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Kurzfassung
Variationsmodelle sind ein wichtiges Werkzeug in der modernen Bildverarbeitung. Sie
finden in einer Vielzahl von Anwendungsgebieten Verwendung, wie zum Beispiel dem
Entrauschen, der Segmentierung und der optischen Tiefenschätzung. Um bessere –
idealerweise global optimale – Minimierer nichtkonvexer Probleme zu finden, wurden
Liftingmethoden entwickelt. Diese approximieren das ursprüngliche Problem mit einem
höherdimensionalen, dafür aber konvexen Modell. In dieser Masterarbeit wird vorgeschla-
gen, die iterative Bregman-Regularisierung auf geliftete Varia-tionsprobleme anzuwen-
den. Insbesondere wird der Zusammenhang der iterativen Bregman-Regularisierung auf
dem ursprünglichen und dem gelifteten Problem bei einer sublabelgenauen Diskretisierung
untersucht. Am Ende werden erste experimentelle Ergebnisse bezüglich zweier Varia-
tionsmodelle vorgestellt: einem konvexen Modell zum Entrauschen und einem nicht
konvexen Modell zur optischen Tiefenschätzung.

Abstract
Variational models are an important tool in modern image processing. They can be
used for a variety of applications such as denoising, segmentation, and depth estimation.
In order to find better – ideally globally optimal – minimizers of non-convex models,
functional lifting strategies have been developed. They approximate the original problem
using a larger but convex model. In this thesis, we propose to combine the lifting
approach with the iterative Bregman regularization. In particular, we investigate the
relation between the Bregman iteration on the original and on the lifted problem using
a sublabel-accurate discretization. Finally, we show experimental results for the convex
denoising and non-convex stereo matching model.
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Notation
Abbreviations

ISS inverse scale space

ROF Rudin-Osher-Fatemi (Def. 2.1)

TV total variation (Def. 3.1)

Mathematical Symbols

R R ∪ {−∞,∞}

conC convex hull of set C (Def. 3.10)

con f convex hull of function f (Def. 3.10)

f∗ convex conjugate of function f (Def. 3.11)

f∗∗ biconjugate of function f (Def. 3.11)

∂̂f(x) regular subdifferential of function f (Def. 3.12)

∂f(x) (general) subdifferential of function f (Def. 3.12)

Spaces and Norms (Ch. 3.1)

BV (Ω,Γ) functions of bounded variation (L1-integrable and finite TV norm)

H Hausdorff metric

Lp Lebesgue spaces (functions with finite || · ||L2 norm)

W k
p Sobolev spaces (functions in Lp whose weak partial derivates up to

order k exist and are in Lp)

Variational Problems

f input image

u output image

Ω image domain

Γ image range

G(f, u) data term

R(u) regularization term
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Notation

Sublabel-Accurate Lifting

k + 1 number of labels

u(·) = γαi one-dimensional image value (Eq. (66))

u(·) = 1αi k-dimensional lifted image value (Eq. (67))

L : Γ→ Q′ lifting function for image value, L(γαi ) = 1αi (Eq. (86))

G(f,u) lifted data term

g(x, u(x)) integrand of data term

g∗∗(x,u(x)) integrand of lifted data term (Eq. (72))

TV(u) lifted TV regularization term

Φ∗∗(x,u(x)) integrand of lifted TV regularization term (Eq. (77))

2



2.1

Introduction
Motivation

In modern image processing tasks, variational problems play an important role. They
are a certain type of optimization problem, where a functional is to be minimized over
a solution space consisting of functions. They are well-suited to impose constraints such
as smoothness on the solution. A typical form for a variational minimization problem
in image processing is

u∗ ∈ arg min
u∈U
{G(f, u) + λR(u)} , (1)

where U is a suitable solution space for the special task given, e.g. a suitable space of
images. In a mathematical context, images can be described as functions u : Ω → Γ,
where Ω ⊂ Rd is the image domain, and Γ ⊂ Rk the image range or label space.
Typically, the image domain is two-dimensional and the image range one-dimensional
for gray-scale images or three-dimensional for RGB images. G(f, u) is called the data
term and fits the output u to the given input data f . R(u) is called the regularization
term and inflicts certain constraints on the solution u. The weighting parameter λ ∈ R+

is used in order to give more weight to one term or the other. Together, G(f, u) +λR(u)
is called an energy term or objective function.
The scope for variational problems in image processing is diverse (AK06, SGG+09).

Depending on the choice of the data and regularization term, variational problems can be
used for tasks such as denoising (ROF92, BCM05), segmentation (CV01) and depth es-
timation (SCD+06, ZGFN08). Here, we consider the Rudin-Osher-Fatemi model (ROF)
as an example.
Definition 2.1 (Rudin-Osher-Fatemi (ROF92))

Given an image f ∈ L2(Ω,Rk), we assume that it can be decomposed into a noise-free
image u and normally distributed noise v, such that f = u+v holds. With weighting
parameter λ ∈ R+, the Rudin-Osher-Fatemi (ROF) model is given by

inf
u∈BV(Ω,Rk)

1
2

∫
Ω
||u(x)− f(x)||22dx+ λTV(u). (2)

Here, BV(Ω,Rk) denotes the space of function with bounded variation (Def. 3.3) and
TV(u) denotes the total variation of u (Def. 3.1).

The ROF model plays an important role in image denoising. Its popularity is due to the
convexity of the energy term and the models ability to remove noise while still preserving
edges. Slight drawbacks of the model are its inclination to produce cartoonish images,
staircasing effects, and possible loss of contrast (see Ex. 4.1). An exemplary result for
the ROF model with different weighting parameters λ can be seen in Fig. 1. Since the
ROF model is an established model, it is often used as a prototypical problem when
developing new methods or algorithms (e.g. (MLM+15, Bre67)).

3



Notation

(a) Input image (b) Input image with noise

(c) Solution of ROF, λ = 0.5 (d) Solution of ROF, λ = 5 (e) Solution of ROF, λ = 20

Figure 1: Rudin-Osher-Fatemi. Top row: Input image and input image with artifi-
cially added noise. Bottom row: Solution of the ROF model with different weighting
parameters λ. The choice of the weighting parameter λ strongly affects the solution. If
λ is chosen too small, not all of the noise is removed. If λ is chosen too large, structural
detail of the original image is lost. The results were computed using CVX (GB14, GB08).
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2.1

Bregman Iteration. As we have seen in Fig. 1, the weighting parameter λ plays
an important role in the ROF model and has a large influence on the solution. In-
stead of having to solve the ROF model for different weighting parameters and selecting
the best one based on the solution, Osher et al. proposed an iterative regularization
method (OBG+05), which is based on the Bregman distance (Bre67) with respect to the
regularization term:

u∗l ∈ arg min
u∈BV(Ω,Rk)

{1
2

∫
Ω
||u(x)− f(x)||22dx+ λTV(u)− 〈pl−1, u〉

}
, (3)

where p0 = 0 and pl ∈ ∂λTV(ul−1) for l ≥ 1. We refer to Def. 3.13 and Sec. 4.1 for
mathematical details on the Bregman distance and iteration.
The Bregman iteration effectively steps through a range of regularization parameters.

