des
Riemannschen Semismooth Newton-Verfahrens gezeigt. Die experimentellen Ergebnisse
zeigen die Leistungsfähigkeit des Verfahrens zur Lösung mehrerer `2-TV-Probleme in
Mannigfaltigkeiten mit positiver und negativer Krümmung.

Abstract
This thesis introduces a higher-order optimization method for solving non-smooth vari-
ational problems on Riemannian manifolds. In this work, we apply the Riemannian
Semismooth Newton (RSSN) method to a non-smooth non-linear optimality system de-
rived in recent advances in manifold duality theory. In particular we will show a novel
local convergence result for an inexact version of the Riemannian Semismooth New-
ton method and show state-of-the-art performance in numerical experiments by solving
several `2-TV-like problems on manifolds with positive and negative curvature.

iii

Acknowledgment
I would like to thank Ronny Bergmann for fruitful discussions regarding several differen-
tial geometric interpretations of earlier work and his Julia library Manopt.jl. Despite
being extremely busy, Ronny managed to respond with enthusiasm after every email I
sent. Without his suggestions, this work would not have been what is has become.
Furthermore, I would like to thank Jan Lellmann for weekly online discussions. Espe-

cially, in these times of the pandemic, without these meetings this work would not have
seen the light of day.

v

Contents

List of Notation and Symbols ix

1 Introduction 1
1.1 Motivation . 1
1.2 Related work . 3
1.3 Contribution . 5
1.4 Outline . 6

2 Preliminaries I: Non-smooth Optimization 9
2.1 Non-smooth Analysis . 9
2.2 The Primal-Dual Hybrid Gradient Algorithm 11

3 The Semismooth Newton Method 15
3.1 Introduction . 15
3.2 Newton’s Method for Non-smooth Systems of Equations 17
3.3 A Higher-order Primal-dual Method . 20
3.4 Application to `2-TV-like Functionals* . 21
3.5 Numerical Experiments* . 27
3.6 Towards SSN for Manifold-valued Data* 35

4 Preliminaries II: Manifolds and Riemannian Geometry 37
4.1 Differential Geometry and Riemannian Geometry 37
4.2 Specific Manifolds . 52

5 Towards Optimization on Manifolds 57
5.1 Two Approaches: Extrinsic vs. Intrinsic 57
5.2 Non-smooth Analysis on Manifolds . 59
5.3 The Riemannian Chambolle-Pock Algorithms 61

6 The Riemannian Semismooth Newton Method 67
6.1 Introduction . 67
6.2 Newton’s Method for Finding Zeros of Non-smooth Vector Fields 68
6.3 The Inexact Riemannian Semismooth Newton Method* 71
6.4 A Higher-order Primal-dual Method for Manifolds* 77
6.5 Application to `2-TV-like Functionals* . 87
6.6 Numerical Experiments* . 91

7 Conclusions 105

vii

A Appendix 107
A.1 Covariant Derivatives for the `2-TV-like Dual Proximal Maps 107
A.2 Exact Solutions to 1D `2-TV for 2n gridpoints on manifolds 109

viii

List of Notation and Symbols

Manifolds

P(d) Symmetric positive definite d× d matrices
Rd d-dimensional Euclidean space
Sd d-dimensional sphere
SO(3) Rotational group of R3

TM Tangent bundle (= ∪p∈MTpM)
TpM Tangent space at p toM
(U,ϕ) Chart

Mappings

∇ Levi-Civita connection
[Flat isomorphisim TpM3 X 7→ X[∈ T ∗p
] Sharp isomorphisim T ∗pM3 ξ 7→ ξ] ∈ TpM
∂CX(x) Subdifferential of a function X at a point x ∈ Rd
d(p, q) Riemannian distance between p and q
DCF (p) Clarke generalized differential of F at p ∈M
DpF [v] Differential of F at p ∈M applied to v ∈ TpM
Exp Matrix exponential mapping
∂f(x) Subdifferential of a function f at a point x ∈ Rd
g(·, ·)p Riemmannian metric tensor at p ∈M
Log Matrix logarihmic mapping
∂M,CX(p) Clarke generalized covariant derivative of a vector field X at a point p ∈M
∂MF (p) Subdifferential of a function F at a point p ∈M
(·, ·)p Riemmannian metric at p (= g(·, ·)p)
logp q Logarihmic mapping at p applied to q
expp(v) Exponential mapping at p applied to v
Pp→qv Parallel transport of v from TpM to TqM
R(·, ·)· Riemannian curvature tensor
γp,q Geodesic between p and q
γp;v Geodesic starting from p in direction v

Abbreviations

ADMM Alternating Directions Method of Multipliers
ASSN Adaptive Semismooth Newton Method
CPPA Cyclic Proximal Point Algorithm
eRCPA Exact Riemannian Chambolle Pock Algorithm

ix

eRSSN Exact Riemannian Semismooth Newton Method
IRSSN Inexact Riemannian Semismooth Newton Method
lRCPA Linearized Riemannian Chambolle Pock Algorithm
lRSSN Linearized Riemannian Semismooth Newton Method
PDHG Primal Dual Hybrid Gradient Algorithm
PPA Proximal Point Algorithm
RCPA Riemannian Chambolle Pock Algorithm
ROF The Rudin-Osher-Fatemi model
RSSN Riemannian Semismooth Newton Method
SSN Semismooth Newton Method
TV Total Variation regularization

x

Chapter 1: Introduction
Although the field of image processing covers a wide variety of topics and problems,
models for image processing will often come down to the minimization of some cost
functional for the retrieval of an image. Take for example the Rudin-Osher-Fatemi
(ROF) image denoising model [ROF92]. In its discrete anisotropic form, it can be
written as the minimization problem

min
x∈RN×M

{1
2‖x− h‖

2
2 + α‖∇x‖1

}
, (1)

where h ∈ RN×M is a noisy image and ∇ is the discrete (horizontal and vertical) first-
order gradient operator. Intuitively, this variational model says that we want the solu-
tions to be reasonably close to the data h, but we say additionally (from prior knowledge)
that its derivative in every direction should be small. Adding the second term as prior
information is called regularization and is crucial in many image processing tasks to get
well-behaved solutions that are robust with respect to noise. The particular approach (1)
to regularizing is derived from so-called Total Variation (TV) regularization, which is
one of the key models for image processing. The ROF (or `2-TV) model (1) has become
the prototype of modern day variational image processing. Algorithms for solving this
problem and its generalizations continue to be an active topic of research.
The class of methods for solving non-smooth convex optimization problems like (1)

using only generalizations of the gradient of f and g, is often referred to as the first-order
methods. Although these algorithms work reasonably well, the major drawback is their
slow tail convergence: typically, these algorithms achieve ε-suboptimality within O(1

ε)
iterations. Using acceleration, the amount of steps can be reduced to O(1√

ε
) [HYY14].

For high accuracy solutions first-order methods are often not the best choice and instead
higher-order methods are used. These algorithms use higher-order derivatives and come
with linear or superlinear convergence.

1.1 Motivation

This brings us to the motivation of this thesis: second-order methods for manifold-
valued image processing. In recent years statistical [PFA06, Pen06, FJ07, LNPS17] and
PDE approaches [KS02, CTDF04] to data processing on manifolds have been researched
extensively. From 2010 onwards, non-smooth variational approaches on Riemannian
manifolds have been gaining momentum as well.

Manifold-valued Images
These types of images do not take a real value on every pixel as assumed in (1), but are
“manifold-valued”. The most common manifolds for imaging (besides the classical Rd)
are the sphere Sd, the space of positive definite matrices P(d) and the special orthogonal
group SO(3). Examples from applications include, but are not limited to:

1

Introduction

Non-linear Colour Spaces (CB and HSV) Whereas the standard RGB colour
model is very convenient in application, non-linear colour models have been proposed
as well. These models tend to give a better representation in terms of human colour
perception.

Figure 1: HSV model [Com18]

In the Chromaticity Brightness colour space
[CKS01], the first octant is given a non-linear struc-
ture by viewing R3 as S2 × R, restricted to the first
octant. The chromaticity is given by the normalized
RGB vector, which gives a value S2, and the bright-
ness by the length of the vector, giving a value in
R.
Another popular non-linear colour space is the Hue

Saturation Value (HSV) colour space. Here, we look
at the S1 × R2 manifold. This model can be inter-
preted as arranging the pure colors around a full circle

and then select the saturation and the brightness (value).

Figure 2: InSAR image
[Com19]

Radar Interferometry (InSAR) InSAR images
are obtained as the phase differences of two Synthetic
Aperture Radar (SAR) images. These are images of
an area taken from different positions or different times
[MF98]. The technique is applied to detect millimeter
changes to landscapes over days or even years. InSAR
imaging has applications in monitoring earthquakes, vol-
canoes and landslides. The computed phase signals can
be seen as data on the circle, i.e., the S1 manifold. Such
an S1 image is typically visualized by giving each pixel
the corresponding hue as discussed in the previous ap-
plication.

Figure 3: DTI image [Com20]

Diffusion Tensor Imaging (DTI) In Diffusion
Tensor MRI we are interested in capturing informa-
tion on the diffusion of water molecules in different tis-
sues [BML94]. Taking at least six measurements with
different magnetic fields, it is possible to capture this
information in a diffusion tensor field, which can be rep-
resented as a symmetric positive definite matrix at every
pixel. In other words we find our data in the space P(d).
We can visualize such a positive definite matrix as an el-
lipsoid that indicates the amount of diffusion occurring
in all spatial directions.

2

1.2 Related work

Figure 4: EBSD image [Com13]

Electron Backscatter Diffraction (EBSD)
EBSD is a technique for exploring and mapping mi-
crostructures in crystalline materials such as metals
and minerals [AWK93]. Backscattered electrons give
information on the orientation of these microstruc-
tures. This orientation can be modelled by the rota-
tion group SO(3). Regions with the same orientation
are called grains. Mapping this grain structure is the
end goal and gives information on macroscopic mate-
rial properties such as conductivity and lifetime. The
grains can be assigned a certain colour1 so that the
orientation information can be captured in a single image in the end.

Manifold-valued Models and Solvers
In order to process these types of data, both the models and the solvers from image
processing in Rd have to be generalized. So far, most of the attention has gone to the
generalization of successful models and first-order algorithms. However, there are a lot
of open questions regarding higher-order methods. In this work, we will be investigating
how to extend the work of [RLV17] on the Semismooth Newton method for Total Vari-
ation regularization to the manifold setting. Our goal will be to develop a general fast
second-order algorithm for non-smooth variational models on manifold-valued data.

1.2 Related work

Whereas applications of TV regularization on manifolds gained momentum at the start
of the 2010s, the analysis of TV in the manifold setting can be traced back to the
1990s [GMS93]. Initially starting off with the case of the S1 manifold, Total Cyclic
Variation is proposed and existence of its minimizers was shown. It was only until
2006 that this result got a follow up. The more general result of functions u : Ω → Y
on manifold domains Ω to a manifold Y has been studied in [GM06, GM07] using the
theory of Cartesian currents. Here the space BV (Ω,Y) was rigorously defined and some
properties such as lower semi-continuity were established.

Starting Up Manifold Valued Imaging
Although early (numerical) attempts for solving TV on manifolds originate from the
early 2000s, e.g., with [CKS01] who proposed a method for denoising cyclic colour data,
the majority of the contributions in TV regularization on manifolds were proposed in
the 2010s. Here [SC11] tried to bridge the gap between the theoretical results mentioned
before and applications by introducing TV regularization on S1 and providing a numer-
ical method to solve it. This attempt quickly got a follow up in [CS13], whose authors
presented several novelties among which extensions to more general regularizers such as

1This scheme is somewhat more complex and will not be discussed further. A clear explanation can
be found in [Per18].

3

Introduction

Hubert-TV. In [VBK13] the authors focus on the P(3) manifold of symmetric positive
definite 3× 3 matrices2 while using a TGV approach.
The more general case for solving TV on arbitrary Riemannian manifolds was proposed

in [LSKC13], who reformulated the variational problem into a multi label optimization
problem. Nevertheless, the key work of [WDS14] became in the end most popular by
going with the full intrinsic approach. Contrary to extrinsic approaches, the methods
no longer focussed on the embedding of the manifold into a higher dimensional (linear)
space, but used manifold mappings. They proposed the `2-TV model

min
p∈MN×M

1
2

N,M∑
i,j=1

d (pij , hij)2 + α
N−1,M∑
i,j=1

d (pij , pi+1,j) + α
N,M−1∑
i,j=1

d (pij , pi,j+1)

 , (2)

as generalized Total Variation denoising for manifold valued images. Here d(p, q) is the
distance between p, q ∈M on the manifold.

Generalized Models
When entering the second half of the 2010s we see more general models emerging. So was
a second-order model for cyclic data proposed in [BLSW14], but soon enough popular
models in the Euclidean case also got their generalized manifold case counterpart: a
general second-order method [BBSW16], infimal convolution models [BFPS17, BFPS18]
and TGV for manifold-valued imaging [BHSW18, BFPS18] were introduced. Moreover,
at the same time specialized models got extended to applications such as inpainting
[BW15], segmentation [WDS16], or manifold valued inverse problems [BWW+16, SW18].
Moreover, new problem settings arose with the emergence TV for manifold-valued data
on graphs [BT18].

Generalized Solvers
As TV and variants got extended to manifolds, so did the solvers. The proposed al-
gorithms were given in terms of Hadamard manifolds: Riemannian manifolds that are
complete, simply connected and have negative sectional curvature. The author of [Bac14]
proposed the Cyclic Proximal Point Algorithm (CPPA) on Hadamard manifolds as an
extension the proximal point method [Ban14]. The latter was again an extension onto
the manifold case of the algorithm proposed in [Ber11] for the Euclidean case. Iter-
atively Reweighted Least Squares (IRLS) [BCH+15] was a generalization of the ver-
sion for spheres in [GS14]. The IRLS was then again adapted in [GS16] by adding a
quasi-Newton step. Furthermore, [BPS16] proposed the Parallel Douglas-Racheford Al-
gorithm (PDRA) as a generalization of the Douglas-Racheford algorithm for symmetric
Hadamard manifolds, [SWU16] proposed an exact solutions for `1-TV with spherical
data and [VSCL19] proposed a functional lifting approach.

2Better: 3× 3 tensors.

4

1.3 Contribution

An Important Development in Manifold-valued Image Processing
However, there were still issues with these algorithms regarding application to TV-
based energies. As in the linear case, the proximal map of the TV term cannot be
written in a closed form. Hence the maps typically have to be approximated, which
takes much time. In the Euclidean case the difference operator was dealt with by using
techniques such as Bregman splitting, ADMM or a Fenchel duality-based primal-dual
algorithm as mentioned in the previous section. The latter has been realized in the most
recent contribution. Fenchel duality theory for Hadamard manifolds was in the end
introduced in [BHTVN19]. The authors proposed the exact Riemannian Chambolle Pock
Algorithm (eRCPA) and the linearized Riemannian Chambolle Pock Algorithm (lRCPA)
as an application of the developed theory. The approach shows competitive runtimes
compared to other algorithms, made it easier to handle the proximity operators and was
compatible with isotropic TV, which was still impossible up until then. This development
will be the stepping stone towards our goal of realizing higher-order methods for manifold
valued imaging.

1.3 Contribution

In this work sections containing new contributions are denoted by an asterix (*) in the
section header. We present four main contributions to the field: one for the Semismooth
Newton method in Rd and three related to the Riemannian Semismooth Newton method.

Contributions to the Semismooth Newton Related Topics
1. Resolving Known Issues with Semismooth Newton for TV in Euclidean

Space In prior results [RLV17] SSN was applied to TV already. However, the method
suffered from ill-posedness of the Newton matrix. The direct cause of the non-invertibility
was not entirely clear, but it was shown that the matrix was positive semi-definite.
Hence, the proposed solution was adding βI to the Newton matrix, where I the identity
matrix and β � 1, in order to make the matrix positive definite and thus invertible.
From a theoretical point of view it was not clear whether we could still expect superlinear
convergence. Nevertheless, in practice it did not seem to be a problem.
In this work we will show explicitly where the ill-posedness comes from and present a

more targeted solution that only resolves the equations in the Newton system causing the
ill-posedness (contrary to the prior approach which used perturbed the whole Newton
matrix). Furthermore, we investigate its performance in numerical experiments.

Contributions to Riemannian Semismooth Newton Related Topics
2. Being the First to Apply and Implement Riemannian Semismooth New-

ton The main contribution of this work comes from merging the ideas of [BHTVN19]
[RLV17] and [OF18]. That is, using the theoretical framework of Riemannian Semis-
mooth Newton [OF18] and the Fenchel duality theory [BHTVN19], we generalize the
ideas presented in [RLV17] and develop a duality-based higher-order method for non-
smooth variational problems on manifolds. We apply the new approach to several 1D
and 2D problems and obtain state-of-the-art performance.

5

Introduction

3. Expanding the Theoretical Framework of Riemannian Semismooth New-
ton For larger-scale problems, it is often not feasible to solve the Newton matrix.
Hence, iterative methods for solving large-scale linear systems will be the next step
towards making the method numerically feasible.
We build upon the theory of the Riemannian Semismooth Newton method [OF18]

towards an inexact version and provide several convergence proofs (Thm. 6.12). We still
get linear convergence despite the inexact solution of the Newton system. In numerical
experiments, we validate our theoretical results.

4. Gaining Novel Insights Into Open Questions in Previous Work From
the Fenchel duality theory on manifolds [BHTVN19], the authors derived two non-linear
optimality systems: the so-called exact system and the linearized system. Whereas the
names suggest that only the latter is an approximation, the former is too. However,
the linearized system had more theoretical motivation, i.e., the resulting fixed point
algorithm, the lRCPA, is shown to converge.
This thesis provides new insights into the workings of the exact optimality system: in

particular, due to the high accuracies we can reach with our Riemannian Semismooth
Newton method, we find hints that the exact optimality system does not have the same
minimizer as `2-TV and therefore is not a good way of approaching non-smooth opti-
mization on manifolds.

1.4 Outline

This work thesis is organized in two parts: one focused on Semismooth Newton (SSN)
for Euclidean space (Chapter 2 and 3) and the other focused on generalizing the method
to manifolds (Chapter 4,5 and 6). The first part continues directly upon the work in
[RLV17]. The main focus here is resolving issues and gather information and intuition
useful for the manifold case. The second part contains mostly new content.

Chapter 2
In this chapter our goal is to understand how to minimize a general non-smooth convex
problem given by the sum of two convex energies. Through non-smooth convex analysis
we will learn how classical smoothness restrictions can be replaced by convexity. We
will discuss Fenchel duality theory which provides the tools to rewrite our optimization
problem in a computationally feasible form. Finally, we will discuss the so-called Primal
Dual Hybrid Gradient (PDHG) method, which will be the basis for the following.

Chapter 3
In this chapter we discuss the limitations of methods such as PDHG for solving non-
smooth variational problems and our goal is to develop a faster alternative. We will look
into the Semismooth Newton (SSN) method as a second-order-acceleration of PDHG. In
particular, we will rewrite the PDHG iteration into a form that is suitable for SSN. Next,
we will look into an application: SSN for solving `2-TV. We will continue the work in
[RLV17] and resolve some remaining issues. With numerical experiments we show that

6

1.4 Outline

our novel approach to SSN for `2-TV does no longer suffer from non-invertibility and we
obtain superlinear convergence.

Chapter 4
In order to generalize the notions from Euclidean space to manifolds, we need generaliza-
tions of our notions on Riemannian manifolds. In this chapter we will start with defining
smooth manifolds and discussing important general notions such as differentials, vector
fields, vector bundles and discuss the important result that every Riemannian manifold
admits a metric tensor. From that we discuss Riemannian geometry, which enables us
to talk about important manifolds mappings that will become important later when
discussing the Riemannian Semismooth Newton method. We will also look into an im-
portant application of Riemannian geometry: Jacobi fields. These fields provide us with
useful expressions that are key for later implementation.
In this chapter we will also take a closer look at the Sd and P(3) manifold. In par-

ticular, we will provide the relevant mappings that become important for implementing
algorithms on these manifolds.

Chapter 5
This chapter is a direct generalization of the contents in chapter 2 to manifolds and relies
heavily on the notions developed in the work in [BHTVN19]. The main goal is working
towards a generalization to PDHG on manifolds. As it turns out the non-linearity of
manifolds does not allow a direct generalization. Instead we must resort to algorithms
solving for approximate solutions. The proposed algorithms, i.e., the exact and linearized
Riemannian Chambolle Pock algorithms, are discussed along with open questions of the
choices made here.

Chapter 6
Finally, we are ready to develop the Riemannian Semismooth Newton method. This
chapter will be a direct generalization to chapter 3 and is structured in a similar fashion.
We will discuss different ways of generalizing SSN to manifolds and proceed by focusing
on vector fields. Subsequently, we will discuss the theory behind RSSN as formulated
in [OF18] and prove a new result by looking at solving the Newton system inexactly.
After discussing how to construct the Newton matrix, we will focus on TV denoising
as an application for our method. Finally, in the numerical experiments we investigate
both the RSSN and its inexact counterpart and we compare the former’s performance
to other state-of-the-art algorithms.

Chapter 7
We conclude the thesis by discussing the key issues of RSSN and provide suggestions for
future work.

7

Chapter 2: Preliminaries I: Non-smooth Optimiza-
tion

Before understanding how to solve non-smooth optimization problems on a manifold,
we first consider how to solve them in a vector space. We will focus on solving

inf
x∈Rn

{f(x) + g(Ax)} , (3)

where A : Rn → Rm a linear mapping, f : Rn → R̄, g : Rm → R̄ are non-smooth
functions and R̄ is the extended real line as defined below.
In this chapter we will build up towards solving this general problem by taking a step

by step approach and introduce tools from convex analysis in Rn in Sect. 2.1 and a
general way to solve the problem in Sect. 2.2. More details can be found in works such
as [RW09, CV20].

2.1 Non-smooth Analysis

In the following we will look can also look at a certain class of functions: functions
mapping into the extended real line.

Definition 2.1 (extended real line). Let R̄ := R∪ {+∞,−∞} be the extended real line
with the rules:

(i) ∞+ c =∞ and −∞+ c = −∞ for all c ∈ R,

(ii) 0 · ∞ = 0 and 0 · (−∞) = 0,

(iii) inf R = sup ∅ = −∞ and inf ∅ = supR = +∞,

(iv) +∞−∞ = −∞+∞ = +∞.

The first goal is generalizing the gradient of a function. For a useful generalized
gradient, we need some additional information on f that provide a minimum of regularity.
These properties turn out to be properness, convexity and lower semi-continuity. For
that consider the following definitions.

Definition 2.2 (proper). A function f : Rn → R̄ is proper if domf := {x ∈ Rn|f(x) <
∞} 6= ∅ and f(x) > −∞ holds for all x ∈ Rn.

Definition 2.3 (convex). Let C be a convex set in Rn. A function f : C → R̄ is convex
if

f (tx1 + (1− t)x2) ≤ tf (x1) + (1− t)f (x2) ∀x1, x2 ∈ C, t ∈ [0, 1]. (4)

Definition 2.4 (epigraph). Let U ⊂ Rn be open. The epigraph of a function f : U → R̄
is defined as

epi f := {(x, α) ∈ U × R|f(x) 6 α} . (5)

9

Preliminaries I: Non-smooth Optimization

Definition 2.5 (lower semi-continuous). Let U ⊂ Rn be open. A proper function f :
U → R̄ is called lower semi-continuous (lsc) if epi f is closed.

Having these definitions, we are ready to generalize the gradient. The idea is that we
can try to find hyperplanes tangent to and completely below the graph of the function.

Definition 2.6 (subgradient). Let U ⊂ Rn be open. For every f : U → R̄ and x ∈ U ,

∂f(x) := {v ∈ Rn|f(y) ≥ f(x) + 〈v, y − x〉 ∀y ∈ U} (6)

is the subdifferential or the set of subgradients of f at x.

Remark 2.7. Note that in the case that the function is smooth and convex, we actually
get that the set of sudgradients is a singleton containing the gradient if x is in the domain
(otherwise it is empty).

A generalized backward step
Consider some smooth function f : Rn → R̄. In order to find the minimum of this
function, a gradient descent scheme would be a reasonable first approach, i.e.,

uk+1 = uk − τ∇f(uk). (7)

This equation can be viewed as a discretization of the ODE

ut = −τ∇f(u). (8)

Now, instead of solving (8) we can try to discretize

ut ∈ −τ∂f(u) (9)

in the more general setting of a proper, convex, lsc function. Previously a forward Euler
discretization was used. Remember that we can use backward Euler as well. Then, for
the updated uk we can choose

uk+1 ∈ Fτf (uk) := (I − τ∂f)uk, (10)
uk+1 ∈ Bτf (uk) := (I + τ∂f)−1uk. (11)

The latter expression is closely related to the proximal map.

Definition 2.8 (proximal map). Let f : Rn → R̄ be proper, lsc, convex and let τ > 0.
The proximal map of f is defined as

proxτf (x) := arg min
y

{1
2‖y − x‖

2
2 + τf(y)

}
. (12)

A well-known result gives us an equivalent form for the backward step:

Proposition 2.9 ([RW09, Prop. 12.19]). If f : Rn → R̄ is proper, lsc, convex with
τ > 0, then the backward step is uniquely given by

Bτf (x) = proxτf (x). (13)

10

2.2 The Primal-Dual Hybrid Gradient Algorithm

Figure 5: A visual explanation of the Fenchel conjugate of some function f . [BHTVN19]

Finally, with this we have the machinery to solve for

inf
x∈Rn

f(x), (14)

by simply iterating the proximal mapping. This is known as the proximal point algorithm
(PPA). However, computing a single proximal step on the full problem is generally as
hard as solving the original problem. Therefore, we consider problems of the form

inf
x∈Rn

{f(x) + g(Ax)} . (15)

In this work we will focus on the primal-dual approach.

2.2 The Primal-Dual Hybrid Gradient Algorithm

For tackling the general problem in (15) we will use the following general strategy:
introduce a variable y and rewrite the problem into

inf
x∈Rn,y∈Rm

{f(x) + g(y)} , s.t. Ax = y (16)

and try to optimize f and g alternatingly while trying to fulfil the constraint. We will
see that duality theory comes to rescue and provides a clever way to do this splitting by
considering the Lagrangian.

Definition 2.10 (Fenchel conjugate). Let f : Rn → R̄ be a function. The Fenchel
conjugate of f is defined as the function f∗ : Rn → R̄ such that

f∗ (x∗) := sup
x∈Rn

{〈x∗, x〉 − f(x)} . (17)

For an interpretation of this function consider Fig. 5. The Fenchel conjugate at some
point x∗ can be seen as the (negative) distance we have to translate the hyperplane
induced by the vector [x∗,−1]> down (up) until it is tangent to the graph of f .
Subsequently, we can find the Fenchel conjugate of the Fenchel conjugate.

Definition 2.11 (Fenchel biconjugate). Let f : Rn → R̄ be a function. The Fenchel
biconjugate of f is defined as the function f∗∗ : Rn → R̄ such that

f∗∗ (x∗∗) := sup
x∗∈Rn

{〈x∗∗, x∗〉 − f∗(x∗)} . (18)

11

Preliminaries I: Non-smooth Optimization

The following theorem is the final piece we need to solve the problem (15).

Theorem 2.12 (Fenchel–Moreau-Rockafellar, [CV20, Thm. 5.1]). Given a proper func-
tion f : Rn → R̄, the equality f∗∗(x) = f(x) holds if and only if f is lower semi-
continuous and convex.

The Lagrangian approach
Using the previous result, we see that if f, g are proper lsc convex, we can rewrite

inf
x∈Rn

{f(x) + g(Ax)} (19)

into

inf
x∈Rn

sup
y∈Rm

{f(x)− g∗(y) + 〈Ax, y〉} , (20)

where we call l(x, y) := f(x) − g∗(y) + 〈Ax, y〉 the Lagrangian. If we were now able to
exchange inf and sup, we could write

inf
x∈Rn

sup
y∈Rm

{f(x) + 〈y,Ax〉 − g∗ (y)} = sup
y∈Rm

inf
x∈Rn
{f(x) + 〈y,Ax〉 − g∗ (y)} (21)

= sup
y∈Rm

{
−
{

sup
x∈Rn

−f(x) +
〈
−A>y, x

〉}
− g∗ (y)

}
.

(22)

From the definition of f∗, we obtain the dual problem

sup
y∈Rm

{−g∗ (y)− f∗(−A>y)}. (23)

The following result provides a sufficient condition for (21) to hold and an alternative
optimality condition.

Theorem 2.13 ([CV20, Thm. 5.9]). Let f : Rn → R̄ and g : Rm → R be proper, convex,
and lower semi-continuous, and A : Rn → Rm be a linear mapping. Assume furthermore
that

(i) the primal problem (19) admits a solution x̂ ∈ Rn

(ii) there exists an x0 ∈ dom(g ◦A) ∩ dom f with Ax0 ∈ int(dom g)

Then, the dual problem (23) admits a solution ŷ ∈ Rm and

min
x∈Rn

f(x) + g(Ax) = max
y∈Rm

−g∗ (y)− f∗(−A>y). (24)

Furthermore, x̂ and ŷ are solutions to (19) and (23), respectively, if and only if

−A>ŷ ∈ ∂f(x̂), (25)
Ax̂ ∈ ∂g∗(ŷ). (26)

12

2.2 The Primal-Dual Hybrid Gradient Algorithm

Assuming that a solution exists, we can try to solve the primal-dual optimality system

−A>y ∈ ∂f(x), (27)
Ax ∈ ∂g∗(y), (28)

by rewriting it. For σ > 0 (27) can be rewritten into

−A>y ∈ ∂f(x)⇔ −σA>y ∈ σ∂f(x) (29)
⇔ x− σA>y ∈ x+ σ∂f(x) (30)
(13)⇔ x = proxσf (x− σA>y). (31)

Similarly, for τ > 0 (28) can be rewritten into

Ax ∈ ∂g∗(y)⇔ y = proxτg∗(y + τAx). (32)

We find the equivalent form of the primal-dual optimality system

x = proxσf (x− σA>y), (33)
y = proxτg∗(y + τAx). (34)

These proximal maps also play a role in constructing an iterative algorithm for solv-
ing (20):

• find yk+1 by only considering −g∗(y) + 〈Axk, y〉,

• find xk+1 by only considering f(x) + 〈Ax, yk+1〉,

• repeat until converged.

If we take a backward step for y we get the update

yk+1 = arg min
v

{
τg∗(v)− τ〈Axk, v〉+ 1

2‖v − y
k‖2
}

(35)

= arg min
v

{
τg∗(v)− τ〈Axk, v〉+ 1

2‖v − y
k‖2 + 1

2‖τAx
k‖2 + τ〈Axk, yk〉

}
(36)

= arg min
v

{
τg∗(v) + 1

2‖v − (yk + τAxk)‖2
}

= proxτg∗(yk + τAxk). (37)

Similarly, for x we get the update

xk+1 = proxσf (xk − σA>yk+1). (38)

These ideas were combined in the Primal-Dual Hybrid Gradient (PDHG) Algorithm
[CP11, Alg. 2].

13

Preliminaries I: Non-smooth Optimization

Algorithm 1 (modified) PDHG
Initialization: Let L := ‖A‖ and τ0, σ0 > 0 such that τ0σ0L

2 ≤ 1, γ ≥ 0, x0 ∈ Rn, y0 ∈
Rm and set x̄0 := x0

while not converged do
yk+1 := proxτkg∗(y

k + τkAx̄
k)

xk+1 := proxσkf (xk − σkA>yk+1)
θk := 1/

√
1 + 2γτk, τk+1 := θkτk, σk+1 := σk/θk

x̄k+1 := xk+1 + θk(xk+1 − xk)
end while

Moreover, we have the following convergence result.

Theorem 2.14 ([CP11, Thm. 2]). Let f : Rn → R̄ and g : Rm → R be proper,
convex, and lower semi-continuous, let A : Rn → Rm be a linear mapping, let τ0 > 0,
σ0 := 1/(τ0L

2), and let (xk, yk)k≥1 be defined by Alg. 1. Assume the existence of γ > 0
such that for any x ∈ dom ∂f

f
(
x′
)
≥ f(x) +

〈
p, x′ − x

〉
+ γ

2
∥∥x− x′∥∥2

, ∀p ∈ ∂f(x), x′ ∈ Rn. (39)

Then for all ε > 0 there exists N0 (depending on ε and γτ0) such that for every N ≥ N0,

∥∥∥x̂− xN∥∥∥2
≤ 1 + ε

N2

(∥∥x̂− x0∥∥2

γ2τ2
0

+ L2

γ2

∥∥∥ŷ − y0
∥∥∥2
)
, (40)

where (x̂, ŷ) is the solution of (20).

14

Chapter 3: The Semismooth Newton Method
In this chapter we will explore a the possibilities and limitations of the Semismooth
Newton method (SSN) as a higher order method for non-smooth variational problems.
In this part we will continue the research in [RLV17], whose author already researched
the Semismooth Newton method in her master thesis. The overarching goal of this
chapter is to clarify all issues related to the method and see what we do and do not want
to generalize to the manifold case.
To this end, Sect. 3.1 will provide some additional motivation and context for the use

and the development of the method. In Sect. 3.2 the theoretical background around the
Semismooth Newton method will be discussed. In Sect. 3.3 we will elaborate on using
the Semismooth Newton method as a higher order primal-dual method. In Sect. 3.4 the
method will be applied for minimizing the `2-TV functional. Moreover, we make our
contribution here by discussing known issues and resolving them. In Sect. 3.5 we inves-
tigate performance with numerical experiments. Finally, in Sect. 3.6 we will give some
concluding remarks and provide an outlook and some suggestions to other possibilities
for higher order methods, that went beyond the scope of this thesis.

3.1 Introduction

The class of methods for solving convex optimization problems of the form

inf
x∈Rn

{f(x) + g(Ax)} , (41)

using only first-order information of f and g independently, i.e., one way or another using
subgradients or proximal mappings, is often referred to as first-order splitting methods.
Besides TV-based regularizing, also `1 regularization [DDDM04] can be written as (41).
The latter gained popularity in applications such as compressed sensing [Don06].
These methods became an active field of research from around 2005 onwards. Ex-

amples of methods include but are not limited to Forward backward splitting [CW05],
Douglas-Racheford splitting [CP07], Bregman splitting [YOGD08], the Alternating Method
of Multipliers (ADMM) [WYYZ08] and Primal-Dual Splitting [CP11]. For a clear
overview of the splitting methods and their relation to each other see [EZC10].
Although these algorithms worked reasonably well, the major drawback was slow tail

convergence. Typically, the algorithms achieved ε-suboptimality within O(1
ε) iterations.

Using acceleration, the amount of steps could typically be reduced to O(1√
ε
). Successful

cases include the FISTA algorithm and the before mentioned primal-dual algorithm with
an overrelaxation on the step size [HYY14]. Other approaches to acceleration include
preconditioning [PC11] and continuation approaches [WNF09].

Towards Faster Algorithms
A possible solution to speeding up convergence is using second-order information. In
general, one can do this by either passing to interior point methods [FGZ14] or using
Newton-like methods. Since the start of the 2010s multiple Newton-like methods have

15

The Semismooth Newton Method

been proposed for problems of the form as in (41). These algorithms include but are
not limited to: Quasi Newton methods [YVGS10, Che14], Proximal Newton methods
[BF12, PJL+13, LSS14, BNO16, YZS19], Forward Backward Newton methods [PSB14]
and Semismooth Newton methods [GL08, MU14, BCNO16b, XLWZ18, LST18].
As mentioned in the chapter opening, in this work we will focus on the latter. This

method did not originate from the field of first-order methods, but came from optimal
control in the early 2000s [HIK02]. Nevertheless, the idea of the method was already
formulated almost 10 years before that [QS93].

A Brief History of SSN
The history of the SSN can be traced back starting to the end of the 1970s with [Mif77]
who introduced the notion of semismoothness for real-valued functions in the finite-
dimensional case, the authors of [QS93] extended this notion to maps between finite
dimensional spaces, introduced SSN to solve semismooth non-linear equations and pro-
vided a proof of local superlinear convergence under a non-degeneracy assumption. In
[Qi93] the damped-Newton was proposed as an adaptation to SSN and global conver-
gence was established. Later [ZT05] showed local superlinear convergence in the case
that the Jacobian is not necessarily nonsingular, but allows for a weaker assumption.
With the theory in place we see application of the method emerging within different

fields. The authors of [DLFK96, SH97] were among the first to apply SSN. Their key
idea was to apply SSN to non-linear complementary problem functions (NCP-functions).
These are functions of the form φ : R2 → R with the property

φ(x) = 0 ⇔ x1 ≤ 0, x2 ≤ 0, x1x2 = 0, (42)

that are applied component-wise to the NCP system. A popular choice was the Fischer-
Burmeister function

φFB(x) =
√
x2

1 + x2
2 − x1 − x2. (43)

Later this idea using NCP was also adapted in [NQYH07] and applied to TV-based
energies. A general approach was proposed in [Ulb02], where SSN applied to an NCP
system was extended to the infinite-dimensional case. In the end, the authors of [HIK02]
were among the first to break the tradition of solving NCP equations with SSN and
applied the method on the optimality conditions of optimal control problems, which
could be rewritten into a suitable form.

The Revival of SSN
After [HIK02], the idea of using SSN for problems other than the NCP function continued
and got picked up at the late 2000s by the community currently working on `1-regularized
optimization. The algorithms obtained from first-order methods were typically fixed
point iterations, i.e.,

xk+1 = G(xk), (44)
for some (non-smooth) function G. The core idea was to see that this system would
converge to some x that would satisfy

x = G(x) ⇔ x−G(x) = 0, (45)

16

3.2 Newton’s Method for Non-smooth Systems of Equations

where the right hand equation has the correct form for SSN. Starting from 2008 onwards
we see that [GL08] was directly inspired by the example in [HIK02] and saw that the
optimality conditions used in the fixed point iteration of the forward backward splitting
(FBS) algorithm also had the desired form and properties for SSN. They applied SSN
in the infinite-dimensional case to a sparse wavelet regularized inverse problem setting.
Six years later in 2014 [MU14] followed up this idea in the more specific setting of `1
regularization in the finite dimensional case, again by applying SSN to one of the fixed
point algorithms. Later, [BCNO16b] extended the latter’s contribution by generalizing
the framework into a one that could not only generate an active set framework (as
was the main idea so far), but also orthant-based methods and a second-order iterative
soft-thresholding method.

Recent Developments
The most recent contribution to higher order SSN-based methods for TV is still that in
[RLV17], where SSN and variants were applied to problems that could be stated in a
primal-dual fashion. Shortly after that, the authors of [XLWZ18] proposed the Adaptive
Semismooth Newton Method (ASSN). Their main idea was combining a regularization
approach and a hyperplane projection technique in order to establish a scheme that
is globally convergent, but also maintains local superlinear convergence. Furthermore,
whereas the earlier contributions showed their case for `1, this approach is formulated
for general convex functions, although only applied to `1 regularization. For now we will
focus on SSN, but at the end of this section we will discuss ASSN once more.