Using a suitable stopping criterion such as the discrepancy principle (OBG+05), this
provides an intuitive way for selecting the regularization strength. The continuous limit
of the Bregman iteration leads to the inverse scale space flow (BGM+16). The basic
idea behind scale spaces is that an input image f is put together by details of different
scale with respect to the regularizer R. The inverse scale space flow starts with the
mean of the input image and later on it recovers more and more detail of the input
image. Structures appearing early in the iteration correspond to nonlinear eigenfunctions
of the regularizer R with small eigenvalues and are called large-scale details. Details
appearing later correspond to eigenfunctions of the regularizer R with large eigenvalues
and are called small-scale details (Sec. 4.1). In Fig. 2 we show some exemplary results
of the Bregman iteration on an artificial image, and in Fig. 3 a real life example on the
application of scale spaces.
Functional Lifting. Another potential difficulty when working with variational prob-

lems is the possibility of non-convex energy terms. Many solvers work with gradient-
descent methods and, therefore, they might get stuck in a local optimum. Let us consider
stereo matching as an example.
Stereo matching is an established approach used to estimate depth. The model expects

two or more input images, showing the same scene from slightly different viewpoints.
The goal is to estimate a depth map u : Ω → R of the scene (see Fig. 4). Usually the
images are rectified in a preprocessing step, so that the epipolar lines in the images align.
We focus on formulating the variational problem and refer to (SHK+14) for more detail
on the preprocessing step.
There are multiple formulations for the stereo matching problem. The basic concept

is as follows:
Definition 2.2 (Stereo Matching)

Given two rectified input images f1, f2 ∈ L2(Ω,Rk) and a parameter λ ∈ R+, the
stereo matching model is given as

inf
u∈BV (Ω,Rk)

1
2

∫
Ω
|f1(x)− f2(x+ u(x))|dx+ λTV (u(x)). (4)
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Notation

(a) Input image (b) Input image with noise

(c) Bregman iteration, l=1 (d) Bregman iteration, l=2 (e) Bregman iteration, l=3

(f) Bregman iteration, l=4 (g) Bregman iteration, l=50 (h) Bregman iteration, l=100

Figure 2: Bregman iteration on ROF model. First row: Input image and input
image with artificially added noise. Second and third row: A selection of solutions
of the Bregman iteration on the ROF model. Each iteration was solved using CVX
(GB14, GB08). We did not specify a stopping criterion for the iteration in order to
make the connection to the inverse scale space flow clear. In the beginning, only the
two biggest white circles appear. As the iteration proceeds, the third smaller circle and
finally the noise is recovered. Applying the usual discrepancy principle as a stopping
criterion would have terminated the iteration after the fourth step.
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2.2

Figure 3: Scale Spaces. Real-life example on the application of scale spaces. Left:
input image showing a woman. Right, output image after some scales with respect to
the total variation have been removed. In particular, scales associated with wrinkles
have been removed in order to reverse the effect of aging. Images from (BGM+16).

In the data term of the above definition, pixels of the second input image are moved over
the first input image and a penalty term is calculated depending on the offset/depth u(x).
The aim of the data term is to find an offset u(x) for each pixel, such that the value of
the shifted pixels in the second image matches the value in the first image. The total
variation is used as regularizer in order to ensure that the shifting is sufficiently regular.
The data term of the stereo matching problem is in general non-convex. This raises

the question whether the problem can be reformulated as to obtain an equivalent convex
formulation. This would allow to find a global solution. Another advantage would be
the possibility to use standard convex solvers, such as the PDHG (CP11) or ADMM
(Hes69, EB92) algorithm. These solvers are efficient on large-scale problems.
Consider a variational problem of the form (1), where R is convex but G is not. In

(PCBC10) a functional lifting method was introduced, which uses the indicator function
of the subgraph of a function u ∈ U in order to represent u in a higher-dimensional space.
Using this reformulation, a new energy term can be formulated on the lifted function
space, which is altogether convex. The authors show that projecting the minimizer of
the lifted problem onto the original function space results in a minimizer of the unlifted
problem. Further details on this method can be found in Ch. 4.2.2.
In this thesis we want to consider the possibility of combining the two powerful meth-

ods, namely the iterative Bregman regularization and the functional lifting. We will pri-
marily concentrate on convex variational problems and examine the question, whether
the solution of the Bregman iteration on an unlifted convex problem is equivalent to the
one on the according to Ch. 4.2.3 lifted problem.
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Notation

Figure 4: Stereo Matching. The two images on the left are the input images. They
were taken from slightly different viewpoints and have already been rectified. Right
image: Depth map as found by minimizing the stereo matching problem. Warm colors
indicate regions that are close to the camera position, cold colors indicate regions that
are further away. Source of input images: (SHK+14). The picture on the right was
calculated for this thesis using Matlab and the libraries prost and sublabel_relax
(MLM+15).

Related Work

Bregman Iteration. The Bregman iteration was first introduced by Osher et al. in
(OBG+05) as an extension for the ROF model. Instead of the total variation, the
Bregman iteration uses the Bregman distance (Bre67) associated with the total variation
as regularizer and iteratively approaches the denoised image. The primary goal was to
improve the result of ROF image denoising. In (BGO+06) and (BGM+16) a connection
to the inverse scale space flow was pointed out. In (YOGD08) the Bregman iteration was
extended to the l1 regularizer. A linearized extension was investigated in (OMDY11) and
(COS09). Based on the linearized Bregman iteration the very effective split Bregman
algorithm was derived in (GO09).

Functional Lifting. Functional lifting strategies originated in discrete labeling prob-
lems. In a discrete setting, the labeling problem can be described by a graph using the
theory of Markov Random Fields (KL80). The minimization problem is then given by
a penalty term for the edges and a penalty term for the nodes. Ishikawa and Geiger
proposed a lifting approach (Ish03a, IG98), which allows – under certain conditions – to
reformulate the multi-label problem as a higher dimensional graph and solve it globally.

Variational models can be considered as labeling problems in a spatially continuous
framework. Here, too, functional lifting methods can be applied in order to find a higher-
dimensional, convex representation of a non-convex problem. This allows to postpone
the discretization until implementation. First lifting approaches were made in binary
image segmentation for the well-known Chan-Vese model (CV01):

arg min
C⊂Ω,c1∈Γ,c2∈Γ

{∫
C

(f(x)− c1)2dx+
∫

Ω\C
(f(x)− c2)2dx+ λHd−1(C)

}
. (5)
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2.3

Here, the input image f is to be separated into two regions C and Ω\C. Variable c1
describes the mean value of f on C, c2 the mean value of f on Ω\C and Hd−1 the
(d − 1)–dimensional Hausdorff measure, or – more precisely – the perimeter of set C.
Let us assume that c1 and c2 are known and fixed. The authors suggested representing
set C by the zero level set of a Lipschitz function. Application of the Heaviside function
then leads to a representation of set C by its characteristic function:

arg min
u:Ω→{0,1}

∫
Ω

(f(x)− c1)2 ∗ u(x) + (f(x)− c2)2 ∗ u(x)dx+ λTV(u). (6)

In (CEN06) a relaxation method for this problem was proposed. The solution space was
extended to its convex hull:

arg min
u:Ω→[0,1]

∫
Ω

(f(x)− c1)2 ∗ u(x) + (f(x)− c2)2 ∗ u(x)dx+ λTV(u). (7)

The authors showed that for any solution u∗ of Eq.(7), thresholding ũ∗ = 1u∗>µ results
in a minimizer ũ∗ of Eq. (6) for almost any µ ∈ [0, 1].
A couple of years ago, several lifting approaches for continuous multi-label segmenta-

tion problems emerged at about the same time (CCP12, ZGFN08, LKY+09, LLWS13).
In this thesis we concentrate on a continuous lifting method, which is based on the dis-
crete lifting method by Ishikawa (Ish03a, IG98) and the continuous lifting method for the
Chan-Vese model (CEN06). For an introduction to this method with respect to the total
variation regularizer see (PSG+08). An extension to a more general problem class can
be found in (PCBC10). A formulation that allows for sublabel-accurate discretization
is given in (MLM+15).
Primal-Dual Hybrid Gradient Algorithm. We will use the primal-dual hybrid

gradient (PDHG) algorithm to solve primal-dual problems of the form

min
u∈Rn

max
v∈Rm

Φ(u, v), Φ(u, v) := g(u) + 〈Ku, v〉 − f∗(v), (8)

where K is a linear operator, g : Rn → R and f∗ : Rm → R are convex functionals.
The algorithm was first introduced by Zhu and Chan (ZC08) in order to solve total

variation minimization problems in image processing (see Def.2.1). In (EZC10), the
algorithm was generalized to a broader class of convex optimization problems, and in
(PCBC09) it was applied to the Mumford-Shah functional. After choosing some start-
ing values for the primal variable u and the dual variable v, the algorithm alternately
performs a gradient-ascent step on the maximization problem maxv∈Rm Φ(u, v) and a
gradient-descent step on the minimization problem minu∈Rn Φ(u, v). In order to improve
the performance of the algorithm and to guarantee convergence, Pock and Chambolle
incorporated diagonal preconditioning into the algorithm (PC11). Since the choice of
the step size for the gradient-ascent and -descent step proved to be crucial for the speed
of convergence, the use of adaptive step schemes was suggested in (GLY+13).

9



Notation

Overview

This thesis is structured as follows: In Chapter 3 we introduce the required mathemat-
ical concepts. In particular, we discuss possible solution spaces for variational problems,
and important properties used in convex analysis to describe objective functions. In
Chapter 4 we introduce existing methods for solving variational problems. The first
method is the iterative Bregman regularization, which improves the result of convex
variational problems and leads (in the continuous limit) to the inverse scale space flow.
The second method is functional lifting, which is used on non-convex, spatially continu-
ous objective functions in order to find a higher-dimensional convex formulation for the
problem. We discuss two related approaches, one formulated on a continuous and the
other on a discretized label space. The latter is also known as sublabel-accurate. In
Chapter 5 we discuss the combination of the iterative Bregman regularization and the
sublabel-accurate functional lifting. In particular, we examine whether the solution of
the Bregman iteration on an unlifted convex problem is equivalent to the one on the
sublabel-accurate lifted problem. In Chapter 6 we present details on the implementa-
tion and first numerical results achieved with this new combined method. Chapter 7
concludes this thesis with a summary, outlook to future research and open questions
concerning this topic.

10



Mathematical Preliminaries
Variational problems play an important role in modern image processing and can be
used for many different tasks, e.g. image denoising or depth estimation. The general
aim is to solve a problem of the form

u∗ ∈ arg min
u∈U
{F (u, f)} , (9)

where F is the objective function, f the given input data and U an appropriately chosen
solution space. The former strongly depend on the given task. Considering image
denoising as an example, f would be a noisy input image and u∗ the denoised output
image. As for a depth estimation problem we would consider two input images f1 and f2
of the same scene taken from slightly different viewpoints and u∗ would be a depth map
of the scene. In this chapter, we introduce some basic concepts and vocabulary used in
the context of variational problems. First, we start by considering the solution spaces
used in this thesis. Then, we introduce some properties which help classify objective
functions.

Function Spaces

By choosing a function space U in Eq. (9), we can postulate properties for the solution.
Considering image denoising, the aim is to find a smooth representation of the input
image, which preserves sharp edges at the same time. This means that color jumps in
the output image cannot be punished stronger than smooth color gradients of the same
magnitude. In this scenario the total variation (TV) semi-norm is of particular interest.
Definition 3.1 (Total Variation, (AFP00, Def. 3.4) and (Lel11, Def. A.1))

Consider a function u : Ω → Rk with Ω ⊂ Rd open and bounded. Furthermore, let
u be || · ||L1-integrable, thus ||u||L1 :=

∫
Ω |u(x)|dx < ∞. The total variation of u is

defined as

TV (u) := sup
φ∈C1

c (Ω,Γ)

{
−
∫

Ω
〈u(x),Div φ(x)〉dx

∣∣∣∣ ||φ(x)||2 ≤ 1 ∀x ∈ Ω
}
, (10)

where C1
c (Ω,Γ) is the space of once continuously differentiable functions φ : Ω→ Γ,

that have a compact support on Ω. Furthermore, Div is defined as

Divφ(x) := (divφ1(x), ...,divφk(x))> . (11)

If u is differentiable in Ω, the total variation of u can be calculated as TV(u) =
∫

Ω |∇u|dx.
Furthermore, the total variation is related to the distributional derivative. Here, we will
only state the final proposition as presented in (Lel11, Prop. A.2), for more information
the reader is referred to (AFP00, Prop. 3.6) and (Lel11, Ch. A.1.1).

11



Mathematical Preliminaries

Proposition 3.2 (Summarized from (AFP00, Prop. 3.6) and (Lel11, Prop. A.2))
Consider a function u : Ω→ Rk with Ω ⊂ Rd open and bounded. Then the condition
u ∈ BV(Ω,Rk) is equivalent to

∫
Ω |u(x)|dx < ∞ and its distributional derivative

corresponding to a finite Radon measure. The latter means, that
∫

Ω |uj(x)|dx < ∞
holds for all partial derivates uj and there exist measures Duj = (D1uj , ...,Dduj) for
j = 1, ..., k on Borel subsets B(Ω) ⊂ Ω such that

−
k∑
j=1

∫
Ω
ujdivvjdx =

k∑
j=1

d∑
i=1

∫
Ω
vji dDiuj , (12)

for all v ∈ C∞c (Ω,Rd×k).

With the notation introduced in Prop. 3.2, the following equality holds:

TV(u) = |Du|(Ω) =
∫

Ω
d|Du|(Ω). (13)

The distributional derivative Du can be decomposed into mutually singular measures:
Dau for absolutely continuous parts, Dju for jump parts and the so-called Cantor part
Dcu for the remaining parts - see (AFP00, Cor. 3.89) for more details. This theoret-
ical result together with the polar decomposition for measures introduced in (AFP00,
Cor. 1.29) is used later on for the method discussed in Ch. 4.2.2.
We now return to the main topic of this section. Let us define three function spaces,

which we will use later on:
Definition 3.3 (Function Spaces (AFP00, Def. 3.1, Def. 2.4))

Consider a function u : Ω→ Rk, with Ω ⊂ Rd open and bounded.

• The function u is in the Lp(Ω,Rk) space (sometimes called Lebesgue space) if
it is measurable with respect to the d-dimensional Lebesgue measure and∫

Ω
|u(x)|pdx <∞. (14)

• The function u is of bounded variation and an element of the space BV (Ω,Rk)
if it is || · ||L1- integrable and if its total variation TV (u) is finite.

• If u lies in the Lebesgue space Lp(Ω,Rk) and if its weak partial derivates v for
the multi-index α ∈ Ns0, with∫

Ω
v(x)φ(x)dx = (−1)α

∫
Ω
u(x)

(
∂α1

∂xα1
1
, ...,

∂αs

∂xαss

)
φ(x)dx (15)

for all test functions φ ∈ C∞c (Ω) exist up to order k and also lie in Lp(Ω,Rk),
we write u ∈W k

p and say that u lies in the Sobolev space.