3.2 Newton’s Method for Non-smooth Systems of Equations

The goal of the Newton method is to find a zero of a function X : Rn → Rm, i.e.,

X(x) = 0. (46)

The key idea is, when starting from a point x, to find a step d such that

0 = X(x+ d) ≈ X(x) +∇X(x)d, (47)

which leads to the equation for the step d

∇X(x)d = −X(x). (48)

If n = m and ∇X(x) is invertible, then

d = ∇X(x)−1X(x) (49)

and we can iterate
xk+1 = dk + xk. (50)

The Newton iteration converges locally superlinearly for smooth X. In this section we
will discuss the case that X is non-smooth.

17

The Semismooth Newton Method

3.2.1 Generalized Differentials and Semismoothness

In the subsequent sections and chapters, we will usually assume that X : Rn → Rm is a
locally Lipschitz function. Consequently, by Rademacher’s theorem, X is differentiable
almost everywhere. This motivates the following generalized differential [Cla90, Def.
2.6.1].

Definition 3.1 (Clarke Generalized Differential). Let X : U ⊂ Rn → Rm be locally
Lipschitz on the open set U . Let DX ⊂ U be the set on which X is differentiable. The
(Clarke) generalized differential or Clarke generalized Jacobian of X at x, denoted by
∂CX(x), is defined as the convex hull of all m× n matrices V obtained as the limit of a
sequence of ∇X(xi) where xi → x and xi ∈ DX :

∂CX(x) := co {V : xi → x,∇X(xi)→ V, xi ∈ DX} . (51)

It turns out that this notion will be closely related with the notion of the directional
derivative [Hin10, Def. 2.3].

Definition 3.2 (Directional derivative). Let X : U ⊂ Rn → Rm be locally Lipschitz on
the open set U . We call

X ′(x, d) := lim
t↘0

X(x+ td)−X(x)
t

(52)

the (one-sided) directional derivative of X at x in direction d.

Before relating Def. 3.1 and Def. 3.2, we note that not every locally Lipschitz function
is amenable to a generalized Newton method. The notion of semismoothness turns out
to be an suitable choice of regularity [Hin10, Def. 2.5].

Definition 3.3 (Semismoothness). Let U ⊂ Rn be non-empty and open. The function
X : U → Rm is semismooth at x ∈ U if it is locally Lipschitz at x and if

lim
V ∈∂CX(x+td′)
d′→d,t↘0

{
V d′

}
(53)

exists for every d ∈ Rn. If X is semismooth at all x ∈ U, we call X semismooth (on U).

This notion is often hard to work with, but the following result comes in useful.

Theorem 3.4 ([Hin10, Thm. 2.9]). Let X : U → Rm be defined on the open set U ⊂ Rn.
Then, for every x ∈ U , the following statements are equivalent:

(i) X is semismooth at x.

(ii) X is locally Lipschitz continuous at x,X ′(x; ·) exists, and, for every V ∈ ∂CX(x+d)
it holds that ∥∥V d−X ′(x, d)

∥∥ = o(‖d‖) as d→ 0. (54)

18

3.2 Newton’s Method for Non-smooth Systems of Equations

(iii) F is locally Lipschitz continuous at x,X ′(x; ·) exists, and for every V ∈ ∂CX(x+d)
it holds that

‖X(x+ d)−X(x)− V d‖ = o(‖d‖) as d→ 0. (55)

Remark 3.5. From (iii) it follows that C1 functions are semismooth as well. In that
case we have ∂CX(x) = {∇X(x)}, which corresponds to the classical definition of the
differential.

Not only C1 functions are semismooth. This also holds for piecewise C1 functions, as
stated by the following result. This result will be particularly useful later as an appli-
cation to the non-smooth system we get for solving TV in both the real case (Sect. 3.4)
and in the manifold case (Sect. 6.5).

Proposition 3.6 ([FP07, Prop. 7.4.6]). Let X : U ⊂ Rn → Rm, with U open, be
piecewise semismooth near the x ∈ U . Then X is semismooth at x.

Finally, there also exist stronger notions of semismoothness: µ-order semismoothness.
For completeness, we will provide its definition as well [Hin10, Def. 2.6].

Definition 3.7. Let X : U → Rn be defined on the open set U ⊂ Rn. Then, for
0 < µ ≤ 1, X is called µ-order semismooth at x ∈ U if X is locally Lipschitz at x,
X ′(x, ·) exists, and, for every V ∈ ∂CX(x+ d),

∥∥V d−X ′(x, d)
∥∥ = O

(
‖d‖1+µ

)
as d→ 0. (56)

If X is µ-order semismooth at all x ∈ U , then we call X µ-order semismooth (on U).

For this stronger notion we have a similar characterization to Thm. 3.4.

Theorem 3.8 ([Hin10, Thm. 2.12]). Let X : U → Rm be defined on the open set
U ⊂ Rn. Then, for x ∈ U and 0 < µ ≤ 1, the following statements are equivalent:

(i) X is µ-order semismooth at x.

(ii) X is locally Lipschitz continuous at x,X ′(x, ·) exists, and, for every V ∈ ∂CX(x+d)
it holds

‖X(x+ d)−X(x)− V d‖ = O
(
‖d‖1+µ

)
as d→ 0. (57)

3.2.2 Fast Local Convergence for Semismooth Functions

With the notion of semismoothness and the tools discussed in the previous section we
can generalize the Newton algorithm by replacing the differential of the mapping X with
the Clarke generalized differential. The resulting Semismooth Newton (SSN) algorithm
is shown in Alg. 2. We obtain the following local convergence result:

19

The Semismooth Newton Method

Theorem 3.9 (Local convergence). Assume that x∗ satisfies X(x∗) = 0, X is locally
Lipschitz and semismooth at x∗ and all V ∈ ∂CX (x∗) are nonsingular. Then the itera-
tion in Alg. 2 is well-defined and converges superlinearly to x∗ in a neighborhood of x∗.
If in addition X is µ-order semismooth at x∗, then the convergence is of order 1 + µ.

Proof. Local convergence follows from [QS93, Thm. 3.2]. The superlinearity is not
explicitly stated in [QS93, Thm. 3.2], but is shown in its proof.

Algorithm 2 Semismooth Newton
Initialization: x0 ∈ Rn, k := 0
while not converged do
Choose any V (xk) ∈ ∂CX(xk)
Solve V (xk)dk = −X(xk)
xk+1 := xk + dk

k := k + 1
end while

3.3 A Higher-order Primal-dual Method

In this section we will work towards a higher order method involving SSN for solving
the problem

inf
x∈Rn

{f(x) + g(Ax)} . (58)

Assuming that the functions are proper, lower semi-continuous and convex we have seen
in Sect. 2.2 that we can rewrite the equation into the saddle-point problem

inf
x∈Rn

sup
y∈Rm

{f(x) + 〈Ax, y〉 − g∗(y)} , (59)

and the equivalence to solving the optimality system

0 ∈ ∂f(x) +A>y, (60)
0 ∈ ∂g∗(y)−Ax, (61)

which can be rewritten in terms of proximal maps,

x = proxσf (x− σA>y), (62)
y = proxτg∗(y + τAx), (63)

where σ, τ > 0. In the following the variables x ∈ Rn will be referred to as the primal
variables and y ∈ Rm as the dual variables.
The idea is to apply SSN to the generally non-smooth non-linear system of equations

X(x, y) =
(
x− proxσf (x− σA>y)
y − proxτg∗(y + τAx)

)
= 0 (64)

20

3.4 Application to `2-TV-like Functionals*

in order to solve the original problem (58). For that, let

K ∈ ∂C proxσf
(
x− σA>y

)
, (65)

H ∈ ∂C proxτg∗(y + τAx). (66)

By the chain rule, we find that(
I −K σKA>

−τHA I −H

)
∈ ∂CX(x, y) (67)

and the Newton system becomes(
I −K σKA>

−τHA I −H

)(
dx
dy

)
= −

(
x− proxσf (x− σA>y)
y − proxτg∗(y + τAx)

)
. (68)

It is not directly clear whether the non-smooth system in (64) satisfy the conditions
in Thm. 3.9. It turns out that this is not trivial. In [RLV17, Sect. 4.2.3], Lipschitz
continuity and positive semi-definiteness at the solution were shown. However, actual
invertibility and additionally the semismoothness seems to be dependent on the appli-
cation. This brings us to the next topic: a case study into `2-TV functionals.

3.4 Application to `2-TV-like Functionals*

In this section we will apply the Semismooth Newton method to the case of Total Vari-
ation image denoising.

3.4.1 The Newton System for TV

Let d1, d2 ∈ N be the dimensions of the image, let h ∈ Rd1×d2 be the data. We are
interested in solving the isotropic (q = 2) and anisotropic (q = 1) discrete ROF model

inf
x∈Rd1×d2

{ 1
2α‖x− h‖

2
2 + ‖Tx‖q,1

}
, (69)

where α > 0 and T : Rd1×d2 → Rd1×d2×2 is the (forward) finite difference operator with
grid spacing 1 defined as

(Tx)i,j,k =

0 if i = d1 and k = 1
0 if j = d2 and k = 2
xi+1,j − xi,j if i < d1 and k = 1
xi,j+1 − xi,j if j < d2 and k = 2

(70)

and where

‖Tx‖q,1 =
d1,d2∑
i,j=1

(|(Tx)i,j,1|q + |(Tx)i,j,2|q)
1
q . (71)

21

The Semismooth Newton Method

Using duality of the ‖ ·‖q,1 norm we can rewrite the minimization problem as the saddle-
point problem

inf
x∈Rd1×d2

sup
y∈Rd1×d2×2

{ 1
2α‖x− h‖

2
2 + 〈Tx, y〉 − ιBq∗ (y)}, (72)

where q∗ is such that 1
q + 1

q∗ = 1,

Bq∗ :=
{
y ∈ Rd1×d2×2 | ‖y‖q∗,∞ ≤ 1

}
=
{
y ∈ Rd1×d2×2 | max ‖yi,j,:‖q∗ ≤ 1

}
(73)

and
ιBq∗ (y) :=

{
0 if y ∈ Bq∗ ,
∞ if y /∈ Bq∗ .

(74)

This fits into the model (59) if we set

f(x) = 1
2α‖x− h‖

2
2 and g∗q (y) = ιBq∗ (y). (75)

Then we have for the data fidelity term

proxσf (x) = arg min
u

{
f(u) + 1

2σ‖u− x‖
2
2

}
(76)

⇔ 0 = ∇f(u) + 1
σ

(u− x) (77)

⇔ 0 = 1
α

(u− h) + 1
σ

(u− x) (78)

⇔ σ + α

σα
u = 1

σ
x+ 1

α
h (79)

and we find

proxσf (x) = 1
α+ σ

(αx+ σh) ⇒ ∂C proxσf (x) = ∇ proxσf (x) = α

α+ σ
I, (80)

where we used that proxσf (x) is smooth. Hence, we have to choose K = α
α+σ I in the

Newton matrix (67).
For the regularizer,

proxτg∗q (y) = arg min
v

{
g∗q (v) + 1

2τ ‖v − y‖
2
2

}
(81)

= arg min
v

{
ιBq∗ (v) + 1

2τ ‖v − y‖
2
2

}
(82)

⇔ v = ΠBq∗ (y), (83)

where ΠBq∗ is the projection onto the (convex) set Bq∗ . Hence, we find

proxτg∗1 (y) =
(
(max {1, |yi,j,k|})−1 yi,j,k

)
i,j,k

(84)

22

3.4 Application to `2-TV-like Functionals*

and
proxτg∗2 (y) =

(
(max {1, ‖yi,j,:‖2})−1 yi,j,k

)
i,j,k

. (85)

We see that the components of proxτg∗q (y), i.e., ‖yi,j,:‖q∗ smaller or larger than 1, are
piecewise C1. Therefore, we can use ordinary differentiation on each region. On the
boundary we choose the value of the differential corresponding to the inner region. We
obtain a map Hq(v) ∈ ∂C proxτg∗q (x) with

(H1(v)y)i,j,k =

0 if i = d1 and k = 1
0 if j = d2 and k = 2
yi,j,k if |vi,j,k| ≤ 1
0 if |vi,j,k| > 1

(86)

and

(H2(v)y)i,j,k =

0 if i = d1 and k = 1
0 if j = d2 and k = 2
yi,j,k if ‖vi,j,:‖2 ≤ 1

1
‖vi,j,:‖2

(
yi,j,k −

vi,j,kvi,j,1
‖vi,j,:‖2

2
yi,j,1 −

vi,j,kvi,j,2
‖vi,j,:‖2

2
yi,j,2

)
if ‖vi,j,:‖2 > 1

(87)
Here the first two conditions ensure the boundary conditions yi,j,k = 0 for i = d1 and k =
1 or j = d2 and k = 2. The third and fourth options concern non-boundary points, i.e.,
i < d1 and k = 1 and j < d2 and k = 2. A proof (for general manifolds) can be found
in appendix A.1
For the semismoothness we know that proxσf (x) is semismooth since it is smooth.

The semismoothness of proxτg∗q (y) follows from Prop. 3.6. So we are indeed justified to
use the Newton system in (67) with A = T .
For superlinear convergence in Thm. 3.9 we also need invertibility of the Newton

matrix at the solution. For TV this is problematic, as will be discussed in the following.

3.4.2 Non-invertibility Caused by Loops

We will now consider a d1 × d2 2D image. We can construct the matrix representation
of T using the Kronecker product,

T =
[
Id2 ⊗ Td1

Td2 ⊗ Id1

]
(88)

from the n−1×n matrix representations Tn of the 1D forward finite difference operators
with Neumann boundary conditions,

Tn =

−1 1

−1 1 ∅
.

∅ −1 1
−1 1

 . (89)

23

The Semismooth Newton Method

Note that the final (zero) row for the boundary points has been eliminated for conve-
nience. As an example, consider the 3 × 3 grid in Fig. 6 as representation of a 3 × 3
image. Then, the adjoint T> is

1 2 3

4 5 6

7 8 9

Figure 6: A 3× 3 grid.

T> =

−1 0 0 0 0 0 −1 0 0 0 0 0
1 −1 0 0 0 0 0 −1 0 0 0 0
0 1 0 0 0 0 0 0 −1 0 0 0
0 0 −1 0 0 0 1 0 0 −1 0 0
0 0 1 −1 0 0 0 1 0 0 −1 0
0 0 0 1 0 0 0 0 1 0 0 −1
0 0 0 0 −1 0 0 0 0 1 0 0
0 0 0 0 1 −1 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 1

. (90)

Now consider the vectors v1 and v2, both of which lie in the kernel of T>:

v1 =
[
1 0 −1 0 0 0 −1 1 0 0 0 0

]>
, (91)

v2 =
[
1 1 −1 0 0 −1 −1 0 1 0 −1 1

]>
. (92)

This means that in the case that H = I we have the Newton system[
σ

α+σ
ασ
α+σT

>

−τT 0

]
, (93)

which has zero eigenvectors v′1 = [0, v1]> and v′2 = [0, v2]> and is therefore non-invertible.
Since we can associate the edges between grid-points as dual variables, we can visualize

the eigenvectors (Fig. 7). The eigenvectors correspond to loops in the system coloured
in red (v1) and blue (v2). One can actually check that every loop corresponds to an
eigenvector with eigenvalue 0.

Remark 3.10. This phenomenon does not occur in the 1D case, but emerges in higher
dimensions.

24

3.4 Application to `2-TV-like Functionals*

1 2 3

4 5 6

7 8 9

(1) (2)

(3) (4)

(5) (6)

(7) (8) (9)

(10) (11) (12)

(a) v1

1 2 3

4 5 6

7 8 9

(1) (2)

(3) (4)

(5) (6)

(7) (8) (9)

(10) (11) (12)

(b) v2

Figure 7: The corresponding zero eigenvectors represented as loops over the 3× 3 grid.

Although this case might seem artificial, it is the cause of non-invertibility of the
Newton matrix in real-world problems. Consider the case that somewhere in a d1×d2 grid
we have 4 neighbouring grid-points, say xi,j , xi+1,j , xi,j+1 and xi+1,j+1, in a square that
will have exactly the same value in the optimum. This is realistic, since total variation
tends to give piecewise constant solutions. Now, let l1 = (i, j, 1), l2 = (i, j + 1, 1),
l3 = (i, j, 2) and l4 = (i + 1, j, 2) be the indices of the corresponding dual variables. As
the gradients are locally zero, we have [Tx]l = 0. Since the dual variables must be in
the unit ball we have |yl| ≤ 1 at the optimum. Then, at the solution for the ROF model
we see

|yl + τ [Tx]l| = |yl| ≤ 1 ⇒ Hll = 1 for l ∈ {l1, l2, l3, l4}. (94)

In other words, we have four points that result in a loop and the system becomes singular
in the same way as with the previous 3 × 3 example. As mentioned before, for TV we
typically find piecewise constant solutions. So this prior knowledge in the form of TV
regularization is actually the bottleneck for getting reasonable results with SSN. In other
words, we need some extra help to work around this issue.

3.4.3 Invertibility by Dual Regularization

So far we tried to solve the saddle-point problem

inf
x∈Rd1×d2

sup
y∈Rd1×d2×2

{ 1
2α‖x− h‖

2
2 + 〈Tx, y〉 − ιBq∗ (y)

}
. (95)

Instead we will now introduce a regularization term for the dual variable and solve

inf
x∈Rd1×d2

sup
y∈Rd1×d2×2

{ 1
2α‖x− h‖

2
2 + 〈Tx, y〉 − ιBq∗ (y)− β

2 ‖y‖
2
2

}
. (96)

The f part remains the same, but we have a new g∗q we will call g̃∗q from now on. We
need to know what proxτ g̃∗(x) is.

25

The Semismooth Newton Method

proxτ g̃∗q (y) = arg min
v

{
g∗q (v) + 1

2τ ‖v − y‖
2
2

}
(97)

= arg min
v

{
ιBq∗ (v) + β

2 ‖v‖
2
2 + 1

2τ ‖v − y‖
2
2

}
(98)

= arg min
v

{
ιBq∗ (v) + β

2 ‖v‖
2
2 + 1

2τ ‖v − y‖
2
2 −

1
2τ

(
1− 1

1 + βτ

)
‖y‖22

}
(99)

= arg min
v

{
ιBq∗ (v) + 1 + βτ

2τ ‖v − 1
1 + βτ

y‖22
}

(100)

⇔ v = ΠBq∗

(1
1 + βτ

y

)
, (101)

where ΠBq∗ is the projection onto Bq∗ . Now, we find

proxτ g̃∗1 (y) =
((

max
{

1, |yi,j,k|1 + βτ

})−1 yi,j,k
1 + βτ

)
i,j,k

(102)

and
proxτ g̃∗2 (y) =

((
max

{
1, ‖yi,j,:‖21 + βτ

})−1 yi,j,k
1 + βτ

)
i,j,k

. (103)

For the Clarke generalized differentials H̃1 and H̃2 we find

(H̃1(v)y)i,j,k =

0 if i = d1 and k = 1
0 if j = d2 and k = 2

1
1+βτ yi,j,k if |vi,j,k| ≤ 1 + βτ

0 if |vi,j,k| > 1 + βτ

(104)

and

(H̃2(v)y)i,j,k =

0 if i = d1 and k = 1
0 if j = d2 and k = 2

1
1+βτ yi,j,k if ‖vi,j,:‖2 ≤ 1 + βτ

1
‖vi,j,:‖2

(
yi,j,k −

vi,j,kvi,j,1
‖vi,j,:‖2

2
yi,j,1 −

vi,j,kvi,j,2
‖vi,j,:‖2

2
yi,j,2

)
if ‖vi,j,:‖2 > 1 + βτ

(105)
We see that this resolves non-invertibility since the zero diagonal entries of I −H in the
Newton matrix (67) now become 1− 1

1+βτ = βτ
1+βτ .

Further, we see that as β → 0 we approach the TV dual proximal map, but the
problem becomes more and more ill-posed. For the condition number of the regularized
Newton matrix V , we expect

κ(V) = ‖V ‖‖V −1‖ ≈ C 1 + βτ

β
≈ C

β
if β � 1 (106)

for some constant C > 0. As β → 0 the condition number tends to increase. A large
condition number has the major drawback that rounding errors in either the matrix or
the vector can amplify and make it much more complicated to find an accurate result.
This trade-off between accuracy and convergence will be topic of experiments in Sect. 3.5.

26

3.5 Numerical Experiments*

Remark 3.11. One should note that there are other options to resolve the non-invertibility.
The approach discussed above has the primary advantage that it is easy to implement
and, as it turns out, is convenient to generalize to the manifold setting. Another option
would be to use another discretization of the gradient [LLWS13] in the ROF model or
use a pseudo-inverse for the Newton matrix. Due to lack of theoretical motivation of the
latter two approaches to work with SSN, these have not been investigated in this work.

3.5 Numerical Experiments*

In this section we will explore the behaviour of the Semismooth Newton (SSN) method
through several numerical experiments with `2-TV:

inf
x∈Rd1×d2

{ 1
2α‖x− h‖

2
2 + ‖Tx‖q,1

}
. (107)

The key questions we try to answer are

• Do we suffer from semi-definiteness in practice, i.e., is dual regularization neces-
sary?

• Can we get quantitatively better performance using SSN than when using PDHG?

• Can we get a qualitatively better solution with SSN than with PDHG?

We will try to answer these questions through 3 experiments: a proof of concept for
a 1D problem with known minimizer, runtime analysis and further exploration of the
parameter β.
In the following sections our goal is to solve

X(x, y) :=
(
x− proxσf (x− σT>y)
y − proxτ g̃∗(y + τTx)

)
= 0 (108)

for f(x) = 1
2α‖x − h‖

2
2 and g̃∗q (y) = ιB2(y) + β

2 ‖y‖
2
2 (so regularized isotropic TV) and

σ, τ > 0. Moreover, throughout the sections we will use the relative error

εkrel := ‖X(xk, yk)‖2
‖X(x0, y0)‖2

(109)

as an measure for convergence.
All numerical experiments are implemented in Julia version 1.3.0 and run on a HP

ZBook, 2.4 GHz Intel Core i7, 8 GB RAM.

3.5.1 Signal with known minimizers

For a proof of concept we will consider a 1-dimensional piecewise constant signal (Fig. 8)

h ∈ R20, hi :=
{
a if i ≤ 10
b if i > 10 . (110)

27

The Semismooth Newton Method

Remark 3.12. For this signal we know the `2-TV minimizer in (69): for α > 0 and
a > b the minimizer x∗ is given by

x∗i =
{
a−min{1

2 ,
α
10

1
a−b}(a− b) if i ≤ 10

b+ min{1
2 ,

α
10

1
a−b}(a− b) if i > 10 . (111)

A proof (for general manifolds) can be found in appendix A.2.

Furthermore, note that d2 = 1 and the operator T reduces to the 1-dimensional
difference operator of (89) (i.e., we have T : Rd1 → Rd1−1 × {0}). This also means that
the isotropic (q = 2) and anisotropic (q = 1) cases reduce to the same functional.
Moreover, in the one-dimensional case we do not have the loop issue as discussed in

Sect. 3.4.2. Empirically this seems to resolve the non-invertibility, as we have no issues
solving the Newton system for β = 0.
Choosing a = 3, b = 1 for the signal, we solve `2-TV with α = 1 using SSN. We choose

σ = τ = 1
2 and start from x0 = h and y0 = 0.

SSN converges after 8 iterations in 0.188 seconds superlinearly to a solution ofX(x, y) =
0 with an accuracy of εrel = 10−16, which is in line with what we expected from theory.

3.5.2 Comparison of algorithms for solving regularized TV

For this experiment and the next we use a patch of the Lena image. The original image
and the noisy image are shown in Fig. 9. Both in this and in the next section we added
Gaussian noise with variance δ2 = 0.04. In the following we will denoise the image
with regularized isotropic `2-TV with α = 0.2 and σ = τ = 1

2 . The dual regularization
parameter β will differ from case to case. In both cases we start from the data for the
primal, and from the zero vector for the dual variables.
For this part we are particularly interested in getting insight into the runtime perfor-

mance of SSN. We will take two values for β, 10−3 and 10−6, and compare performance
of SSN with PDHG. We expect that PDHG will be faster at the start but will suffer from
slow tail convergence. Hence, SSN should give better performance for higher accuracy
solutions.
For our numerical experiment, we measure the (CPU) runtime until the algorithms

reach εrel ∈ {10−2, 10−4, 10−6}. The runtimes for β = 10−3 are shown in Tab. 1. The
solutions of PDHG and SSN at εrel = 10−6 along with the progression of the relative
error and the isotropic `2-TV-cost are shown in Fig. 10.

28

3.5 Numerical Experiments*

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 200

1

2

3

4
original
exact solution
reconstruction SSN

(a) Result SSN

0 2 4 6 8
Iterations

10−15

10−10

10−5

100

ε r
el

(b) The progression of the relative error

0 2 4 6 8
Iterations

100.4

100.6

100.8

101.0

TV
 c
os

t

(c) The progression of the `2-TV cost

Figure 8: The results of an experiment in which SSN is used to solve for the `2-TV
minimizer of a signal with known minimizer. The SSN solution converges to the exact
solution of the minimization problem and converges superlinearly in the vicinity of the
minimizer.

(a) Original Lena eye image (b) Noisy Lena eye image

Figure 9: The original and the noisy eye of the Lena image.

29

The Semismooth Newton Method

β = 10−3 εrel = 10−2 εrel = 10−4 εrel = 10−6

Method Time # Iterations Time # Iterations Time # Iterations
PDHG 1.188 161 13.593 1792 61.282 7938
SSN 4.625 14 5.578 17 5.843 18

Table 1: The runtimes and iteration counts of SSN and PDHG with β = 10−3 until
εrel ≤ {10−2, 10−4, 10−6} is reached. SSN reaches higher accuracies faster than PDHG,
but the latter is preferable for low accuracy solutions.

(a) Noisy image (b) Result PDHG (c) Result SSN

0 100 200 300
Iterations

10−6

10−4

10−2

100

ε r
el

PDHG
SSN

(d) The progression of the relative error

0 100 200 300
Iterations

101.4

101.5

101.6

101.7

101.8

101.9

TV
 c
os
t

PDHG
SSN

(e) The progression of the isotropic `2-TV cost

Figure 10: The results of a performance comparison experiment, in which the Lena eye
is denoised using the dual regularized isotropic `2-TV model with β = 10−3 and α = 0.2.
SSN converges superlinearly, whereas PDHG suffers from slow tail convergence.

For β = 10−6 the runtimes are shown in Tab. 2. The solutions of PDHG and SSN at
εrel = 10−6 along with the progression of the relative error and the (isotropic) `2-TV-cost
are shown in Fig. 11.
The results confirm what we expect. If a relative error below approximately 10−2-10−4

is requested, SSN performs better than PDHG for both values of β. Furthermore, we
see the superlinear convergence more clearly than in the 1D case.

30

3.5 Numerical Experiments*

β = 10−6 εrel = 10−2 εrel = 10−4 εrel = 10−6

Method Time # Iterations Time # Iterations Time # Iterations
PDHG 1.375 162 27.563 3419 750.547 84156
SSN 8.547 26 11.437 33 13.047 38

Table 2: The runtimes and iteration counts of SSN and PDHG for β = 10−6 until
εrel ≤ {10−2, 10−4, 10−6} is reached. SSN reaches higher accuracies faster than PDHG,
but the latter performs better for low accuracy solutions.

(a) Noisy image (b) Result PDHG (c) Result SSN

0 100 200 300 400 500
Iterations

10−6

10−4

10−2

100

ε r
el

PDHG
SSN

(d) The progression of the relative error

0 100 200 300 400 500
Iterations

101.4

101.5

101.6

101.7

101.8

101.9

TV
 c
os
t

PDHG
SSN

(e) The progression of the isotropic `2-TV cost

Figure 11: The results of a performance comparison experiment, in which the Lena eye
is denoised using the dual regularized isotropic `2-TV model with β = 10−6 and α = 0.2.
SSN converges superlinearly, whereas PDHG suffers from slow tail convergence.

3.5.3 Role of the dual regularization parameter β

In the previous experiment, we smoothed the TV term as in Sect. 3.4.3 in order to avoid
a singular Newton matrix, i.e., we had to modify the energy. This leaves the question
whether SSN can also perform well for the non-smoothed version.
For the final part our central question is whether we can get a qualitatively better

solution with SSN than with PDHG. Our aim is to see whether it is possible to get a

31

The Semismooth Newton Method

lower `2-TV energy with a small β and a very accurate SSN solution to the regularized
problem than with a less accurate PDHG solution to the non-regularized problem. The
main motivation for this is that PDHG has slow tail convergence and therefore might
effectively stall at a sub-optimal energy.
In order to investigate the possibility of getting better results with SSN and a small

β, the first step is to look into the role of β itself. In Sect. 3.4.3 we discussed that
as β → 0 we expect the solution to converge to that of (normal) `2-TV. However, we
also expect the matrix to become more and more ill-conditioned causing trouble with
convergence due to numerical underflow: rounding errors prohibit us from obtaining an
accurate result. Once we can pick a good β, the second step will be to compare results
for a SSN solving the regularized `2-TV problem and PDHG solving the (normal) `2-TV
problem.

Finding a good β

To explore the trade-off between accuracy and convergence, we run the following exper-
iment in order to find a good β. For different β we denoise the Lena eye by minimizing
the regularized `2-TV functional with α = 0.2 (as discussed in the previous section). The
algorithm is assumed to have converged if εrel < 10−10. From observations in Tab. 1 and
Tab. 2 from the previous experiment we can assume that the runtime will be about same
order of magnitude as the runtime for solving the problem with PDHG until εrel = 10−4.
From the results in Tab. 3 we observe, in line with our expectations, the following:

(i) For β ≤ 10−7 SSN does not seem to converge, but until that point we find an
decreasing `2-TV cost.

(ii) For lower β we eventually get a lower `2-TV energy than with PDHG.

To start off with (i) we see in Fig. 12 the behaviour of the relative error more clearly.
For very small β the algorithm seems unable to reach a higher accuracy. Considering
the non-amplifying behaviour of the relative error progression a possible cause could
be rounding error taking. This would comply with our prediction that the condition
number would cause numerical underflow for too small values for β. However, we note
that an accuracy of about 10−7 is still achieved. Next, for (ii) our expectations also seem
to be fulfilled. As β gets lower TVSSNβ decreases and eventually finds a better solution
with a lower energy than PDHG.
The remaining question now is whether we can not only find a lower cost, but also do

this in less time than PDHG.

SSN outperforming PDHG
One might wonder if there is a moment PDHG performs better again. So for the next
step we will use β = 10−6 as a benchmark and run PDHG with decreasing relative error
tolerance. The `2-TV cost will be compared with that of SSN along with the runtimes.
In Tab. 4 we see that indeed PDHG will eventually take the lead in terms of energy

if we run the algorithm until εrel = 10−6. However, whereas SSN needs 12.751 seconds,

32

3.5 Numerical Experiments*

β TVSSNβ TVSSNβ − TVPDHG # SSN
10−1 27.771273 3.2714496 7
10−2 24.785553 0.2857292 11
10−3 24.523937 0.02411314 20
10−4 24.500692 0.0008689283 33
10−5 24.498486 -0.0013390831 46
10−6 24.498262 -0.0015609582 39
10−7 24.498936 -0.0008878283 -
10−8 24.498934 -0.0008907767 -

Table 3: The results for solving the dual regularized `2-TV problem for different values
for β. For values of β ≥ 10−6 SSN converges. For β = 10−7 and β = 10−8 SSN was
terminated after 1000 iterations. For small values of β, solving the regularized `2-TV
problem with SSN can yield a lower energy than solving the non-smoothed problem with
PDHG.

0 20 40 60 80 100
Iterations

10−15

10−10

10−5

100

ε r
el

β = 1e-1
β = 1e-2
β = 1e-3
β = 1e-4
β = 1e-5
β = 1e-6
β = 1e-7
β = 1e-8

Figure 12: The results of an experiment, in which the relative error of SSN for dual
regularized isotropic `2-TV will be compared for different values for β. For the two
smallest values for β, numerical underflow prohibits high accuracy.

for PDHG it takes up to 53 times longer to do this. So indeed it could be a good idea

33

The Semismooth Newton Method

to use SSN even in the case of `2-TV.
Although these experiments give a clear indication of the possibilities of SSN on its

own and compared to PDHG, there is more to this when it comes to practical problems.
These will be the topic of the following section.

εrel TVPDHG TVSSNβ − TVPDHG tPDHG
tPDHG
t
SSNβ

10−4 24.499825 -0.0015609582 26.078 2.045173
10−5 24.498367 -0.00010436704 92.204 7.231119
10−6 24.498251 1.2367425e-5 684.124 53.652576

Table 4: The results of an experiment, in which we compare the solutions of `2-TV
by PDHG to those of dual regularized `2-TV by SSN. In practical cases, i.e., PDHG
reaching an accuracy of εrel ≤ 10−5, SSN obtains a solution with a lower energy than
PDHG even though it solves a smoothed version of the problem. In order for PDHG to
find a lower energy than SSN, we need a much more accurate solution εrel = 10−6 and
hence a longer runtime.

34

3.6 Towards SSN for Manifold-valued Data*

3.6 Towards SSN for Manifold-valued Data*

At this point, we would like to summarize the main conclusions that can be drawn in the
Euclidean setting, in order to prepare for the extension to manifolds in the remainder of
this thesis.

Best Practices
From the experiments it is clear that the introduction of a dual regularization term is
a valuable asset to solving TV with SSN for 2D problems. Not only is it possible to
achieve local superlinear convergence, but we are even able to get better results than
PDHG when solving normal TV (i.e., with β = 0).

Full Potential of SSN
One should realize that these experiments do not show the potential of both algorithms
to their full extent. PDHG is very easily parallellizable and SSN could benefit from a
good iterative method when solving the Newton system. The latter is made possible by
the introduction of the inexact Semismooth Newton method [MQ95]. The interesting
case now would be to look into actual (large scale) real world problems such as denoising
a 256× 256 (or even 512× 512) image.
However, in order to run a fair experiment we should realize both the parallel PDHG

and the accelerated SSN. One option could be a GMRES extension to SSN. However,
during preliminary experiments, we found developing an efficient preconditioner to be a
major hurdle, therefore we did not follow this path further.

Comparison to Prior Work with SSN
As mentioned in the introduction of this work, there was another approach in [RLV17]
to SSN by adding a small positive multiple of the identity matrix to the Newton matrix.
In our experiments we did not focus on comparing the results of our dual regular-
ized approach and the latter for the simple reason that we were interested in finding
a mathematically solid idea that could be generalized to the manifold case. Whether
our implementation or the one in [RLV17] is actually preferable in the Euclidean case
remains open.

A Potential Globalization Scheme
We also considered a globalization scheme that might be feasible for the manifold case.
We particularly looked into the Adaptive Semismooth Newton method (ASSN) from
[XLWZ18]. Whereas from numerical results we indeed observed convergence, the theory
of the algorithm partially relies on the fixed point map X : Rd → Rd to be α-averaged
(see Sect. 1.1 of [XLWZ18] for a definition), which in our application remains to be
shown. Reason to discard it, was its performance. Preliminary experiments showed
that as SSN needs more iterations as β → 0, so did ASSN. However, whereas SSN
stayed below the 50 iterations for β = 10−6, the globalized ASSN method did not enter
the superlinear convergence region after 10.000 iterations. Therefore, we focus on local
convergence aspects in the following.

35

Chapter 4: Preliminaries II: Manifolds and Rie-
mannian Geometry

In this chapter we will discuss differential geometry and Riemannian geometry. All of
the discussed topics in Sect. 4.1 and Sect. 4.2 can be found in [Lee13, Car92, CE08].
This chapter is organized as follows. In Sect. 4.1 basic notions from differential ge-

ometry will be discussed. In particular, the path towards Riemannian geometry will be
paved and the application of Jacobi fields will be discussed. In Sect. 4.2 we will look
into the Sd and P(d) manifold as examples and discuss the relevant mappings that are
required for numerical purposes.

4.1 Differential Geometry and Riemannian Geometry

Whereas smooth manifolds are still just a step more general than the concept of a vector
space, the nature of its notions are very different from the linear case. For the former
we can oversee the whole space at all time, but for manifolds we are often limited to a
local neighbourhood. Moreover, mappings and vector fields call for generalized notions.

4.1.1 Basic Notions in Differential Geometry

In this section we will develop the basic notions of differential geometry and work towards
Riemannian geometry by defining the metric tensor as a first milestone.

Smooth Manifolds
In differential geometry we typically look at non-linear spaces. In these spaces, useful
characteristics of vector spaces, in particular addition and scalar multiplication, are
missing. In order to overcome this, we want the space to locally look like Rd, i.e., we
want it to be locally homeomorphic. For completeness, we give the following definition.

Definition 4.1 (locally homeomorphic). We say a set M is locally homeomorphic to
Rd if each p ∈ M has an open neighbourhood U that is homeomorphic to some open
subset of Rd. In particular, there exists a mapping ϕ : U → ϕ(U) ⊂ Rd such that ϕ is
invertible and both ϕ as its inverse are C0 maps.

These homeomorphisms are often called charts and these are combined in an atlas,
covering up the whole manifold (Fig. 13).

Definition 4.2 (coordinate chart). If ϕ : U → ϕ(U) ⊂ Rd is a local homeomorphism
on a setM, then we say that (U,ϕ) is a (coordinate) chart forM.

Definition 4.3 (atlas). If ϕ : U → ϕ(U) ⊂ Rd is a local homeomorphism on a set
M, then we define an atlas forM as a collection {(Uα, ϕα)} of coordinate charts which
coversM, in the sense that ∪Uα =M.

37

Preliminaries II: Manifolds and Riemannian Geometry

Next, we also need some geometrical regularity: we need the space to be second
countable and Hausdorff3.

Definition 4.4 (topological manifold). A topological d-manifold is a d-dimensional
second countable Hausdorff spaceM that is locally homeomorphic to Rd.

Figure 13: An illustration of coordinate charts on a manifold [Lee13]. In order to consider
different parts of the manifolds, different charts are needed.

For differential geometry, there is more. We want a differentiable manifold. So far
we have only considered the “geometry” part, but not the “differential” part. Now, the
latter comes in to play when considering a certain smoothness of the coordinate charts.

Definition 4.5 (Cr-compatible coordinate charts, Cr-atlas). Fix r ∈ {0, 1, 2, . . . ,∞}.
We say

(i) Two charts (U,ϕ) and (V, ψ) for a manifoldM are Cr-compatible if the transition
functions ψ ◦ ϕ−1 and ϕ ◦ ψ−1 are Cr maps.

(ii) A Cr-atlas for M is a collection of Cr-compatible coordinate charts which covers
M. A Cr-structure on M is a maximal Cr-atlas, that is an atlas U = {(Uα, ϕα)}
such that every coordinate chart (V, ψ), which is compatible with all the (Uα, ϕα)
is already contained in U .

Finally, we are ready to define a smooth manifold.

Definition 4.6 (Cr-manifold). A Cr-manifold is a topological manifold M with a Cr-
structure. A chart for a smooth manifold will mean a chart in the given smooth structure.

From here on out, a smooth manifold will be referred to as a C∞-manifold, i.e., we
have C∞-charts.

3These are technical notions that are often satisfied. In this work, we will leave out the details.

38

4.1 Differential Geometry and Riemannian Geometry

Mappings and Vector Fields on Manifolds
Smooth functions between manifolds can be interpreted in terms of coordinate charts
(Fig. 14).