12



3.2 Convex Analysis

There is a weak version of the coarea formula for functions in BV(Ω,Rk), which was first
proven in (FR60). Here, we will only state the final theorem, without going into detail.
For further information we refer the reader to (FR60) and (AFP00).
Theorem 3.4 (Coarea formula in BV (FR60), (AFP00, Thm. 3.40))

Consider u ∈ BV(Ω,Rk) with Ω ⊂ Rd. The set {u > t} has for L1-a.e. t ∈ R finite
perimeter in Ω and for any Borel set B ⊂ Ω we have

|Du|(B) =
∫ +∞

−∞
|D1u>t|(B)dt, (16)

for the characteristic function of the subgraph of u defined as

1u>t(x) :=
{

1, if u(x) > t,

0, else.
(17)

Convex Analysis

In this section we consider the objective function of variational problems. Other than in
Eq. (9) we denote them by lowercase f . We begin by discussing some properties which
guarantee existence of a minimizer. Then, we introduce the concepts of convexity, convex
hulls and convex conjugates. Afterwards, we define subdifferentials and the Bregman
distance. In the following, let the extended real line be defined as R := R ∪ {−∞,∞}.

Existence of Minimizers

Objective functions that become negative infinity for at least one value in the image
domain, or that become positive infinity on the whole image domain result in trivial
optimization problems. Therefore, we define:
Definition 3.5 (Properness (RW09))

A function f : Rn → R is called proper, if f(x) > −∞ for all x ∈ Rn and if there is
at least one y ∈ Rn for which f is finite.

Let us, furthermore, consider this weak version of continuity:
Definition 3.6 (Lower Semi-continuity (RW09, Def. 1.5))

A function f : Rn → R is called lower semi-continuous, if

lim inf
y→x

f(y) = lim
ε→0+

( inf
y∈B(x,ε)

f(y)) = f(x) (18)

holds for all x ∈ Rn. Here, B(x, ε) denotes a ball around x with radius ε.

Using the above definitions, we can formulate requirements for the existence of a mini-
mizer for the energy term f .

13
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Corollary 3.7 (Existence of a Minimum (RW09, Cor. 1.10))
Let f : Ω → R be proper and lower semi-continuous for Ω ⊂ Rn compact and
bounded. The function f then attains its minimum on Ω.

Cor. 3.7 not only guarantees the existence of a minimum, but implicitly also the existence
of at least one minimizer x ∈ Ω.

Convexity

Another important property used to describe energy terms is convexity. Solvers cannot
always distinguish between local and global minimizers. As we see in Thm. (3.9), this
is not a problem when working with convex functions.

Definition 3.8 (Convexity (RW09, Def. 2.1))
A set Ω ∈ Rn is called convex, if

(1− λ)x1 + λx2 ∈ Ω (19)

holds for any choice of x1, x2 ∈ Ω and λ ∈ (0, 1). A function f : Rn → R on a convex
set Rn is called convex, if the inequality

f((1− λ)x1 + λx2) ≤ (1− λ)f(x1) + λf(x2) (20)

is fulfilled for any choice of x1, x2 ∈ Ω and λ ∈ (0, 1).

An immediate result of the second part of Def. 3.8 is Jensen’s inequality (RW09, Thm. 2.2).
It extends the inequality to convex combinations x =

∑n
i=1 λixi for nonnegative λ1, ..., λn

summing up to 1 and x1, ..., xn ∈ Ω in the following way:

f

(
n∑
i=1

λixi

)
≤

n∑
i=1

λif(xi). (21)

For convex functions, the following theorem on minimizers holds:

Theorem 3.9 (Minimizers of convex functions (RW09, Thm. 2.6))
Let f : Rn → R be convex. Then every local minimizer is also a global minimizer.
Furthermore, the set of all minimizers {x ∈ Rn|f(x) ≤ f(y) for all y ∈ Rn} is also
convex.

Working with a proper, lower semi-continuous and convex energy term on a compact
and bounded image domain, the existence of a minimizer is guaranteed according to
Cor. 3.7, which is according to Thm. 3.9 not only locally but also globally optimal.
Later on, we will work with proper and lower semi-continuous, yet possibly non-convex

energy terms. In order to be able to use certain solvers we can approximate a non-convex
function by a convex one. For the approximation we need the concept of convex hulls.
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Definition 3.10 (Convex hull (RW09, p. 53ff))
The convex hull of a set Ω ⊂ Rn is defined as the smallest convex set including Ω.
The convex hull g of a function f on a convex set Ω is the largest convex function
for which g(x) ≤ f(x) holds for every x ∈ Ω.

The convex hull g of a function f still contains the information on the global minimum
of f , although information on local minima and maxima is lost. Calculating the minimum
of g provides the minimum of f , but with the addition that we can use convex solvers.
Attention should be paid though, since we are not guaranteed to find the actual global
minimizer of f . Consider a two-dimensional function with the shape of the letter Λ. The
convex hull of this function does not contain the information of the local maximum, in
fact the convex hull is a line with slope zero and every point of the domain could be
returned as a global minimizer.
Convex hulls can be obtained by different means. In (RW09, Thm. 2.27 and Prop. 2.31),

convex combinations are used to determine the convex hull of a set or function respec-
tively. For a non-convex set C ∈ Rn the convex hull consists of all points satisfying

Ω = con C :=
{ p∑
i=1

λixi

∣∣∣∣∣ λ1, ..., λp ≥ 0,
p∑
i=1

λi = 1, xi ∈ C, p ≥ 0
}
. (22)

Equivalently, the convex hull g of a function f on a convex set Ω ⊂ Rn can be determined
as

g(x) = (conf)(x) := inf
{

n∑
i=1

λif(xi)
∣∣∣∣∣ λ1, ..., λn ≥ 0,

n∑
i=1

λi = 1, xi ∈ Ω,
n∑
i=1

λixi = x

}
.

(23)

Alternatively, the convex hull of a function can be determined with the Legendre-
Fenchel transform, also called convex conjugate.
Definition 3.11 (Convex Conjugate (RW09, p. 473))

Given a function f : Ω→ R on a real topological vector space Ω with dual space Ω∗,
the conjugate f∗ : Ω∗ → R is defined as

f∗(x∗) := sup
x∈Ω

{〈x∗, x〉 − f(x)} . (24)

The conjugate of f∗ is called the biconjugate f∗∗ and is equal to the convex hull of f .
We can get an intuition for this by considering a hyperplane lying below a graph f . The
following explanation is visualized in Fig. 5. Such a hyperplane is defined by slope m
and intercept b, and needs to satisfy

f(x) ≥ 〈m,x〉+ b (25)

for all x ∈ Ω. For a fixed slope m, the intercept b can be computed as

−b ≥ sup
x∈Ω

{〈m,x〉 − f(x)} = f∗(m). (26)
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Figure 5: Convex Conjugates. Dark blue: Non-convex function f . Left: Selection of
hyperplanes with slope m = 1 which lie below the function f . The red star marks the
greatest intercept for which the slope still lies beneath f and which is the negative conju-
gate evaluated at m = 1. Middle: Selection of hyperplanes yi = 〈mi, x〉−f∗(mi). Right:
Supremum over all hyperplanes yi = 〈mi, x〉− f∗(mi), which also is the biconjugate f∗∗.

The closest approximation of Eq. (26) is given by b = −f∗(m). Therefore, the convex
conjugate f∗(m) is the negative intercept of the closest hyperplane with slope m which
lies below the graph. The biconjugate is the pointwise supremum over all hyperplanes
which lie below f and, therefore, it provides the convex envelope of f by

f∗∗(x) = sup
m∈Ω∗

{〈m,x〉 − f∗(m)} . (27)

According to (RW09, Thm. 11.1), both the conjugate and biconjugate of a function with
a proper convex hull are also proper, lower semi-continuous and convex. Furthermore,
the biconjugate is equivalent to

f∗∗(x) = cl( con f) = cl

 sup
g convex,
g≤f

g

 , (28)

with cl denoting the closure. The closure of a function f : Rn → R is its lower semi-
continuous hull: cl f(x) = lim infy→x f(y).