Definition 4.7 (smooth functions). Let M and N be smooth manifolds. The function
F : M → N is smooth if for each p ∈ M we can find charts (U,ϕ) and (V, ψ) for M
and N such that p ∈ U and ψ ◦F ◦ϕ−1 is smooth (as a map between Euclidean spaces).

Figure 14: An illustration of the interpretation of smooth functions between mani-
folds [Lee13]. Smoothness of maps F can be interpreted in terms of classical smoothness
between Euclidean spaces.

In particular, we can look at smooth functions f : M → R, which we denote by
f ∈ C∞(M). If we now consider curves γ : (−ε, ε) → M we have (f ◦ γ) : (−ε, ε) ⊂
R → R and we can differentiate the real-valued function f ◦ γ as we are used to from
the Euclidean case. This motivates us to define tangent vectors as derivatives of such
smooth functions.

Definition 4.8 (tangent vector, tangent space). Let γ : (−ε, ε) → M be a C1-curve
with γ(0) = p and let C∞(p) denote the set of smooth functions on a neighborhood of p.
The mapping γ̇(0) : C∞(p)→ R defined by

γ̇(0)f := df(γ(t))
dt

∣∣∣∣
t=0

, f ∈ C∞(p) (112)

is called the tangent vector to the curve γ at t = 0. The tangent space TpM at a point
p is the collection of all tangent vectors of curves going through p.

The tangent space admits a vector space structure of the same dimension as the
manifold. In particular, for u, v ∈ TpM and a, b ∈ R, we know that au+ bv ∈ TpM. The
collection of all tangent spaces is called tangent bundle, i.e.,

TM :=
⋃
p∈M
{p} × TpM (113)

39

Preliminaries II: Manifolds and Riemannian Geometry

and is a manifold of dimension 2d, ifM is a d-dimensional manifold [Lee13, Prop. 3.18].
For an interpretation of the tangent space and tangent bundle for the case ofM = S2,
see Fig. 15. With that we should note that, we can easily interpret a tangent vector as
a vector in a plane tangent to the manifold even though the definition suggests that we
look at differential operators.

Figure 15: An illustration of the interpretation of the tangent space on a sphere [Lee13].
The union of all these planes and its base points forms the tangent bundle.

Also note that since the tangent space is a vector space it has a dual space, the
cotangent space and is denoted by T ∗pM. We call ξ ∈ T ∗pM a covector and the duality
pairing is denoted by 〈v, ξ〉p for v ∈ TpM and ξ ∈ T ∗pM.
Going back to the more general case of F :M→ N we can generalize the derivative

of a function between manifolds as an operator that maps tangent vectors.

Definition 4.9 (differential). Let F : M → N a smooth function, let p ∈ M and
v ∈ TpM. The mapping DpF [v] : C∞(N)→ R given by

(DpF [v]) f := v(f ◦ F), f ∈ C∞(N), (114)

is a tangent vector at F (p) of N . The mapping

DpF : TpM→ TF (p)N , v 7→ DpF [v], (115)

is called differential of F .

This operation is visualized in Fig. 16.
Moreover, the differential of the concatenation G ◦ F is given by the chain rule, i.e.,

Dp(G ◦ F)[v] = DF (p)G[DpF [v]], v ∈ TpM. (116)

Vector Bundles and Metrics
We have been looking at operations on single vectors, but typically we are interested in
the behaviour at entire fields of vectors. However, before getting there we will define the
notion of a vector bundle.

Definition 4.10 (vector bundle). A vector bundle of rank k over a smooth manifold
M is a manifold E with a surjective smooth projection map π : E →M such that:

40

4.1 Differential Geometry and Riemannian Geometry

Figure 16: An illustration on the interpretation of the differential as mapping between
tangent spaces [Lee13]. The differential maps a tangent vector in TpM to a tangent
vector in TF (p)N .

• Each Ep = π−1(p) is a (real) vector space of dimension k.

• For each p ∈ M, there exist a neighbourhood U and a homeomorphism Φ :
π−1(U)→ U ×Rk (called a local trivialization of E over U), satisfying the follow-
ing conditions:

(i) πU ◦ Φ = π (where πU : U × Rk → U is the projection).
(ii) For each q ∈ U, the restriction of Φ to Eq is a vector space isomorphism from

Eq to {q} × Rk ∼= Rk

Then, a section can be defined as follows.

Definition 4.11 (section of a vector bundle). A section of a vector bundle E with
projection map π : E → M is a smooth map σ : M → E such that π ◦ σ = idM,
meaning σ(p) ∈ Ep for each p ∈M. The space of all (smooth) sections is denoted Γ(E).

A vector field is an example of a section of the tangent bundle.

Definition 4.12 (vector field). A (smooth) vector field X on a manifoldM is a smooth
choice of a vector Xp ∈ TpM for each point p ∈M. That is, X is a (smooth) section of
the bundle TM with projection π : TM →M, meaning a smooth map X :M→ TM
such that π ◦X = idM. We write X := X (M) := Γ(TM) for the set of all vector fields.

Remark 4.13. It is also possible to multiply a smooth function with a vector field. If
f ∈ C∞(M) and X ∈ X (M), we can define fX as the vector field such that (fX)p =
f(p)Xp. This should not be confused with (Xf)p = Xp(f).

Similarly, Γ(T ∗M) is the section of covector fields. Another example would be Γ(Q(TM)),
the section over the vector bundle of quadratic forms on M, i.e., we have a quadratic
form qp : TpM→ R for all p ∈M. There is a one-to-one relation between the quadratic

41

Preliminaries II: Manifolds and Riemannian Geometry

forms and the symmetric bilinear forms: indeed for a vector space V , a bilinear form
b : V × V → R and v ∈ V , we can define a quadratic form q(v) := b(v, v) and we can
recover b from q through

2b(v, w) := q(v + w)− q(v)− q(w). (117)

If we restrict ourselves to positive definite quadratic forms, we can define a positive
definite section as a smooth field of positive definite symmetric bilinear forms generated
by a section of positive definite quadratic forms in Γ(Q(TM)). Such a positive definite
section corresponds to a section of inner products.

Definition 4.14 (Riemannian metric). A positive definite section g ∈ Γ(Q(TM)) is
called a Riemannian metric onM.

Given such a metric g, also referred to as the metric tensor, we denote it by g(·, ·)p :
TpM×TpM→ R (or simply by (·, ·)p) and denote the corresponding norm by ‖ · ‖p.
Finally, it turns out that such a positive definite section generated by a section in

Γ(Q(TM)) always exists for a smooth manifold.

Theorem 4.15 (existence of Riemannian metrics, [Lee13, Prop. 13.3]). Every smooth
manifold admits a Riemannian metric.

The first result of the metric tensor now is that we can define a notion of length.

Definition 4.16 (length). Suppose γ : [a, b] → M is a piecewise smooth curve. The
length of γ (with respect to the Riemannian metric g) is

len(γ) :=
∫ b

a
‖γ̇(t)‖γ(t) dt. (118)

The distance is a direct consequence.

Definition 4.17 (distance). The distance between two points p, q ∈ M is the infimal
length

d(p, q) := inf
γ

len(γ) (119)

taken over all piecewise smooth curves γ inM from p to q.

The existence of the metric tensor is the start towards Riemannian geometry.

4.1.2 Riemannian Geometry

As we have seen, having a metric provides us with a notion of distance. Moreover, a
metric enables us to talk about even more general notions such as the covariant deriva-
tive, which in turn provides us with several manifold mappings and a notion of intrinsic
curvature.

42

4.1 Differential Geometry and Riemannian Geometry

A Generalized Directional Derivative
The first step is defining the notion of an affine connection.

Definition 4.18 (affine connection). An affine connection is a mapping ∇ : X (M) ×
X (M) → X (M) between vector fields denoted by (X,Y) 7→ ∇XY , with the following
properties:

(i) linearity in first component over C∞(M)

∇f1X1+f2X2Y = f1∇X1Y + f2∇X2Y, ∀f1, f2 ∈ C∞(M), X1, X2, Y ∈ X (M),
(120)

(ii) linearity in second component over R

∇X (aY1 + bY2) = a∇XY1 + b∇XY2, ∀a, b ∈ R, X, Y1, Y2 ∈ X (M), (121)

(iii) product rule

∇X(fY) = f∇XY + (X(f))Y, ∀f ∈ C∞(M), X, Y ∈ X (M). (122)

This connection can be seen as a generalization of the directional derivative. However,
whereas in Rd the directional derivative is well-defined, this is not the case for manifolds.
Nevertheless, there are very useful properties: symmetry and metric compatibility.

Definition 4.19 (metric compatibility). A connection ∇ is called compatible with the
metric g if the Ricci identity holds

X(g(Y,Z)) = g (∇XY,Z) + g (Y,∇XZ) (123)

for all X,Y, Z ∈ X (M).

Definition 4.20. A connection is called symmetric if

∇XY −∇YX = [X,Y], (124)

where [X,Y] := XY − Y X is the Lie bracket.

Now we have the following result.

Theorem 4.21 (Levi-Civita connection, [Car92, Thm. 3.6]). Given a Riemannian
manifoldM there exists a unique affine connection ∇ onM satisfying the conditions:

(i) ∇ is symmetric.

(ii) ∇ is compatible with the Riemannian metric.

In the following, we will be using the Levi-Civita connection unless stated otherwise.
This motivates us for the definition of the covariant derivative.

43

Preliminaries II: Manifolds and Riemannian Geometry

Definition 4.22 (covariant derivative). Let and M be a Riemannian manifold and let
γ : [0, 1] → M be a curve. The operator D

dt : [0, 1] × X (γ) → X (γ) is the covariant
derivative along γ, is defined as

D

dtX(t) := ∇γ̇(t)X̃, (125)

where X̃ ∈ X (M) is any vector field such that X(t) = X̃(γ(t)).

Remark 4.23. Note that for a fixed X, DXdt : [0, 1]→ X (γ) given by t 7→ DX
dt (t) denotes

a mapping into a vector field over γ.

It is often useful to be able to have an explicit expression for the covariant derivative.
For that we need a basis along a curve γ : [0, 1] → M. That is a collection of linearly
independent vector fields Θi ∈ X (γ). Note that for some coordinate chart (U,ϕ) and
γ ⊂ U we can find this basis at p = γ(t) through applying the differential Dxϕ

−1 for
x = ϕ(p) to a linearly independent vector field on Rd. The latter always exists. Then,
for a vector field X ∈ X (γ) we can find ui ∈ C∞([0, 1]) and xi ∈ C∞([0, 1]) for i = 1, ..., d
and write

γ̇ =
∑
i

uiΘi and X =
∑
i

xiΘi. (126)

Indeed, we have ui = γ̇(πi ◦ ϕ) and xi = X(πi ◦ ϕ) where πi : Rd → R is the projection
onto the ith coordinate in Rd. Then, we can write [Car92, Remark 2.3]

DX

dt
=
∑
k

dxk
dt

+
∑
i,j

Γkijxiuj
 (Θk)γ(t) , (127)

where Γkij ∈ C∞([0, 1]) are the so-called Christoffel symbols representing an additional
contribution due to the manifold structure and (Θk)γ(t) is the vector in the vector field
Θk evaluated at γ(t).

Remark 4.24. Instead of (Θk)γ(t), often we also write Θk(t) or (Θk)p if p = γ(t) is
clear.

We will not go into detail how to compute the Christoffel symbols, because it is beyond
the scope of this work. However, we do want to note that these are determined by the
metric tensor and furthermore in the case of Rd we have Γkij = 0. So in other words, we
see that the directional derivative corresponds to the covariant derivative and we have
that the former is well-defined as we are used to.

Remark 4.25. We can do a similar trick with the differential. For a map F :M→N
and a curve γ : [0, 1]→M we can again find a basis {Θi}i with Θi ∈ X (γ). Then for a
vector field X ∈ X (γ) we can find xi ∈ C∞([0, 1]) for i = 1, ..., d. and write

X =
∑
i

xiΘi. (128)

44

4.1 Differential Geometry and Riemannian Geometry

Similarly, for a chart (V, ψ) such that F (U) ⊂ V ⊂ N we can find a basis {Ψj}j on V
with Ψj ∈ X (F (γ)) and we can compute the vector field

Y =
∑
j

df j

dt
Ψj , (129)

where f j = πj ◦ ψ ◦ F ∈ C∞(U), πj is the projection onto the jth coordinate and
dfj

dt = X(f) =
∑
i x

iΘi(f j) ∈ C∞([0, 1]). Then we have for t = t0 such that γ(t0) = p
that

DpF [Xp] = YF (p) =
∑
j

df j

dt

∣∣∣∣
t0

(Ψj)F (p) . (130)

Note that we can see (Θi(f j))ji is nothing more than the Jacobian in this context.

The covariant derivative has many useful applications. We start with the notion of
parallellism.

Definition 4.26 (parallel vector field). A vector field X ∈ X (γ) is called parallel to
γ : [0, 1]→M if

D

dtX = 0, for all t ∈ [0, 1]. (131)

This gives us the notion of a geodesic.

Definition 4.27 (geodesic). A geodesic is defined as a curve that is parallel to itself,
i.e.,

D

dt γ̇ = ∇γ̇ γ̇ = 0. (132)

It also turns out that geodesics have constant speed and are locally distance minimiz-
ing, but more importantly, they are the foundation of a series of manifold mappings.

From Geodesics to Manifold Mappings
From the description of a geodesic as the solution to a non-linear second-order differential
equation, it follows that a geodesic can also be characterized using a starting point p ∈M
and a direction v ∈ TpM using the boundary conditions

γp;v(0) = p, γ̇p;v(0) = v. (133)

Nevertheless, it is not guaranteed that geodesics are well-defined arbitrarily long. This
will be the next topic of interest. We denote the subset of TpM for which these geodesics
are well defined until t = 1 by Gp. A Riemannian manifold M is said to be complete
if Gp = TpM holds for all p ∈ M. A special type of manifolds with this property is
a Hadamard Manifold: a simply connected complete Riemannian manifold with non-
positive sectional curvature4.

4We will discuss curvature at the end of this section

45

Preliminaries II: Manifolds and Riemannian Geometry

Definition 4.28 (exponential map). The exponential map is defined as the function
expp : Gp →M given by

expp(v) := γp,v(1). (134)

Note that expp(tv) = γp,v(t) holds for every t ∈ [0, 1]. Next, we introduce the set
G′p ⊂ TpM as some open ball of radius 0 < rp ≤ ∞ about the origin such that expp :
G′p → expp

(
G′p
)
is a diffeomorphism. Then, we can also define its inverse. This radius

rp is often referred to as the injectivity radius.

Definition 4.29 (logarithmic map). The logarithmic map is defined as the inverse
function of the exponential map, i.e., logp : expp

(
G′p
)
→ G′p ⊂ TpM.

If the logarithmic map is well defined, another way of characterizing geodesics would
be through its end points. We write γp,q : [0, 1] → M to indicate a geodesic starting
from p going to q. Indeed we can write

γp,q(t) = expp
(
t logp(q)

)
. (135)

Furthermore, the exponential and logarithmic maps can be used as a coordinate chart.
This choice of chart is often referred to as (geodesic) normal coordinates. In particular,
if we on top of that use a set of orthonormal vectors at p ∈ M as basis vectors, we
have gp = I and moreover, the Christoffel symbols at p vanish, i.e., Γkij(p) = 0. This is
particularly useful for computing the covariant derivative at one point.
Also note that the Riemannian distance between p, q ∈M, for q ∈ Gp, can be written

as
d2(p, q) = (logp q, logp q)p = ‖ logp q‖2p. (136)

Yet another important mapping is the parallel transport map, which allows us to trans-
port information across the manifold.

Figure 17: A visual representation of some manifold structures such as geodesics, the
exponential map and the logarithmic map (left) and the parallel transport map (right)
[CJ19].

Definition 4.30 (parallel transport). We define the parallel transport of a tangent
vector v ∈ TpM as a mapping Pp→q : TpM→ TqM into the tangent space at q ∈M by

Pp→qv := X(1), (137)

where X ∈ X (γp,q) is the vector field parallel to a minimizing geodesic γp,q with X(0) = v.

46

4.1 Differential Geometry and Riemannian Geometry

A summary of the discussed maps are shown in Fig. 17.
It is typically difficult to compute parallel transport and often we need to resort to

approximations. A very popular choice is the pole ladder approximation as shown in
Fig. 18.

Definition 4.31 (pole ladder). We define the pole ladder approximation to parallel
transport by

PP
p→q(v) := − logq

(
γ

(
expp(v), γp,q

(1
2

)
; 2
))
∈ TpM.

Figure 18: Illustration of the construction of the pole ladder, for given p, q ∈ M and
v ∈ TpM [Per18].

For a special class of manifolds this approximation is even exact. That is for symmetric
manifolds. Before we can move on to this result we need the notion of the Riemannian
reflection.

Definition 4.32 (reflection). A mapping Rp :M→M on a Riemannian manifoldM
is called (geodesic) reflection at p ∈M if

Rp(p) = p and DpRp = −I. (138)

For all p, q ∈M with q ∈ G′p, we can write the reflection as

Rp(q) = expp
(
− logp q

)
. (139)

Now, we can define a symmetric manifold as follows.

Definition 4.33 (symmetric Riemannian manifold). A connected Riemannian manifold
M is called (globally) symmetric if the geodesic reflection at every point p ∈ M is an
isometry ofM, i.e., for all x, y ∈M we have

d (Rp(x),Rp(y)) = d(x, y). (140)

47

Preliminaries II: Manifolds and Riemannian Geometry

Examples are spheres, Grassmannians, hyperbolic spaces and symmetric positive defi-
nite matrices, which are typically among the manifolds of interest for imaging purposes.
We find the following result:

Proposition 4.34 ([Pen18, Prop. 2.1]). Let M be a connected, complete, and sym-
metric Riemannian manifold, then the pole ladder is exactly the parallel transport along
geodesics, i.e., for all p, q ∈M and v ∈ TpM we have

Pp→q(v) = PP
p→q(v). (141)

The notion of symmetric space is not only useful for approximating parallel transport,
but will also be of utmost important in Sect. 4.1.3. It turns out that we can find the
differentials and/or covariant derivatives of geodesics, exponential and logarithmic maps
on these kind of spaces.
However, before moving on to that topic through the notion of Riemannian curvature,

we discuss a final set of manifold mappings that allows us to associate the cotangent
space T ∗pM at some point p ∈ M to the tangent space TpM. The Riemannian metric
furnishes a linear bijective correspondence between the tangent and cotangent spaces
via the Riesz map and its inverse, the so-called musical isomorphisms.

Definition 4.35. The musical isomorphisms are defined as

[: TpM3 X 7→ X[∈ T ∗pM, (142)

satisfying
〈X[, Y 〉p = (X,Y)p for all Y ∈ TpM (143)

and its inverse,
] : T ∗pM3 ξ 7→ ξ] ∈ TpM, (144)

satisfying
(ξ], Y)p = 〈ξ, Y 〉p for all Y ∈ TpM. (145)

These isomorphisms also allow us to define parallel transport for cotangent vectors.
That is for ξp ∈ T ∗pM

Pp→qξp :=
(
Pp→qξ]p

)[
. (146)

Curvature
The final topic is curvature. We will discuss the main notions briefly.

Definition 4.36 (Riemannian curvature tensor). The Riemannian curvature tensor R :
X (M)×X (M)×X (M)→ X (M) is given by

R(X,Y)Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y]Z. (147)

48

4.1 Differential Geometry and Riemannian Geometry

This curvature tensor R(·, ·)· can be interpreted as translating a vector Zp along an
infinitesimal loop in a plane spanned by the geodesics starting from p with velocities Xp

and Yp. The way Zp rotates tells us about the nature of the curvature of the manifold.
We distinguish positive, negative and zero curvature. Without going into detail here,
the classical examples are a sphere Sd, hyperbolic space Hd and Euclidean space Rd. We
can make this rigorous using the following definition.

Definition 4.37 (sectional curvature). Given a 2 -dimensional subspace Π ⊂ TpM, the
sectional curvature of Π is defined by

K(Π) := K(v, u) := (R(u, v)v, u)p
‖u‖2p‖v‖2p − (u, v)2

p

(148)

for every two linear independent vectors v, u ∈ Π.

If K(Π) = c for all sections Π ⊂ TpM and p ∈ M we sayM has constant (sectional)
curvature. A manifold M has non-positive (-negative) sectional curvature if K(Π) ≤
0(K(Π) ≥ 0) for all sections Π ⊂ TpM and p ∈M, respectively.

4.1.3 Jacobi Fields

Finally, we are ready to look at an application of the discussed theory in this section. We
will look at so-called Jacobi fields. These fields turn out to be particularly interesting
for numerical implementation, since for symmetric spaces we can find the derivatives of
the geodesic, exponential and logarithmic map.
Let Γ : [0, 1] × (−ε, ε) → M be a function such that for every fixed s, Γ(t, s) is a

geodesic parametrized in t. Let ∂
∂sΓ(t, s) =: D(t,s)Γ[∂∂s] and

∂
∂tΓ(t, s) =: D(t,s)Γ[∂∂t]

5.
The goal is finding a differential equation satisfied by ∂

∂sΓ(t, s)|s=0. Using the symme-
try of the Levi-Civita connection we see that

∇ ∂
∂t

Γ
∂

∂s
Γ−∇ ∂

∂s
Γ
∂

∂t
Γ(t, s) =

[
∂

∂t
Γ, ∂
∂s

Γ
]

= D(t,s)Γ
[
∂

∂t
,
∂

∂s

]
= 0 (149)

and hence we have ∇ ∂
∂t

Γ
∂
∂sΓ = ∇ ∂

∂s
Γ
∂
∂tΓ. Therefore, we also have

∇ ∂
∂t

Γ∇ ∂
∂t

Γ
∂

∂s
Γ = ∇ ∂

∂t
Γ∇ ∂

∂s
Γ
∂

∂t
Γ. (150)

Since ∇ ∂
∂t

Γ
∂
∂tΓ = 0 (because ∂

∂tΓ is a geodesic), we can further write

∇ ∂
∂t

Γ∇ ∂
∂t

Γ
∂

∂s
Γ = ∇ ∂

∂t
Γ∇ ∂

∂s
Γ
∂

∂t
Γ = ∇ ∂

∂t
Γ∇ ∂

∂s
Γ
∂

∂t
Γ−∇ ∂

∂s
Γ∇ ∂

∂t
Γ
∂

∂t
Γ. (151)

Since we also have that
[
∂
∂tΓ,

∂
∂sΓ

]
, we see that the right-hand-side equals the Riemannian

curvature operator. We now define J(t) = ∂
∂sΓ(t, s)|s=0 and γ̇(t) = ∂

∂tΓ(t, 0). Using the
antisymmetry in the first two coordinates of the curvature operator we find

5In literature on Jacobi fields, this notation is often used.

49

Preliminaries II: Manifolds and Riemannian Geometry

D2

dt2J +R (J, γ̇) γ̇ = 0. (152)

This equation is called the Jacobi field equation and a vector field J satisfying it is called
a Jacobi field.
For symmetric spaces we can simplify the Jacobi equation using the following result.

Proposition 4.38. Let M be a symmetric space. Let γ : [0, 1] → M be geodesic and
{Θ1 = Θ1(t), . . . ,Θn = Θn(t)} a parallel transported orthonormal frame along γ. Let
J(t) =

∑n
i=1 ai(t)Θi(t) be a Jacobi field of a variation through γ Set a := (a1 . . . , an)T .

Then the following relations hold true:

(i) The Jacobi equation (152) can be written as

a′′(t) +Ga(t) = 0, (153)

with the constant coefficient matrix G :=
(
〈R (Θi, γ̇) γ̇,Θj〉γ

)n
i,j=1

(ii) Let {θ1, . . . , θn} be chosen as the initial orthonormal basis which diagonalizes the
operator Θ 7→ R(Θ, γ̇)γ̇ at t = 0 with corresponding eigenvalues κi, i = 1, . . . , n,
and let {Θ1, . . . ,Θn} be the corresponding parallel transported frame along γ. Then
the matrix G becomes diagonal and (153) decomposes into the n ordinary linear
differential equations

a′′i (t) + κiai(t) = 0, i = 1, . . . , n. (154)

(iii) The Jacobi fields

Jk(t) :=

ci sinh(

√
−κkt)Θk(t) + di cosh(

√
−κkt)Θk(t) if κk < 0

citΘk(t) + diΘk(t) if κk = 0
ci sin(√κkt)Θk(t) + di cos(

√
kt)Θk(t) if κk > 0

(155)

k = 1, . . . , n form a basis of the 2n-dimensional linear space of Jacobi fields of a
variation through γ.

Proof. (i) and (ii) can be found in [BBSW16, Prop. 3.5]. For (iii) we know that the
solution space to n second-order differential equations as in (154) is 2n dimensional and
has of the form as described in (155).

In recent literature, solutions to the Jacobi field equations have been extensively used.
That is because Jacobi fields can be used to calculate the differential and covariant
derivatives of several important manifold mappings ([Per18, Lemma 2.3]).

Proposition 4.39. LetM be a symmetric Riemannian manifold and let {Θk}nk=1 be a
parallel transported orthogonal frame along the geodesic γ : [0, 1]→M as defined below.
Further, the frame diagonalizes the Riemannian curvature tensor R(·, γ̇)γ̇ at γ(0) with
respective eigenvalues κk, k = 1, . . . , d.

50

4.1 Differential Geometry and Riemannian Geometry

(i) For γ(0) = p, γ(1) = q, τ ∈ [0, 1] and

α(κ) :=

sinh(

√
−κ(1−τ))

sinh(
√
−κ) κ < 0

1− τ κ = 0
sin(
√
κ(1−τ))

sin(
√
κ) κ > 0

(156)

we have Dpγ(·),q(τ)[ξ] =
∑d
k=1 〈ξ,Θk(0)〉p α (κk) Θk(τ),

(ii) For γ(0) = p, γ(1) = q, τ ∈ [0, 1] and

α(κ) :=

sinh(

√
−κτ)

sinh(
√
−κ) κ < 0

τ κ = 0
sin(
√
κτ)

sin(
√
κ) κ > 0

(157)

we have Dpγq,(·)(τ) =
∑d
k=1 〈ξ,Θk(0)〉p α (κk) Θk(1− τ),

(iii) For γ(0) = p, γ(1) = expp(u) and

α(κ) :=

cosh(

√
−κ) κ < 0

1 κ = 0
cos(
√
κ) κ > 0

(158)

we have Dp exp(·)(u)[ξ] =
∑d
k=1 〈ξ,Θk(0)〉p α (κk) Θk(1),

(iv) For γ(0) = p, γ(1) = expp(u) and

α(κ) =

sinh(

√
−κ)√
−κ κ < 0

1 κ = 0
sin(
√
κ)√
κ

κ > 0
(159)

we have Du expp(·)[ξ] =
∑d
k=1 〈ξ,Θk(0)〉p α (κk) Θk(1),

(v) For γ(0) = p, γ(1) = q and

α(κ) :=

−
√
−κ cosh(

√
−κ)

sinh(
√
−κ) κ < 0

−1 κ = 0
−
√
κ cos(

√
κ)

sin(
√
κ) κ > 0

(160)

we have ∇ξp log(·)(q) =
∑d
k=1 〈ξ,Θk(0)〉p α (κk) Θk(0),

(vi) For γ(0) = p, γ(1) = q and

α(κ) :=

√
−κ

sinh(
√
−κ) κ < 0

1 κ = 0√
κ

sin(
√
κ) κ > 0

(161)

we have Dp logq(·)[ξ] =
∑d
k=1 〈ξ,Θk(0)〉p α (κk) Θk(1).

51

Preliminaries II: Manifolds and Riemannian Geometry

Proof. The proofs are given in [Per18, Lemma 2.3]. However, there is a slight misun-
derstanding with (v). In [Per18] the authors claim to have computed Dp log(·)(q), while
they show the result as given here. Whereas the two can be identified, equality is not
entirely true. We will discuss this misunderstanding next.

First, note that TM is a 2d-dimensional manifold ifM is d-dimensional and that we
should actually write T(p,logp(q))TM. This brings us to the notion of the point and the
vector part of the tangent space of a tangent bundle. That is, we can decompose the
tangent space into two d-dimensional tangent spaces

T(p,logp(q))TM ∼= TpM×TpM (162)

and in particular it is easy to see that

Dp log(·)(q)[v] = (v,∇v log(·)(q)), v ∈ TpM. (163)

Typically, we look at the vector part (second part) of the tangent space in actual com-
putations. Therefore, Dp log(·)(q)[v] is often identified with the covariant derivative
part (as done in [Per18], but also in other work such as [BLPS18]). We could write
(Dp log(·)(q)[v])v with v for vector part, but this is often omitted.

Remark 4.40. Note that the length of γ plays an important role for the eigenvalues in
the previous results. If γ′p,q is a unit speed geodesic and κ′k, k = 1, . . . , d are the respective
eigenvalues of R(·, γ̇′)γ̇′ at γ′(0), then in the previous result we find for the eigenvalues
κk in the case of a [0, 1] parametrized geodesic γ : [0, 1]→M we have that

κk = κ′k`
2, for all k = 1, . . . , d. (164)

Finally, we can also find adjoint operator (DpF)∗ : TF (p)M → TpM of these special
mappings. These are called adjoint Jacobi fields and are given by

(DpF)∗[w] =
d∑

k=1
〈w,Ξk〉F (p) α(κk)Θk(0), w ∈ TF (p)M, (165)

where {Ξk}k is the orthonormal frame in TF (p)M as a result of transporting {Θk(0)}
along γ as before. A similar expression holds for the covariant derivative in (v) of the
previous result.

4.2 Specific Manifolds

In this section, we will discuss several manifolds that will be used in the numerical
experiments later on in this work. We note that the geodesic γx,y : [0, 1]→M between
two points x, y ∈M is always given by

γx,y(t) = expx (t logx(y)) (166)

52

4.2 Specific Manifolds

and hence won’t be discussed seperately in the following. Unless stated otherwise, these
results can be found in [Per18].
Note that this notion of geodesic and the notions following do not rely on charts,

but are maps onto the manifold. Approaches relying on these types of maps are often
referred to as intrinsic approaches. We will take a closer look into the differences between
intrinsic and oppositely extrinsic approaches and justify our choices in the next chapter.
First, we look into Sd and P(d).

4.2.1 The Sphere Sd

The sphere Sd embedded into Rd+1 is given by

Sd :=
{
x ∈ Rd+1 | ‖x‖2 = 1

}
. (167)

It has dimension d. The tangent space at x ∈ Sd is given by

TxSd =
{
v ∈ Rd+1 | 〈x, v〉 = 0

}
, (168)

with the Riemannian metric given by the Euclidean inner product. It has constant
curvature K = 1.
We use the following functions in our computations:

Geodesic Distance
The distance between two points x, y ∈ Sd is given by

dSd(x, y) = arccos(〈x, y〉). (169)

Exponential Map
The exponential map expx : TxSd → Sd at a point x ∈ Sd is given by

expx(v) = cos (‖v‖2)x+ sin (‖v‖2)
‖v‖2

v. (170)

Logarithmic Map
The logarithmic map logx : Sd\{x} → TxSd at a point x ∈ Sd is given by

logx(y) = dSd(x, y) y − 〈x, y〉x
‖y − 〈x, y〉x‖

, x 6= −y. (171)

Parallel Transport Map
The parallel transport map Px→y : TxSd → TySd along the geodesic from x to y is given
by

Px→y(v) = v − 〈logx(y), v〉
d2
Sd

(x, y)

(
logx(y) + logy(x)

)
. (172)

53

Preliminaries II: Manifolds and Riemannian Geometry

Eigen Decomposition of the Curvature Operator
Let v ∈ TxSd. We define ξ1 = v

‖v‖2
and ξi for i = 2, ..., d unit vectors in TxSd orthogonal

to ξ1 w.r.t. the Euclidean inner product.
Then, the eigenvalues of the curvature operator along γx;v are κ1 = 0 for the eigen-

vector ξ1 and κi = 1 for the other ξi [BBSW16].

4.2.2 The P(d) Manifold of Symmetric Positive Definite Matrices

The manifold (P(d), 〈·, ·〉P(d)) of symmetric positive definite d×d matrices P (d) is given
by

P(d) := {x ∈ Sym(d) | a>xa > 0 for all a ∈ Rd}, (173)

where Sym(d) denotes the space of symmetric d× d matrices. The dimension of P(d) is
d(d+1)

2 . The tangent space of P (d) at x ∈ P(d) is given by

TxP(d) := {x
1
2 ηx

1
2 | η ∈ Sym(d)}. (174)

A Riemannian metric on P(d) at x is given by the affine invariant metric

〈u, v〉x,P(d) = tr(x−1ux−1v) (175)

We use the following functions in our computations:

Geodesic Distance
The distance between two points x, y ∈ P(d) is given by

dP(d)(x, y) = ‖Log
(
x−

1
2 yx−

1
2
)
‖F , (176)

where ‖ · ‖F is the Frobenius norm and Log is the matrix logarithm.

Exponential Map
The exponential map expx : TxP(d)→ P(d) at a point x ∈ P(d) is given by

expx(v) = x
1
2 Exp

(
x−

1
2 vx−

1
2
)
x

1
2 , (177)

where Exp is the matrix exponential.

Logarithmic Map
The logarithmic map logx : P(d)→ TxP(d) at a point x ∈ P(d) is given by

logx(y) = x
1
2 Log

(
x−

1
2 vx−

1
2
)
x

1
2 . (178)

Parallel Transport Map
The parallel transport Px→y : TxP(d)→ TyP(d) along the geodesic from x to y is given
by

Px→y(v) = x
1
2 Exp

(1
2x
− 1

2 logx(y)x−
1
2

)
x−

1
2 vx−

1
2 Exp

(1
2x
− 1

2 logx(y)x−
1
2

)
x

1
2 . (179)

54

4.2 Specific Manifolds

Eigen Decomposition of the Curvature Operator
Let the matrix v, such that ṽ = x

1
2 vx

1
2 ∈ TxP, have the eigenvalues λ1, . . . , λd with a

corresponding orthonormal basis of eigenvectors v1, . . . , vd in Rd, i.e.,

v =
d∑
i=1

λiviv
>
i , (180)

Then using a more appropriate index system for the frame, namely,

I := {(i, j) : i = 1, . . . , d; j = i, . . . , d}, (181)

the matrices

ξij :=

1
2

(
viv
>
j + vjv

>
i

)
, (i, j) ∈ I if i = j

1√
2

(
viv
>
j + vjv

>
i

)
, (i, j) ∈ I if i 6= j

(182)

generate an orthonormal basis of TxP(r). That is x
1
2 ξijx

1
2 form an orthonormal basis of

TxP(r).
Then, the eigenvalues of the curvature operator along γx;ṽ(t) are

κij = −1
4 (λi − λj)2 , (i, j) ∈ I, (183)

with corresponding eigenvectors x
1
2 ξijx

1
2 [BBSW16].

55

Chapter 5: Towards Optimization on Manifolds
In this section we will discuss how to solve

inf
p∈M

{F (p) +G(Λ(p))}, (184)

using duality theory. Throughout this chapter, Λ : M → N is a non-linear mapping,
F :M→ R̄, G : N → R̄ are non-smooth functions andM,N are smooth manifolds.
In Sect. 5.1 we will discuss two general approaches to optimization on manifolds in:

intrinsic and extrinsic. The remainder of this chapter is entirely mirrored to chapter 2:
we will generalize the notions from convex analysis in Sect. 5.2 and after that we move
on to a general duality based framework [BHTVN19] to solve (184) in Sect. 5.3.

5.1 Two Approaches: Extrinsic vs. Intrinsic

Around 2014 the mathematical data science community working on topics such as sparse
principal component analysis, compressed mode analysis in physics, unsupervised fea-
ture selection and sparse blind convolution (see [XLWZ18] for a clear overview) grew
interested in the problem in (184). The main issue was that the currently existing al-
gorithms (subgradient descent and PPA) did not optimally respect the structure of the
optimization problem or were just not that practical in general. Hence, this community
set out to develop new algorithms, which turned out to be independently of the image
processing community.

A Series of Extrinsic Attempts
In the absence of specialized algorithms for solving (184), a logical backup was working
from the setting of first-order methods. The orthogonality constraints could be taken
care of by adding an additional penalty term to the model, which could be easily done
in an augmented Lagrangian setting and solved using ADMM-like methods. These al-
gorithms include the Method of Splitting Orthogonality Constraints (SOC) [LO14], the
Proximal Alternating Minimization method (PALM) [BST14], the Proximal Alternat-
ing Minimization Augmented Lagrangian method (PAMAL) [CJY16], Manifold ADMM
(MADMM) [KGB16] and the Extended Proximal Alternating Linearized Minimization
method (EPALM) [ZZCL17] as an extension of [BST14].
One might wonder why the algorithms used by the image processing community did

not go hand in hand with these developments. The reason is threefold. Fist, we see that
by this time (±2014) the image processing group had just realized a workable way of
applying Total Variation to manifold data through a generalized ROF model [WDS14].
More importantly, the geometry of the problems were entirely different. Whereas image
processing looked at manifolds such as Sd,P(d) and SO(3), the manifold of interest
by the data science community was the Stiefel manifold, because these problems were
mostly coping with orthogonality constraints. But the most important reason was that
the image processing community passed to intrinsic methods.

57

Towards Optimization on Manifolds

Towards Intrinsic Optimization
The additional penalty approach behind the algorithms of the data science group con-
cerned with the Stiefel manifold are so-called extrinsic approaches to optimization on
manifolds. The main idea of an extrinsic approach is to get some kind of linearity so
that results from the linear case can be used for manifolds as well. There are two main
lines of doing this. One way is to embed the manifold in RN for some N , so that we
can work in a linear space around it. Otherwise, since the manifold locally looks like a
linear space we can look at different charts of the manifold and solve our problems there
as long as we stay in this localized domain. Many first attempts can be traced back to
using extrinsic approaches (even back to the 1970s with [Lue72]). However, soon enough
extrinsic approaches ran into some issues:

Embedding issues:

• The N in the embedding space RN can get very large.

• Numerical errors when trying to project the next iterate onto the manifold.

Localization issues:

• Symmetries of the underlying Riemannian manifold are in general not respected
by such algorithms.

• Often we do not have convenient canonical maps for the manifold6.

• Localizing to a chart leads to distortions in the metric which will in turn lead to
slow convergence.

• Talking about global convergence is hard to establish if the entire approach relies
on localization.

For these reasons, research into intrinsic algorithms grew popular and soon became
the standard. As mentioned, in the end it was also the approach picked up by the
image analysis community. With an intrinsic approach, one does not rely on some kind
of embedding or mapping into a linear space, but one rather uses mappings from and
to the manifold, incorporating the intrinsic geometric structure of the manifold. One
should note that the downside is that the mathematics becomes increasingly difficult.
In the following we will use continue in line with the intrinsic approach.

An Outlook to Non-smooth Optimization
In a recent contribution [CMMCSZ20] the authors used an intrinsic method for `1 regu-
larization optimization on the Stiefel manifold. This attempt can be seen as an important
step towards the merger of the tradition of extrinsic approaches to optimization over the
Stiefel manifold with intrinsic non-smooth optimization on manifolds.

6e.g., in the case of the Grassmanian.

58

5.2 Non-smooth Analysis on Manifolds

However, this goes wildly beyond the scope of this work. In the following, we will
continue focusing on an intrinsic approach to non-smooth analysis, and in particular
into generalizing the Fenchel duality theory.

5.2 Non-smooth Analysis on Manifolds

In the linear case we used the dual variables in Rd for some d. In general Banach spaces
we can move on to dual space for Fenchel duality theory; since we have (Rd)∗ ∼= Rd this
is a generalization. For manifolds we will also use the more general approach and look
for a dual space for duality theory.
The goal is to find a manifold version of (20) of the form

“ inf
p∈M

sup
ξ∈Z∗

{F (p) + 〈Λ(p), ξ〉 −G∗(ξ)}”

where ξ ∈ Z∗ a dual vector in a dual space Z∗. However, we run into a few issues:

• A general manifold does not necessarily have a dual space, in other words: what
should Z∗ be?

• If we can define a dual space, how should 〈Λ(p), ξ〉 be read? The point Λ(p) ∈ N
does not allow for a duality pairing due non-linearity of N and Λ :M→N being
a non-linear mapping.

• How do we go from a dual space and a duality pairing to a generalized conjugate
function G∗(ξ)?

• Finally, with these definitions, does the constructed optimization problem have a
solution?

Whereas these questions are rather advanced, the answers steadily come as we generalize
the notions from convex analysis. The key will be finding some sort of linearity that
allows for a dual space. The following follows from [BHTVN19].

Convex Analysis on Manifolds
Initially, in order to talk about convexity we need to pass to strongly convex subsets of
Riemannian manifolds [BHTVN19, Def. 2.9].

Definition 5.1 (strongly convex set). A subset C ⊂ M of a Riemannian manifold M
is said to be strongly convex if, for all p, q ∈ C, a minimal geodesic γp,q between p and
q exists, is unique and lies completely in C.

Next, we can generalize the well-known notions of properness, convexity and lower
semi-continuity [BHTVN19, Def. 2.11.i-iv].

Definition 5.2 (proper). A function F :M→ R̄ is proper if domF := {x ∈M|F (x) <
∞} 6= ∅ and F (x) > −∞ holds for all x ∈M.

59

Towards Optimization on Manifolds

Definition 5.3 (convex). Suppose that C ⊂ M is strongly convex. A proper function
F :M→ R̄ is called (geodesically) convex on C ⊂ M if for all p, q ∈ C the composition
F ◦ γp,q(t) is a convex function on [0, 1] in the classical sense.

Definition 5.4 (epigraph). Suppose that A ⊂M. The epigraph of a function F : A →
R̄ is defined as

epiF := {(x, α) ∈ A× R|F (x) ≤ α}. (185)

Definition 5.5 (lower semi-continuous). Suppose that A ⊂ M. A proper function
F : A → R̄ is called lower semi-continuous (lsc) if epiF is closed.

For generalizing the subdifferential, remember that in the Rn case we used the following

∂f(x) := {v ∈ Rn|f(y) ≥ f(x) + 〈v, y − x〉 ∀y ∈ U} ,

where f : U → R̄ and x ∈ U ⊂ Rn. This notion relies on the subtraction of two points
in Rn, which is not possible on manifolds. Now, the key idea is that the logarithmic
map generalizes subtraction and subsequently gives us a tangent vector. The latter lives
in a vector space and thus can be paired with a cotangent vector. This motivates the
following definition [BHTVN19, Def. 2.12].

Definition 5.6 (subdifferential). Suppose that C ⊂ M is strongly convex. The subdif-
ferential ∂MF on C at a point p ∈ C of a proper, convex function F : C → R̄ is given by

∂MF (p) :=
{
ξ ∈ T ∗pM|F (q) ≥ F (p) + 〈ξ, logp q〉p for all q ∈ C

}
. (186)

The definition of the proximal map closely mirrors the linear case:

Definition 5.7 (proximal mapping). LetM be a Riemannian manifold, F :M→ R̄ be
proper, and λ > 0. The proximal map of F is defined as

proxλF (p) := arg min
q∈M

{ 1
2λd

2
M(p, q) + F (q)

}
. (187)

Fenchel conjugate functions
Next, the idea of using tangent and cotangent spaces as dual space is used as well
to generalize the Fenchel dual functions. For that we need the exponential and the
logarithmic map to be well-defined [BHTVN19, Def 2.10].

Definition 5.8. Let C ⊂ M and p ∈ C. Define the tangent subset LC,p ⊂ TpM as

LC,p :=
{
X ∈ TpM | exppX ∈ C and ‖X‖p = dM(exppX, p)

}
, (188)

a localized variant of the pre-image of the exponential map.

Then we can define the generalization of the Fenchel conjugate [BHTVN19, Def. 3.1].
Note that a manifold does not have a clear origin: we should choose a base point m.

60

5.3 The Riemannian Chambolle-Pock Algorithms

Definition 5.9 (m-Fenchel conjugate). Suppose that F : C → R̄ and m ∈ C. The
m-Fenchel conjugate of F is defined as the function F ∗m : T ∗pM→ R̄ such that

F ∗m (ξm) := sup
X∈LC,m

{〈ξm, X〉 − F (expmX)} , ξm ∈ T ∗mM. (189)

For the Fenchel biconjugate we can then define the following [BHTVN19, Def. 3.5].

Definition 5.10 ((mm′)-Fenchel biconjugate). Suppose that F : C → R̄ and m,m′ ∈ C.
Then the (mm′)-Fenchel biconjugate function Fmm′ : C → R̄ is defined as

F ∗∗mm′(p) := sup
ξm′∈T ∗m′M

{〈ξm′ , logm′ p〉 − F ∗m (Pm′→mξm′)} , p ∈ C. (190)

Now, if we choose m′ = m and we get

F ∗∗mm(p) = sup
ξm∈T ∗mM

{〈ξm, logm p〉 − F ∗m (ξm)} , p ∈ C, (191)

we have the generalization to the Fenchel-Moroe-Rockafellar theorem:

Theorem 5.11 ([BHTVN19, Thm. 3.11]). Let F : C → R̄ be a proper, convex function
and m ∈ C. Then F (p) = F ∗∗mm(p) for all p ∈ C if and only if F is lsc on C.

In order to get back to the issues stated at the beginning of this section, a proper
saddle-point formulation can be constructed using these definitions. Since G : N → R̄,
the dual space becomes Z∗ = T ∗nN with some base point n ∈ N . The duality pairing
must be 〈logn Λ(p), ξn〉, rather than 〈Λ(p), ξ〉 and G∗n(ξn) is the proper notion of the
Fenchel conjugate of G. Hence, we are left with

inf
p∈M

sup
ξ∈T ∗nN

{F (p) + 〈logn Λ(p), ξn〉 −G∗n(ξn)}. (192)

The last issue brought up at the start of this section was concerned with existence of a
solution. This remains an open question. Besides existence, strong duality, which would
allow to swap inf and sup, remains open as well. Developing the theory incorporating
the strong duality would be a valuable asset towards providing criteria for existence.

5.3 The Riemannian Chambolle-Pock Algorithms

Next, we want to generalize the PDHG algorithm. The resulting algorithms proposed
in [BHTVN19] are the so-called exact and linearized Riemannian Chambolle Pock algo-
rithms (eRCPA and lRCPA). First the exact version will be considered.

eRCPA
Assuming that an optimal saddle-point solution (p, ξn) exists, the optimality condition
for the sup can be found by differentiating (192) with respect to ξn [BHTVN19]:

logn Λ(p) ∈ ∂G∗n (ξn) . (193)

61

Towards Optimization on Manifolds

For the optimality condition of the inf term, an expression of the form “F (p)+〈p, [logn Λ]∗ξn〉”
must be differentiated. This expression does not make much sense for two reasons.
Clearly, p is not a tangent vector and hence it is by no means clear what the duality
pairing would mean for this case, but more importantly: logn Λ is a non-linear operator
and the notion of an adjoint operator is canonically given for linear operators.
In [BHTVN19] is chosen for a linearization of the non-linear mapping Λ in order to

overcome the issue of the adjoint. The following approximation is used

Λ(p) ≈ expΛ(m)DmΛ [logm p] . (194)

Subsequently, if n := Λ(m) is the base point for (192)

〈logn Λ(p), ξn〉 ≈ 〈logΛ(m) expΛ(m)DmΛ [logm p] , ξΛ(m)〉 = 〈DmΛ [logm p] , ξΛ(m)〉 (195)

and now
〈logm p, (DmΛ)∗[ξΛ(m)]〉 (196)

does make sense, where DmΛ∗ : T ∗Λ(m)N → T
∗
mM is the adjoint operator of DmΛ. At

this point [BHTVN19] initially take

Pm→p
(
−(DmΛ)∗[ξΛ(m)]

)
∈ ∂MF (p) (197)

as second optimality condition. Here parallel transport is used in order to get to the
correct tangent space. Subsequently, the restriction of n := Λ(m) is dropped and the
following optimality system is proposed [BHTVN19]:

Pm→p
(
−(DmΛ)∗

[
Pn→Λ(m)ξn

])
∈ ∂MF (p), (198)

logn Λ(p) ∈ ∂G∗n (ξn) , (199)

which the authors of [BHTVN19] rewrite into

p = proxσF
(

expp
(
Pm→p

(
−σ(DmΛ)∗

[
Pn→Λ(m)ξn

])]))
, (200)

ξn = proxτG∗n
(
ξn + τ (logn Λ (p))[

)
. (201)

The exact Riemannian Chambolle Pock (eRCPA) scheme (Alg. 3) is used to solve it.
The major drawback of the eRCPA algorithm is, that any theoretical guarantee is

missing. To get this guarantee, we need more linearity. In the exact scheme we only
used the linearization for one of the optimality conditions, but we can also do it for both
cases.

lRCPA
By adopting the approximation in (194) into the saddle-point problem we find

inf
p∈M

sup
ξn∈T ∗nN

{F (p) + 〈DmΛ [logm p] , ξn〉 −G∗n (ξn)}, (202)

62

5.3 The Riemannian Chambolle-Pock Algorithms

Algorithm 3 Exact Riemannian Chambolle-Pock [BHTVN19] (eRCPA)

Initialization: m ∈ C, n ∈ D, p(0) ∈ C, ξ(0)
n ∈ T ∗nN , and parameters σ0, τ0, θ0, γ

k := 0, p̄(0) := p(0)

while not converged do
ξ

(k+1)
n := proxτkG∗n

(
ξ

(k)
n + τk

(
logn Λ

(
p̄(k)

))[)
p(k+1) := proxσkF

(
expp(k)

(
Pm→p(k)

(
−σk(DmΛ)∗

[
Pn→Λ(m)ξ

(k+1)
n

])]))
θk := (1 + 2γσk)−

1
2 , σk+1 := σkθk, τk+1 := τk/θk

p̄(k+1) := expp(k+1)

(
−θk logp(k+1) p(k)

)
k := k + 1

end while

corresponding to the linearized primal problem

inf
p∈M

{
F (p) +G

(
expΛ(m)DmΛ [logm p]

)}
. (203)

The problem in (202) will be referred to as the linearized saddle-point problem from now
on (contrary to the exact saddle-point problem as discussed before). Now, assuming that
a solution exists, the following optimality conditions are proposed [BHTVN19]:

Pm→p
(
−(DmΛ)∗

[
Pn→Λ(m)ξn

])
∈ ∂MF (p), (204)

DmΛ [logm p] ∈ ∂G∗n (ξn) , (205)

which the authors of [BHTVN19] rewrite into

p = proxσF
(

expp
(
Pm→p

(
−σ (DmΛ)∗

[
Pn→Λ(m)ξn

])]))
, (206)

ξn = proxτG∗n

(
ξn + τ

(
PΛ(m)→nDmΛ [logm p]

)[)
. (207)

The following weak duality result holds:

Theorem 5.12 ([BHTVN19, Thm. 4.2]). Let n := Λ(m). The dual problem of (203) is
given by

sup
ξn∈T ∗nN

F ∗m (−(DmΛ)∗ [ξn])−G∗n (ξn) (208)

and weak duality holds, i.e.

inf
p∈M

F (p)+G
(
expΛ(m)DmΛ [logm p]

)
≥ sup

ξn∈T ∗n ,N
−F ∗m (−(DmΛ)∗ [ξn])−G∗n (ξn) . (209)

The linearized Riemannian Chambolle Pock Algorithm (lRCPA), derived from these
conditions, is shown in Alg. 4.

63

Towards Optimization on Manifolds

Algorithm 4 Linearized Riemannian Chambolle-Pock [BHTVN19] (lRCPA)

Initialization: m(k) ∈ C, n(k) ∈ D, p(0) ∈ C, ξ(0)
n(0) ∈ T

∗
n(0)N , and parameters σ0, τ0, θ0, γ

k := 0, ξ̄
(0)
n(0) := ξ

(0)
n(0)

while not converged do
p(k+1) := proxσnF

(
expp(k)

(
Pm(k)→p(k)

(
−σk (DmKΛ)∗

[
Pn(k)→Λ(m(k))ξ

(k)
n(k)

])]))
ξ

(k+1)
n(k) := proxτkG∗n(k)

(
ξ

(k)
n(k) + τk

(
PΛ(m(k))→n(k)DmkΛ

[
logm(k) p(k+1)

])[)
θk := (1 + 2γσk)−

1
2 , σk+1 := σkθk, τk+1 := τk/θk

ξ̄
(k+1)
n(k+1) := Pn(k)→n(k+1)

(
ξ

(k+1)
n(k) + θk

(
ξ

(k+1)
n(k) − ξ

(k)
n(k)

))
ξ

(k+1)
n(k+1) := Pn(k)→n(k+1)ξ

(k+1)
n(k)

k := k + 1
end while

Next, let
L := ‖DmΛ‖Λ(m) (210)

be the operator norm of DmΛ : TmM→ TΛ(m)N , then we get the following convergence
result for Hadamard manifolds.

Theorem 5.13 (Convergence lRCPA, [BHTVN19, Thm. 4.3]). Let M and N be two
Hadamard manifolds and F :M→ R̄, G : N → R̄ be proper, convex, lsc, and Λ :M→
N . Fix m ∈M and n : = Λ(m) ∈ N . Suppose that the linearized saddle-point problem
in (202) has a solution

(
p̂, ξ̂∗n

)
. Choose σ, τ such that στL2 < 1, with L defined in (210),

and let the iterates
(
ξ

(k)
n , p(k), ξ̄

(k)
n

)
be given by Alg. 4. Suppose that there exists K ∈ N

such that for all k ≥ K, the following holds:

C(k) := 1
σ
d2
M

(
p(k), p̃(k)

)
+
〈
ξ̄(k)
n , DmΛ [ζk]

〉
n
≥ 0, (211)

where p̃(k) is defined by

p̃(k) := expp(k)

(
Pm→p(k) −

(
σ(DmΛ)∗

[
Pn→Λ(m)ξ

(k+1)
n

])])
, (212)

ζk := Pp(k)→m
(
logp(k) p

(k+1) − Pp̄(k)→p(t) logp̄(k) p̂
)
− logm p(k+1) + logm p̂, (213)

with ξ̄n(k) = 2ξ(k)
n − ξ(k−1)

n . Then the following statements are true.

(i) The sequence
(
p(k), ξ

(k)
n

)
remains bounded, i.e.,

1
2τ

∥∥∥ξ̂n − ξ(k)
n

∥∥∥2

n
+ 1

2σd
2
M

(
p(k), p̂

)
≤ 1

2τ

∥∥∥ξ̂n − ξ(0)
n

∥∥∥2

n
+ 1

2σd
2
M

(
p(0), p̂

)
. (214)

64

5.3 The Riemannian Chambolle-Pock Algorithms

(ii) There exists a saddle-point (p∗, ξ∗n) such that p(k) → p∗ and ξ(k)
n → ξ∗n.

Remark 5.14. For the authors of [BHTVN19] it was not clear how good the linearization
of Λ in (194) is. It is also unclear whether a single approximation as in eRCPA makes
sense. While lRCPA has a theoretical backbone, the convergence of eRCPA is currently
unknown.

65

Chapter 6: The Riemannian Semismooth Newton
Method

In this chapter we will investigate a Riemannian Semismooth Newton method (RSSN)
with the goal of realizing a duality-based higher-order method for non-smooth optimiza-
tion on manifolds.
The structure is similar to that of chapter 3. Sect. 6.1 will provide some additional

motivation and context for the use and the development of the method. In Sect. 6.2
the theoretical background around the Riemannian Semismooth Newton method will be
discussed. In Sect. 6.3 we will expand this theory by proving a convergence result for the
case that the Newton system is solved inexactly. In Sect. 6.4 we will elaborate on using
the Riemannian Semismooth Newton method as a higher order primal-dual method. In
Sect. 6.5 the method will be applied for solving the ROF model. Finally, in Sect. 6.6 we
investigate the numerical performance.

6.1 Introduction

The theory and ideas of the current manifold-valued image processing community origi-
nate from the field of smooth optimization on Riemannian manifolds. Starting around 1994,
contributions to intrinsic methods for smooth optimization formed the basis for the
current paradigm for manifold-valued image processing. Pioneering work was done in
[Smi94, Udr94], whose authors formulated several algorithms such as gradient descent,
Newton’s method and conjugate gradient to Riemannian manifolds. From then on,
the community started working on generalizing algorithms to Riemannian manifolds
[ABG07, BFFY18, CDGS17], specializing algorithms for better results [EAS98, AEK08,
HWY13] or applying the obtained literature to real-world problems [ADM+02, ATV13].
In the end, much of the obtained literature and and many of the foundational ideas
were bundled in [AMS09], who provided an extensive overview of first-and second-order
methods for optimization on matrix manifolds.

The Rise of Non-smooth Optimization
For non-smooth problem, the pioneering works were [FO98], in which the subgradient
was extended to Riemannian manifolds and was shown to convergence on Hadamard
manifolds, and [FO02], whose authors extended the proximal map and proved conver-
gence on Hadamard Manifolds. Further development in non-smooth optimization gained
a boost in the late 2000s when [AF05] introduced the proximal subdifferential on Rie-
mannian manifolds, [HP11] proposed another framework and generalized the notion of
Clarke subdifferential for Riemannian manifolds, and [KA10] proposed a framework for
duality on CAT (0) metric spaces.The latter became one of the sources of inspiration for
the Fenchel duality theory in [BHTVN19] as discussed in the previous chapter.

67

The Riemannian Semismooth Newton Method

A Different Focus
The image processing community was heading into a different direction than the non-
smooth optimization community, which focused on theoretical performance of algo-
rithms, such as global convergence, often studying problems of the form

inf
p∈M

F (p), (215)

where F : M → R is a Lipschitz function. The specific case that F was the sum of
two functions, giving more structure and therefore more potential for developing fast
algorithms, was initially irrelevant. With the introduction of CPPA as the first splitting
algorithm on (Hadamard) manifolds, the image processing community split off from the
theoretical developments of the non-smooth optimization community.
However, by the start of the 2010s, theoretical foundations of non-smooth optimiza-

tion on Hadamard spaces became more and more complete. For the non-Hadamard case,
there were many open problems. Therefore, we see from 2010 onwards the following de-
velopments: [BNO11] present a non-smooth version of the Kurdyka-Lojasiewicz (KL)
inequality and with that shows the convergence of PPA on general Riemannian man-
ifolds, [Hos15] showed that subgradient descent applied to locally Lipschitz functions
on Riemannian manifolds satisfying the KL inequality converges to a singular critical
point, and [BCNO16a] proposed a new approach to the convergence of PPA that extends
previous results to a broader class of functions.

Merging Fields
Around 2015, the first numerical implementations of these and new algorithms got at-
tention. Fist, [GH16a] introduced a non-smooth trust region method for Riemannian
manifolds and showed global convergence, [GH16b] used an approximate subdifferential
and proposed a descent method with global convergence, [HU17] proposed a gradient
sampling algorithm and showed its global convergence and finally [HHY18] proposed a
line search al algorithm and generalized the Wolfe conditions for Riemannian manifolds.
Recently in 2018 a higher-order method was introduced: the Riemannian Semismooth

Newton Method (RSSN) [OF18]. This is a promising approach, because of its very
general applicability to manifolds with both positive and negative sectional curvature.
Therefore, we will consider the method in the remaining sections of this thesis.

6.2 Newton’s Method for Finding Zeros of Non-smooth Vector Fields

There is no straightforward generalization of the Newton method to manifolds. Remem-
ber from the Euclidean case that the goal of the Newton method will be to find a zero of
some mapping by linearizing it in each step. On manifolds, there is no such thing as a
zero. To resolve this, an option would be to derive some non-linear optimality condition
X :M→ Rn and to use the differential and the exponential map to take Newton steps:

pk+1 = exppk(−[DpkX(·)]−1X(pk)). (216)

68

6.2 Newton’s Method for Finding Zeros of Non-smooth Vector Fields

However, we have also seen that we can define vector fields over a manifold as sections
of the tangent bundle TM. While the tangent bundle is not a linear space in general,
it provides everything we need: there is such a thing as a zero tangent vector we can
look for and the covariant derivative can be our tool to find a Newton operator. In other
words we can also look at mappings X : M → TM and define the Newton iteration
through

pk+1 = exppk(−[∇X(·)]−1
pk
X(pk)). (217)

Whereas the first option, a map into a vector space, could be useful as well, finding
a zero of a vector field will be more useful for our purposes. In section Sect. 6.4 we
will elaborate on our choice further, but for now we will focus on a generalized covari-
ant derivative approach for finding zeros of semismooth vector fields. Throughout this
section we will use the notions and results developed in [OF18].

6.2.1 Generalized Covariant Derivatives and Semismooth Vector Fields

As with the linear case, we will need local Lipschitzness. For vector fields we can define
the following [OF18, Def. 6]:

Definition 6.1 ((locally) Lipschitz). A vector field X on M is said to be Lipschitz
continuous on Ω ⊂M if there exists a constant L > 0 such that for all p, q ∈ Ω and all
γ geodesics joining p to q, there holds∥∥∥P γp→qX(p)−X(q)

∥∥∥
q
≤ L len(γ), ∀p, q ∈ Ω (218)

Moreover, given p ∈ M, if there exists δ > 0 such that X is Lipschitz continuous on
the open ball Bδ(p), then X is said to be Lipschitz continuous at p. Moreover, if for all
p ∈M, X is Lipschitz continuous at p, then X is said to be locally Lipschitz continuous
onM.

Subsequently, we can generalize Rademacher’s theorem to Lipschitz vector fields.

Theorem 6.2 ([OF18, Thm. 10]). If X is a locally Lipschitz continuous vector field on
M, then X is almost everywhere differentiable onM.

Hence, it makes sense to define the generalized covariant derivative [OF18, Def. 11].

Definition 6.3 (Clarke generalized covariant derivative). The Clarke generalized covari-
ant derivative ∂M,CX of a locally Lipschitz continuous vector field X is the set-valued
mapping onM defined as

∂M,CX(p) := co
{
V ∈ L (TpM) : ∃ {pk} ⊂ DX , lim

k→+∞
pk = p, V = lim

k→+∞
Ppkp∇X (pk)

}
,

(219)
where DX ⊂ M is the set on which X is differentiable, “co” represents the convex hull
and L (TpM) denotes the vector space consisting of all bounded linear operators from
TpM to TpM.

69

The Riemannian Semismooth Newton Method

As with the Euclidean case, we will also need the directional derivative for the notion
of semismoothness.

Definition 6.4 (directional derivative). The directional derivative of a vector field X
onM at p ∈M in the direction v ∈ TpM is defined by

X ′(p, v) := lim
t↘0

1
t

[
Pexpp(tv)→pX

(
expp(tv)

)
−X(p)

]
∈ TpM, (220)

whenever the limit exists. If this directional derivative exists for every v, then X is said
to be directionally differentiable at p.

Finally, we are able to generalize the notion of semismoothness to vector fields [OF18,
Def. 18]. In [OF18] the equivalent notions of semismoothness as in Thm. 3.4 are used
directly instead of the one in Def. 3.3. We will follow [OF18], since this definition is
more convenient to work with.

Definition 6.5 (semismooth vector field). A vector field X on M that is Lipschitz
continuous at p ∈ M and directionally differentiable at q ∈ Bδ (p) for all directions in
TpM, is said to be semismooth at p iff for every ε > 0 there exists 0 < δ < rp, where rp
is the injectivity radius, such that

‖X (p)− Pq→p
[
X(q) + Vq logq p

]
‖p ≤ εd (p, q) , ∀q ∈ Bδ (p) , ∀Vq ∈ ∂M,CX(q).

(221)
The vector field X is said to be µ-order semismooth at p for 0 < µ ≤ 1 iff there exist
ε > 0 and 0 < δ < rp such that

‖X (p)− Pq→p
[
X(q) + Vq logq p

]
‖p ≤ εd (p, q)1+µ , ∀q ∈ Bδ (p) , ∀Vq ∈ ∂M,CX(q).

(222)

Remark 6.6. The expression Pq→p
[
X(q) + Vq logq p

]
can be seen as the linear approx-

imation of X around q, evaluated at p.

6.2.2 Fast Local Convergence for Semismooth Vector Fields

The Riemannian Semismooth Newton (RSSN) method for finding a zero of a vector
field, i.e., X(p) = 0, is now a straightforward generalization of the Euclidean case. The
method is shown in Alg. 5.
For convergence we also get a the following result, similar result to the linear case.

Theorem 6.7 ([OF18, Thm. 19]). Let X be a locally Lipschitz continuous vector field
on M and p∗ ∈ M be a solution of problem X(p) = 0. Assume that X is semismooth
at p∗ and all Vp∗ ∈ ∂M,CX(p∗) are invertible. Then, there exists a δ > 0 such that for
each p0 ∈ Bδ (p∗) \ {p∗}, (pk)k≥0 generated by Alg. 5 is well-defined, belongs to Bδ (p∗)
and converges superlinearly to p∗ Additionally, if X is µ-order semismooth at p∗, then
the convergence of (pk)k≥0 to p∗ is of order 1 + µ.

70

6.3 The Inexact Riemannian Semismooth Newton Method*

Algorithm 5 Riemannian Semismooth Newton
Initialization: p0 ∈M, k := 0
while not converged do
Choose any V (pk) ∈ ∂M,CX(pk)
Solve V (pk)dk = −X(pk) in the vector space TpkM
pk+1 := exppk(dk)
k := k + 1

end while

6.3 The Inexact Riemannian Semismooth Newton Method*

Before continuing to applications, we will consider a generalization of RSSN, the Inexact
Riemannian Semismooth Newton (IRSSN) method in Alg. 6. The main motivation for
this method is that solving the Newton system with high precision can be very expensive.
This is especially the case for higher-dimensional manifolds where the size of the matrix,
i.e., the representation of the generalized covariant derivative, scales with the manifold
dimension. For example, for a d-dimensional array containing S2 signals the Newton
matrix is already 2d times larger than for R and for P(3) this is already 6d times larger.
Solving the matrix inexactly using an iterative method can ameliorate this problem.

Algorithm 6 Inexact Semismooth Newton
Initialization: p0 ∈M, a0 ≥ 0, k := 0
while not converged do
Choose Vk(pk) ∈ ∂M,CX(pk)
Solve Vk(pk)dk = −X(pk) + rk in TpkM where ‖rk‖(pk) ≤ ak‖X(pk)‖(pk)
pk+1 := exppk(dk)
Choose ak+1 ≥ 0
k := k + 1

end while

In this section we will focus on proving Thm. 6.12: a local convergence result for
Riemannian manifolds. The proof presented will be based on the ideas of the Inexact
Semismooth Newton methods in Rn as discussed in [MQ95, FFK96]. The technicali-
ties are inspired by the approach of the convergence proof of Riemannian Semismooth
Newton [OF18] as already discussed in the previous section.

6.3.1 Towards a Convergence Proof for Inexact Riemannian Semismooth
Newton

To start of with the technicalities, we first need to account for curvature. In particular,
we need to account for how geodesics spread. The idea for approaching this originates
from [OF18, Def. 2]. That is, we can summarize this information in a number that will
take care of all issues regarding curvature in the proof.

71

The Riemannian Semismooth Newton Method

Definition 6.8. Let p ∈ M and rp be the radius of injectivity of M at p. Define the
quantity

Kp := sup

d
(
expq u, expq v

)
‖u− v‖q

: q ∈ Brp(p), u, v ∈ TqM, u 6= v, ‖v‖q ≤ rp, ‖u− v‖q ≤ rp

 .
(223)

The following remark from [OF18] should be considered.

Remark 6.9. This number Kp measures how fast the geodesics spread apart in M. In
particular, when u = 0 ∈ TqM or more generally when u and v are on the same line
through 0, d

(
expq u, expq v

)
= ‖u− v‖q. Hence, Kp ≥ 1, for all p ∈ M. When M has

non-negative sectional curvature (see Def. 4.37), the geodesics spread apart less than the
rays, i.e., d

(
expp u, expp v

)
≤ ‖u− v‖q and, in this case, Kp = 1 for all p ∈M.

Next, remember the definition of an operator norm.

Definition 6.10. Let p ∈ M. The norm of a linear map A : TpM → TpM is defined
by

‖A‖p := sup {‖Av‖p : v ∈ TpM, ‖v‖p ≤ 1} . (224)

We have the following result.

Lemma 6.11 ([OF18, Lemma 17]). Let X be a locally Lipschitz continuous vector
field on M. Assume that all Vp ∈ ∂M,CX(p) are invertible at p ∈ M and let λp ≥
max

{
‖V −1

p ‖p : Vp ∈ ∂M,CX(p)
}
. Then, for every ε > 0 satisfying ελp < 1, there exists

0 < δ < rp such that all Vq ∈ ∂M,CX(q) are invertible on Bδ (p) and

‖V −1
q ‖q ≤

λp
1− ελp

, ∀q ∈ Bδ (p) , ∀Vq ∈ ∂M,CX(q). (225)

6.3.2 Fast Local Convergence for Semismooth Vector Fields

With these tools we can move on to the main result of this section.

Theorem 6.12. Let X be locally Lipschitz continuous vector field on M and p∗ ∈ M
be a solution of problem the X(p) = 0. Assume that X is semismooth at p∗ and that all
Vp∗ ∈ ∂M,CX(p∗) are invertible. Then the following statements hold:

(i) There exist a > 0 and δ > 0 such that for every p0 ∈ Bδ (p∗) and ak ≤ a, the
sequence (pk)k≥0 generated by Alg. 6 is well-defined, is contained in Bδ (p∗) and
converges Q-linearly to the solution p∗.

(ii) If the sequence (pk)k≥0 generated by Alg. 6 converges to the solution p∗ and further
‖rk‖(pk) ∈ o

(
‖X(pk)‖(pk)

)
, then the rate of convergence is Q-superlinear.

72

6.3 The Inexact Riemannian Semismooth Newton Method*

(iii) If the sequence (pk)k≥0 generated by Alg. 6 converges to the solution p∗, X is µ-order
semismooth at p∗, and ‖rk‖(pk) ∈ O

(
‖X(pk)‖1+µ

(pk)

)
, then the rate of convergence is

Q-order 1 + µ.

Proof. (i) Let Kp∗ be as defined in Def. 6.8 and let rp∗ be the injectivity radius. Since
X is locally Lipschitz, there exist constants δ̂ > 0 and L such that for all p ∈ Bδ̂(p

∗)

‖X(p)‖p = ‖Pp∗→pX(p∗)−X(p)‖p ≤ Ld(p, p∗). (226)

The equality holds since X(p∗) = 0 and parallel transport is linear.
Now, since all Vp∗ ∈ ∂M,CX(p∗) are invertible at p∗ ∈M by assumption, we can take

λp∗ ≥ max{‖V −1
p∗ ‖p∗ : Vp∗ ∈ ∂M,CX(p∗)}. Furthermore, take a < 1

λp∗LKp∗
, choose ak ≤ a

∀k ∈ N and ε satisfying ελp∗ (1 +Kp∗) < 1 − aλp∗LKp∗ . As ελp∗ < 1, by Lemma 6.11
we can find a 0 < δ < min{δ̂, rp∗} such that for all p ∈ Bδ(p∗) and Vp ∈ ∂M,CX(p)

‖V −1
p ‖p ≤

λp∗

1− ελp∗
. (227)

From the semismoothness of X,

‖X(p∗)− Pp→p∗
[
X(p) + Vp logp p∗

]
‖(p∗) ≤ εd(p, p∗) (228)

by (221).
We now show that for this δ the Newton iteration is well-defined. Let k ∈ N and

assume that pk ∈ Bδ(p∗). Let dk be such that

‖Vpkdk +X(pk)‖(pk) ≤ ak‖X(pk)‖(pk). (229)

Then

‖ logpk p∗ − dk‖(pk) = ‖ logpk p∗ + V −1
pk
X(pk)− V −1

pk
(Vpkdk +X(pk))‖(pk) (230)

≤ ‖ logpk p∗ + V −1
pk
X(pk)‖(pk) + ‖V −1

pk
‖(pk)‖Vpkdk +X(pk)‖(pk)

(231)
(229)
≤ ‖ logpk p∗ + V −1

pk
X(pk)‖(pk) + ak‖V −1

pk
‖(pk)‖X(pk)‖(pk). (232)

Since X(p∗) = 0 and parallel transport is an isometry we see that

‖ logpk p∗ + V −1
pk
X(pk)‖(pk) = ‖V −1

pk

(
Vpk logpk p∗ +X(pk)

)
‖(pk) (233)

≤ ‖V −1
pk
‖(pk)‖Ppk→p∗

(
X(pk) + Vpk logpk p∗

)
‖(p∗) (234)

≤ ‖V −1
pk
‖(pk)‖X (p∗)− Ppk→p∗

(
X(pk) + Vpk logpk p∗

)
‖(p∗).
(235)

73

The Riemannian Semismooth Newton Method

Substituting (235) back into (232) we find

‖ logpk p∗ − dk‖(pk) ≤ ‖V −1
pk
‖(pk)

(
‖X (p∗)− Ppk→p∗

(
X(pk) + Vpk logpk p∗

)
‖(p∗) + ak‖X(pk)‖(pk)

)
(236)

(227),(228),(226)
≤ λp∗

1− ελp∗
(εd(pk, p∗) + akLd(pk, p∗)) (237)

ak≤a
≤ λp∗

1− ελp∗
(ε+ aL)d(pk, p∗). (238)

Now note that since Kp∗ ≥ 1 (see Remark 6.9) we have

λp∗

1− ελp∗
(ε+ aL) ≤ λp∗Kp∗

1− ελp∗
(ε+ aL). (239)

For our choice of a and ε we find

ελp∗ (1 +Kp∗) < 1− aλp∗LKp∗ (240)
⇔ ελp∗ + ελp∗Kp∗ + aλp∗LKp∗ < 1 (241)
⇔ λp∗Kp∗(ε+ aL) < 1− ελp∗ (242)

⇔ λp∗Kp∗

1− ελp∗
(ε+ aL) < 1. (243)

Since d(pk, p∗) < δ, we obtain from combining (238), (239) and (243)

‖ logpk p∗ + V −1
pk
X(pk)‖(pk) < d(pk, p∗) < δ ≤ rp∗ . (244)

Moreover, we have ‖ logpk p∗‖(pk) = d(pk, p∗) ≤ rp∗ . Hence, we find (see Def. 6.8)

d(exppk(dk), p∗) ≤ Kp∗‖ logpk p∗ − dk‖(pk). (245)

Combining this result we find

d(pk+1, p∗)
d(pk, p∗)

Alg. 6=
d(exppk(dk), p∗)

d(pk, p∗)
(245)
≤

Kp∗‖ logpk p∗ − dk‖(pk)
d(pk, p∗) (246)

(238)
≤ λp∗Kp∗

1− ελp∗
(ε+ aL)

(243)
< 1. (247)

From this result we conclude by induction that if we choose p0 ∈ Bδ(p∗) as in the
assumption, we have pk ∈ Bδ(p∗) ∀k ∈ N and convergence is Q-linear.
(ii) The second part is very similar. Let Kp∗ , rp∗ and the δ̂ with corresponding L

as before. Choose ε > 0 such that ελp∗(1 + 2Kp∗) < 1 and take 0 < δ < min{δ̂, rp∗}
such that (227) and (228) hold. Due to the assumption ‖rk‖(pk) ∈ o

(
‖X(pk)‖(pk)

)
, the

74

6.3 The Inexact Riemannian Semismooth Newton Method*

assumption that pk → p∗, and that X is continuous, we have that ‖X(pk)‖(pk) → 0 and
moreover for large enough k we have

‖rk‖(pk) < εδ. (248)

Because of the convergence assumption pk → p∗, we also have for large k that d(pk, p∗) <
δ. Consequently, using the similar steps that lead to (238) from (i) we see

‖ logpk p∗ − dk‖(pk) ≤
λp∗

1− ελp∗
(εd(pk, p∗) + ‖rk‖(pk)) (249)

≤ 2ελp∗
1− ελp∗

δ ≤ 2ελp∗Kp∗

1− ελp∗
δ. (250)

For our choice of ε we find

ελp∗ (1 + 2Kp∗) < 1 (251)
⇔ 2ελp∗Kp∗ < 1− ελp∗ (252)

⇔ 2ελp∗Kp∗

1− ελp∗
< 1. (253)

Since d(pk, p∗) < δ, we obtain from combining (250) and (253)

‖ logpk p∗ + V −1
pk
X(pk)‖(pk) < δ ≤ rp∗ . (254)

Again, we have ‖ logpk p∗‖(pk) = d(pk, p∗) ≤ rp∗ and we find (see Def. 6.8)

d(exppk(dk), p∗) ≤ Kp∗‖ logpk p∗ − dk‖(pk). (255)

Finally we see that for large k

d(pk+1, p∗)
d(pk, p∗)

Alg. 6=
d(exppk(dk), p∗)

d(pk, p∗)
(255)
≤

Kp∗‖ logpk p∗ − dk‖(pk)
d(pk, p∗) (256)

(249)
≤ ελp∗Kp∗

1− ελp∗
+ λp∗Kp∗

1− ελp∗
‖rk‖(pk)
d(pk, p∗) (257)

and by ‖X(pk)‖(pk) ≤ Ld(pk, p∗)

≤ ελp∗Kp∗

1− ελp∗
+ 1
L

λp∗Kp∗

1− ελp∗
‖rk‖(pk)
‖X(pk)‖(pk)

(258)

and note that this expression holds for all (arbitrarily small) ε > 0 such that ελp∗(1 +
2Kp∗) < 1. Hence, we can focus solely on the residual term and see by our assumption
‖rk‖(pk) ∈ o(‖X(pk)‖(pk)) that

lim
k→∞

d(pk+1, p∗)
d(pk, p∗) ≤ lim

k→∞

λp∗Kp∗

L(1− ελp∗)
‖rk‖(pk)
‖X(pk)‖(pk)

= 0 (259)

75

The Riemannian Semismooth Newton Method

and conclude that the convergence is superlinear.
(iii) Again this is very similar to the previous cases. Let µ denote the order of the

semismoothness and let Kp∗ , rp∗ and δ̂ with corresponding L as before. For ε > 0 such
that ελp∗ < 1, choose 0 < δ < min{δ̂, rp∗} satisfying ελp∗(1 + 2δµKp∗) < 1 and such that
(227) and ∥∥∥X(p∗)− Pp→p∗

[
X(p) + Vp exp−1

p p∗
]∥∥∥

(p∗)
≤ εd(p, p∗)1+µ (260)

hold. Then for large enough k we have by the same reasoning as for establishing (248),
that

‖rk‖(pk) < εδ1+µ. (261)

Similarly as in (253)

‖ logpk p∗ − dk‖(pk) ≤
λp∗

1− ελp∗
(εd(pk, p∗)1+µ + ‖rk‖(pk)) (262)

≤ 2ελp∗δµ

1− ελp∗
δ ≤ 2ελp∗δµKp∗

1− ελp∗
δ (263)

follows and for our choice of ε and δ we find

ελp∗ (1 + 2δµKp∗) < 1⇔ 2ελp∗δµKp∗

1− ελp∗
< 1. (264)

Using similar arguments as for establishing (258) in (ii), we obtain

d(pk+1, p∗)
d(pk, p∗) ≤

ελp∗Kp∗

1− ελp∗
+ 1
L

λp∗Kp∗

1− ελp∗
‖rk‖(pk)

‖X(pk)‖1+µ
(pk)

. (265)

Because ε can be arbitrarily small, we can again focus on the second term as in (ii).
Finally, we see by our assumption ‖rk‖(pk) = O(‖X(pk)‖1+µ

(pk)) that

lim
k→∞

d(pk+1, p∗)
d(pk, p∗)1+µ ≤ lim

k→∞

λp∗Kp∗

L(1− ελp∗)
‖rk‖(pk)

‖X(pk)‖1+µ
(pk)

=: M (266)

for some M > 0 and conclude that the convergence is Q-order 1 + µ.