Subdifferential

Later on, we will work with objective functions that are convex, usually continuous, but
generally non-smooth. Therefore, we use a more general definition of differentiability,
which allows us to determine subgradients at points in the domain of the function where
differentiability is not given.
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Definition 3.12 (Subdifferential (RW09, Def. 8.8))

The regular subdifferential ∂̂f(x) of a convex function f : Rn → R at a finite point
x ∈ Rn is defined as

∂̂f(x) := {p ∈ Rn| f(y) ≥ f(x) + 〈p, y − x〉, ∀y ∈ Rn} (29)

and p is called a regular subgradient. The (general) subdifferential ∂f(x) at a finite
point x ∈ Rn is defined as

∂f(x) :=
{
q ∈ Rn

∣∣∣ ∃{xk} ⊂ Rn,
{
pk
}
⊂ ∂̂f(xk) : xk → x, f(xk)→ f(x) and pk → q

}
(30)

and q is called a (general) subgradient.

Note the equivalence of the regular and general subdifferential for any proper and convex
function (RW09, Prop. 8.12). According to (RW09, Cor. 10.9), the subdifferential of the
sum of proper and lower semi-continuous functionals f1, ..., fm with fi : Rn → R includes
the sum of subdifferentials of the functionals:

∂f(x) ⊃ ∂f1(x) + ...+ ∂fm(x). (31)

If the functionals f1, ..., fm are convex and their domains cannot be separated,

∂f(x) ⊂ ∂f1(x) + ...+ ∂fm(x) (32)

holds. Furthermore, if each fi is regular at x, their sum is also regular and equality in
Eq. (31) holds.
The Bregman distance was first introduced in (Bre67), where it was used for solving

problems in convex programming. In (OBG+05) it was reinterpreted as an iterative
regularization term and in that context we will use it in chapter 4.1.
Definition 3.13 (Bregman Distance)

Let f : Γ → R be a convex and nonnegative functional and let p be a subgradient
of f evaluated at v. The Bregman distance is defined as

Bp
f (u, v) := f(u)− f(v)− 〈p, u− v〉. (33)

Note that the Bregman distance is only unique as long as f is differentiable at v, otherwise
the choice of an arbitrary subgradient p ∈ ∂f(v) can affect the distance. The Bregman
distance is no metric in the actual sense, since symmetry and the triangle inequality
usually are not fulfilled. However, the Bregman distance is nonnegative for any v and
zero for v = u. If f is strictly convex, this property extends to Bp

f (u, v) with respect
to u.
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Using variational models in image processing poses some challenges. First of all, one
has to choose a good model and suitable solution space for the given task. The choice
of the weighting parameter can heavily influence the quality of the solution, as we have
seen in Fig. 1. Not all variational models, i.e., stereo matching (Def. 2.2), are convex
and, therefore, one might not be able to find a global optimal solution, even if it exists.
Also, the choice of the solver influences the quality of the result and the duration of the
computation time needed.
In this chapter, we introduce two methods used in the context of variational models.

First, we consider the iterative Bregman regularization, which obviates the search for a
good weighting parameter and also has been shown to lead to the inverse scale space
flow in its continuous limit. In order to understand the meaning of the term scale, we
consider the spectral frequency representation with respect to the regularizer. Then, we
take a look at two closely related functional lifting methods. These methods can be used
in order to obtain a convex formulation for an originally non-convex problem.

Iterative Bregman Regularization

The iterative Bregman regularization was first introduced by Osher et al. in (OBG+05)
and builds on the Bregman distance as introduced in (Bre67). The primary goal of
the new method was to improve ROF image denoising by reducing the loss of contrast
induced by the TV regularizer, when the regularization parameter λ is chosen too small.
An account on this problem can be found in (Mey01):
Example 4.1 (ROF result on disc ((Mey01), p.36))

Let the input image be f(x, y) = αXr(x, y) for any r ∈ R+ and

Xr(x, y) =
{

1, if
√
x2 + y2 ≤ r,

0, else.
(34)

We assume f = u + v, where u is the denoised image and v the noise. Formulating
the ROF problem as

u∗ ∈ arg min
u∈BV(Ω,Rk)

{
λ

∫
Ω
||u(x)− f(x)||22dx+ TV (u(x))

}
, (35)

we get the decomposition

u∗ = (α− 1
λr

)Xr and v = 1
λr
Xr, for αλr ≥ 1

u∗ = 0 and v = f, for αλr ≤ 1.
(36)

We can see, that the choice of λ compromises the decomposition, especially when
chosen too small. In particular, there will be a loss of contrast for α = 1 and λ > 1

r .
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Instead of solving the ROF model for a variety of regularization parameters λ in search
for the best one, the authors of (OBG+05) proposed an iterative regularization method.
The new method iteratively approaches the best solution by taking the Bregman distance
associated with the actual regularization functional into account.
Let the class of considered variational problems be

u∗ ∈ arg min
u
{G(u, f) + λR(u)} , (37)

where G(u, f) is a nonnegative convex data term with respect to u for fixed f , and R(u)
is a nonnegative convex regularization term. The proposed algorithm is:
Algorithm 4.2 (Bregman Iteration)

1. Initialize p0 = 0 and u0 = 0.

2. For l = 0, 1, ... and while the stopping criterion is not fulfilled:

Solve

ul := arg min
u
{G(u, f) + λ(R(u)−R(ul−1)− 〈pl−1, u− ul−1〉)} (38)

= arg min
u
{G(u, f) + λ(R(u)− 〈pl−1, u〉)}. (39)

Choose pl ∈ ∂R(ul).

Instead of using the original regularization term R(u), we use the Bregman distance
B
pl1
R (u, ul) = R(u) − R(ul−1) − 〈pl−1, u − ul−1〉 associated with it. We can drop the

constant terms −R(ul−1)−〈pl−1,−ul−1〉 in Eq. (38). Refer to Def. 3.13 for more details
on the Bregman distance.
Let us now consider the special case of the ROF problem. The authors of (OBG+05)

prove the well-definedness of the iterates pl and ul. They also prove that ul monotonically
converges to f in L2 for l → ∞. Furthermore, they show that the Bregman distance
between ul and the noise-free image u decreases, as long as the data term evaluated at
the iterate ul is smaller than at the noise-free image u. In the ROF scenario, the latter
is the noise level of the image and can often be estimated. If λ is chosen sufficiently
large and the iteration is stopped as soon as the data term evaluated at ul exceeds the
noise level, the sequence {ul}l∈N converges towards the noise free image u. This stopping
criterion is called discrepancy principle. In its continuous limit, the Bregman iteration
leads to the inverse scale space flow (ISS), which is further elaborated in (BGO+06) and
(BGM+16). The ISS is given as

∂sp(s) = f − u(s), p(s) ∈ ∂R(u(s)), p(0) = 0, (40)

where f is the input image and p(s) a subgradient of R evaluated at the solution u(s)
(BGM+16). Basically, the flow u starts as the mean of the input image f , then it
slowly recovers details of the input image according to their scale with respect to the

20



4.1 Iterative Bregman Regularization

regularizer, until it finally converges to f . Large scale features are recovered prior to
small scale features. This is of interest in image denoising, since small scale features are
usually associated with noise. Stopping the flow at a suitable time renders the noise-free
image.
In order to understand the term scale and the significance of the ISS flow, we introduce

the concept of spectral representation.

Definition 4.3 (Eigenvalue and eigenfunction, (BGM+16))
Let R : ξ → R+ be a convex functional. We refer to v ∈ ξ with ||v||2 = 1 as
eigenfunction with eigenvalue µ ∈ R, if

µv ∈ ∂(R(v)) (41)

is satisfied.