In particular, from (ii) we obtain the following result.

Corollary 6.12.1. If the sequence (pk)k≥0 generated by Alg. 6 converges to the solution
p∗ and sequence {ak} converges to zero, then the rate of convergence is Q-superlinear.

Remark 6.13. We also like to note that in the linear case (ii) and (iii) are formulated
stronger: if a convergent sequence exists, the converse statements in (ii) and (iii) also
hold. However, the proof in [FFK96] relies heavily on the linearity of Rd and is therefore
much harder to translate to the manifold case. This remains an open problem.

76

6.4 A Higher-order Primal-dual Method for Manifolds*

6.3.3 Observations

Before moving on to applications, we will elaborate on some key observations in the
theory of the RSSN method. Although the proof of the RSSN convergence is skipped
in this work, we would like to mention that it is very similar to that of the inexact
variant. In particular, we can make the following observations regarding the convergence
behaviour of both algorithms. By a continuity argument, we see that the minimal radius
of convergence is determined by ε. This ε must satisfy the inequality (that is for ak = 0)

ελp∗ (1 +Kp∗) < 1. (267)

In other words, a too small ε can give trouble in getting the RSSN to work.
We see that we run into trouble in two cases: a large λp∗ and a large Kp∗ correspon-

dence. This comes down to the following scenarios.

The generalized covariant derivative is close to singular: Here a large λp∗
only admits a very small ε, which in turn results in a small convergence region.

The manifold has negative curvature: For negatively curved manifolds we do
not have an a priori estimate for Kp∗ . If this value becomes arbitrarily large, we cannot
expect a large region of convergence.

6.4 A Higher-order Primal-dual Method for Manifolds*

After having considered the Semismooth Newton methods for finding zeros X(p) = 0,
we now come back to the original problem

inf
p∈M
{F (p) +G(Λ(p))}. (268)

Assuming that the functions are proper, lower semi-continuous and convex we rewrite
this problem as a saddle-point problem

inf
p∈M

sup
ξn∈T ∗nN

{F (p) + 〈logn Λ(p), ξn〉 −G∗n (ξn)}. (269)

As we saw in Sect. 5.3 for the manifold case we could not solve this problem directly, but
had to pass to approximations which gave two different optimality systems: the exact
and the linearized optimality system.

Exact optimality
The exact optimality system (Sect. 5.3)

Pm→p
(
−(DmΛ)∗

[
Pn→Λ(m)ξn

])
∈ ∂MF (p), (270)

logn Λ(p) ∈ ∂G∗n (ξn) , (271)

77

The Riemannian Semismooth Newton Method

can be rewritten into the system

p = proxσF
(

expp
(
Pm→p

(
−σ(DmΛ)∗

[
Pn→Λ(m)ξn

])]))
, (272)

ξn = proxτG∗n
(
ξn + τ (logn Λ (p))[

)
, (273)

where σ, τ > 0.

Linearized optimality
For the linearized optimality system we approximated the saddle-point problem even
further as in (Sect. 5.3) and instead solve

inf
p∈M

inf
ξn∈T ∗nN

{F (p) + 〈DmΛ [logm p] , ξn〉 −G∗n (ξn)}. (274)

Then the linearized optimality system

Pm→p (−(DmΛ)∗ [ξn]) ∈ ∂MF (p), (275)
DmΛ [logm p] ∈ ∂G∗n (ξn) , (276)

can be rewritten into

p = proxσF
(

expp
(
Pm→p

(
−σ (DmΛ)∗

[
Pn→Λ(m)ξn

])]))
, (277)

ξn = proxτG∗n

(
ξn + τ

(
PΛ(m)→nDmΛ [logm p]

)[)
, (278)

where σ, τ > 0.
The next step is to find a way to rewrite both of these systems of non-linear equations

into something that can be solved by the Riemannian Semismooth Newton method.

6.4.1 Choosing a Type of Newton Method

Whereas the dual variable ξn lives in a vector space and both

ξn − proxτG∗n
(
ξn + τ (logn Λ (p))[

)
= 0 (279)

for the exact dual optimality condition and

ξn − proxτG∗n

(
ξn + τ

(
PΛ(m)→nDmΛ [logm p]

)[)
= 0 (280)

for the linearized dual optimality condition make sense, this is unfortunately not nec-
essarily the case for the primal variable. Here, we need a more general approach. Two
approaches can be chosen:

78

6.4 A Higher-order Primal-dual Method for Manifolds*

Constructing a Vector Space
For ` ∈M, the tangent space T`M is fixed and (272), (277) can be rewritten as

log` p− log` proxσF
(

expp
(
Pm→p

(
−σ (DmΛ)∗

[
Pn→Λ(m)ξn

])]))
= 0. (281)

In the case of the exact optimality conditions, the mappingX :M×T ∗nN → T`M×T ∗nN
is defined as

X(p, ξn) :=

log` p− log` proxσF
(

expp
(
Pm→p

(
−σ (DmΛ)∗

[
Pn→Λ(m)ξn

])]))
ξn − proxτG∗n

(
ξn + τ (logn Λ (p))[

)

(282)

and the resulting non-linear system of equations is X(p, ξn) = 0. However, this approach
has a major drawback. Although in the case of flat and negatively curved spaces we find

log` p = log` proxσF
(

expp
(
Pm→p

(
−σ (DmΛ)∗

[
Pn→Λ(m)ξn

])]))
(283)

⇔ p = proxσF
(

expp
(
Pm→p

(
−σ (DmΛ)∗

[
Pn→Λ(m)ξn

])]))
, (284)

by the uniqueness of geodesics, this is not necessarily the case for manifolds with positive
curvature. For example, in the case of S2 we can see the arising issue very clearly.
Imagine that ` lives on the south pole, but the optimal p lies on the north pole of
the sphere. Now, given that at some point in the RSSN process both p and the point
resulting from the proximal mapping lie close to the north pole as well (i.e., the algorithm
has almost converged), it could be that the log` · operator gives two very different, even
opposite directed, tangent vectors. In that case its difference does not vanish and it
would seem like we are not converged at all.

Constructing a Vector Field
The other approach would be to construct a vector field for the primal variables and
(272), (277) are rewritten as

− logp proxσF
(

expp
(
Pm→p

(
−σ (DmΛ)∗

[
Pn→Λ(m)ξn

])]))
= 0. (285)

In the case of the exact optimality conditions, the mapping X :M×T ∗nN → TM×T ∗nN
is now defined as

X(p, ξn) :=

− logp proxσF
(

expp
(
Pm→p

(
−σ (DmΛ)∗

[
Pn→Λ(m)ξn

])]))
ξn − proxτG∗n

(
ξn + τ (logn Λ (p))[

)
 (286)

and the resulting non-linear system of equations is X(p, ξn) = 0.
The major drawback of the vector space approach does not occur when using (285).

Finding a zero tangent vector always corresponds to (272), (277). Therefore, in the
following we will focus on developing the Newton systems for the exact and the linearized
optimality system following the vector field approach.

79

The Riemannian Semismooth Newton Method

6.4.2 Generalized Differentials and a General Newton Matrix

Now that the vector fields

Xe(p, ξn) :=

− logp proxσF
(

expp
(
Pm→p

(
−σ (DmΛ)∗

[
Pn→Λ(m)ξn

])]))
ξn − proxτG∗n

(
ξn + τ (logn Λ (p))[

)
 (287)

and

Xl(p, ξn) :=

− logp proxσF
(

expp
(
Pm→p

(
−σ (DmΛ)∗

[
Pn→Λ(m)ξn

])]))
ξn − proxτG∗n

(
ξn + τ

(
PΛ(m)→nDmΛ [logm p]

)[)
 (288)

have been constructed, we pass to a general

X(p, ξn) := (X1(p, ξn), X2(p, ξn)) := (− logp f1(p, ξn), ξn − f2(p, ξn)), (289)

where f1 :M× T ∗nN →M and f2 :M× T ∗nN → T ∗nN are the mappings correspond-
ing to either the exact or the linearized system. In order to proceed with RSSN, the
generalized covariant derivative of X must be constructed. The main idea of finding the
Newton operator, both for the exact and the linearized system, follows from rewriting
the covariant derivative along γ := (γ1, γ2) : (−ε, ε) →M× T ∗nN as separate contribu-
tions from γ1 : (−ε, ε) → M and from γ2 : (−ε, ε) → T ∗nN . Let M be the dimension
ofM and N the dimension of T ∗nN . Then, by passing to normal coordinates (U, φ) on
M and (V, ψ) on T ∗nN originating at (p, ξn)7 we can find basis {Θ}Mi and {Ξ}Nj and
coordinates ui1 ∈ C∞((−ε, ε)), xi1 ∈ C∞((−ε, ε)) for i = 1, ...,M and uj2 ∈ C∞((−ε, ε)),
xj2 ∈ C∞((−ε, ε)) for j = 1, ..., N and write

γ1 =
M∑
i

ui1Θi and X1 =
N∑
i

xi1Θi (290)

and

γ2 =
M∑
j

uj2Ξj and X2 =
N∑
j

xj2Ξj . (291)

If we now first assume that X is smooth. Then, bringing the latter expressions this into
the covariant derivative as in (127) and denoting Ψk ∈ {Θ}Mi ∪ {Ξ}Nj as either basis
vector we can write

7Note that we might as well say (p, 0) since the second component is a vector space and hence we
have TξnT ∗nN ∼= T ∗nN ,i.e., we might as well take the origin here.

80

6.4 A Higher-order Primal-dual Method for Manifolds*

DX

dt
=

M+N∑
k

dxk
dt

+
M+N∑
i,j

Γkijxiuj
Ψk (292)

=
M∑
i

(
dxk1
dt

)
Θi +

N∑
j

(
dxk2
dt

)
Ξj +

M+N∑
k

M+M∑
i,j

Γkijxiuj
Ψk (293)

=
M∑
i

(
dxk1
dt1

+ dxk1
dt2

)
Θi +

N∑
j

(
dxk2
dt1

+ dxk2
dt2

)
Ξj +

M+N∑
k

M+M∑
i,j

Γkijxiuj
Ψk (294)

= DX1
dt1

+
M∑
i

(
dxk1
dt2

)
Θi +

N∑
j

(
dxk2
dt1

)
Ξj + DX2

dt2
+
M+N∑
k

M+M∑
i,j

Γkijxiuj
Ψk.

(295)

We need the covariant derivative at t = 0, i.e., at (p, ξn). So let ηp = γ̇1(0) and ηξ = γ̇2(0).
Also note that Γkij

∣∣
t=0 = 0 since we work in normal coordinates. Then

∇ηp+ηξnX = DX

dt

∣∣∣∣
t=0

(296)

= DX1
dt1

∣∣∣∣
t=0

+
M∑
i

(
dxk1
dt2

) ∣∣∣∣
t=0

Θi +
N∑
j

(
dxk2
dt1

) ∣∣∣∣
t=0

Ξj + DX2
dt2

∣∣∣∣
t=0

(297)

= DX1
dt1

∣∣∣∣
t=0

+DξnX1[ηξn] +DpX2[ηp] + DX2
dt2

∣∣∣∣
t=0

(298)

= − D

dt1

(
log(·) f1((·), ξn)

) ∣∣∣∣
t=0

+DξnX1[ηξn] +DpX2[ηp] + D

dt2
((·)− f2(p, ·))

∣∣∣∣
t=0

.

(299)

Using the chain rule for the first term and D
dt2

(·)
∣∣
t=0 = I[ηξn] = ηξn for the last one we

get

= − D

dt1

(
log(·) f1(p, ξn)

) ∣∣∣∣
t=0
− D

dt1

(
logp f1(·, ξn)

) ∣∣∣∣
t=0

+DξnX1[ηξn]

+DpX2[ηp] + ηξn −
D

dt2
(f2(p, ·))

∣∣∣∣
t=0

(300)

= −∇ηp
(
log(·) f1(p, ξn)

)
−Dp

(
logp f1((·), ξn)

)
[ηp] +DξnX1[ηξn]

+DpX2[ηp] + ηξn −∇ηξnf(p, ·). (301)

For our purposes, we do not have a smooth X, but as for now we have only discussed
generalized covariant derivatives, whereas we see from the expression above that we
also need a generalization of the differential. First we need another generalization of
Rademacher’s theorem. The result in Sect. 6.2 helps us to formulate the following result.

81

The Riemannian Semismooth Newton Method

Theorem 6.14. Let M and N be smooth manifolds. If F : M → N is a locally
Lipschitz continuous function, then F is almost everywhere differentiable onM.

Proof. The proof is the same as [OF18, Thm. 10] only with a general manifold N instead
of TM.

The generalized differential can now be defined as follows.

Definition 6.15 (Clarke generalized differential). The Clarke generalized differential
DCF of a locally Lipschitz continuous function F : M → N is the set-valued mapping
defined as

DCF (p) := co
{
V ∈ L

(
TpM, TF (p)N

)
: ∃ {pk} ⊂ DF , lim

k→+∞
pk = p, V = lim

k→+∞
DpkF

}
(302)

where DF ⊂ M is the set on which F is differentiable, “co” represents the convex hull
and L

(
TpM, TF (p)N

)
denotes the vector space consisting of all bounded linear operator

from TpM to TF (p)N .

Finally, the generalized covariant derivative will have the form

∂M,CX(p, ξn) =
[
∂M,C,pX1 DC,ξnX1
DC,pX2 ∂C,ξnX2

]
, (303)

where

∂M,C,pX1 = −∂C,M,p

(
log(·) f1(p, ξn)

)
−DC,p

(
logp f1((·), ξn)

)
, (304)

∂C,ξnX2 = I − ∂C,ξnf(p, ·). (305)

Actually computing the generalized covariant derivative (303) for a general manifold
can be complicated. In this work we will focus on symmetric manifolds as discussed in
Sect. 4.1.2. In Sect. 4.1.3 we saw that for symmetric manifolds we know the differentials
and/or covariant derivatives of geodesics, exponential and logarithmic maps. If we also
use that in symmetric spaces the parallel transport map is exactly the pole ladder [Pen18]
- which is also formulated in terms of logarithmic, exponential and geodesic maps - we
have exact expressions for the full generalized covariant derivative, with the exception
of the differentials of the proximal maps. As we shall see in Sect. 6.5, for `2-TV we even
have exact expressions for the proxes on top of that.

6.4.3 The Generalized Covariant Derivative for the Exact Newton System

Let M and N be symmetric manifolds. In the case of the exact optimality conditions
(272) and (273) we constructed the vector field Xe :M×T ∗nN → TM×T ∗nN given by

Xe(p, ξ) =

− logp proxσF
(

expp
(
Pm→p

(
−σ(DmΛ)∗

[
Pn→Λ(m)ξn

])]))
ξn − proxτG∗n

(
ξn + τ (logn Λ (p))[

)
 . (306)

82

6.4 A Higher-order Primal-dual Method for Manifolds*

In the following the four components of the operator Ve ∈ L(TpM × T ∗nN) will be
constructed so that

Ve =
[
Ve,1,p Ve,1,ξn
Ve,2,p Ve,2,ξn

]
∈ ∂M,CXe(p, ξn). (307)

Compute Ve,1,p
For ∂M,C,pXe,1 we need to compute

∂M,C,pXe,1 = −∂C,p log(·) proxσF
(

expp
(
Pm→p

(
−σ(DmΛ)∗

[
Pn→Λ(m)ξn

])]))
−DC,p logp proxσF

(
exp(·)

(
Pm→(·)

(
−σ(DmΛ)∗

[
Pn→Λ(m)ξn

])]))
. (308)

In order to compute the second term, we will use the chain rule. For that we will pass
to the the pole ladder

PP
m→p(ξ) = − logp

(
γ

(
expm(ξ), γ

(
m, p; 1

2

)
; 2
))

(309)

= − logp
(

expexpm(ξ)

(
2 logexpm(ξ) γ

(
m, p; 1

2

)))
(310)

as substitution for the parallel transport map. Remember that this is exact for symmetric
manifolds. If we rewrite the pole ladder as in (310) then we get for the differential

∂M,C,pXe,1 = −∂C,p log(·) proxσF
(

expp
(
Pm→p

(
−σ(DmΛ)∗

[
Pn→Λ(m)ξn

])]))
−DC,p logp proxσF

(
exp(·)

(
− log(·)

(
expexpm(qξ(ξ))

(
2 logexpm(qξ(ξ)) γ

(
m, (·); 1

2

)))))
.

(311)

Now, let

q0(p, ξ) := proxσF
(

expp
(
Pm→p

(
−σ(DmΛ)∗

[
Pn→Λ(m)ξn

])]))
, (312a)

q1(p, ξ) := proxσF (q2(p, ξ)) , (312b)
q2(p, ξ) := expp (q3(p, ξ)) , (312c)
q3(p, ξ) := − logp(q4(p, ξ)), (312d)
q4(p, ξ) := expexpm(qξ(ξ))(q5(p, ξ)), (312e)
q5(p, ξ) := 2 logexpm(qξ(ξ))(qp(p)), (312f)

qξ(ξ) :=
(
−σ(DmΛ)∗

[
Pn→Λ(m)ξn

])]
, (312g)

qp(p) := γ (m, p; 1/2) . (312h)

83

The Riemannian Semismooth Newton Method

Then

Ve,1,p := A1 +A2B [C1 + C2 [D1 +D2EFG]] ∈ ∂M,C,pXe,1, (313)

where

A1 := −∇ log(·) q0(p, ξ)
∣∣
p
, (314a)

A2 := −Dq1(p,ξ) logp(·), (314b)
B ∈ DC,q2(p,ξ) proxσF (·), (314c)
C1 := Dp exp(·) q3(p, ξ), (314d)
C2 := Dq3(p,ξ) expp(·), (314e)
D1 := −(Dp log(·) q4(p, ξ))v = (∇ log(·) q4(p, ξ))

∣∣
p
, (314f)

D2 := −Dq4(p,ξ) logp(·), (314g)
E := Dq5(p,ξ) expexpm(qξ(ξ))(·), (314h)
F := 2Dqp(p) logexpm(qξ(ξ))(·), (314i)
G := Dpγ (m, (·); 1/2) . (314j)

Note that the only non-smoothness can come from the proximal mapping.

Compute Ve,1,ξn
For DC,ξnXe,1 we need to compute

DC,ξnXe,1 = −DC,ξn logp proxσF
(

expp
(
Pm→p

(
−σ(DmΛ)∗

[
Pn→Λ(m)(·)

])]))
. (315)

Now note that H : T ∗nN → TpM given by

ξ 7→ Pm→p
(
−σ(DmΛ)∗

[
Pn→Λ(m)ξ

])]
(316)

is a linear map. Hence the differential will be

Ve,1,ξn := A2BC2H ∈ DC,ξnXe,1, (317)

where A2, B and C2 as described before.

Compute Ve,2,p
For DC,pXe,2 we need to compute

DC,pXe,2 = Dpξn −DC,p proxτG∗n
(
ξn + τ (logn Λ (p))[

)
(318)

= −DC,p proxτG∗n
(
ξn + τ (logn Λ (p))[

)
. (319)

Let

η̃1(p, ξ) := ξn + τ (logn Λ (p))[, (320a)
ηp(p) := Λ(p). (320b)

84

6.4 A Higher-order Primal-dual Method for Manifolds*

Then

Ve,2,p := −JKLM ∈ DC,pXe,2, (321)

where

J ∈ Dη1(p,ξ) proxτG∗n(·), (322a)
K := τ[, (322b)
L := Dηp(p) logn(·), (322c)
M := DpΛ(·). (322d)

Compute Ve,2,ξn
Finally, for ∂C,ξXe,2 we find

∂C,ξnXe,2 = I − ∂C,ξn proxτG∗n
(
ξn + τ (logn Λ (p))[

)
(323)

⇒ Ve,2,ξn :=I − J ∈ ∂C,ξnXe,2, (324)

where I is the identity and J as described in the previous step.

6.4.4 The Generalized Covariant Derivative for the Linearized Newton Sys-
tem

Again let M and N be symmetric manifolds. In the case of the linearized optimality
conditions (277) and (278) we constructed the vector field Xl :M×T ∗nN → TM×T ∗nN
given by

Xl(p, ξ) =

− logp proxσF
(

expp
(
Pm→p

(
−σ(DmΛ)∗

[
Pn→Λ(m)ξn

])]))
ξn − proxτG∗n

(
ξn + τ

(
PΛ(m)→nDmΛ [logm p]

)[)
 . (325)

For computing the components of the operator Vl ∈ L(TpM×T ∗nN), note that only the
dual component has changed compared to (306). Hence step 1 and 2 of the previous
part are the same: Vl,1,p = Ve,1,p and Vl,1,ξn = Ve,1,ξn . For the derivative ∂C,ξXl,2 we will
not get anything different as well: Vl,2,ξn = Vl,2,ξn . So only Vl,2,p will be different.
For DC,pXl,2 we need to compute

DC,pXl,2 = Dpξn −DC,p proxτG∗n proxτG∗n

(
ξn + τ

(
PΛ(m)→nDmΛ [logm p]

)[)
(326)

= −DC,p proxτG∗n

(
ξn + τ

(
PΛ(m)→nDmΛ [logm p]

)[)
. (327)

Let

η̃1(p, ξ) := ξn + τPΛ(m)→nDmΛ [logm p] . (328)

85

The Riemannian Semismooth Newton Method

Then

Vl,2,p := −J̃KL̃M̃ ∈ DC,pXl,2, (329)

where K as before and

J̃ ∈ Dη̃1(p,ξ) proxτG∗n(·), (330a)
L̃ := PΛ(m)→nDmΛ, (330b)
M̃ := Dp logm(·). (330c)

6.4.5 Building the Newton Matrix

In the previous we constructed two linear operators: the generalized covariant derivative
for the exact and the linearized optimality system. In practice a matrix is preferable.
To construct a matrix representation of an operator

V =
[
V1,p V1,ξn
V2,p V2,ξn

]
∈ ∂C,MX(p, ξn), (331)

we will need a basis. Let {Θj}j be an orthonormal basis for TpM and let {Ξj}j be a
basis for T ∗nN . Then, we want to find of U andW in this basis, i.e, find {uj}j and {wj}j
such that

U =
M∑
j=1

ujΘj and W =
N∑
j=1

wjΞj (332)

solve the system

M∑
j

〈Θi, V1,p[Θj]〉uj +
N∑
j

〈Θi, V1,ξ[Ξj]〉wj = −〈Θi, X1〉 i = 1, 2, ...,M, (333)

M∑
j

〈Ξi, V2,p[Θj]〉uj +
N∑
j

〈Ξi, V2,ξ[Ξj]〉wj = −〈Ξi, X2〉 i = 1, 2, ..., N, (334)

where M is the dimension ofM (and hence also of TpM) and N that of N (and again
also that of T ∗nN). In matrix notation that would be

〈Θ1, V1,p[Θ1]〉 · · · 〈Θ1, V1,p[ΘM]〉 〈Θ1, V1,ξ[Ξ1]〉 · · · 〈Θ1, V1,ξ[ΞN]〉
...

...
〈ΘM , V1,p[Θ1]〉 · · · 〈ΘM , V1,p[ΘM]〉 〈ΘM , V1,ξ[Ξ1]〉 · · · 〈ΘM , V1,ξ[ΞN]〉
〈Ξ1, V2,p[Θ1]〉 · · · 〈Ξ1, V2,p[ΘM]〉 〈Ξ1, V2,ξ[Ξ1]〉 · · · 〈Ξ1, V2,ξ[ΞN]〉

...
...

〈ΞN , V2,p[Θ1]〉 · · · 〈ΞN , V2,p[ΘM]〉 〈ΞN , V2,ξ[Ξ1]〉 · · · 〈ΞN , V2,ξ[ΞN]〉

u1

...
uM

w1

...
wN

= −

〈Θ1, X1〉
...

〈ΘM , X1〉
〈Ξ1, X2〉

...
〈ΞN , X2〉

(335)

Now we are finally ready for applying the algorithms to look at a case study.

86

6.5 Application to `2-TV-like Functionals*

6.5 Application to `2-TV-like Functionals*

Let M be a Riemannian manifold, d1, d2 ∈ N be the dimensions of the image, let h ∈
Md1×d2 be our data. We are interested in solving the isotropic (q = 2) and anisotropic
(q = 1) discrete ROF model

inf
p∈Md1×d2

1
2α

d1,d2∑
i,j=1

d2
M (pi,j , hi,j) + ‖T (p)‖p,q,1, (336)

where α > 0 and T :Md1×d2 → TMd1×d2×2 is the non-linear finite difference operator
defined as

(T (p))i,j,k :=

0 ∈ Tpi,jM if i = d1 and k = 1
0 ∈ Tpi,jM if j = d2 and k = 2
logpi,j pi+1,j ∈ Tpi,jM if i < d1 and k = 1
logpi,j pi,j+1 ∈ Tpi,jM if j < d2 and k = 2

(337)

and where

‖T (p)‖p,q,1; =
d1,d2∑
i,j=1

(‖(T (p))i,j,1‖qpi,j + ‖(T (p))i,j,2‖qpi,j)
1
q . (338)

Note that, whereas T (p) ∈ TpMd1×d2 × TpMd1×d2 = Tp,pMd1×d2×2 we refer to p as the
base-point of T (p) instead of (p, p) and hence we write TpMd1×d2×2 as well.
Using duality of the ‖ · ‖p,q,1 norm and parallel transport being an isometry, we can

choose m ∈M and write

‖T (p)‖p,q,1 = ‖Pp→mT (p)‖m,q,1 = sup
ηm∈T ∗mMd1×d2×2

〈Pp→mT (p), ηm〉 − ιBq∗ (ηm), (339)

where q∗ such that 1
q + 1

q∗ = 1,

Bq∗ :=
{
νm ∈ T ∗mMd1×d2×2 | ‖νm‖m,q∗,∞ ≤ 1

}
(340)

=
{
νm ∈ T ∗mMd1×d2×2 | max ‖(νm)i,j,:‖m,q∗ ≤ 1

}
. (341)

and

ιBq∗ (ηm) :=
{

0 if ηm ∈ Bq∗
∞ if ηm /∈ Bq∗

. (342)

Then, let n := 0 ∈ TmMd1×d2×2 be the zero vector. We can write

〈Pp→mT (p), ηm〉 = 〈Pp→mT (p)− n, ηm〉. (343)

Finally, remember that we can decompose the tangent bundle tangent space into a
vector part ηm and a point part ζm. Let ξn = (ζm, ηm) ∈ T ∗mMd1×d2×2×T ∗mMd1×d2×2 ∼=

87

The Riemannian Semismooth Newton Method

T ∗n TMd1×d2×2, then

〈Pp→mT (p)− n, ηm〉 = sup
ζm∈T ∗mMd1×d2×2

〈(logm p, Pp→mT (p)− n), (ζm, ηm)〉 − ι{0}(ζm)

(344)
= sup

ζm∈T ∗mMd1×d2×2
〈logn T (p), (ζm, ηm)〉 − ι{0}(ζm), (345)

where we used the definition of the logarithmic map on the tangent bundle in the last
step.
Bringing everything together we find a the saddle-point problem in the form we are

looking for

inf
p∈Md1×d2

sup
ξn∈T ∗n TMd1×d2×2

1
2α

d1,d2∑
i,j=1

d2
M (pi,j , hi,j) + 〈logn T (p), ξn〉n − ι{0}×Bq∗ (ξn). (346)

Remark 6.16. Note that for q = 1 (336) (and thus also the following result) reduces to
minimizing the canonical (anisotropic) `2-TV (or ROF)on manifolds as in (2), i.e.,

inf
p∈Md1×d2

1
2α

d1,d2∑
i,j=1

d2
M (pi,j , hi,j)+

d1−1,d2∑
i,j=1

dM (pi,j , pi+1,j)+
d1,d2−1∑
i,j=1

dM (pi,j , pi,j+1) . (347)

Proximal Maps and Generalized Differentials
First, we need the proximal maps of F andG∗n and the operators B and J for constructing
the Newton operator as discussed in Sect. 6.4.
We will continue to use the notation

F (p) :=
d1,d2∑
i,j=1

dM (pi,j , hi,j)2 and G∗n,q(ξn) := ι{0}×Bq∗ (ξn). (348)

Then we have for the data fidelity term [BLPS18, Prop. 4.4]

proxσF (p) = γp,h

(
σ

α+ σ

)
(349)

and we find
DC,p proxσF (p) = Dp proxσF (·) = Dpγ(·),h

(
σ

α+ σ

)
, (350)

where we used that proxσF (x) is smooth. Hence, we can choose B = Dpγ(·),h
(

σ
α+σ

)
for

the Newton operator.
For the dual variable we live in a vector space. The proximal mapping comes down

to the same as we have already computed in Sect. 3.4, but with a modification for the
point part, i.e, for ξn = (ξ1

m, ξ
2
m) ∈ T ∗mMd1×d2×2 × T ∗mMd1×d2×2

proxτG∗n,1(ξn) =
(

0,
(
max

{
1, ‖(ξ2

m)i,j,k‖m
})−1

(ξ2
m)i,j,k

)
i,j,k

(351)

88

6.5 Application to `2-TV-like Functionals*

and
proxτG∗n,2(ξn) =

(
0,
(
max

{
1, ‖(ξ2

m)i,j,:‖m,2
})−1

(ξ2
m)i,j,k

)
i,j,k

. (352)

Then, the generalized covariant derivative applied to ηn = (η1
m, η

2
m) is given by

(J1(ξn)ηn)i,j,k =

(0, 0) if i = d1 and k = 1
(0, 0) if j = d2 and k = 2
(0, (η2

m)i,j,k) if ‖(ξ2
m)i,j,:‖m ≤ 1(

0, 1
‖(ξ2

m)i,j,k‖m

(
(η2
m)i,j,k −

〈(ξ2
m)i,j,k,(η2

m)i,j,k〉m
‖(ξ2

m)i,j,k‖2
m

(ξ2
m)i,j,k

))
if ‖(ξ2

m)i,j,k‖m > 1
(353)

and

(J2(ξn)ηn)i,j,k =

(0, 0) if i = d1 and k = 1
(0, 0) if j = d2 and k = 2
(0, (η2

m)i,j,k) if ‖(ξ2
m)i,j,:‖m,2 ≤ 1(

0, 1
‖(ξ2

m)i,j,:‖m,2

(
(η2
m)i,j,k −

∑
κ=1,2

〈(ξ2
m)i,j,κ,(η2

m)i,j,κ〉m
‖(ξ2

m)i,j,:‖2
m,2

(ξ2
m)i,j,k

))
if ‖(ξ2

m)i,j,:‖m,2 > 1
(354)

where the operator J1 corresponds to anisotropic TV and J2 to isotropic. Here the
first two conditions ensure the boundary conditions yi,j,k = 0 for i = d1 and k = 1 or
j = d2 and k = 2. The third and fourth options should be understood as the case of not
being a boundary point, i.e., i < d1 and k = 1 and j < d2 and k = 2. A proof can be
found in appendix A.1.
For the semismoothness we already have that proxσF (x) is semismooth since it is

smooth: by the generalized Taylor series in [DPM03] we find semismoothness according
to Def. 6.5. The semismoothness of proxτG∗q (y) follows from invoking Prop. 3.6 as in the
non-manifold case. Indeed we can do this, since the dual variable just lives in a finite
dimensional vector space, which is isomorphic with Rd. So we are indeed justified to use
RSSN for `2-TV.
Remark 6.17. As we see from the formulation of the optimization problem to com-
puting the dual proximal maps, the point part does not play an important role in the
optimization problem: it is always zero. Therefore we can focus solely on the vector
part in the following. To start of, we can ignore the point part for the proximal map in
implementations and also drop them for computing J . This gives as an extra advantage
that the Newton matrix becomes smaller.

Linearization of the Operator T
Next, to derive DmT and its adjoint, let p ∈Md1×d2 and v ∈ TpMd1×d2 . We follow the
approach in [BHTVN19, Sect. 5]. First, applying the chain rule we find

(DpT [v])i,j,k = Dpi,j log(·) (pi,j+ek) [vi,j] +Dpi,j+ek
logpi,j (·) [vi,j+ek] , (355)

with the obvious modifications at the boundary. In the above formula ek represents
either the vector (0,1) or (1,0) used to reach either the neighbour to the right (k = 1)
or below (k = 2).

89

The Riemannian Semismooth Newton Method

Again, we use the decomposition of the tangent bundle tangent space. As noted in
the previous remark, the point part does not bring new information. Using the result in
(163), (355) reduces to

(DpT [v])vi,j,k = ∇vpi,j log(·) (pi,j+ek) +Dpi,j+ek
logpi,j (·) [vi,j+ek] ∈ Tpi,jM, (356)

where the superscript v denotes the vector part of the tangent space. We used that
that the second term only gave a contribution to the vector part of the tangent bundle
tangent space in the first place. We can compute these maps using Jacobi fields as
discussed in Prop. 4.39. With a slight abuse of notation we will drop the superscript v
in the following since we know that we only use the vector part of the tangent space.
Then, we have8 (DpT) : TpMd1×d2 → TpMd1×d2×2(= TpMd1×d2 × TpMd1×d2) given by
Jacobi fields.
Subsequently, its adjoint can be computed using the adjoint Jacobi fields as given

in (165). Following the same line of reasoning, note that we should also focus on the
vector part of the dual space, i.e., T ∗pMd1×d2×2 instead of looking at the entire space
T ∗T (p)TM

d1×d2×2. Define Ni,j to be the set of neighbours of the pixel pi,j and let η ∈
T ∗(p,p)M

d1×d2×2 then we can find [BHTVN19, Sect. 5]

(DpT [η])∗i,j =
∑
k

(
∇ log(·) (pi,j+ek)

)∗
[ηi,j,k] +

∑
(i′,j′)∈Ni,j

(
Dpi,j logpi′,j′ (·)

)∗ [
ηi′j′k

]
.

(357)

Regularization of the Dual
In the case of Rd we saw in Sect. 3.4.2 that the Newton matrix became non-invertible.
For general manifolds we are now motivated to look to the dual regularized `2-TV saddle-
point problem

inf
p∈Md1×d2

sup
ξn∈T ∗n TMd1×d2×2

1
2α

d1,d2∑
i,j=1

d2
M (pi,j , hi,j)+〈logn T (p), ξn〉n−ι{0}×Bq∗ (ξn)− β2 ‖ξn‖

2
n

(358)
and hence consider G̃∗n,1 = ι{0}×Bq∗ (ξn) + β

2 ‖ξn‖
2
n. Then, as with the linear case it is not

hard to see that the proximal maps become

proxτG̃∗n,1(ξn) =

0,
(

max
{

1, ‖(ξ
2
m)i,j,k‖m
1 + βτ

})−1 (ξ2
m)i,j,k

1 + βτ

i,j,k

(359)

and

proxτG̃∗n,2(ξn) =

0,
(

max
{

1, ‖(ξ
2
m)i,j,:‖m,2
1 + βτ

})−1 (ξ2
m)i,j,k

1 + βτ

i,j,k

(360)

8Here the decomposition originates from the two components represented by k = 1 and k = 2. This
should not be confused with the point and vector part of the tangent space of the tangent bundle.

90

6.6 Numerical Experiments*

and as with the regular proxes we find for the covariant derivatives

(J1(ξn)ηn)i,j,k =

(0, 0) if i = d1 and k = 1
(0, 0) if j = d2 and k = 2
(0, (η2

m)i,j,k) if ‖(ξ2
m)i,j,:‖m ≤ 1 + βτ(

0, 1
‖(ξ2

m)i,j,k‖m

(
(η2
m)i,j,k −

〈(ξ2
m)i,j,k,(η2

m)i,j,k〉m
‖(ξ2

m)i,j,k‖2
m

(ξ2
m)i,j,k

))
if ‖(ξ2

m)i,j,k‖m > 1 + βτ

(361)
and

(J2(ξn)ηn)i,j,k =

(0, 0) if i = d1 and k = 1
(0, 0) if j = d2 and k = 2
(0, (η2

m)i,j,k) if ‖(ξ2
m)i,j,:‖m,2 ≤ 1 + βτ(

0, 1
‖(ξ2

m)i,j,:‖m,2

(
(η2
m)i,j,k −

∑
κ=1,2

〈(ξ2
m)i,j,κ,(η2

m)i,j,κ〉m
‖(ξ2

m)i,j,:‖2
m,2

(ξ2
m)i,j,k

))
if ‖(ξ2

m)i,j,:‖m,2 > 1 + βτ

(362)

Remark 6.18. For a general manifold we did not show that we run into ill-posedness
issues. However, from numerical observations it seems to be the case for 2D problems
(as in the Rd case). Actually showing this remains an open problem.

6.6 Numerical Experiments*

In this section we will explore the behaviour of the Riemannian Semismooth Newton
method through several numerical experiments with Total Variation on the S2 and P(3)
manifold. In chapter 3 we have already seen how (R)SSN works for the flat manifold R.
In this part S2 and P(3) are chosen so we can see the behaviour on positively respectively
negatively curved spaces.
The key questions we try to answer are

• Does RSSN for the exact or linearized system work?

• Can we get quantitatively better performance using RSSN than when using RCPA?

• Does inexact RSSN behave as predicted in Thm. 6.12?

We will try to answer these questions through three experiments: a proof of concept
for a 1D problem with known minimizer, runtime analysis, and a proof of concept for
IRSSN.
Remember that in the following sections our goal is to solve the exact and the linearized

optimality system. We will refer to RSSN for the exact system as eRSSN and for the
linearized system as lRSSN. Both algorithms and additionally eRCPA and lRCPA have
been implemented using Manopt.jl [Ber19].
Throughout the sections we will use the relative error

εkrel :=
‖X(pk, ξkn)‖(pk,ξkn)
‖X(pk, ξ0

n)‖(p0,ξ0
n)

(363)

91

The Riemannian Semismooth Newton Method

as measure for convergence.
Again, all numerical experiments are implemented in Julia version 1.3.0 and run on a

HP ZBook, 2.4 GHz Intel Core i7, 8 GB RAM.

6.6.1 Signal with Known Minimizers

In this first experiment we want to investigate whether either the eRSSN or lRSSN work
by investigating the progression of the relative errors and the distances to the exact
solution to a problem with known minimizer. For a proof of concept we will consider a
1-dimensional piecewise constant signal

h ∈M2` hi :=
{
p̂1 if i ≤ `
p̂2 if i > `

. (364)

For this signal we know the exact `2-TV minimizer in (336): for α > 0 and p̂1, p̂2 ∈ M
the minimizer p∗ is given by

p∗i :=
{
p∗1 if i ≤ `
p∗2 if i > `

, (365)

where

p∗1 = γp̂1,p̂2(δ) and p∗2 = γp̂2,p̂2(δ) where δ = min
{1

2 ,
α

`

1
dM (p̂1, p̂2)

}
. (366)

A proof can be found in appendix A.2.
Furthermore, note that d2 = 1 and the operator T reduces to the 1-dimensional non-

linear difference operator (i.e., we have T : M2` → TM2`). This also means that the
isotropic (q = 2) and anisotropic (q = 1) cases reduce to the same functional.
Further we note that as with M = R, we do not know for certain that the Newton

matrix is invertible. Again, empirically this seems to be the case, as we had no issues
solving the Newton system for β = 0.
For the following two cases we use ` = 10 α = 5 and σ = τ = 1

2 . We use a tolerance
of εrel = 10−10 and perform a maximum of 50 iterations for the S2 problem and 15 for
the P(3) problem. Furthermore, for a given primal base point m ∈ M we will choose
n = T (m) ∈ TM2` for the dual base point. As we saw we need n to be the zero vector.
By choosing mi the same in every grid point, this condition is satisfied.
In the following we will refer to pe as the solution obtained from eRSSN and pl as the

solution from lRSSN. The results are summarized with respect to the distance to the
exact solution in Tab. 5.

Case 1: M = S2

We choose
p̂1 := 1√

2
(1, 1, 0)>, p̂2 := 1√

2
(1,−1, 0)> (367)

and
mi := (1, 0, 0)> for all i = 1, ..., 2` (368)

92

6.6 Numerical Experiments*

Cold start Warm start
M dM(p∗, pe) dM(p∗, pl) dM(p∗, pe) dM(p∗, pl)
S2 0.018284421 3.2953753 0.9582239 0.0
P(3) 2.4091654 2.1286297e-13 1.643346 1.8381813e-13

Table 5: The distances between the exact minimizers of the 1D piecewise constant
signal to the results of eRSSN and lRSSN on the S2 and the P(3) manifold. In the
case of a warm start, i.e., a good prior estimate for both primal and dual variable, the
lRSSN solution is very close to the `2-TV minimizer. For eRSSN the solution does not
correspond to the `2-TV minimizer.

and find that n is the zero tangent vector with base m.
We run the experiment for two starting points. In both the cases the primal variable

starts from the data, i.e., p0 = h. For the dual we start from the zero vector in the
first case, i.e., ξ0

n = 0 (cold start) and for the second case we start from the dual as
the result of one RCPA step (warm start). That is eRSSN starts with the dual result
after one eRCPA step and lRSSN starts with the dual vector after one lRCPA step. The
reason to include the warm start as well comes from the theory of RSSN. Since RSSN
only converges locally (superlinearly), a warm start might be necessary. The results are
shown in Fig. 19.

Cold start eRSSN converges in 3.547 seconds to a solution, whereas lRSSN gets
stuck in a local minimum and is terminated after 50 iterations (after 4.234 seconds).
Although eRSSN seems to have superior performance here, the solution is not equal to
the exact minimizer. We even have a distance of dM(p∗, pe) = 0.01828 away from the
exact solution (see Tab. 5).
In both cases we solve approximate optimality systems and until now it is not yet

known how good the approximations are. This first experiment indicates that the so-
lution to the exact optimality system does not give the `2-TV minimizer, because even
though eRSSN found a very accurate solution, it does not correspond the correct mini-
mizer.

Warm start Now eRSSN performs worse than without a warm start. The algorithm
is terminated after 50 iterations (at 3.251 seconds). A possible explanation could be that
rounding errors prohibit us from getting a better solution. For the cold start we also
observed similar behaviour. For lRSSN we see right away that a warm start gives better
performance. In 0.469 seconds (only two iterations) we converge with 0 error to the
solution of the linearized system. As it turns out this is the same point as the ROF
minimizer, i.e., dM(p∗, pl) = 0 as well (again see Tab. 5).

93

The Riemannian Semismooth Newton Method

(a) Original
(b) Exact minimizer

(c) The cold start eRSSN solution
(d) The cold start lRSSN solution

0 10 20 30 40 50
Iterations

10−10.0

10−7.5

10−5.0

10−2.5

100.0

ε r
el

eRSSN
lRSSN

(e) Progression of the cold start relative error

0 10 20 30 40 50
Iterations

100.2

100.4

100.6

100.8

TV
 C
os

t

eRSSN
lRSSN

(f) Progression of the cold start `2-TV cost

(g) The warm start eRSSN solution (h) The warm start lRSSN solution

0 10 20 30 40 50
Iterations

10−15

10−10

10−5

100

ε r
el

eRSSN
lRSSN

(i) Progression of the warm start relative error

0 10 20 30 40 50
Iterations

100.05

100.10

100.15

100.20

TV
 C
os

t

eRSSN
lRSSN

(j) Progression of the warm start `2-TV cost

Figure 19: The results along with the progression of the relative error and the `2-TV
cost for eRSSN and lRSSN applied to a S2 problem with known minimizer. With a cold
start eRSSN converges, but does not converge to the exact `2-TV minimizer. With a
warm start eRSSN seems to suffer from rounding errors and does not converge to the
exact `2-TV minimizer. lRSSN gets stuck in a local minimum in the case of a cold start,
but for a warm start the algorithm converges superlinearly to the exact minimizer.

94

//
//
// (C) 2012, Michail Vidiassov, John C. Bowman, Alexander Grahn
//
// asylabels.js
//
// version 20120912
//
//
//
// 3D JavaScript to be used with media9.sty (option `add3Djscript') for
// Asymptote generated PRC files
//
// adds billboard behaviour to text labels in Asymptote PRC files so that
// they always face the camera under 3D rotation.
//
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
//
// The latest version of this license is in
// http://mirrors.ctan.org/macros/latex/base/lppl.txt
//
// This work has the LPPL maintenance status `maintained'.
//
// The Current Maintainer of this work is A. Grahn.
//
//

var bbnodes=new Array(); // billboard meshes
var bbtrans=new Array(); // billboard transforms

function fulltransform(mesh)
{
 var t=new Matrix4x4(mesh.transform);
 if(mesh.parent.name != "") {
 var parentTransform=fulltransform(mesh.parent);
 t.multiplyInPlace(parentTransform);
 return t;
 } else
 return t;
}

// find all text labels in the scene and determine pivoting points
var nodes=scene.nodes;
var nodescount=nodes.count;
var third=1.0/3.0;
for(var i=0; i < nodescount; i++) {
 var node=nodes.getByIndex(i);
 var name=node.name;
 var end=name.lastIndexOf(".")-1;
 if(end > 0) {
 if(name.charAt(end) == "\001") {
 var start=name.lastIndexOf("-")+1;
 if(end > start) {
 node.name=name.substr(0,start-1);
 var nodeMatrix=fulltransform(node.parent);
 var c=nodeMatrix.translation; // position
 var d=Math.pow(Math.abs(nodeMatrix.determinant),third); // scale
 bbnodes.push(node);
 bbtrans.push(Matrix4x4().scale(d,d,d).translate(c).multiply(nodeMatrix.inverse));
 }
 }
 }
}

var camera=scene.cameras.getByIndex(0);
var zero=new Vector3(0,0,0);
var bbcount=bbnodes.length;

// event handler to maintain camera-facing text labels
billboardHandler=new RenderEventHandler();
billboardHandler.onEvent=function(event)
{
 var T=new Matrix4x4();
 T.setView(zero,camera.position.subtract(camera.targetPosition),
 camera.up.subtract(camera.position));

 for(var j=0; j < bbcount; j++)
 bbnodes[j].transform.set(T.multiply(bbtrans[j]));
 runtime.refresh();
}
runtime.addEventHandler(billboardHandler);

runtime.refresh();

//
//
// (C) 2012--today, Alexander Grahn
//
// 3Dmenu.js
//
// version 20140923
//
//
//
// 3D JavaScript used by media9.sty
//
// Extended functionality of the (right click) context menu of 3D annotations.
//
// 1.) Adds the following items to the 3D context menu:
//
// * `Generate Default View'
//
// Finds good default camera settings, returned as options for use with
// the \includemedia command.
//
// * `Get Current View'
//
// Determines camera, cross section and part settings of the current view,
// returned as `VIEW' section that can be copied into a views file of
// additional views. The views file is inserted using the `3Dviews' option
// of \includemedia.
//
// * `Cross Section'
//
// Toggle switch to add or remove a cross section into or from the current
// view. The cross section can be moved in the x, y, z directions using x,
// y, z and X, Y, Z keys on the keyboard, be tilted against and spun
// around the upright Z axis using the Up/Down and Left/Right arrow keys
// and caled using the s and S keys.
//
// 2.) Enables manipulation of position and orientation of indiviual parts and
// groups of parts in the 3D scene. Parts which have been selected with the
// mouse can be scaled moved around and rotated like the cross section as
// described above. To spin the parts around their local up-axis, keep
// Control key pressed while using the Up/Down and Left/Right arrow keys.
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
//
// The latest version of this license is in
// http://mirrors.ctan.org/macros/latex/base/lppl.txt
//
// This work has the LPPL maintenance status `maintained'.
//
// The Current Maintainer of this work is A. Grahn.
//
// The code borrows heavily from Bernd Gaertners `Miniball' software,
// originally written in C++, for computing the smallest enclosing ball of a
// set of points; see: http://www.inf.ethz.ch/personal/gaertner/miniball.html
//
//
//host.console.show();

//constructor for doubly linked list
function List(){
 this.first_node=null;
 this.last_node=new Node(undefined);
}
List.prototype.push_back=function(x){
 var new_node=new Node(x);
 if(this.first_node==null){
 this.first_node=new_node;
 new_node.prev=null;
 }else{
 new_node.prev=this.last_node.prev;
 new_node.prev.next=new_node;
 }
 new_node.next=this.last_node;
 this.last_node.prev=new_node;
};
List.prototype.move_to_front=function(it){
 var node=it.get();
 if(node.next!=null && node.prev!=null){
 node.next.prev=node.prev;
 node.prev.next=node.next;
 node.prev=null;
 node.next=this.first_node;
 this.first_node.prev=node;
 this.first_node=node;
 }
};
List.prototype.begin=function(){
 var i=new Iterator();
 i.target=this.first_node;
 return(i);
};
List.prototype.end=function(){
 var i=new Iterator();
 i.target=this.last_node;
 return(i);
};
function Iterator(it){
 if(it!=undefined){
 this.target=it.target;
 }else {
 this.target=null;
 }
}
Iterator.prototype.set=function(it){this.target=it.target;};
Iterator.prototype.get=function(){return(this.target);};
Iterator.prototype.deref=function(){return(this.target.data);};
Iterator.prototype.incr=function(){
 if(this.target.next!=null) this.target=this.target.next;
};
//constructor for node objects that populate the linked list
function Node(x){
 this.prev=null;
 this.next=null;
 this.data=x;
}
function sqr(r){return(r*r);}//helper function

//Miniball algorithm by B. Gaertner
function Basis(){
 this.m=0;
 this.q0=new Array(3);
 this.z=new Array(4);
 this.f=new Array(4);
 this.v=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
 this.a=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
 this.c=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
 this.sqr_r=new Array(4);
 this.current_c=this.c[0];
 this.current_sqr_r=0;
 this.reset();
}
Basis.prototype.center=function(){return(this.current_c);};
Basis.prototype.size=function(){return(this.m);};
Basis.prototype.pop=function(){--this.m;};
Basis.prototype.excess=function(p){
 var e=-this.current_sqr_r;
 for(var k=0;k<3;++k){
 e+=sqr(p[k]-this.current_c[k]);
 }
 return(e);
};
Basis.prototype.reset=function(){
 this.m=0;
 for(var j=0;j<3;++j){
 this.c[0][j]=0;
 }
 this.current_c=this.c[0];
 this.current_sqr_r=-1;
};
Basis.prototype.push=function(p){
 var i, j;
 var eps=1e-32;
 if(this.m==0){
 for(i=0;i<3;++i){
 this.q0[i]=p[i];
 }
 for(i=0;i<3;++i){
 this.c[0][i]=this.q0[i];
 }
 this.sqr_r[0]=0;
 }else {
 for(i=0;i<3;++i){
 this.v[this.m][i]=p[i]-this.q0[i];
 }
 for(i=1;i<this.m;++i){
 this.a[this.m][i]=0;
 for(j=0;j<3;++j){
 this.a[this.m][i]+=this.v[i][j]*this.v[this.m][j];
 }
 this.a[this.m][i]*=(2/this.z[i]);
 }
 for(i=1;i<this.m;++i){
 for(j=0;j<3;++j){
 this.v[this.m][j]-=this.a[this.m][i]*this.v[i][j];
 }
 }
 this.z[this.m]=0;
 for(j=0;j<3;++j){
 this.z[this.m]+=sqr(this.v[this.m][j]);
 }
 this.z[this.m]*=2;
 if(this.z[this.m]<eps*this.current_sqr_r) return(false);
 var e=-this.sqr_r[this.m-1];
 for(i=0;i<3;++i){
 e+=sqr(p[i]-this.c[this.m-1][i]);
 }
 this.f[this.m]=e/this.z[this.m];
 for(i=0;i<3;++i){
 this.c[this.m][i]=this.c[this.m-1][i]+this.f[this.m]*this.v[this.m][i];
 }
 this.sqr_r[this.m]=this.sqr_r[this.m-1]+e*this.f[this.m]/2;
 }
 this.current_c=this.c[this.m];
 this.current_sqr_r=this.sqr_r[this.m];
 ++this.m;
 return(true);
};
function Miniball(){
 this.L=new List();
 this.B=new Basis();
 this.support_end=new Iterator();
}
Miniball.prototype.mtf_mb=function(it){
 var i=new Iterator(it);
 this.support_end.set(this.L.begin());
 if((this.B.size())==4) return;
 for(var k=new Iterator(this.L.begin());k.get()!=i.get();){
 var j=new Iterator(k);
 k.incr();
 if(this.B.excess(j.deref()) > 0){
 if(this.B.push(j.deref())){
 this.mtf_mb(j);
 this.B.pop();
 if(this.support_end.get()==j.get())
 this.support_end.incr();
 this.L.move_to_front(j);
 }
 }
 }
};
Miniball.prototype.check_in=function(b){
 this.L.push_back(b);
};
Miniball.prototype.build=function(){
 this.B.reset();
 this.support_end.set(this.L.begin());
 this.mtf_mb(this.L.end());
};
Miniball.prototype.center=function(){
 return(this.B.center());
};
Miniball.prototype.radius=function(){
 return(Math.sqrt(this.B.current_sqr_r));
};

//functions called by menu items
function calc3Dopts () {
 //create Miniball object
 var mb=new Miniball();
 //auxiliary vector
 var corner=new Vector3();
 //iterate over all visible mesh nodes in the scene
 for(i=0;i<scene.meshes.count;i++){
 var mesh=scene.meshes.getByIndex(i);
 if(!mesh.visible) continue;
 //local to parent transformation matrix
 var trans=mesh.transform;
 //build local to world transformation matrix by recursively
 //multiplying the parent's transf. matrix on the right
 var parent=mesh.parent;
 while(parent.transform){
 trans=trans.multiply(parent.transform);
 parent=parent.parent;
 }
 //get the bbox of the mesh (local coordinates)
 var bbox=mesh.computeBoundingBox();
 //transform the local bounding box corner coordinates to
 //world coordinates for bounding sphere determination
 //BBox.min
 corner.set(bbox.min);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 //BBox.max
 corner.set(bbox.max);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 //remaining six BBox corners
 corner.set(bbox.min.x, bbox.max.y, bbox.max.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.min.x, bbox.min.y, bbox.max.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.min.x, bbox.max.y, bbox.min.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.max.x, bbox.min.y, bbox.min.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.max.x, bbox.min.y, bbox.max.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.max.x, bbox.max.y, bbox.min.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 }
 //compute the smallest enclosing bounding sphere
 mb.build();
 //
 //current camera settings
 //
 var camera=scene.cameras.getByIndex(0);
 var res=''; //initialize result string
 //aperture angle of the virtual camera (perspective projection) *or*
 //orthographic scale (orthographic projection)
 if(camera.projectionType==camera.TYPE_PERSPECTIVE){
 var aac=camera.fov*180/Math.PI;
 if(host.util.printf('%.4f', aac)!=30)
 res+=host.util.printf('\n3Daac=%s,', aac);
 }else{
 camera.viewPlaneSize=2.*mb.radius();
 res+=host.util.printf('\n3Dortho=%s,', 1./camera.viewPlaneSize);
 }
 //camera roll
 var roll = camera.roll*180/Math.PI;
 if(host.util.printf('%.4f', roll)!=0)
 res+=host.util.printf('\n3Droll=%s,',roll);
 //target to camera vector
 var c2c=new Vector3();
 c2c.set(camera.position);
 c2c.subtractInPlace(camera.targetPosition);
 c2c.normalize();
 if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
 res+=host.util.printf('\n3Dc2c=%s %s %s,', c2c.x, c2c.y, c2c.z);
 //
 //new camera settings
 //
 //bounding sphere centre --> new camera target
 var coo=new Vector3();
 coo.set((mb.center())[0], (mb.center())[1], (mb.center())[2]);
 if(coo.length)
 res+=host.util.printf('\n3Dcoo=%s %s %s,', coo.x, coo.y, coo.z);
 //radius of orbit
 if(camera.projectionType==camera.TYPE_PERSPECTIVE){
 var roo=mb.radius()/ Math.sin(aac * Math.PI/ 360.);
 }else{
 //orthographic projection
 var roo=mb.radius();
 }
 res+=host.util.printf('\n3Droo=%s,', roo);
 //update camera settings in the viewer
 var currol=camera.roll;
 camera.targetPosition.set(coo);
 camera.position.set(coo.add(c2c.scale(roo)));
 camera.roll=currol;
 //determine background colour
 rgb=scene.background.getColor();
 if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
 res+=host.util.printf('\n3Dbg=%s %s %s,', rgb.r, rgb.g, rgb.b);
 //determine lighting scheme
 switch(scene.lightScheme){
 case scene.LIGHT_MODE_FILE:
 curlights='Artwork';break;
 case scene.LIGHT_MODE_NONE:
 curlights='None';break;
 case scene.LIGHT_MODE_WHITE:
 curlights='White';break;
 case scene.LIGHT_MODE_DAY:
 curlights='Day';break;
 case scene.LIGHT_MODE_NIGHT:
 curlights='Night';break;
 case scene.LIGHT_MODE_BRIGHT:
 curlights='Hard';break;
 case scene.LIGHT_MODE_RGB:
 curlights='Primary';break;
 case scene.LIGHT_MODE_BLUE:
 curlights='Blue';break;
 case scene.LIGHT_MODE_RED:
 curlights='Red';break;
 case scene.LIGHT_MODE_CUBE:
 curlights='Cube';break;
 case scene.LIGHT_MODE_CAD:
 curlights='CAD';break;
 case scene.LIGHT_MODE_HEADLAMP:
 curlights='Headlamp';break;
 }
 if(curlights!='Artwork')
 res+=host.util.printf('\n3Dlights=%s,', curlights);
 //determine global render mode
 switch(scene.renderMode){
 case scene.RENDER_MODE_BOUNDING_BOX:
 currender='BoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
 currender='TransparentBoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
 currender='TransparentBoundingBoxOutline';break;
 case scene.RENDER_MODE_VERTICES:
 currender='Vertices';break;
 case scene.RENDER_MODE_SHADED_VERTICES:
 currender='ShadedVertices';break;
 case scene.RENDER_MODE_WIREFRAME:
 currender='Wireframe';break;
 case scene.RENDER_MODE_SHADED_WIREFRAME:
 currender='ShadedWireframe';break;
 case scene.RENDER_MODE_SOLID:
 currender='Solid';break;
 case scene.RENDER_MODE_TRANSPARENT:
 currender='Transparent';break;
 case scene.RENDER_MODE_SOLID_WIREFRAME:
 currender='SolidWireframe';break;
 case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
 currender='TransparentWireframe';break;
 case scene.RENDER_MODE_ILLUSTRATION:
 currender='Illustration';break;
 case scene.RENDER_MODE_SOLID_OUTLINE:
 currender='SolidOutline';break;
 case scene.RENDER_MODE_SHADED_ILLUSTRATION:
 currender='ShadedIllustration';break;
 case scene.RENDER_MODE_HIDDEN_WIREFRAME:
 currender='HiddenWireframe';break;
 }
 if(currender!='Solid')
 res+=host.util.printf('\n3Drender=%s,', currender);
 //write result string to the console
 host.console.show();
// host.console.clear();
 host.console.println('%%\n%% Copy and paste the following text to the\n'+
 '%% option list of \\includemedia!\n%%' + res + '\n');
}

function get3Dview () {
 var camera=scene.cameras.getByIndex(0);
 var coo=camera.targetPosition;
 var c2c=camera.position.subtract(coo);
 var roo=c2c.length;
 c2c.normalize();
 var res='VIEW%=insert optional name here\n';
 if(!(coo.x==0 && coo.y==0 && coo.z==0))
 res+=host.util.printf(' COO=%s %s %s\n', coo.x, coo.y, coo.z);
 if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
 res+=host.util.printf(' C2C=%s %s %s\n', c2c.x, c2c.y, c2c.z);
 if(roo > 1e-9)
 res+=host.util.printf(' ROO=%s\n', roo);
 var roll = camera.roll*180/Math.PI;
 if(host.util.printf('%.4f', roll)!=0)
 res+=host.util.printf(' ROLL=%s\n', roll);
 if(camera.projectionType==camera.TYPE_PERSPECTIVE){
 var aac=camera.fov * 180/Math.PI;
 if(host.util.printf('%.4f', aac)!=30)
 res+=host.util.printf(' AAC=%s\n', aac);
 }else{
 if(host.util.printf('%.4f', camera.viewPlaneSize)!=1)
 res+=host.util.printf(' ORTHO=%s\n', 1./camera.viewPlaneSize);
 }
 rgb=scene.background.getColor();
 if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
 res+=host.util.printf(' BGCOLOR=%s %s %s\n', rgb.r, rgb.g, rgb.b);
 switch(scene.lightScheme){
 case scene.LIGHT_MODE_FILE:
 curlights='Artwork';break;
 case scene.LIGHT_MODE_NONE:
 curlights='None';break;
 case scene.LIGHT_MODE_WHITE:
 curlights='White';break;
 case scene.LIGHT_MODE_DAY:
 curlights='Day';break;
 case scene.LIGHT_MODE_NIGHT:
 curlights='Night';break;
 case scene.LIGHT_MODE_BRIGHT:
 curlights='Hard';break;
 case scene.LIGHT_MODE_RGB:
 curlights='Primary';break;
 case scene.LIGHT_MODE_BLUE:
 curlights='Blue';break;
 case scene.LIGHT_MODE_RED:
 curlights='Red';break;
 case scene.LIGHT_MODE_CUBE:
 curlights='Cube';break;
 case scene.LIGHT_MODE_CAD:
 curlights='CAD';break;
 case scene.LIGHT_MODE_HEADLAMP:
 curlights='Headlamp';break;
 }
 if(curlights!='Artwork')
 res+=' LIGHTS='+curlights+'\n';
 switch(scene.renderMode){
 case scene.RENDER_MODE_BOUNDING_BOX:
 defaultrender='BoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
 defaultrender='TransparentBoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
 defaultrender='TransparentBoundingBoxOutline';break;
 case scene.RENDER_MODE_VERTICES:
 defaultrender='Vertices';break;
 case scene.RENDER_MODE_SHADED_VERTICES:
 defaultrender='ShadedVertices';break;
 case scene.RENDER_MODE_WIREFRAME:
 defaultrender='Wireframe';break;
 case scene.RENDER_MODE_SHADED_WIREFRAME:
 defaultrender='ShadedWireframe';break;
 case scene.RENDER_MODE_SOLID:
 defaultrender='Solid';break;
 case scene.RENDER_MODE_TRANSPARENT:
 defaultrender='Transparent';break;
 case scene.RENDER_MODE_SOLID_WIREFRAME:
 defaultrender='SolidWireframe';break;
 case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
 defaultrender='TransparentWireframe';break;
 case scene.RENDER_MODE_ILLUSTRATION:
 defaultrender='Illustration';break;
 case scene.RENDER_MODE_SOLID_OUTLINE:
 defaultrender='SolidOutline';break;
 case scene.RENDER_MODE_SHADED_ILLUSTRATION:
 defaultrender='ShadedIllustration';break;
 case scene.RENDER_MODE_HIDDEN_WIREFRAME:
 defaultrender='HiddenWireframe';break;
 }
 if(defaultrender!='Solid')
 res+=' RENDERMODE='+defaultrender+'\n';

 //detect existing Clipping Plane (3D Cross Section)
 var clip=null;
 if(
 clip=scene.nodes.getByName('$$$$$$')||
 clip=scene.nodes.getByName('Clipping Plane')
);
 for(var i=0;i<scene.nodes.count;i++){
 var nd=scene.nodes.getByIndex(i);
 if(nd==clip||nd.name=='') continue;
 var ndUTFName='';
 for (var j=0; j<nd.name.length; j++) {
 var theUnicode = nd.name.charCodeAt(j).toString(16);
 while (theUnicode.length<4) theUnicode = '0' + theUnicode;
 ndUTFName += theUnicode;
 }
 var end=nd.name.lastIndexOf('.');
 if(end>0) var ndUserName=nd.name.substr(0,end);
 else var ndUserName=nd.name;
 respart=' PART='+ndUserName+'\n';
 respart+=' UTF16NAME='+ndUTFName+'\n';
 defaultvals=true;
 if(!nd.visible){
 respart+=' VISIBLE=false\n';
 defaultvals=false;
 }
 if(nd.opacity<1.0){
 respart+=' OPACITY='+nd.opacity+'\n';
 defaultvals=false;
 }
 if(nd.constructor.name=='Mesh'){
 currender=defaultrender;
 switch(nd.renderMode){
 case scene.RENDER_MODE_BOUNDING_BOX:
 currender='BoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
 currender='TransparentBoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
 currender='TransparentBoundingBoxOutline';break;
 case scene.RENDER_MODE_VERTICES:
 currender='Vertices';break;
 case scene.RENDER_MODE_SHADED_VERTICES:
 currender='ShadedVertices';break;
 case scene.RENDER_MODE_WIREFRAME:
 currender='Wireframe';break;
 case scene.RENDER_MODE_SHADED_WIREFRAME:
 currender='ShadedWireframe';break;
 case scene.RENDER_MODE_SOLID:
 currender='Solid';break;
 case scene.RENDER_MODE_TRANSPARENT:
 currender='Transparent';break;
 case scene.RENDER_MODE_SOLID_WIREFRAME:
 currender='SolidWireframe';break;
 case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
 currender='TransparentWireframe';break;
 case scene.RENDER_MODE_ILLUSTRATION:
 currender='Illustration';break;
 case scene.RENDER_MODE_SOLID_OUTLINE:
 currender='SolidOutline';break;
 case scene.RENDER_MODE_SHADED_ILLUSTRATION:
 currender='ShadedIllustration';break;
 case scene.RENDER_MODE_HIDDEN_WIREFRAME:
 currender='HiddenWireframe';break;
 //case scene.RENDER_MODE_DEFAULT:
 // currender='Default';break;
 }
 if(currender!=defaultrender){
 respart+=' RENDERMODE='+currender+'\n';
 defaultvals=false;
 }
 }
 if(origtrans[nd.name]&&!nd.transform.isEqual(origtrans[nd.name])){
 var lvec=nd.transform.transformDirection(new Vector3(1,0,0));
 var uvec=nd.transform.transformDirection(new Vector3(0,1,0));
 var vvec=nd.transform.transformDirection(new Vector3(0,0,1));
 respart+=' TRANSFORM='
 +lvec.x+' '+lvec.y+' '+lvec.z+' '
 +uvec.x+' '+uvec.y+' '+uvec.z+' '
 +vvec.x+' '+vvec.y+' '+vvec.z+' '
 +nd.transform.translation.x+' '
 +nd.transform.translation.y+' '
 +nd.transform.translation.z+'\n';
 defaultvals=false;
 }
 respart+=' END\n';
 if(!defaultvals) res+=respart;
 }
 if(clip){
 var centre=clip.transform.translation;
 var normal=clip.transform.transformDirection(new Vector3(0,0,1));
 res+=' CROSSSECT\n';
 if(!(centre.x==0 && centre.y==0 && centre.z==0))
 res+=host.util.printf(
 ' CENTER=%s %s %s\n', centre.x, centre.y, centre.z);
 if(!(normal.x==1 && normal.y==0 && normal.z==0))
 res+=host.util.printf(
 ' NORMAL=%s %s %s\n', normal.x, normal.y, normal.z);
 res+=host.util.printf(
 ' VISIBLE=%s\n', clip.visible);
 res+=host.util.printf(
 ' PLANECOLOR=%s %s %s\n', clip.material.emissiveColor.r,
 clip.material.emissiveColor.g, clip.material.emissiveColor.b);
 res+=host.util.printf(
 ' OPACITY=%s\n', clip.opacity);
 res+=host.util.printf(
 ' INTERSECTIONCOLOR=%s %s %s\n',
 clip.wireframeColor.r, clip.wireframeColor.g, clip.wireframeColor.b);
 res+=' END\n';
// for(var propt in clip){
// console.println(propt+':'+clip[propt]);
// }
 }
 res+='END\n';
 host.console.show();
// host.console.clear();
 host.console.println('%%\n%% Add the following VIEW section to a file of\n'+
 '%% predefined views (See option "3Dviews"!).\n%%\n' +
 '%% The view may be given a name after VIEW=...\n' +
 '%% (Remove \'%\' in front of \'=\'.)\n%%');
 host.console.println(res + '\n');
}

//add items to 3D context menu
runtime.addCustomMenuItem("dfltview", "Generate Default View", "default", 0);
runtime.addCustomMenuItem("currview", "Get Current View", "default", 0);
runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);

//menu event handlers
menuEventHandler = new MenuEventHandler();
menuEventHandler.onEvent = function(e) {
 switch(e.menuItemName){
 case "dfltview": calc3Dopts(); break;
 case "currview": get3Dview(); break;
 case "csection":
 addremoveClipPlane(e.menuItemChecked);
 break;
 }
};
runtime.addEventHandler(menuEventHandler);

//global variable taking reference to currently selected node;
var target=null;
selectionEventHandler=new SelectionEventHandler();
selectionEventHandler.onEvent=function(e){
 if(e.selected&&e.node.name!=''){
 target=e.node;
 }else{
 target=null;
 }
}
runtime.addEventHandler(selectionEventHandler);

cameraEventHandler=new CameraEventHandler();
cameraEventHandler.onEvent=function(e){
 var clip=null;
 runtime.removeCustomMenuItem("csection");
 runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);
 if(clip=scene.nodes.getByName('$$$$$$')|| //predefined
 scene.nodes.getByName('Clipping Plane')){ //added via context menu
 runtime.removeCustomMenuItem("csection");
 runtime.addCustomMenuItem("csection", "Cross Section", "checked", 1);
 }
 if(clip){//plane in predefined views must be rotated by 90 deg around normal
 clip.transform.rotateAboutLineInPlace(
 Math.PI/2,clip.transform.translation,
 clip.transform.transformDirection(new Vector3(0,0,1))
);
 }
 for(var i=0; i<rot4x4.length; i++){rot4x4[i].setIdentity()}
 target=null;
}
runtime.addEventHandler(cameraEventHandler);

var rot4x4=new Array(); //keeps track of spin and tilt axes transformations
//key event handler for scaling moving, spinning and tilting objects
keyEventHandler=new KeyEventHandler();
keyEventHandler.onEvent=function(e){
 var backtrans=new Matrix4x4();
 var trgt=null;
 if(target) {
 trgt=target;
 var backtrans=new Matrix4x4();
 var trans=trgt.transform;
 var parent=trgt.parent;
 while(parent.transform){
 //build local to world transformation matrix
 trans.multiplyInPlace(parent.transform);
 //also build world to local back-transformation matrix
 backtrans.multiplyInPlace(parent.transform.inverse.transpose);
 parent=parent.parent;
 }
 backtrans.transposeInPlace();
 }else{
 if(
 trgt=scene.nodes.getByName('$$$$$$')||
 trgt=scene.nodes.getByName('Clipping Plane')
) var trans=trgt.transform;
 }
 if(!trgt) return;

 var tname=trgt.name;
 if(typeof(rot4x4[tname])=='undefined') rot4x4[tname]=new Matrix4x4();
 if(target)
 var tiltAxis=rot4x4[tname].transformDirection(new Vector3(0,1,0));
 else
 var tiltAxis=trans.transformDirection(new Vector3(0,1,0));
 var spinAxis=rot4x4[tname].transformDirection(new Vector3(0,0,1));

 //get the centre of the mesh
 if(target&&trgt.constructor.name=='Mesh'){
 var centre=trans.transformPosition(trgt.computeBoundingBox().center);
 }else{ //part group (Node3 parent node, clipping plane)
 var centre=new Vector3(trans.translation);
 }
 switch(e.characterCode){
 case 30://tilt up
 rot4x4[tname].rotateAboutLineInPlace(
 -Math.PI/900,rot4x4[tname].translation,tiltAxis);
 trans.rotateAboutLineInPlace(-Math.PI/900,centre,tiltAxis);
 break;
 case 31://tilt down
 rot4x4[tname].rotateAboutLineInPlace(
 Math.PI/900,rot4x4[tname].translation,tiltAxis);
 trans.rotateAboutLineInPlace(Math.PI/900,centre,tiltAxis);
 break;
 case 28://spin right
 if(e.ctrlKeyDown&&target){
 trans.rotateAboutLineInPlace(-Math.PI/900,centre,spinAxis);
 }else{
 rot4x4[tname].rotateAboutLineInPlace(
 -Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
 trans.rotateAboutLineInPlace(-Math.PI/900,centre,new Vector3(0,0,1));
 }
 break;
 case 29://spin left
 if(e.ctrlKeyDown&&target){
 trans.rotateAboutLineInPlace(Math.PI/900,centre,spinAxis);
 }else{
 rot4x4[tname].rotateAboutLineInPlace(
 Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
 trans.rotateAboutLineInPlace(Math.PI/900,centre,new Vector3(0,0,1));
 }
 break;
 case 120: //x
 translateTarget(trans, new Vector3(1,0,0), e);
 break;
 case 121: //y
 translateTarget(trans, new Vector3(0,1,0), e);
 break;
 case 122: //z
 translateTarget(trans, new Vector3(0,0,1), e);
 break;
 case 88: //shift + x
 translateTarget(trans, new Vector3(-1,0,0), e);
 break;
 case 89: //shift + y
 translateTarget(trans, new Vector3(0,-1,0), e);
 break;
 case 90: //shift + z
 translateTarget(trans, new Vector3(0,0,-1), e);
 break;
 case 115: //s
 trans.translateInPlace(centre.scale(-1));
 trans.scaleInPlace(1.01);
 trans.translateInPlace(centre.scale(1));
 break;
 case 83: //shift + s
 trans.translateInPlace(centre.scale(-1));
 trans.scaleInPlace(1/1.01);
 trans.translateInPlace(centre.scale(1));
 break;
 }
 trans.multiplyInPlace(backtrans);
}
runtime.addEventHandler(keyEventHandler);

//translates object by amount calculated from Canvas size
function translateTarget(t, d, e){
 var cam=scene.cameras.getByIndex(0);
 if(cam.projectionType==cam.TYPE_PERSPECTIVE){
 var scale=Math.tan(cam.fov/2)
 *cam.targetPosition.subtract(cam.position).length
 /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
 }else{
 var scale=cam.viewPlaneSize/2
 /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
 }
 t.translateInPlace(d.scale(scale));
}

function addremoveClipPlane(chk) {
 var curTrans=getCurTrans();
 var clip=scene.createClippingPlane();
 if(chk){
 //add Clipping Plane and place its center either into the camera target
 //position or into the centre of the currently selected mesh node
 var centre=new Vector3();
 if(target){
 var trans=target.transform;
 var parent=target.parent;
 while(parent.transform){
 trans=trans.multiply(parent.transform);
 parent=parent.parent;
 }
 if(target.constructor.name=='Mesh'){
 var centre=trans.transformPosition(target.computeBoundingBox().center);
 }else{
 var centre=new Vector3(trans.translation);
 }
 target=null;
 }else{
 centre.set(scene.cameras.getByIndex(0).targetPosition);
 }
 clip.transform.setView(
 new Vector3(0,0,0), new Vector3(1,0,0), new Vector3(0,1,0));
 clip.transform.translateInPlace(centre);
 }else{
 if(
 scene.nodes.getByName('$$$$$$')||
 scene.nodes.getByName('Clipping Plane')
){
 clip.remove();clip=null;
 }
 }
 restoreTrans(curTrans);
 return clip;
}

//function to store current transformation matrix of all nodes in the scene
function getCurTrans() {
 var tA=new Array();
 for(var i=0; i<scene.nodes.count; i++){
 var nd=scene.nodes.getByIndex(i);
 if(nd.name=='') continue;
 tA[nd.name]=new Matrix4x4(nd.transform);
 }
 return tA;
}

//function to restore transformation matrices given as arg
function restoreTrans(tA) {
 for(var i=0; i<scene.nodes.count; i++){
 var nd=scene.nodes.getByIndex(i);
 if(tA[nd.name]) nd.transform.set(tA[nd.name]);
 }
}

//store original transformation matrix of all mesh nodes in the scene
var origtrans=getCurTrans();

//set initial state of "Cross Section" menu entry
cameraEventHandler.onEvent(1);

//host.console.clear();

6.6 Numerical Experiments*

Case 2: M = P(3)
Next, we choose

p̂1 := expI
(2
‖X‖I

X

)
, p̂2 := expI

(
− 2
‖X‖I

X

)
, with X :=

 1 2 2
2 2 0
2 0 6

 ,
(369)

where X ∈ TIP(3) and I is the identity matrix and pick

mi := I for all i = 1, ..., 2` (370)

and once again find that n is the zero tangent vector, i.e., the zero matrix, at base m.
We will distinguish between a warm start and a cold start again. The results are

shown in Fig. 20.

Cold start Now, lRSSN is the better method. It converges superlinearly in 4.61
seconds. eRSSN on the other hand seems to get a worse result after iteration 10. It
is terminated after 76.531 seconds. However, whereas the results look very similar,
eRSSN end up a distance dM(p∗, pe) = 2.4091654 away from the exact solution, while
dM(p∗, pl) = 2.13 · 10−13 for lRSSN.

Warm start For the warm start we observe that eRSSN performs slightly better
than before, but in the end once again diverges. The method was terminated after 73.625
seconds at a distance dM(p∗, pe) = 1.643346 away from the exact solution. lRSSN on
the other hand converges after 1 iteration in 4.202 seconds and ends up at distance
dM(p∗, pl) = 1.84 · 10−13 away from the exact solution.