Let us follow (BGM+16) and consider the ISS (40) for an eigenfunction v with respect
to R. Let µ be the corresponding eigenvalue and assume v has zero mean. The solution
of the ISS (40) is then calculated as

u(s) =
{

0, if s ≤ µ
v, otherwise,

(42)

and has a piecewise constant behavior in time. The greater the eigenvalue µ, the later in
time the according eigenfunction v is recovered. The spectral frequency representation
with respect to R is defined as

φs := ∂su(s) = vδµ(s). (43)

For more general input images f it can be shown that φs meets

f =
∫ ∞

0
dφs. (44)

Every input image f can be decomposed into details of different scale. These details
correspond to eigenfunctions associated with the regularizer R. Details that appear soon
correspond to eigenfunctions with small eigenvalues and we call them large-scale details.
Details that appear later on correspond to eigenfunctions with large eigenvalues and we
call them small-scale details. We can see in Eq. (43) that the solution of the ISS gives us
a spectral frequency representation with respect to R. For a real-life example see Fig. 6.
Fig. 7 shows the results of the iterative Bregman regularization on the ROF model,

where the ISS flow qualities can be observed. Since λ is chosen large, we get an over-
smoothed first solution u1. As the iteration proceeds, more and more detail is recovered,
starting with cartoon-like structures and contours. Fine structures such as the salt-and-
pepper noise would have been regained if we had continued the iteration.
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Figure 6: Scale spaces. Left: Input image. Middle: Large scale details with respect to
the total variation regularizer of the input image. Right: Small scale details with respect
to the total variation regularizer of the input image. Images from (Gil17).

In (OBG+05) the possibility of applying the iterative Bregman regularization to fur-
ther variational problems is discussed. The authors stress that a generalization with
respect to different data terms is quite complex, since the compactness of the level sets
of G(u, f) + R(u) − 〈pl−1, u〉 is needed for the well-definedness of the iterations. They
show that the before-mentioned properties hold for data terms of the form λ

2 ||f −Ku||
2,

where K ∈ L2(Ω) is a linear operator, which is bounded and whose kernel does not
include the space of continuous functions.
Fixing the data term G(u, f) = λ

2 ||f −Ku||
2, the authors consider different regular-

ization terms. For the well-definedness of the iterates the regularizer needs to be locally
bounded, convex and nonnegative on a Banach space U ∈ L2(Ω). Furthermore the
level sets {u ∈ U | R(u) ≤ γ ∈ R} need to be compact in L2(Ω), nonempty for γ > 0,
and R needs to be extendable to a weakly lower semi-continuous functional. If in addi-
tion G(u, f) + R(u) is strictly convex, then there is always a unique minimizer ul and
pl = pl−1 + ql for some pl ∈ ∂R(ul), and ql ∈ ∂G(ul, f) holds.
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(a) Input image (b) Iteration l = 1 (c) Iteration l = 2 (d) Iteration l = 3

(e) Iteration l = 4 (f) Iteration l = 5 (g) Iteration l = 6 (h) Iteration l = 7

(i) Iteration l = 8 (j) Iteration l = 9 (k) Iteration l = 10 (l) Iteration l = 11

(m) Iteration l = 12 (n) Iteration l = 13 (o) Iteration l = 14 (p) Iteration l = 15

Figure 7: Iterative Bregman regularization for ROF problem. Top left: Input
image from prost library (MLM+15) with artificially added Gaussian white noise. The
other images have been generated for this thesis with CVX (GB14, GB08). Left to right,
top to bottom: Solutions of the iterative Bregman regularizer at different steps. The
solution of the first iteration step is over-smoothed (in fact it is the mean of the input
image). As the iteration proceeds, more and more detail is being recovered.
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Functional Lifting

Not all variational models are convex (e.g. stereo matching Def. 2.2) and, therefore, it
might not be numerically feasible to find a global optimal solution, even if it exists. Many
algorithms used for solving variational models incorporate a form of gradient descent
and can easily get stuck in local minima. Motivated by techniques for approximating
combinatorial labeling problems (Ish03a) (see also (LLWS13) for an overview in the
segmentation context), the authors of (PSG+08) present a framework which allows to
approximate an originally non-convex variational model by a convex problem in a higher-
dimensional space. They consider problems of the form

arg min
u∈BV(Ω,Γ)

F (u), F (u) :=
∫

Ω
g(x, u(x))dx+ TV (u), (45)

where Ω ⊂ R2, Γ = [γmin, γmax] ⊂ R+ and g(x, u(x)) continuous in x and u(x) but
not necessarily convex in u(x). An extension to the more general problem class with
arbitrary regularization term and infinite label space can be found in (PCBC10). The
general class presents as

arg min
u∈W 1,1(Ω,R)

F (u), F (u) :=
∫

Ω
f(x, u(x),∇u(x))dx, (46)

where f is continuous in the first two variables and convex in the last one.
The problem given by Eq. (45) was further considered in (MLM+15), where a re-

finement of the original method is presented. This refined approach begins with a dis-
cretization of the label space and allows for a tighter approximation of the data term
after discretization (see Fig. 10).

Problem Formulation

In the following, we combine the notation of the above-mentioned papers and consider
problems of the form

arg min
u∈BV(Ω,Γ)

F (u), F (u) :=
∫

Ω
f(x, u(x),Du(x))dx (47)

:=
∫

Ω
g(x, u(x))dx+ TV (u), (48)

for Ω ⊂ R2, Γ = R and Du(x) the derivative of u in a distributional sense (see Prop. 3.2).
The cost function g(x, u(x)) for assigning label u(x) to x is continuous in x and u but
not necessarily convex in u. Therefore, f is continuous in the first two variables, convex
in the last one, and – depending on the data term – possibly non-convex in the second
one.
In the following sections, we take a look at the method introduced in (PSG+08) and

describe the proposed lifting method for variational models with TV regularizer using
the notation of (PCBC10). Afterwards, we present the alternative approach proposed
in (MLM+15) and establish a relation between both approaches. The following section
heavily builds on the three papers (PSG+08, PCBC10, MLM+15).
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Functional Lifting

The main goal of functional lifting is to find a higher-dimensional representation of a
given non-convex variational problem, such that the new formulation is convex. The
method presented in (PSG+08, PCBC10) comprises four steps: First, a lifted represen-
tation φ ∈ BV(Ω × Γ, {0, 1}) for u ∈ BV(Ω,Γ), as well as the search space over these
representations is defined. Then, the energy term is reformulated as a convex variational
problem with respect to the lifted search space. In the third step, the lifted search space
is extended to its convex envelope. One can then argue that any solution of the lifted
problem over the convex envelope of the lifted search space translates to a solution of
the original problem.
1st Step. We begin by expressing functions u by their γ-superlevel-sets. Given a

function u ∈ BV(Ω,Γ), we define the binary function φ : Ω× Γ→ {0, 1} as

φ(x, γ) := 1{u>γ}(x) :=
{

1, if u(x) > γ,

0, otherwise.
(49)

This function is equivalent to the indicator function of the γ-superlevel-sets of u (see
Fig. 8) or, to put it in another way, the characteristic function of the subgraph of u(x)
(see Fig. 9). In particular, φ is a representation of u on a higher-dimensional domain
and it is easy to see, that we can retrieve u by applying what is in (PSG+08) called the
layer-cake-formula

u(x) =
∫ 0

−∞
(φ(x, γ)− 1)dγ +

∫ ∞
0

φ(x, γ)dγ. (50)

The new search space is defined as

C ′ :=
{
φ ∈ BV(Ω× R, {0, 1})

∣∣∣∣ lim
γ→−∞

φ(x, γ) = 1, lim
γ→∞

φ(x, γ) = 0
}
. (51)

Note that feasible φ have to decline with respect to γ, such that φγ(x, γ) ≤ 0 holds for
the the partial derivative. This constraint is later on enforced by the lifted energy term
(53).
This lifting approach is similar to the one introduced for the Chan-Vese model in

(CEN06), where indicator functions are used in order to describe sets. For references
to alternative lifting approaches, a short overview and comparison thereof we refer the
reader to (CCP12).
2nd Step. Let Γu be the jump set of φ and let νΓu := (px, pγ) := (Dxφ(x, γ), ∂γφ(x, γ))

denote the inner unit normal of φ at Γu. The initial problem (48) can be expressed in
terms of the interfacial energy of φ evaluated at Γu. In (PCBC10) the authors denote
this interfacial energy as ∫

Γu
h(x, γ, νΓu)dH2(x), (52)
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Figure 8: Example of γ-superlevel-set of u. Visualizing the lifting procedure. The
blue line represents the function u. The black line marks γ = 0.6. The red area is the
0.6-superlevel-set of u, which is a subset of Γ. The green line is the lifted representation
of u for fixed γ = 0.6 and equivalent to the indicator function of the 0.6-superlevel-set
of u.

where H2 is the 2-dimensional Hausdorff-measure and h is defined as

h(x, γ, (px, pγ)) :=


|pγ |f

(
x, γ, p

x

|pγ |

)
, if pγ < 0,

limλ→+∞
1
λf(x, γ, λpx), if pγ = 0,

+∞, if pγ > 0.
(53)

The authors point out, that h is lower semi-continuous, convex and one-homogeneous
with respect to (px, pγ).
In order to develop an intuition for h, we will specify some characteristics shown in

(PCBC10). For a visual reference we refer the reader to Fig. 9. As we have mentioned
earlier, feasible inner normals νΓu have to be non-positive in pγ , otherwise they would
imply that φ increases at some point with respect to γ. The third case in the definition
of h (53) ensures that this request is met. For u ∈ C1(Ω,Γ) we have pγ = −1 and h
satisfies

∫
Γu
h(x, γ, νΓu(x))dHd(x) =

∫
Ω
h(x, u(x), (∇u(x),−1))dx (54)

Eq. (53)=
∫

Ω
| − 1|f

(
x, u(x), ∇u(x)

| − 1|

)
dx (55)

=
∫

Ω
f(x, u(x),∇u(x))dx. (56)

In this scenario the lifted and unlifted problem are equivalent. In case of u not being
sufficiently smooth, it has a jump at some x ∈ Ω, which means pγ = 0 and px 6= 0. In
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Figure 9: Relaxation using the characteristic function of the subgraph. Right
plot: Functional u(x) as blue line. Note the jump of u(x) at x = 0.3. The light green
line indicates the jump set of φ(x, y). Left plot: Characteristic function of the subgraph
of u(x) as the two horizontal light green and dark blue areas. The vertical part with
color gradient represents the jump set of φ(x, γ), which we will now call Γu. Consider
the normal of Γu at x = 0.8. We have νΓu = (∇u(0.8),−1). At the jump x = 0.3 on the
other hand the functional u is non-differentiable. For x = 0.3 and γ ≤ 0.9 we get pγ = 0.

this case, h becomes∫
Γu
h(x, γ, νΓu(x))dHd(x) =

∫
Ω
h(x, u(x), (∇u(x), 0))dx (57)

Eq. (53)=
∫

Ω
lim

λ→+∞

1
λ
f(x, γ, λpx)dx (58)

=
∫

Ω
|px|dx. (59)

Again, the lifted and unlifted formulation are equivalent.
We can now formulate a convex and one-homogeneous lifted version of the minimiza-

tion problem (48). Due to the fact that h is convex and one-homogeneous with respect
to (px, pγ), we can furthermore show the equivalence to the original formulation (48):

F (φ(x, γ)) :=
∫

Ω×R
h(x, γ,Dφ(x, γ))d(x, γ) (60)

=
∫

Ω×R
h(x, γ, νΓu(x, γ))dHdxΓu(x, γ) (61)

=
∫

Γu
h(x, γ, νΓu(x))dHd(x) =

∫
Ω
f(x, u(x),Du(x))dx. (62)
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3rd Step. Minimizing F over C ′ is still not a convex problem due to the non-convexity
of the search space. Therefore, we replace C ′ with its convex envelope

C :=
{
φ ∈ BV(Ω× R, [0, 1])

∣∣∣∣ lim
γ→−∞

φ(x, γ) = 1, lim
γ→∞

φ(x, γ) = 0
}
. (63)

Again, feasible φ have to decrease with respect to γ. The definition of h ensures that
this condition is met.
4th Step. In (PCBC10) and (PSG+08), the authors show that thresholding of

a global minimizer φ∗ ∈ arg minφ∈C F (φ(x, γ)) of the lifted problem (60) results in
a global minimizer 1φ∗>s = arg minφ∈C′ F (φ(x, γ)) of the lifted problem on the non-
convex set C ′ for almost any s ∈ [0, 1]. Depending on the choice of s we reach different
functionals in C ′. Applying the layer-cake-formula (50) to 1φ∗>s provides a minimizer
u∗ =

∫ 0
−∞ (1φ∗>s(x, γ)− 1)dγ+

∫∞
0 1φ∗>s(x, γ)dγ of the initial non-convex problem (46).

In case of total variation regularization, we explicitly get

arg min
φ∈C

F (φ), F (φ) =
∫

Ω×Γ
g(x, u(x))|∂γφ(x, γ)|d(x, γ) + TV (φ), (64)

C =
{
φ ∈ BV(Ω× R, [0, 1])

∣∣∣∣ lim
γ→−∞

φ(x, γ) = 1, lim
γ→∞

φ(x, γ) = 0
}
. (65)

Here, we only considered the problem class (45). We started with a variational prob-
lem (48) that was possibly non-convex in one variable. Now, we have a lifted repre-
sentation (65) of the initial problem. This lifted representation is due to the properties
of the function h (53) convex and lower semi-continuous. If the initial data term g is
proper, the lifted variational problem is also proper. In this case we are guaranteed the
existence of a minimizer (Cor. 3.7), which is a global minimizer (Thm. 3.9).
In (PCBC10) it is shown that this method can also be applied to problems of the

form (46) with slight changes on the lifted search spaces C ′ and C, and a dual formu-
lation of the lifted problem is presented. Furthermore, details on the discretization and
implementation can be found. After discretization, it turns out that the data term is
approximated in a linear fashion in between the discretized labels (MLM+15). In the
following section, we introduce a slightly different approach which allows for an even
tighter approximation (see Fig. 10).