Observations
Whereas lRSSN results are superb, eRSSN performs much worse: in the case of the S2

manifold we do not seem to converge to the minimizer of `2-TV, but more concerning is
the behaviour for the P(3) manifold. The method diverges after some point.
A first explanation would lie in the nature of the problem we are solving. We foresaw

that every RSSN-based method could run into trouble for negatively curved manifolds
(i.e., a large K(p∗,ξ∗n)). However, since K(p∗,ξ∗n) is independent of the method9, the dis-
crepancy between eRSSN and lRSSN might also be caused by something else. As we
discussed in Sect. 6.3.3, it is also possible to have a very ill-conditioned matrix at the
optimum (i.e., a large λ(p∗,ξ∗n)). At this point we are not close enough to the solution to
make such a claim.
Based on the much better performance of the lRSSN method, we restrict ourselves to

the lRSSN methods in the following sections.

9Indeed for Hadamard manifolds it is solely dependent on the manifold.

95

The Riemannian Semismooth Newton Method

(a) Original (b) Exact minimizer

(c) The cold start eRSSN solution (d) The cold start lRSSN solution

0 5 10 15
Iterations

10−12.5

10−10.0

10−7.5

10−5.0

10−2.5

100.0

ε r
el

eRSSN
lRSSN

(e) Progression of the cold start relative error

0 5 10 15
Iterations

100.55

100.60

100.65

100.70

TV
 C
os

t

eRSSN
lRSSN

(f) Progression of the cold start `2-TV cost

(g) The warm start eRSSN solution
(h) The warm start lRSSN solution

0 5 10 15
Iterations

10−1010−10

10−8

10−6

10−4

10−2

100

ε r
el

eRSSN
lRSSN

(i) Progression of the warm start relative error

0 5 10 15
Iterations

100.6

100.7

100.8

100.9

TV
 C
os

t

eRSSN
lRSSN

(j) Progression of the warm start `2-TV cost

Figure 20: The results along with the progression of the relative error and the `2-TV
cost for eRSSN and lRSSN applied to a P(3) problem with known minimizer. With or
without a warm start, eRSSN diverges and the `2-TV energy amplifies. lRSSN converges
superlinearly to the exact minimizer for both cold and warm start.

96

6.6 Numerical Experiments*

6.6.2 Comparison of Algorithms for Solving Regularized TV

For this experiment we investigate the runtime performance for reaching different accura-
cies with the lRSSN method and compare it to the lRCPA algorithm. In this experiment
we will focus on 2D problems. From numerical observation we saw that the matrices
for both S2 and P(3) became singular if we did not use dual regularization. So in the
following we will resort to solving regularized `2-TV with β > 0. In particular, we will
use β = 10−6 motivated by the numerical experiments in chapter 3.
For the S2 problem of this experiment we use a 20 × 20 artificial S2 rotations image

from Manopt.jl with a 0.5 rotation around each axis. For the P(3) problem we will
use a 10×10 artificial P(3) image also from Manopt.jl. The original images are shown
in Fig. 21.

(a) Original S2 data (b) Original P(3) data

Figure 21: Original 2D manifold-valued S2 (left) and P(3) (right) images.

For this part we are interested in getting insight into the runtime performance of
lRSSN. We compare performance of lRSSN with lRCPA. Although lRCPA is not guar-
anteed to converge on positively curved manifolds, it performed well in recent work
[BHTVN19]. We expect that lRCPA will be faster at the start but will suffer from
slow tail convergence. Hence, lRSSN should give better performance for higher accuracy
solutions.

Initialization
For our numerical experiment, we measure the (CPU) runtime until the algorithms reach
εrel ∈ {10−2, 10−4, 10−6}. lRSSN diverges if we use a cold start and even a warm dual
start is not sufficient. Therefore, we run lRCPA until εrel = 1/2 and use the resulting

97

The Riemannian Semismooth Newton Method

primal and dual iterates as p0 and ξ0
n as starting points for the experiment. The relative

errors mentioned before include the initial error loss due to the pre-steps with lRCPA.

Case 1: M = S2

In the following we will compute regularized isotropic `2-TV solution on this data with
α = 1.5. For m we will choose

mi,j := (0, 0, 1)>, for i, j = 1, . . . , 20, (371)

so that we have n as the zero vector.
We initialized both lRSSN and lRCPA with σ = τ = 0.35. Furthermore, for lRCPA

we used γ = 0.2 to controlled the primal and dual step size.
The pre-steps took 2.437 seconds. The resulting runtimes are shown in Tab. 6. The

solutions of lRCPA and lRSSN at εrel = 10−6 along with the development of the relative
error and the (isotropic) `2-TV-cost are shown in Fig. 22.

β = 10−6 εrel = 10−2 εrel = 10−4 εrel = 10−6

Method Time # Iterations Time # Iterations Time # Iterations
lRCPA 46.515 193 159.11 697 608.781 2886
lRSSN 330.422 10 346.187 11 410.875 13

Table 6: The runtimes and number of iterations of iterations for lRCPA and lRSSN to
converge to the three accuracies for the S2 problem. For high-accuracy solutions the
proposed lRSSN algorithm outperforms lRCPA with respect to runtime on a manifold
with positive curvature.

The results confirm what we expect: for accuracies larger accuracies, errors smaller
than 10−4, lRSSN beats lRCPA. Furthermore, we see the superlinear convergence more
clearly than in the 1D case.

98

6.6 Numerical Experiments*

(a) Solution lRCPA (b) Solution lRSSN

0 50 100 150 200 250
Iterations

10−6

10−4

10−2

100

ε r
el

lRCPA
lRSSN (proposed)

(c) Progression of the relative error

0 50 100 150 200 250
Iterations

101.96

101.98

102.00

102.02

TV
 c
os

t

lRCPA
lRSSN (proposed)

(d) Progression of the isotropic `2-TV cost

Figure 22: The results of lRCPA and lRSSN for an artificial S2 problem and the pro-
gression of the relative errors and the `2-TV costs. The initial error and cost drop due
to the pre-steps is shown in green. The proposed lRSSN method converges within 13
iterations after the pre-steps superlinearly to an optimal solution on a manifold with
positive curvature, while lRCPA suffers from slow tail convergence.

99

The Riemannian Semismooth Newton Method

Case 2: M = P(3)
Next, we will compute regularized isotropic `2-TV solution on this data with α = 0.5.
For m we will choose

mi,j := I, for i, j = 1, . . . , 10, (372)

so that we have n as the zero vector.
We initialize both lRSSN and lRCPA with σ = τ = 0.4. Furthermore, for lRCPA we

use γ = 0.2 to control the primal and dual step size.
The pre-steps took 9.718 seconds. The resulting runtimes are shown in Tab. 7. The

solutions of lRCPA and lRSSN at εrel = 10−6 along with the development of the relative
error and the (isotropic) `2-TV cost are shown in Fig. 23. We note that lRCPA stalled
before reaching the relative error of 10−6 and was terminated after 2500 iterations.

β = 10−6 εrel = 10−2 εrel = 10−4 εrel = 10−6

Method Time # Iterations Time # Iterations Time # Iterations
lRCPA 9.922 18 48.36 97 1213.327 ≥2500
lRSSN 237.062 5 380.047 8 556.328 12

Table 7: The runtimes and number of iterations of iterations for lRCPA and lRSSN to
converge to the three accuracies for the P(3) problem. For high-accuracy solutions the
proposed lRSSN algorithm outperforms lRCPA with respect to runtime on a manifold
with negative curvature. lRCPA was terminated after 2500 iterations before being able
to reach εrel = 10−6.

As for th S2 example previously, the results confirm what we expect. For higher accu-
racies, with errors smaller than 10−4, lRSSN beats lRCPA. The latter even seems unable
to reach such high accuracies in reasonable time. We observe superlinear convergence
for lRSSN with this example as well.

Observations
Even though lRSSN performs very well, one might wonder whether our examples rep-
resent real-life situations. Instead of using the relative error as convergence criterion,
we could also use the change in `2-TV cost. As we see in both figures for the `2-TV
cost, lRCPA reaches a terminal cost rather quickly as well. One might wonder whether
the same results would yield when passing to a different (more practical) convergence
criterion based on changes in the cost functional.
For our purposes, we were interested in a proof of concept for lRSSN and showing the

superlinear convergence with respect to the relative error measure. So this question will
be left for future research.

100

6.6 Numerical Experiments*

(a) Solution lRCPA (b) Solution lRSSN

0 50 100 150 200 250
Iterations

10−6

10−5

10−4

10−3

10−2

10−1

100

ε r
el

lRCPA
lRSSN (proposed)

(c) Progression of the relative error

0 50 100 150 200 250
Iterations

101.80

101.85

101.90

101.95

102.00

102.05

TV
 c
os

t

lRCPA
lRSSN (proposed)

(d) Progression of the isotropic `2-TV cost

Figure 23: The results of lRCPA and lRSSN for an artificial P(3) problem and the
progression of the relative errors and the `2-TV costs. The initial error and cost drop
due to the pre-steps is shown in green. The proposed lRSSN method converges within
12 iterations after the pre-steps superlinearly to an optimal solution on a manifold with
negative curvature, while lRCPA suffers from slow tail convergence.

101

The Riemannian Semismooth Newton Method

6.6.3 An Outlook to Inexact Semismooth Newton

In this final experiment we will try to validate our predictions for inexact Rieman-
nian Semismooth Newton. In particular, we want to verify linear convergence for
ak = constant and superlinear convergence for ak → 0 as k → ∞. We will also look
into an application: denoising with `2-TV. In the following we will restrict ourselves to
the inexact variant of lRSSN. Given the similar behaviour of the methods on positively
and negatively curved manifolds in previous experiments, we will only consider an S2

example for this experiment.
For our problem we will choose denoising Bernoulli’s Lemniscate, which is a figure

8 on the 2-sphere. Note that this is once again a 1D problem. We will consider 128
S2-valued points on the Lemniscate curve and distort them with Gaussian noise with
variance δ2 = 0.01, in the sense that for each point p we will pick a tangent vector vp
drawn from Gaussian distribution over the tangent space10, and our data h will be such
that

hi := exppi(vpi). (373)

We use `2-TV with α = 0.5 and m as the intersection point of the Lemniscate:

mi := 1√
2

(1, 0, 1)>, for i = 1, . . . , 128. (374)

For this case n will be the zero vector with base m. We will not use dual regularization,
i.e., β = 0.
We need a warm start by lRCPA and use σ = τ = 0.35 and γ = 0.2. We take pre-

steps until εrel = 10−1 and continue with IRSSN after that. Then, we will run three
experiments with

ak1 := 0, ak2 := 1
5 , ak3 := 1

5k , (375)

and we define a residual

rki := aki ‖X(pk, ξkn)‖(pk,ξkn)U(pk,ξkn), for i = 1, 2, 3, (376)

where U(pk,ξkn) is a tangent vector drawn from a normal distribution with unit covariance
matrix. Subsequently, after the pre-steps we solve dk through solving

V(pk,ξkn)d
k = X(pk, ξkn) + rki . (377)

So in other words, by simulating residual and solving the problem exactly with lRSSN
we simulate the behaviour of IRSSN.11

10Note that we can use our classical Gaussian distribution here, because the tangent space is a linear
space.

11Due to the lack of a proper preconditioner, we needed to resort to this way of testing instead of
using an iterative method.

102

6.6 Numerical Experiments*

The convergence rate q will be approximated by

qk :=
log

(
‖X(pk,ξkn)‖

‖X(pk−1,ξk−1
n)‖

)
log

(
‖X(pk−1,ξk−1

n)‖
‖X(pk−2,ξk−2

n)‖

) . (378)

The results are shown in Fig. 24. As expected we observe that the scheme of ak2
converges linearly, i.e., with rate q = 1. For ak3 we observe the relative error progression
closely follows that of normal lRSSN, i.e., using ak1, and we observe that q is mainly
slightly larger than 1, which indicates superlinear convergence. This is also in line with
our expectations.

6.6.4 Final Remarks

With these numerical experiments we set out to confirm the theoretical findings and
show a proof of concept for the developed algorithms. In particular, we wanted to show
local superlinear convergence on positively and negatively curved manifolds for eRSSN
and lRSSN and establish (at least) local linear convergence for an inexact version of
either one of the algorithms.
Especially lRSSN has shown to be very promising. For 1D signals and 2D images

with S2 and P(3) data, superlinear convergence was obtained, when initialized at a
proper starting point. In particular, the convergence behaviour of lRSSN can be used
to overcome the slow tail convergence, which is holding back several first-order methods
such as lRCPA. Additionally, lRSSN combined with an inexact scheme for solving the
Newton matrix has the potential to result in a very successful algorithm for efficiently
solving larger-scale problems.

103

(a) Original Lemniscate signal

(b) Noisy Lemniscate signal

(c) Bernoulli’s Lemniscate (grey), the noisy
data (orange) and the solutions (blue)

0 10 20 30 40 50
Iterations

10−6

10−4

10−2

100

ε r
el

a₁
a₂
a₃

(d) Progression of the relative error of the lR-
CPA pre-steps (blue) and the three inexact
lRSSN schemes

0 10 20 30 40 50
Iterations

101.0

101.1

101.2

101.3

TV
 c
os

t

a₁
a₂
a₃

(e) Progression of the `2-TV cost of the lRCPA
pre-steps (blue) and the three inexact lRSSN
schemes

0 5 10 15 20
Iterations

-10.0

-7.5

-5.0

-2.5

0.0

2.5

q

q=1
a₁
a₂
a₃

(f) Progression of the convergence rates after
the pre-steps

Figure 24: The results of inexact lRSSN for denoising Bernoulli’s Lemniscate for different
degrees of inexactness denoted by a1, a2 and a3, where a1 corresponds to normal lRSSN.
Only the a2 solution is shown in (c). The a1 and a3 solutions are indistinguishable from
a2. After the prep-steps a1 and a3 converge superlinearly and a2 linearly.

Chapter 7: Conclusions
In this work we have presented the exact and linearized Riemannian Semismooth Newton
method (eRSSN and lRSSN) as higher-order optimization methods for solving non-
smooth variational problems. By transferring best practices from the linear case to the
manifold case we were able to apply both algorithms to solving isotropic and anisotropic
`2-TV problems for manifolds of positive and negative curvature. In particular, we used
the dual regularization approach that solved ill-posedness in the linear case as a strategy
for handling manifold-valued images.
From numerical experiments with 1D signals and 2D images we see promising results

for lRSSN: in particular, we obtain superlinear convergence towards the `2-TV minimizer
and establish state-of-the-art runtimes for high-accuracy solutions on the S2 and the P(3)
manifold.
The numerical results of eRSSN also provide novel insights: due to the high accuracies

we can reach with eRSSN, we find hints that the exact optimality system derived from the
`2-TV functional has a different solution than `2-TV itself. Whether the two optimizers
were actually equal was still an open question from previous work [BHTVN19].
Moreover, the first step towards making general RSSN-based methods feasible for

solving large scale manifold valued imaging problems has been set by proving a local
convergence result for inexact RSSN. This result is also backed-up by numerical experi-
ments with inexact lRSSN, in which we observed, as expected, local linear convergence.

Suggestions for Future Research
This work paved the way for several interesting follow up projects:

The Ill-posedness of the lRSSN Matrix for `2-TV-like problems For the case
of solving `2-TV, in the Rd case we could show that the ill-posedness of the Newton ma-
trix was caused by cycles of pixels with the same value at the optimum. In the manifold
case the obtained matrix has a less transparent structure than before. Numerical exper-
iments suggest that the matrix can become non-invertible without dual regularization.
A full theoretical analysis is left for future work.

The role of σ and τ So far our choice for σ and τ was made on the basis of whether
these values would work for RCPA. A proper exploration of the precise effects could give
us new insights into the properties of the Newton matrix. As a starting point, we would
suggest to focus on the Rd case, for there is still a lot unclear as well.

lRSSN for Large Scale Problems Another suggestion would be to look for large
scale applications. We experimented with GMRES approach to test our inexact lRSSN,
but without a good preconditioner this attempt was pointless. Especially because in real-
istic cases we choose a small β for the dual regularization, resulting in a large condition
number. It is well known that the condition number directly affects the convergence

105

Conclusions

speed for the worse. We would suggest to look into preconditioners for the Newton
matrix as the first step towards solving large scale problems.

lRSSN Variations We used the exact and linearized optimality system solving the
`2-TV problem. For this we needed to choose a base point m ∈ M and n ∈ N . In this
thesis, these were fixed. In [BHTVN19] it was suggested to look into changing these per
iteration when using lRCPA.
In this work we claimed that we should choose a particular n in the case of a Total

Variation regularizer, i.e., n being a zero vector with base point m. Controlling m would
still be an interesting approach and could yield better results: we could make less of
an error when linearizing. This would not only be interesting for lRCPA, but also for
lRSSN.

lRSSN for Other Models So far, only TV has been used as an application for
lRSSN (as with lRCPA). Total Generalized Variation also allows for the dual represen-
tation and could be an interesting next candidate to apply lRSSN on.

Expanding the Theory of Inexact RSSN Thm. 6.12 in the linear case could be
formulated much stronger than for manifolds. Showing the converses of (ii) and (iii) in
our theorem would provide more even more insight into the limitations of IRSSN.

lRSSN Globalization Finally, a globalization strategy of RSSN would be an ex-
tremely valuable result. Recently, a scheme was proposed for SSN that is an outstanding
candidate to be made compatible with our types of problem: Adaptive Semismooth New-
ton (ASSN).
If we want to extend this scheme to manifolds, there are some obstacles. The method

relies on monotonicity of the vector field. Whereas there exist generalizations of classical
monotonicity to vector fields, we can only do this for spaces with negative curvature. To
be more complete, we would like the space to be a Hadamard manifold.
Given our results for the P(3) manifold, globalization might not be far away and would

definitely be a worthwhile topic to look into.

106

Chapter A: Appendix
A.1 Covariant Derivatives for the `2-TV-like Dual Proximal Maps

In the following we will focus on the vector part ξm of the dual variable ξn = (ζm, ξm)
for the proximal map, since the point part will give zero anyways.
Now, as for the linear case we see that the components of (the vector part of) proxτG∗n,q(ηn),

i.e., ‖(ηm)i,j,:‖m,q∗ smaller or larger than 1, are piecewise C1 in the T ∗mMd1×d2×2 vector
space. So by considering the two regions seperately we can use ordinary (covariant)
derivative on each region and choose the value corresponding to the inner region for the
generalized (covariant) derivative on the boundary. We will compute the (covariant)
derivative for the isotropic case and als give the result of the anisotropic case. The
calculations for the anisotropic case are similar and therefore omited.
For finding the (covariant) derivative, we need to pass to coordinates. Choose an

orthonormal basis {Ξi,j,k,l}l in Tmi,j,1M(= (TmMd1×d2×2)i,j), then we will work in the
normal coordinates of this basis and we can write (ξm)i,j,k =

∑L
l=1 ξ

k,lΞi,j,k,l, where L is
the dimension of M. Then, the lth component of (ξm)i,j,k after applying the proximal
map is

(max(1, ‖(ξm)i,j,:‖m,2))−1ξk,lΞi,j,k,l =

max

1,

√√√√ K∑
α=1

L∑
µ=1

(ξα,µ)2

−1

ξk,lΞi,j,k,l (379)

Now we note that in normal coordinates the Christoffel symbols vanish and we can focus
on the derivatives of the coordinates. We can now distinguish cases in order to find our
operator J2 (with J1 corresponding to anisotropic).
If ‖(ξm)i,j,:‖m,2 ≤ 1 we have

(max(1, ‖(ξm)i,j,:‖m,2))−1ξk,lΞi,j,k,l = ξk,lΞi,j,k,l (380)

and hence we find

∂ξκ,`ξ
k,lΞi,j,k,l = δl`δ

k
κΞi,j,k,l. (381)

Then, we have for ηm =
∑d1,d2
a,b=1

∑K
κ=1

∑L
`=1 η

κ,`Ξa,b,κ,` ∈ TnTMd1×d2×2

(J2ηm)i,j,k =
L∑
l=1

(Jηm)i,j,k,l =
L∑
l=1

K∑
κ=1

L∑
`=1

ηκ,`(J
d1,d2∑
a,b=1

Ξa,b,κ,`)i,j,k,l (382)

=
L∑
l=1

K∑
κ=1

L∑
`=1

ηκ,`δl`δ
k
κΞi,j,k,l =

L∑
l=1

ηk,lΞi,j,k,l = (ηm)i,j,k (383)

Otherwise, we have

(max(1, ‖(ξm)i,j,:‖m,2))−1ξl,kΞi,j,k,l = ηk,l√∑K
α=1

∑L
µ=1(ηα,µ)2

Ξi,j,k,l (384)

107

Appendix

In order to calculate the derivative, we start with calculating the derivative of the nu-
merator

∂ξκ,`

√√√√ K∑
α=1

L∑
µ=1

(ξα,µ)2 = 1
2

1
‖(ξm)i,j,:‖m,2

(2ξκ,`) = ξκ,`

‖(ξm)i,j,:‖m,2
(385)

and hence for the total expression we get

∂ξκ,`
ξk,l√∑K

α=1
∑L
µ=1(ξα,µ)2

Ξi,j,k,l = 1
‖(ξm)i,j,:‖2m,2

(
‖(ξm)i,j,:‖m,2δl`δkκ −

ξk,lξκ,`

‖(ξm)i,j,:‖m,2

)
Ξi,j,k,l

(386)

= 1
‖(ξm)i,j,:‖m,2

(
δl`δ

k
κ −

ξk,lξκ,`

‖(ξm)i,j,:‖2m,2

)
Ξi,j,k,l (387)

Then, we have for ηm =
∑d1,d2
a,b=1

∑K
κ=1

∑L
`=1 η

κ,`Ξa,b,κ,` ∈ TnTMd1×d2×2

(J2ηm)i,j,k =
L∑
l=1

(Jηm)i,j,k,l =
L∑
l=1

K∑
κ=1

L∑
`=1

ηκ,`(J
d1,d2∑
a,b=1

Ξa,b,κ,`)i,j,k,l (388)

=
L∑
l=1

K∑
κ=1

L∑
`=1

ηκ,`
1

‖(ξm)i,j,:‖m,2

(
δl`δ

k
κ −

ξk,lξκ,`

‖(ξm)i,j,:‖2m,2

)
Ξi,j,k,l (389)

=
L∑
l=1

1
‖(ξm)i,j,:‖m,2

(
ηk,l −

K∑
κ=1

L∑
`=1

ηκ,`
〈(ξm)i,j,k,Ξi,j,k,l〉〈(ξm)i,j,κ,Ξi,j,κ,`〉

‖(ξm)i,j,:‖2m,2

)
Ξi,j,k,l

(390)

=
L∑
l=1

1
‖(ξm)i,j,:‖m,2

(
ηk,l −

K∑
κ=1

〈(ξm)i,j,k,Ξi,j,k,l〉〈(ξm)i,j,κ, (ηm)i,j,κ〉
‖(ξm)i,j,:‖2m,2

)
Ξi,j,k,l

(391)

= 1
‖(ξm)i,j,:‖m,2

(
L∑
l=1

ηk,lΞi,j,k,l −
K∑
κ=1

〈(ξm)i,j,κ, (ηm)i,j,κ〉
‖(ξm)i,j,:‖2m,2

L∑
l=1
〈(ξm)i,j,k,Ξi,j,k,l〉Ξi,j,k,l

)
(392)

= 1
‖(ξm)i,j,:‖m,2

(
(ηm)i,j,k −

K∑
κ=1

〈(ξm)i,j,κ, (ηm)i,j,κ〉
‖(ξm)i,j,:‖2m,2

(ξm)i,j,k

)
(393)

Similarly we can find for the anisotropic case that if ‖(ξm)i,j,k‖m ≤ 1 we have

(J1ηm)i,j,k = (ηm)i,j,k (394)

and else

(J1ηm)i,j,k = 1
‖(ξm)i,j,k‖m

(
(ηm)i,j,k −

〈(ξm)i,j,k, (ηm)i,j,k〉
‖(ξm)i,j,k‖2m

(ξm)i,j,k

)
(395)

108

A.2 Exact Solutions to 1D `2-TV for 2n gridpoints on manifolds

If we also include the boundary conditions in the operators Jq we find for the vector
parts of our dual vector ξn = (ζm, ξm)

(J1(ξm)ηm)i,j,k =

0 if i = d1 and k = 1
0 if j = d2 and k = 2
(ηm)i,j,k if ‖(ξm)i,j,:‖m ≤ 1

1
‖(ξm)i,j,k‖m

(
(ηm)i,j,k −

〈(ξm)i,j,k,(ηm)i,j,k〉
‖(ξm)i,j,k‖2

m
(ξm)i,j,k

)
if ‖(ξm)i,j,k‖m > 1

(396)
and

(J2(ξm)ηm)i,j,k =

0 if i = d1 and k = 1
0 if j = d2 and k = 2
(ηm)i,j,k if ‖(ξm)i,j,:‖m,2 ≤ 1

1
‖(ξm)i,j,:‖m,2

(
(ηm)i,j,k −

∑K
κ=1

〈(ξm)i,j,κ,(ηm)i,j,κ〉
‖(ξm)i,j,:‖2

m,2
(ξm)i,j,k

)
if ‖(ξm)i,j,:‖m,2 > 1

(397)

A.2 Exact Solutions to 1D `2-TV for 2n gridpoints on manifolds

For this argument we will modify the idea used in [WDS14, Theorem 2]. Let M be
a complete connected Riemannian manifold. Consider the following TV minimization
problem on 2n gridpoints:

min
p∈M2n

1
2α

n∑
i=1

dM(pi, f1)2 + 1
2α

2n∑
i=n+1

dM(pi, f2)2 +
2n−1∑
i=1

dM(pi, pi+1) (398)

For finding a solution we will split up the proof in the following steps:

• For an optimal p̂ we must have dM(p̂i, f1) ≤ dM(f1, f2) for all i ≤ n and dM(p̂i, f2) ≤
dM(f1, f2) for all i > n

• There is a minimizer where all components lie on a minimizing geodesic connecting
b and a

• For that case the first n gridpoints have the same value and so do the second n
gridpoints

• Using these results we reduce the problem a 1 dimensional problem in an Euclidean
setting and solve this.

We want to note that if we have a Hadamard manifold, the minimizer is the only one.

Step 1
Let p̂ be a minimizer. Now, if for all n gridpoints we have dM(p̂i, f1) > dM(f1, f2) then
p̂∗1 = p̂∗2 = ... = p̂∗2n−1 = p̂∗2n = a would be a solution with a strictly smaller cost. This
gives a contradiction.

109

Appendix

Now, if among these first n points there are ` gridpoints, say ij for j = 1, .., `, such
that dM(p̂ij , f1) ≤ dM(f1, f2). Then p̂∗ defined as

p̂∗i =

p̂i1 1 ≤ i ≤ i1
p̂ij ij ≤ i < ij+1
p̂i` i` ≤ i ≤ n
p̂i n+ 1 ≤ i

(399)

has a lower cost by the triangle inequality, which again gives a contradiction.
A similar claim follows for the second n gridpoints.
So we conclude that for an optimal p̂ we must have dM(p̂i, f1) ≤ dM(f1, f2) for all

i ≤ n and dM(p̂i, f2) ≤ dM(f1, f2) for all i > n.

Step 2
Next, we define z ∈M2n having components on the same minimizing geodesic, i.e,

zi =
{
γ∗f1,f2

(dM(f1, p̂i)) i ≤ n
γ∗f2,f1

(dM(f2, p̂i)) i > n
(400)

where γ∗x,y(t) is a unit speed minimizing geodesic from x to y at time t ∈ [0, dM(x, y)].
We will prove that z is also a minimizer. Now consider the case that we the components
of z lie in the following order on the geodesic: f1, z1, z2, ..., z2n−1, z2n, f2. Then we have

dM(f1, z1)+
2n−1∑
i=1

dM(zi, zi+1)+dM(f2, z2n) = dM(f1, f2) ≤ dM(f1, p̂1)+
2n−1∑
i=1

dM(p̂i, p̂i+1)+dM(f2, p̂2n)

(401)
Since we have dM(f1, z1) = dM(f1, p̂1) and dM(f2, z2n) = dM(f2, p̂2n)

2n−1∑
i=1

dM(zi, zi+1) ≤
2n−1∑
i=1

dM(p̂i, p̂i+1) (402)

must hold. Then we also have

1
2α

n∑
i=1

dM(zi, f1)2 + 1
2α

2n∑
i=n+1

dM(zi, f2)2 +
2n−1∑
i=1

dM(zi, zi+1) (403)

≤ 1
2α

n∑
i=1

dM(p̂i, f1)2 + 1
2α

2n∑
i=n+1

dM(p̂i, f2)2 +
2n−1∑
i=1

dM(p̂i, p̂i+1)

(404)

and we see that z is indeed also a minimizer.
By symmetry, for the remaining cases we can focus on the first n gridpoints. Without

loss of generality, we also may assume that only one gridpoint in the first n points is
out of order. This comes down to the case that we have the following ordering along

110

A.2 Exact Solutions to 1D `2-TV for 2n gridpoints on manifolds

the geodesic: f1, z1, ..., zj , zi, zj+1, ..., z2n, f2 where i < j, i ∈ {1, .., n} and j ∈ {1, .., 2n}.
Now let z′ ∈M2n be such that

z′k =
{
zk k 6= i
zj k = i

(405)

Then by following the same reasoning as before we can show that z is a minimizer, but
now z′ would give a solution with a lower cost than we had, which we cannot have.
So we conclude that we can find a minmizer z such that f1, z1, z2, ..., z2n−1, z2n, f2 lie

on a minmizing geodesic in this ordering.

Step 3
Finally, we will show that we in particular have z1 = z2 = ... = zn and zn+1 = zn+2 =
... = z2n. Again by symmetry we only have to show that there are no jumps between
the first n points. Now assume there are jumps and the first jump is at point i. We
have two cases: dM(zi, f1) > dM(zi+1, f1) and dM(zi, f1) < dM(zi+1, f1). The former
has already been eliminated in the previous step, so we can focus on showing the latter
cannot be true either.
If we have dM(zi, f1) < dM(zi+1, f1), then we can move zi+1 towards zi and move

all points zi+2, ..., zn over the same distance along the geodesic, i.e, without changing
distances between the moved points. Now we see that the loss of dM(zi, zi+1) will be
cancelled equally by the gain of dM(zn, zn+1). However, the distance to b has strictly
decreased for all moved points. So we again have found a solution with lower cost than
the optimal solution. Again we have a contradiction and we also find that dM(zi, f1) =
dM(zi+1, f1).
From this we conclude that we must have z1 = z2 = ... = zn and zn+1 = zn+2 = ... =

z2n.

Step 4
Now we are ready to calculate the actual solution, which we will also call p̂. By our
previously established results, we now know tha the solution lies on the minimizing
geodesic connecting f1 and f2. We write

p̂1 = ... = p̂n = γf1,f2(t̂1) p̂n+1 = ... = p̂2n = γf2,f1(t̂2) (406)

where γx,y(t) is a minimizing geodesic such that γx,y(0) = x and γx,y(1) = y.
By symmetry we must have t̂ = t̂1 = t̂2. Then we can rewrite our optimization problem

(398) into a 1 dimensional problem

min
t

n

2α(dM(f1, f2)t)2 + n

2α(dM(f1, f2)t)2 + dM(f1, f2)|1− 2t| (407)

⇔min
t

sup
g

n

α
dM(f1, f2)t2 + (1− 2t)g − ιB1(g), (408)

where B1 = {y ∈ R| |y| ≤ 1}. We may solve the minimization problem first. Differenti-
ating to t gives

2n
α
dM(f1, f2)t− 2g = 0 ⇒ t = α

n

1
dM(f1, f2)g. (409)

111

Appendix

Filling this back into the optimization problem gives

sup
g

α

n

1
dM(f1, f2)g

2 + (1− 2α
n

1
dM(f1, f2)g)g − ιB1(g), (410)

⇔ sup
g
−α
n

1
dM(f1, f2)g

2 + g − ιB1(g) (411)

⇔ sup
g
−α
n

1
dM(f1, f2)(g − n

2αdM(f1, f2))2 − ιB1(g) (412)

⇔ inf
g

α

n

1
dM(f1, f2)(g − n

2αdM(f1, f2))2 + ιB1(g) (413)

⇔ ĝ = prox n
α
dM(f1,f2)ιB1 (·)

(
n

2αdM(f1, f2)
)

= 1
max(1, n2αdM(f1, f2))

n

2αdM(f1, f2)

(414)

⇔ ĝ = min
(

1, 1
n

2α
dM(f1, f2)

)
n

2αdM(f1, f2) = min
(1

2 ,
1
n

α

dM(f1, f2)

)
n

α
dM(f1, f2)

(415)

and we see that we get

t̂ = α

n

1
dM(f1, f2) ĝ = min

(1
2 ,

1
n

α

dM(f1, f2)

)
(416)

112

References
[ABG07] Absil, P-A ; Baker, Christopher G. ; Gallivan, Kyle A.: Trust-region

methods on Riemannian manifolds. In: Foundations of Computational
Mathematics 7 (2007), Nr. 3, S. 303–330. http://dx.doi.org/10.1007/
s10208-005-0179-9.

[ADM+02] Adler, Roy L. ; Dedieu, Jean-Pierre ; Margulies, Joseph Y. ;
Martens, Marco ; Shub, Mike: Newton’s method on Riemannian man-
ifolds and a geometric model for the human spine. In: IMA Journal of
Numerical Analysis 22 (2002), Nr. 3, S. 359–390. http://dx.doi.org/
10.1093/imanum/22.3.359.

[AEK08] Abrudan, Traian E. ; Eriksson, Jan ; Koivunen, Visa: Steepest
descent algorithms for optimization under unitary matrix constraint. In:
IEEE Transactions on Signal Processing 56 (2008), Nr. 3, S. 1134–1147.
http://dx.doi.org/10.1109/TSP.2007.908999.

[AF05] Azagra, Daniel ; Ferrera, Juan: Proximal calculus on Riemannian
manifolds. In: Mediterranean Journal of Mathematics 2 (2005), Nr. 4, S.
437–450. http://dx.doi.org/10.1007/s00009-005-0056-4.

[AMS09] Absil, P-A ; Mahony, Robert ; Sepulchre, Rodolphe: Optimization
algorithms on matrix manifolds. Princeton University Press, 2009. http:
//dx.doi.org/10.1515/9781400830244.

[ATV13] Afsari, Bijan ; Tron, Roberto ; Vidal, René: On the convergence of
gradient descent for finding the Riemannian center of mass. In: SIAM
Journal on Control and Optimization 51 (2013), Nr. 3, S. 2230–2260.
http://dx.doi.org/10.1137/12086282X.

[AWK93] Adams, Brent L. ; Wright, Stuart I. ; Kunze, Karsten: Orientation
imaging: the emergence of a new microscopy. In: Metallurgical Trans-
actions A 24 (1993), Nr. 4, S. 819–831. http://dx.doi.org/10.1007/
BF02656503.

[Bac14] Bacák, Miroslav: Computing medians and means in Hadamard spaces.
In: SIAM Journal on Optimization 24 (2014), Nr. 3, S. 1542–1566. http:
//dx.doi.org/10.1137/140953393.

[Ban14] Banert, Sebastian: Backward–backward splitting in Hadamard spaces.
In: Journal of Mathematical Analysis and Applications 414 (2014), Nr. 2,
S. 656–665. http://dx.doi.org/10.1016/j.jmaa.2014.01.054.

[BBSW16] Bacák, Miroslav ; Bergmann, Ronny ; Steidl, Gabriele ; Wein-
mann, Andreas: A second order nonsmooth variational model for restor-

113

http://dx.doi.org/10.1007/s10208-005-0179-9
http://dx.doi.org/10.1007/s10208-005-0179-9
http://dx.doi.org/10.1093/imanum/22.3.359
http://dx.doi.org/10.1093/imanum/22.3.359
http://dx.doi.org/10.1109/TSP.2007.908999
http://dx.doi.org/10.1007/s00009-005-0056-4
http://dx.doi.org/10.1515/9781400830244
http://dx.doi.org/10.1515/9781400830244
http://dx.doi.org/10.1137/12086282X
http://dx.doi.org/10.1007/BF02656503
http://dx.doi.org/10.1007/BF02656503
http://dx.doi.org/10.1137/140953393
http://dx.doi.org/10.1137/140953393
http://dx.doi.org/10.1016/j.jmaa.2014.01.054

ing manifold-valued images. In: SIAM Journal on Scientific Comput-
ing 38 (2016), Nr. 1, S. A567–A597. http://dx.doi.org/10.1137/
15M101988X.

[BCH+15] Bergmann, Ronny ; Chan, Raymond H. ; Hielscher, Ralf ; Persch,
Johannes ; Steidl, Gabriele: Restoration of manifold-valued images by
half-quadratic minimization. In: arXiv preprint arXiv:1505.07029 (2015).
http://dx.doi.org/10.3934/ipi.2016001.

[BCNO16a] Bento, Glaydston de C. ; Cruz Neto, Joã. X. ; Oliveira, Paulo R.:
A new approach to the proximal point method: convergence on general
Riemannian manifolds. In: Journal of Optimization Theory and Appli-
cations 168 (2016), Nr. 3, S. 743–755. http://dx.doi.org/10.1007/
s10957-015-0861-2.

[BCNO16b] Byrd, Richard H. ; Chin, Gillian M. ; Nocedal, Jorge ; Oztoprak,
Figen: A family of second-order methods for convex `1-regularized opti-
mization. In: Mathematical Programming 159 (2016), Nr. 1-2, S. 435–467.
http://dx.doi.org/10.1007/s10107-015-0965-3.

[Ber11] Bertsekas, Dimitri P.: Incremental proximal methods for large scale
convex optimization. In: Mathematical programming 129 (2011), Nr. 2,
S. 163. http://dx.doi.org/10.1007/s10107-011-0472-0.

[Ber19] Bergmann, Ronny: manopt.jl. In: Optimization on Manifolds in Julia.
(2019)

[BF12] Becker, Stephen ; Fadili, Jalal: A quasi-Newton proximal splitting
method. In: Advances in neural information processing systems, 2012, S.
2618–2626

[BFFY18] Bortoloti, MAA ; Fernandes, TA ; Ferreira, OP ; Yuan, Jinyun:
Damped Newton’s Method on Riemannian Manifolds. In: arXiv preprint
arXiv:1803.05126 (2018)

[BFPS17] Bergmann, Ronny ; Fitschen, Jan H. ; Persch, Johannes ; Steidl,
Gabriele: Infimal convolution coupling of first and second order differ-
ences on manifold-valued images. In: International Conference on Scale
Space and Variational Methods in Computer Vision Springer, 2017, S.
447–459

[BFPS18] Bergmann, Ronny ; Fitschen, Jan H. ; Persch, Johannes ; Steidl,
Gabriele: Priors with coupled first and second order differences for
manifold-valued image processing. In: Journal of mathematical imag-
ing and vision 60 (2018), Nr. 9, S. 1459–1481. http://dx.doi.org/10.
1007/s10851-018-0840-y.