Figure 10: Approximation of the data term after discretization. Red dotted line:
non-convex integrand of the data term g(·, u(·)). Left: Piecewise linear approximation
of the data term in between the labels, using the lifting method introduced in Sec. 4.2.2.
Right: Piecewise convex approximation of the data term in between the labels, using
the lifting method proposed in Sec. 4.2.3. Images from (MLM+15).
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Sublabel-Accurate Functional Lifting

A slightly different approach for the problem class (48) was suggested in (MLM+15).
Unlike the method introduced in the last section, this approach assumes a discretized
label space Γ = [γmin, γmax]. Although the overall notion for both methods is quite
similar, they use a different notation. We now present this new notation and explain the
connection to the one in the previous section.
The method can be divided into two steps. First, we partition the label space Γ into

k intervals Γi = [γi, γi+1], such that Γ =
⋃k
i=1 Γi holds for γ1 < ... < γk+1 ∈ Γ. Using

this partition, a lifted representation of u(·) and the search space are defined. Then,
we reformulate the data and regularization term separately by lifting them into the
higher-dimensional space and determining the respective biconjugates.
1st Step. After choosing some partition

⋃k
i=1[γi, γi+1] of the label space Γ, every

u(·) ∈ Γi can be rewritten with the help of the chosen labels and a variable α ∈ [0, 1]:

u(·) = γαi := γi + α(γi+1 − γi). (66)

Using these variables i and α, we can find a lifted representation u(·) ∈ Rk for u(·):

u(·) = 1αi := 1i−1 + α(1i − 1i−1), (67)

where 1i represents a k-dimensional vector of i ones followed by zeros. Even though we
have discretized the label space and and are using a vectorial representation, we still
allow for all sublabels due to the continuity of the variable α ∈ [0, 1]. This vectorial
representation is furthermore unique, in the sense that any u can uniquely be mapped
to a u ∈ Γ by

u(x) = γ1 +
k∑
i=1

ui(x)(γi+1 − γi). (68)

Note however, that any u ∈ {γ2, ..., γk} has two lifted representations, since the equality
11
i = 10

i+1 holds for any i ∈ {1, 2, ..., k}.
Let us denote the set of all feasible u by

Q′ =
{
u = 1αi ∈ Rk

∣∣∣ u1 = ... = ui−1 = 1,ui = α,ui+1 = ... = uL−1 = 0
}
. (69)

This Q′ corresponds to C ′ in section 4.2.2: each element u ∈ Q′ is a vectorial repre-
sentation of the characteristic function of the subgraph φ(·, γ) of some u(·). However,
Q′ is non-convex and later on we consider its convex envelope [0, 1]k. In fact, we even
consider Rk, yet due to the definition of the lifted integrand only solutions in [0, 1]k are
possible.
2nd Step for Data Term. Next, we are going to introduce the lifted representation of

the energy term. For this step, data and regularization term are considered separately.
For fixed x ∈ Ω, the integrand of the data term g(u) := g(·, u(·)) : Γ → R is to be
minimized over Γ. In (MLM+15) the authors introduce the integrand of the lifted data
term g : Rk → R ∪+∞ as

g(u) = min
1≤i≤k

gi(u), (70)
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gi(u) =
{
g(γαi ), if u = 1αi , α ∈ [0, 1],
∞, else.

(71)

They stress that minimizing g(u) over Rk gives a solution in Q′. Inserting this solution
into the layer-cake-formula (68) yields a minimizer of g over Γ. They show that the
convex envelope of the integrand (70) of the lifted data term is given as

g∗∗(u) = sup
v∈Rk

{
〈u,v〉 − max

1≤i≤k
g∗i (v)

}
(72)

with
g∗i (v) = ci(v) + g∗i

( vi
γi+1 − γi

)
,

ci(v) = 〈1i−1,v〉 −
γi

γi+1 − γi
,

gi = g + δΓi ,

δC(x) =
{

0, x ∈ C,
∞, x /∈ C.

(73)

We now have an integrand g∗∗(u) which is convex in u. In particular, the originally
non-convex integrand g(u) is approximated piecewise convex on every interval Γi. See
Fig. 11 for a simple demonstration of the lifting process and Fig. 10 for a comparison
with the method introduced in the previous section.
2nd Step for Regularization Term: For the lifted representation of the regulariza-

tion term, the authors of (MLM+15) proceed analogously. Using the notion introduced
in Prop. 3.2, they formulate the total variation of the lifted representation u with a finite
Rk×d-valued Radon measure Du as

TV (u) =
∫

Ω
dΦ(x,Du), (74)

For fixed x, they introduce the lifted regularizer as

Φ(z) = min
1≤i≤j≤k

Φi,j(z). (75)

Since they want to penalize jumps from some value γαi to γβj (with α, β ∈ [0, 1]) in the
direction of v ∈ Rd, they choose Φi,j : Rk×d → R ∪ {∞} as

Φi,j(z) =
{
|γαi − γ

β
j | · |v|2, if z = (1αi − 1βj )vT ,

∞, else.
(76)

This lifted representation of the total variation is non-convex, therefore, the authors
determine the convex envelope. Crucially, they show that for ordered labels γ1 < γ2 < ...,
the convex envelope is given by

Φ∗∗(z) = sup
q∈K
〈q, z〉, (77)
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with the constraint set

K =
{
q ∈ Rk×d

∣∣∣ |qi|2 ≤ γi+1 − γi, ∀i
}
. (78)

This constraint set can be efficiently enforced due to the finite and – with respect to the
number of labels – linear number of constraints.
How does the lifting and convexification of the data and regularization term connect

to the approach in section 4.2.2? In the first lifting approach, we formulated the convex
envelope of the indicator functions, by replacing them with functions that vary between 0
and 1, and decrease with respect to γ. The latter was being enforced by the lifted
formulation of the problem. In this sublabel-accurate lifting, we formally work on the
solution space Rk but restrict possible solutions to the convex hull [0, 1]k of Q′, by the
choice of the lifted data term g and use of its biconjugate g∗∗. Here, the expression
“decreasing with respect to γ” translates to u1 ≥ u2 ≥ ... ≥ uk. However, the sublabel-
accurate lifting does not seem to enforce this restriction, as we will get back to in Ch. 6
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(a) Unlifted integrand (b) Lifted integrand

(c) Unlifted convex hull (d) Lifted convex hull

Figure 11: Relaxation by subsampling of label space. Top left: Integrand g(u) of
non-convex data term for fixed x ∈ Ω and u ∈ Γ = [0, 1]. The red line marks the second
of the chosen labels [0, 0.7, 1]. Top right: Lifted integrand of data term (z-axis) for the
lifted u (x- and y-axis). The lifting process creases the integrand at the second label and
spreads each interval to [0, 1]. Bottom right: Convex hull of the lifted integrand. Bottom
left: Projection of the intersection of the convex hull of the lifted integrand and the x-,
y-axis into the original space (black dotted line). Overall we have convex integrands in
the data term and, therefore, a convex data term. Furthermore, the original integrand
of the data term is approximated by the convex hull in between the labels.
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5.1 Formulation of the Problem

Iterative Bregman Regularization for Sublabel-
Accurate Lifting

In the last chapter, we presented two successful methods used in variational image pro-
cessing: the iterative Bregman regularization and the sublabel-accurate lifting. We
showed how the sublabel-accurate lifting can be used to obtain a convex formulation
of an originally non-convex variational problem. Furthermore, we discussed some ad-
vantages offered by the Bregman iteration and its connection to the inverse scale space
flow. Until now, the application of the Bregman iteration has been restricted to convex
variational problems. In this chapter we want to discuss the possibility of applying the
Bregman iteration to variational problems with total variation regularizer and a possibly
non-convex data term by using the sublabel-accurate lifting.
Our contribution in this thesis is the formulation of a lifted Bregman iteration. We

address some arising questions and conjecture that the solution of the Bregman iteration
on an unlifted convex problem is equivalent to the one on the sublabel-accurate lifted
problem. We make first steps towards proving this hypothesis. Details on the imple-
mentation of the proposed method and first experimental results for the ROF and stereo
matching problem can be found in the next chapter.

Formulation of the Problem

Let us assume we have a problem of the form

arg min
u∈BV (Ω,Γ)

F (u), F (u) := G(f, u) + TV (u), (79)

G(f, u) :=
∫

Ω
g(x, u(x))dx, (