114

http://dx.doi.org/10.1137/15M101988X
http://dx.doi.org/10.1137/15M101988X
http://dx.doi.org/10.3934/ipi.2016001
http://dx.doi.org/10.1007/s10957-015-0861-2
http://dx.doi.org/10.1007/s10957-015-0861-2
http://dx.doi.org/10.1007/s10107-015-0965-3
http://dx.doi.org/10.1007/s10107-011-0472-0
http://dx.doi.org/10.1007/s10851-018-0840-y
http://dx.doi.org/10.1007/s10851-018-0840-y

[BHSW18] Bredies, Kristian ; Holler, Martin ; Storath, Martin ; Weinmann,
Andreas: Total generalized variation for manifold-valued data. In: SIAM
Journal on Imaging Sciences 11 (2018), Nr. 3, S. 1785–1848. http://dx.
doi.org/10.1137/17M1147597.

[BHTVN19] Bergmann, Ronny ; Herzog, Roland ; Tenbrinck, Daniel ; Vidal-
Núñez, José: Fenchel Duality Theory and A Primal-Dual Algorithm on
Riemannian Manifolds. (2019)

[BLPS18] Bergmann, Ronny ; Laus, Friederike ; Persch, Johannes ; Steidl,
Gabriele: Recent Advances in Denoising of Manifold-Valued Images. In:
arXiv preprint arXiv:1812.08540 (2018)

[BLSW14] Bergmann, Ronny ; Laus, Friederike ; Steidl, Gabriele ; Weinmann,
Andreas: Second order differences of cyclic data and applications in
variational denoising. In: SIAM Journal on Imaging Sciences 7 (2014),
Nr. 4, S. 2916–2953. http://dx.doi.org/10.1137/140969993.

[BML94] Basser, Peter J. ; Mattiello, James ; LeBihan, Denis: MR diffusion
tensor spectroscopy and imaging. In: Biophysical journal 66 (1994), Nr.
1, S. 259–267. http://dx.doi.org/10.1016/S0006-3495(94)80775-1.

[BNO11] Bento, GC ; Neto, JX ; Oliveira, PR: Convergence of inexact descent
methods for nonconvex optimization on Riemannian manifolds. In: arXiv
preprint arXiv:1103.4828 (2011)

[BNO16] Byrd, Richard H. ; Nocedal, Jorge ; Oztoprak, Figen: An inex-
act successive quadratic approximation method for L-1 regularized opti-
mization. In: Mathematical Programming 157 (2016), Nr. 2, S. 375–396.
http://dx.doi.org/10.1007/s10107-015-0941-y.

[BPS16] Bergmann, Ronny ; Persch, Johannes ; Steidl, Gabriele: A parallel
Douglas–Rachford algorithm for minimizing ROF-like functionals on im-
ages with values in symmetric Hadamard manifolds. In: SIAM Journal
on Imaging Sciences 9 (2016), Nr. 3, S. 901–937. http://dx.doi.org/
10.1137/15M1052858.

[BST14] Bolte, Jérôme ; Sabach, Shoham ; Teboulle, Marc: Proximal al-
ternating linearized minimization for nonconvex and nonsmooth prob-
lems. In: Mathematical Programming 146 (2014), Nr. 1-2, S. 459–494.
http://dx.doi.org/10.1007/s10107-013-0701-9.

[BT18] Bergmann, Ronny ; Tenbrinck, Daniel: A graph framework for
manifold-valued data. In: SIAM Journal on Imaging Sciences 11 (2018),
Nr. 1, S. 325–360. http://dx.doi.org/10.1137/17M1118567.

115

http://dx.doi.org/10.1137/17M1147597
http://dx.doi.org/10.1137/17M1147597
http://dx.doi.org/10.1137/140969993
http://dx.doi.org/10.1016/S0006-3495(94)80775-1
http://dx.doi.org/10.1007/s10107-015-0941-y
http://dx.doi.org/10.1137/15M1052858
http://dx.doi.org/10.1137/15M1052858
http://dx.doi.org/10.1007/s10107-013-0701-9
http://dx.doi.org/10.1137/17M1118567

[BW15] Bergmann, Ronny ; Weinmann, Andreas: Inpainting of cyclic data
using first and second order differences. In: International Workshop on
Energy Minimization Methods in Computer Vision and Pattern Recogni-
tion Springer, 2015, S. 155–168

[BWW+16] Baust, Maximilian ; Weinmann, Andreas ; Wieczorek, Matthias ;
Lasser, Tobias ; Storath, Martin ; Navab, Nassir: Combined ten-
sor fitting and TV regularization in diffusion tensor imaging based on a
Riemannian manifold approach. In: IEEE transactions on medical imag-
ing 35 (2016), Nr. 8, S. 1972–1989. http://dx.doi.org/10.1109/TMI.
2016.2528820.

[Car92] Carmo, Manfredo Perdigao d.: Riemannian geometry. Birkhäuser, 1992

[CDGS17] Castro, Rodrigo ; Di Giorgi, Gustavo ; Sierra, Willy: Secant Method
on Riemannian Manifolds. In: arXiv preprint arXiv:1712.02655 (2017)

[CE08] Cheeger, Jeff ; Ebin, David G.: Comparison theorems in Riemannian
geometry. Bd. 365. American Mathematical Soc., 2008

[Che14] Chen, Dai-Qiang: Fixed Point Algorithm Based on Quasi-Newton
Method for Convex Minimization Problem with Application to Image De-
blurring. 2014

[CJ19] Calinon, Sylvain ; Jaquier, Noémie: Gaussians on Riemannian Man-
ifolds for Robot Learning and Adaptive Control. 2019

[CJY16] Chen, Weiqiang ; Ji, Hui ; You, Yanfei: An augmented lagrangian
method for `1-regularized optimization problems with orthogonality con-
straints. In: SIAM Journal on Scientific Computing 38 (2016), Nr. 4, S.
B570–B592. http://dx.doi.org/10.1137/140988875.

[CKS01] Chan, Tony F. ; Kang, Sung H. ; Shen, Jianhong: Total variation de-
noising and enhancement of color images based on the CB and HSV color
models. In: Journal of Visual Communication and Image Representation
12 (2001), Nr. 4, S. 422–435. http://dx.doi.org/10.1006/jvci.2001.
0491.

[Cla90] Clarke, Frank H.: Optimization and nonsmooth analysis. Bd. 5. Siam,
1990. http://dx.doi.org/10.1137/1.9781611971309.

[CMMCSZ20] Chen, Shixiang ; Ma, Shiqian ; Man-Cho So, Anthony ; Zhang, Tong:
Proximal gradient method for nonsmooth optimization over the Stiefel
manifold. In: SIAM Journal on Optimization 30 (2020), Nr. 1, S. 210–
239. http://dx.doi.org/10.1137/18M122457X.

116

http://dx.doi.org/10.1109/TMI.2016.2528820
http://dx.doi.org/10.1109/TMI.2016.2528820
http://dx.doi.org/10.1137/140988875
http://dx.doi.org/10.1006/jvci.2001.0491
http://dx.doi.org/10.1006/jvci.2001.0491
http://dx.doi.org/10.1137/1.9781611971309
http://dx.doi.org/10.1137/18M122457X

[Com13] Commons, Wikimedia: File:EBSD in process.png — Wikimedia Com-
mons, the free media repository. https://commons.wikimedia.org/
w/index.php?title=File:EBSD_in_process.png&oldid=92599066.
Version: 2013. – [Online; accessed 10-September-2020]

[Com18] Commons, Wikimedia: File:HSV color solid cylinder.png
— Wikimedia Commons, the free media repository. https:
//commons.wikimedia.org/w/index.php?title=File:HSV_color_
solid_cylinder.png&oldid=314486272. Version: 2018. – [Online;
accessed 10-September-2020]

[Com19] Commons, Wikimedia: File:SAR Kilauea topo interfero-
gram.jpg — Wikimedia Commons, the free media repository.
https://commons.wikimedia.org/w/index.php?title=File:SAR_
Kilauea_topo_interferogram.jpg&oldid=377560242. Version: 2019.
– [Online; accessed 10-September-2020]

[Com20] Commons, Wikimedia: File:DTI-axial-ellipsoids.jpg — Wikimedia
Commons, the free media repository. https://commons.wikimedia.
org/w/index.php?title=File:DTI-axial-ellipsoids.jpg&oldid=
453175503. Version: 2020. – [Online; accessed 10-September-2020]

[CP07] Combettes, Patrick L. ; Pesquet, Jean-Christophe: A Douglas–
Rachford splitting approach to nonsmooth convex variational signal re-
covery. In: IEEE Journal of Selected Topics in Signal Processing 1 (2007),
Nr. 4, S. 564–574. http://dx.doi.org/10.1109/JSTSP.2007.910264.

[CP11] Chambolle, Antonin ; Pock, Thomas: A first-order primal-dual al-
gorithm for convex problems with applications to imaging. In: Jour-
nal of mathematical imaging and vision 40 (2011), Nr. 1, S. 120–145.
http://dx.doi.org/10.1007/s10851-010-0251-1.

[CS13] Cremers, Daniel ; Strekalovskiy, Evgeny: Total cyclic varia-
tion and generalizations. In: Journal of mathematical imaging and
vision 47 (2013), Nr. 3, S. 258–277. http://dx.doi.org/10.1007/
s10851-012-0396-1.

[CTDF04] Chefd’Hotel, Christophe ; Tschumperlé, David ; Deriche, Rachid ;
Faugeras, O: Regularizing flows for constrained matrix-valued images.
In: Journal of Mathematical Imaging and Vision 20 (2004), Nr. 1-2, S.
147–162. http://dx.doi.org/10.1023/B:JMIV.0000011920.58935.9c.

[CV20] Clason, Christian ; Valkonen, Tuomo: Introduction to Nonsmooth
Analysis and Optimization. In: arXiv preprint arXiv:2001.00216 (2020)

[CW05] Combettes, Patrick L. ; Wajs, Valérie R: Signal recovery by proxi-
mal forward-backward splitting. In: Multiscale Modeling & Simulation 4
(2005), Nr. 4, S. 1168–1200. http://dx.doi.org/10.1137/050626090.

117

https://commons.wikimedia.org/w/index.php?title=File:EBSD_in_process.png&oldid=92599066
https://commons.wikimedia.org/w/index.php?title=File:EBSD_in_process.png&oldid=92599066
https://commons.wikimedia.org/w/index.php?title=File:HSV_color_solid_cylinder.png&oldid=314486272
https://commons.wikimedia.org/w/index.php?title=File:HSV_color_solid_cylinder.png&oldid=314486272
https://commons.wikimedia.org/w/index.php?title=File:HSV_color_solid_cylinder.png&oldid=314486272
https://commons.wikimedia.org/w/index.php?title=File:SAR_Kilauea_topo_interferogram.jpg&oldid=377560242
https://commons.wikimedia.org/w/index.php?title=File:SAR_Kilauea_topo_interferogram.jpg&oldid=377560242
https://commons.wikimedia.org/w/index.php?title=File:DTI-axial-ellipsoids.jpg&oldid=453175503
https://commons.wikimedia.org/w/index.php?title=File:DTI-axial-ellipsoids.jpg&oldid=453175503
https://commons.wikimedia.org/w/index.php?title=File:DTI-axial-ellipsoids.jpg&oldid=453175503
http://dx.doi.org/10.1109/JSTSP.2007.910264
http://dx.doi.org/10.1007/s10851-010-0251-1
http://dx.doi.org/10.1007/s10851-012-0396-1
http://dx.doi.org/10.1007/s10851-012-0396-1
http://dx.doi.org/10.1023/B:JMIV.0000011920.58935.9c
http://dx.doi.org/10.1137/050626090

[DDDM04] Daubechies, Ingrid ; Defrise, Michel ; De Mol, Christine: An it-
erative thresholding algorithm for linear inverse problems with a spar-
sity constraint. In: Communications on Pure and Applied Mathematics:
A Journal Issued by the Courant Institute of Mathematical Sciences 57
(2004), Nr. 11, S. 1413–1457. http://dx.doi.org/10.1002/cpa.20042.

[DLFK96] De Luca, Tecla ; Facchinei, Francisco ; Kanzow, Christian: A semis-
mooth equation approach to the solution of nonlinear complementarity
problems. In: Mathematical programming 75 (1996), Nr. 3, S. 407–439.
http://dx.doi.org/10.1007/BF02592192.

[Don06] Donoho, David L.: Compressed sensing. In: IEEE Transactions on
information theory 52 (2006), Nr. 4, S. 1289–1306. http://dx.doi.org/
10.1109/TIT.2006.871582.

[DPM03] Dedieu, Jean-Pierre ; Priouret, Pierre ; Malajovich, Gregorio:
Newton’s method on Riemannian manifolds: covariant alpha theory.
In: IMA Journal of Numerical Analysis 23 (2003), Nr. 3, S. 395–419.
http://dx.doi.org/10.1093/imanum/23.3.395.

[EAS98] Edelman, Alan ; Arias, Tomás A ; Smith, Steven T.: The geometry of
algorithms with orthogonality constraints. In: SIAM journal on Matrix
Analysis and Applications 20 (1998), Nr. 2, S. 303–353. http://dx.doi.
org/10.1137/S0895479895290954.

[EZC10] Esser, Ernie ; Zhang, Xiaoqun ; Chan, Tony F.: A general framework
for a class of first order primal-dual algorithms for convex optimization
in imaging science. In: SIAM Journal on Imaging Sciences 3 (2010), Nr.
4, S. 1015–1046. http://dx.doi.org/10.1137/09076934X.

[FFK96] Facchinei, Francisco ; Fischer, Andreas ; Kanzow, Christian: Inexact
Newton methods for semismooth equations with applications to varia-
tional inequality problems. In: Nonlinear Optimization and Applications.
Springer, 1996, S. 125–139

[FGZ14] Fountoulakis, Kimon ; Gondzio, Jacek ; Zhlobich, Pavel: Matrix-
free interior point method for compressed sensing problems. In: Math-
ematical Programming Computation 6 (2014), Nr. 1, S. 1–31. http:
//dx.doi.org/10.1007/s12532-013-0063-6.

[FJ07] Fletcher, P T. ; Joshi, Sarang: Riemannian geometry for the statisti-
cal analysis of diffusion tensor data. In: Signal Processing 87 (2007), Nr.
2, S. 250–262. http://dx.doi.org/10.1016/j.sigpro.2005.12.018.

[FO98] Ferreira, OP ; Oliveira, PR: Subgradient algorithm on Rieman-
nian manifolds. In: Journal of Optimization Theory and Applica-
tions 97 (1998), Nr. 1, S. 93–104. http://dx.doi.org/10.1023/A:
1022675100677.

118

http://dx.doi.org/10.1002/cpa.20042
http://dx.doi.org/10.1007/BF02592192
http://dx.doi.org/10.1109/TIT.2006.871582
http://dx.doi.org/10.1109/TIT.2006.871582
http://dx.doi.org/10.1093/imanum/23.3.395
http://dx.doi.org/10.1137/S0895479895290954
http://dx.doi.org/10.1137/S0895479895290954
http://dx.doi.org/10.1137/09076934X
http://dx.doi.org/10.1007/s12532-013-0063-6
http://dx.doi.org/10.1007/s12532-013-0063-6
http://dx.doi.org/10.1016/j.sigpro.2005.12.018
http://dx.doi.org/10.1023/A:1022675100677
http://dx.doi.org/10.1023/A:1022675100677

[FO02] Ferreira, OP ; Oliveira, PR: Proximal point algorithm on Rie-
mannian manifolds. In: Optimization 51 (2002), Nr. 2, S. 257–270.
http://dx.doi.org/10.1080/02331930290019413.

[FP07] Facchinei, Francisco ; Pang, Jong-Shi: Finite-dimensional variational
inequalities and complementarity problems. Springer Science & Business
Media, 2007

[GH16a] Grohs, Philipp ; Hosseini, Seyedehsomayeh: Nonsmooth trust region
algorithms for locally Lipschitz functions on Riemannian manifolds. In:
IMA Journal of Numerical Analysis 36 (2016), Nr. 3, S. 1167–1192. http:
//dx.doi.org/10.1093/imanum/drv043.

[GH16b] Grohs, Philipp ; Hosseini, Seyedehsomayeh: ε-subgradient algorithms
for locally Lipschitz functions on Riemannian manifolds. In: Advances in
Computational Mathematics 42 (2016), Nr. 2, S. 333–360. http://dx.
doi.org/10.1007/s10444-015-9426-z.

[GL08] Griesse, Roland ; Lorenz, Dirk A.: A semismooth Newton method for
Tikhonov functionals with sparsity constraints. In: Inverse Problems 24
(2008), Nr. 3, S. 035007. http://dx.doi.org/10.1088/0266-5611/24/
3/035007.

[GM06] Giaquinta, Mariano ; Mucci, Domenico: The BV -energy of maps
into a manifold: Relaxation and density results. In: Annali della Scuola
Normale Superiore di Pisa-Classe di Scienze 5 (2006), Nr. 4, S. 483–548

[GM07] Giaquinta, Mariano ; Mucci, Domenico: Maps of bounded variation
with values into a manifold: total variation and relaxed energy. In: Pure
and Applied Mathematics Quarterly 3 (2007), Nr. 2, S. 513–538. http:
//dx.doi.org/10.4310/PAMQ.2007.v3.n2.a6.

[GMS93] Giaquinta, Mariano ; Modica, Giuseppe ; Souček, Jaroslav: Vari-
ational problems for maps of bounded variation with values in S1. In:
Calculus of Variations and Partial Differential Equations 1 (1993), Nr. 1,
S. 87–121. http://dx.doi.org/10.1007/BF02163266.

[GS14] Grohs, Philipp ; Sprecher, Markus: Total variation regularization by
iteratively reweighted least squares on Hadamard spaces and the sphere.
In: preprint 39 (2014)

[GS16] Grohs, Philipp ; Sprecher, Markus: Total variation regularization
on Riemannian manifolds by iteratively reweighted minimization. In:
Information and Inference: A Journal of the IMA 5 (2016), Nr. 4, S.
353–378. http://dx.doi.org/10.1093/imaiai/iaw011.

119

http://dx.doi.org/10.1080/02331930290019413
http://dx.doi.org/10.1093/imanum/drv043
http://dx.doi.org/10.1093/imanum/drv043
http://dx.doi.org/10.1007/s10444-015-9426-z
http://dx.doi.org/10.1007/s10444-015-9426-z
http://dx.doi.org/10.1088/0266-5611/24/3/035007
http://dx.doi.org/10.1088/0266-5611/24/3/035007
http://dx.doi.org/10.4310/PAMQ.2007.v3.n2.a6
http://dx.doi.org/10.4310/PAMQ.2007.v3.n2.a6
http://dx.doi.org/10.1007/BF02163266
http://dx.doi.org/10.1093/imaiai/iaw011

[HHY18] Hosseini, Seyedehsomayeh ; Huang, Wen ; Yousefpour, Rohollah:
Line search algorithms for locally Lipschitz functions on Riemannian man-
ifolds. In: SIAM Journal on Optimization 28 (2018), Nr. 1, S. 596–619.
http://dx.doi.org/10.1137/16M1108145.

[HIK02] Hintermüller, M. ; Ito, K. ; Kunisch, K.: The Primal-Dual Active
Set Strategy as a Semismooth Newton Method. In: SIAM Journal on
Optimization 13 (2002), jan, Nr. 3, S. 865–888. http://dx.doi.org/10.
1137/s1052623401383558.

[Hin10] Hintermüller, Michael: Semismooth Newton methods and applica-
tions. In: Department of Mathematics, Humboldt-University of Berlin
(2010)

[Hos15] Hosseini, S: Convergence of nonsmooth descent methods via Kurdyka-
Lojasiewicz inequality on Riemannian manifolds. In: Hausdorff Center
for Mathematics and Institute for Numerical Simulation, University of
Bonn (2015,(INS Preprint No. 1523)) (2015)

[HP11] Hosseini, S ; Pouryayevali, MR: Generalized gradients and charac-
terization of epi-Lipschitz sets in Riemannian manifolds. In: Nonlinear
Analysis: Theory, Methods & Applications 74 (2011), Nr. 12, S. 3884–
3895. http://dx.doi.org/10.1016/j.na.2011.02.023.

[HU17] Hosseini, Seyedehsomayeh ; Uschmajew, André: A Riemannian gra-
dient sampling algorithm for nonsmooth optimization on manifolds. In:
SIAM Journal on Optimization 27 (2017), Nr. 1, S. 173–189. http:
//dx.doi.org/10.1137/16M1069298.

[HWY13] He, Jinsu ; Wang, Jinhua ; Yao, Jen-Chih: Convergence criteria
of Newton’s method on Lie groups. In: Fixed Point Theory and Ap-
plications 2013 (2013), Nr. 1, S. 293. http://dx.doi.org/10.1186/
1687-1812-2013-293.

[HYY14] He, Bingsheng ; You, Yanfei ; Yuan, Xiaoming: On the convergence
of primal-dual hybrid gradient algorithm. In: SIAM Journal on Imaging
Sciences 7 (2014), Nr. 4, S. 2526–2537. http://dx.doi.org/10.1137/
140963467.

[KA10] Kakavandi, Bijan A. ; Amini, Massoud: Duality and subdifferential
for convex functions on complete CAT (0) metric spaces. In: Nonlinear
Analysis: Theory, Methods & Applications 73 (2010), Nr. 10, S. 3450–
3455. http://dx.doi.org/10.1016/j.na.2010.07.033.

[KGB16] Kovnatsky, Artiom ; Glashoff, Klaus ; Bronstein, Michael M.:
MADMM: a generic algorithm for non-smooth optimization on manifolds.
In: European Conference on Computer Vision Springer, 2016, S. 680–696

120

http://dx.doi.org/10.1137/16M1108145
http://dx.doi.org/10.1137/s1052623401383558
http://dx.doi.org/10.1137/s1052623401383558
http://dx.doi.org/10.1016/j.na.2011.02.023
http://dx.doi.org/10.1137/16M1069298
http://dx.doi.org/10.1137/16M1069298
http://dx.doi.org/10.1186/1687-1812-2013-293
http://dx.doi.org/10.1186/1687-1812-2013-293
http://dx.doi.org/10.1137/140963467
http://dx.doi.org/10.1137/140963467
http://dx.doi.org/10.1016/j.na.2010.07.033

[KS02] Kimmel, Ron ; Sochen, Nir: Orientation diffusion or how to comb a
porcupine. In: Journal of Visual Communication and Image Representa-
tion 13 (2002), Nr. 1-2, S. 238–248. http://dx.doi.org/10.1006/jvci.
2001.0501.

[Lee13] Lee, John M.: Smooth manifolds. Version: 2013. http://dx.doi.org/
10.1007/978-1-4419-9982-5. In: Introduction to Smooth Manifolds.
Springer, 2013.

[LLWS13] Lellmann, Jan ; Lellmann, Björn ; Widmann, Florian ; Schnörr,
Christoph: Discrete and continuous models for partitioning problems.
In: International journal of computer vision 104 (2013), Nr. 3, S. 241–
269

[LNPS17] Laus, Friederike ; Nikolova, Mila ; Persch, Johannes ; Steidl,
Gabriele: A nonlocal denoising algorithm for manifold-valued images
using second order statistics. In: SIAM Journal on Imaging Sciences 10
(2017), Nr. 1, S. 416–448. http://dx.doi.org/10.1137/16M1087114.

[LO14] Lai, Rongjie ; Osher, Stanley: A splitting method for orthogonality
constrained problems. In: Journal of Scientific Computing 58 (2014), Nr.
2, S. 431–449. http://dx.doi.org/10.1007/s10915-013-9740-x.

[LSKC13] Lellmann, Jan ; Strekalovskiy, Evgeny ; Koetter, Sabrina ; Cre-
mers, Daniel: Total variation regularization for functions with values
in a manifold. In: Proceedings of the IEEE International Conference on
Computer Vision, 2013, S. 2944–2951

[LSS14] Lee, Jason D. ; Sun, Yuekai ; Saunders, Michael A.: Proximal Newton-
type methods for minimizing composite functions. In: SIAM Journal on
Optimization 24 (2014), Nr. 3, S. 1420–1443. http://dx.doi.org/10.
1137/130921428.

[LST18] Li, Xudong ; Sun, Defeng ; Toh, Kim-Chuan: A highly efficient semis-
mooth Newton augmented Lagrangian method for solving Lasso prob-
lems. In: SIAM Journal on Optimization 28 (2018), Nr. 1, S. 433–458.
http://dx.doi.org/10.1137/16M1097572.

[Lue72] Luenberger, David G.: The gradient projection method along
geodesics. In: Management Science 18 (1972), Nr. 11, S. 620–631.
http://dx.doi.org/10.1287/mnsc.18.11.620.

[MF98] Massonnet, Didier ; Feigl, Kurt L.: Radar interferometry and its
application to changes in the Earth’s surface. In: Reviews of geophysics
36 (1998), Nr. 4, S. 441–500. http://dx.doi.org/10.1029/97RG03139.

121

http://dx.doi.org/10.1006/jvci.2001.0501
http://dx.doi.org/10.1006/jvci.2001.0501
http://dx.doi.org/10.1007/978-1-4419-9982-5
http://dx.doi.org/10.1007/978-1-4419-9982-5
http://dx.doi.org/10.1137/16M1087114
http://dx.doi.org/10.1007/s10915-013-9740-x
http://dx.doi.org/10.1137/130921428
http://dx.doi.org/10.1137/130921428
http://dx.doi.org/10.1137/16M1097572
http://dx.doi.org/10.1287/mnsc.18.11.620
http://dx.doi.org/10.1029/97RG03139

[Mif77] Mifflin, Robert: Semismooth and semiconvex functions in constrained
optimization. In: SIAM Journal on Control and Optimization 15 (1977),
Nr. 6, S. 959–972. http://dx.doi.org/10.1137/0315061.

[MQ95] Martínez, JoséMario ; Qi, Liqun: Inexact Newton methods for solving
nonsmooth equations. In: Journal of Computational and Applied Math-
ematics 60 (1995), Nr. 1-2, S. 127–145. http://dx.doi.org/10.1016/
0377-0427(94)00088-I.

[MU14] Milzarek, Andre ; Ulbrich, Michael: A semismooth Newton method
with multidimensional filter globalization for `1-optimization. In: SIAM
Journal on Optimization 24 (2014), Nr. 1, S. 298–333. http://dx.doi.
org/10.1137/120892167.

[NQYH07] Ng, Michael K. ; Qi, Liqun ; Yang, Yu-Fei ; Huang, Yu-Mei: On semis-
mooth Newton’s methods for total variation minimization. In: Jour-
nal of Mathematical Imaging and Vision 27 (2007), Nr. 3, S. 265–276.
http://dx.doi.org/10.1007/s10851-007-0650-0.

[OF18] Oliveira, Fabiana R. ; Ferreira, Orizon P.: Newton method for finding
a singularity of a special class of locally Lipschitz continuous vector fields
on Riemannian manifolds. In: arXiv preprint arXiv:1810.11636 (2018)

[PC11] Pock, Thomas ; Chambolle, Antonin: Diagonal preconditioning for
first order primal-dual algorithms in convex optimization. In: 2011 In-
ternational Conference on Computer Vision IEEE, 2011, S. 1762–1769

[Pen06] Pennec, Xavier: Intrinsic statistics on Riemannian manifolds: Basic
tools for geometric measurements. In: Journal of Mathematical Imag-
ing and Vision 25 (2006), Nr. 1, S. 127. http://dx.doi.org/10.1007/
s10851-006-6228-4.

[Pen18] Pennec, Xavier: Parallel transport with pole ladder: a third order
scheme in affine connection spaces which is exact in affine symmetric
spaces. In: arXiv preprint arXiv:1805.11436 (2018)

[Per18] Persch, Johannes: Optimization Methods for Manifold-valued Image
Processing. Verlag Dr. Hut, 2018

[PFA06] Pennec, Xavier ; Fillard, Pierre ; Ayache, Nicholas: A Rieman-
nian framework for tensor computing. In: International Journal of com-
puter vision 66 (2006), Nr. 1, S. 41–66. http://dx.doi.org/10.1007/
s11263-005-3222-z.

[PJL+13] Pan, Han ; Jing, Zhongliang ; Lei, Ming ; Liu, Rongli ; Jin, Bo ; Zhang,
Canlong: A sparse proximal Newton splitting method for constrained
image deblurring. In: Neurocomputing 122 (2013), S. 245–257. http:
//dx.doi.org/10.1016/j.neucom.2013.06.027.

122

http://dx.doi.org/10.1137/0315061
http://dx.doi.org/10.1016/0377-0427(94)00088-I
http://dx.doi.org/10.1016/0377-0427(94)00088-I
http://dx.doi.org/10.1137/120892167
http://dx.doi.org/10.1137/120892167
http://dx.doi.org/10.1007/s10851-007-0650-0
http://dx.doi.org/10.1007/s10851-006-6228-4
http://dx.doi.org/10.1007/s10851-006-6228-4
http://dx.doi.org/10.1007/s11263-005-3222-z
http://dx.doi.org/10.1007/s11263-005-3222-z
http://dx.doi.org/10.1016/j.neucom.2013.06.027
http://dx.doi.org/10.1016/j.neucom.2013.06.027

[PSB14] Patrinos, Panagiotis ; Stella, Lorenzo ; Bemporad, Alberto:
Forward-backward truncated Newton methods for convex composite op-
timization. In: arXiv preprint arXiv:1402.6655 (2014)

[Qi93] Qi, Liqun: Convergence analysis of some algorithms for solving nons-
mooth equations. In: Mathematics of operations research 18 (1993), Nr.
1, S. 227–244. http://dx.doi.org/10.1287/moor.18.1.227.

[QS93] Qi, Liqun ; Sun, Jie: A nonsmooth version of Newton’s method. In:
Mathematical programming 58 (1993), Nr. 1-3, S. 353–367. http://dx.
doi.org/10.1007/BF01581275.

[RLV17] Rust, Caterina ; Lellmann, Jan ; Vogt, Thomas: Semiglatte Opti-
mierungsverfahren zweiter Ordnung in der Bildverarbeitung, University
of Lübeck, Diplomarbeit, 2017

[ROF92] Rudin, Leonid I. ; Osher, Stanley ; Fatemi, Emad: Nonlinear total
variation based noise removal algorithms. In: Physica D: nonlinear phe-
nomena 60 (1992), Nr. 1-4, S. 259–268. http://dx.doi.org/10.1016/
0167-2789(92)90242-F.

[RW09] Rockafellar, R T. ; Wets, Roger J-B: Variational analysis. Bd. 317.
Springer Science & Business Media, 2009. http://dx.doi.org/10.1007/
978-3-642-02431-3.

[SC11] Strekalovskiy, Evgeny ; Cremers, Daniel: Total variation for cyclic
structures: Convex relaxation and efficient minimization. In: CVPR 2011
IEEE, 2011, S. 1905–1911

[SH97] Sun, Defeng ; Han, Jiye: Newton and quasi-Newton methods for a
class of nonsmooth equations and related problems. In: SIAM Journal
on Optimization 7 (1997), Nr. 2, S. 463–480. http://dx.doi.org/10.
1137/S1052623494274970.

[Smi94] Smith, Steven T.: Optimization techniques on Riemannian manifolds.
In: Fields institute communications 3 (1994), Nr. 3, S. 113–135

[SW18] Storath, Martin ; Weinmann, Andreas: Wavelet sparse regularization
for manifold-valued data. In: arXiv preprint arXiv:1808.00505 (2018)

[SWU16] Storath, Martin ; Weinmann, Andreas ; Unser, Michael: Exact algo-
rithms for L1-TV regularization of real-valued or circle-valued signals. In:
SIAM Journal on Scientific Computing 38 (2016), Nr. 1, S. A614–A630.
http://dx.doi.org/10.1137/15M101796X.

[Udr94] Udriste, Constantin: Convex functions and optimization methods on
Riemannian manifolds. Bd. 297. Springer Science & Business Media,
1994

123

http://dx.doi.org/10.1287/moor.18.1.227
http://dx.doi.org/10.1007/BF01581275
http://dx.doi.org/10.1007/BF01581275
http://dx.doi.org/10.1016/0167-2789(92)90242-F
http://dx.doi.org/10.1016/0167-2789(92)90242-F
http://dx.doi.org/10.1007/978-3-642-02431-3
http://dx.doi.org/10.1007/978-3-642-02431-3
http://dx.doi.org/10.1137/S1052623494274970
http://dx.doi.org/10.1137/S1052623494274970
http://dx.doi.org/10.1137/15M101796X

[Ulb02] Ulbrich, Michael: Semismooth Newton methods for operator equations
in function spaces. In: SIAM Journal on Optimization 13 (2002), Nr. 3,
S. 805–841. http://dx.doi.org/10.1137/S1052623400371569.

[VBK13] Valkonen, Tuomo ; Bredies, Kristian ; Knoll, Florian: Total gener-
alized variation in diffusion tensor imaging. In: SIAM Journal on Imag-
ing Sciences 6 (2013), Nr. 1, S. 487–525. http://dx.doi.org/10.1137/
120867172.

[VSCL19] Vogt, Thomas ; Strekalovskiy, Evgeny ; Cremers, Daniel ; Lell-
mann, Jan: Lifting methods for manifold-valued variational problems.
In: arXiv preprint arXiv:1908.03776 (2019)

[WDS14] Weinmann, Andreas ; Demaret, Laurent ; Storath, Martin: Total
variation regularization for manifold-valued data. In: SIAM Journal on
Imaging Sciences 7 (2014), Nr. 4, S. 2226–2257. http://dx.doi.org/
10.1137/130951075.

[WDS16] Weinmann, Andreas ; Demaret, Laurent ; Storath, Martin:
Mumford–Shah and Potts regularization for manifold-valued data. In:
Journal of Mathematical Imaging and Vision 55 (2016), Nr. 3, S. 428–
445. http://dx.doi.org/10.1007/s10851-015-0628-2.

[WNF09] Wright, Stephen J. ; Nowak, Robert D. ; Figueiredo, Mário AT:
Sparse reconstruction by separable approximation. In: IEEE Trans-
actions on Signal Processing 57 (2009), Nr. 7, S. 2479–2493. http:
//dx.doi.org/10.1109/TSP.2009.2016892.

[WYYZ08] Wang, Yilun ; Yang, Junfeng ; Yin, Wotao ; Zhang, Yin: A new
alternating minimization algorithm for total variation image reconstruc-
tion. In: SIAM Journal on Imaging Sciences 1 (2008), Nr. 3, S. 248–272.
http://dx.doi.org/10.1137/080724265.

[XLWZ18] Xiao, Xiantao ; Li, Yongfeng ; Wen, Zaiwen ; Zhang, Liwei: A regu-
larized semi-smooth Newton method with projection steps for composite
convex programs. In: Journal of Scientific Computing 76 (2018), Nr. 1,
S. 364–389. http://dx.doi.org/10.1007/s10915-017-0624-3.

[YOGD08] Yin, Wotao ; Osher, Stanley ; Goldfarb, Donald ; Darbon, Jerome:
Bregman iterative algorithms for `1-minimization with applications to
compressed sensing. In: SIAM Journal on Imaging sciences 1 (2008), Nr.
1, S. 143–168. http://dx.doi.org/10.1137/070703983.

[YVGS10] Yu, Jin ; Vishwanathan, SVN ; Günter, Simon ; Schraudolph,
Nicol N.: A quasi-Newton approach to nonsmooth convex optimization

124

http://dx.doi.org/10.1137/S1052623400371569
http://dx.doi.org/10.1137/120867172
http://dx.doi.org/10.1137/120867172
http://dx.doi.org/10.1137/130951075
http://dx.doi.org/10.1137/130951075
http://dx.doi.org/10.1007/s10851-015-0628-2
http://dx.doi.org/10.1109/TSP.2009.2016892
http://dx.doi.org/10.1109/TSP.2009.2016892
http://dx.doi.org/10.1137/080724265
http://dx.doi.org/10.1007/s10915-017-0624-3
http://dx.doi.org/10.1137/070703983

problems in machine learning. In: Journal of Machine Learning Re-
search 11 (2010), Nr. Mar, S. 1145–1200. http://dx.doi.org/10.1145/
1390156.1390309.

[YZS19] Yue, Man-Chung ; Zhou, Zirui ; So, Anthony Man-Cho: A family of
inexact SQA methods for non-smooth convex minimization with provable
convergence guarantees based on the Luo–Tseng error bound property.
In: Mathematical Programming 174 (2019), Nr. 1-2, S. 327–358. http:
//dx.doi.org/10.1007/s10107-018-1280-6.

[ZT05] Zhou, Guanglu ; Toh, Kim-Chuan: Superlinear convergence of a
Newton-type algorithm for monotone equations. In: Journal of opti-
mization theory and applications 125 (2005), Nr. 1, S. 205–221. http:
//dx.doi.org/10.1007/s10957-004-1721-7.

[ZZCL17] Zhu, Hong ; Zhang, Xiaowei ; Chu, Delin ; Liao, Li-Zhi: Nonconvex
and nonsmooth optimization with generalized orthogonality constraints:
An approximate augmented Lagrangian method. In: Journal of Scientific
Computing 72 (2017), Nr. 1, S. 331–372. http://dx.doi.org/10.1007/
s10915-017-0359-1.

125

http://dx.doi.org/10.1145/1390156.1390309
http://dx.doi.org/10.1145/1390156.1390309
http://dx.doi.org/10.1007/s10107-018-1280-6
http://dx.doi.org/10.1007/s10107-018-1280-6
http://dx.doi.org/10.1007/s10957-004-1721-7
http://dx.doi.org/10.1007/s10957-004-1721-7
http://dx.doi.org/10.1007/s10915-017-0359-1
http://dx.doi.org/10.1007/s10915-017-0359-1

	List of Notation and Symbols
	Introduction
	Motivation
	Related work
	Contribution
	Outline

	Preliminaries I: Non-smooth Optimization
	Non-smooth Analysis
	The Primal-Dual Hybrid Gradient Algorithm

	The Semismooth Newton Method
	Introduction
	Newton's Method for Non-smooth Systems of Equations
	A Higher-order Primal-dual Method
	Application to 2-TV-like Functionals*
	Numerical Experiments*
	Towards SSN for Manifold-valued Data*

	Preliminaries II: Manifolds and Riemannian Geometry
	Differential Geometry and Riemannian Geometry
	Specific Manifolds

	Towards Optimization on Manifolds
	Two Approaches: Extrinsic vs. Intrinsic
	Non-smooth Analysis on Manifolds
	The Riemannian Chambolle-Pock Algorithms

	The Riemannian Semismooth Newton Method
	Introduction
	Newton's Method for Finding Zeros of Non-smooth Vector Fields
	The Inexact Riemannian Semismooth Newton Method*
	A Higher-order Primal-dual Method for Manifolds*
	Application to 2-TV-like Functionals*
	Numerical Experiments*

	Conclusions
	Appendix
	Covariant Derivatives for the 2-TV-like Dual Proximal Maps
	Exact Solutions to 1D 2-TV for 2n gridpoints on manifolds

	fd@masterthesis-24:
	fd@masterthesis-23:
	fd@masterthesis-22:
	fd@masterthesis-21:
	fd@masterthesis-20:
	fd@masterthesis-19:
	fd@masterthesis-18:
	fd@masterthesis-17:
	fd@masterthesis-16:
	fd@masterthesis-15:
	fd@masterthesis-14:
	fd@masterthesis-13:
	fd@masterthesis-12:
	fd@masterthesis-11:
	fd@masterthesis-10:
	fd@masterthesis-9:
	fd@masterthesis-8:
	fd@masterthesis-7:
	fd@masterthesis-6:
	fd@masterthesis-5:
	fd@masterthesis-4:

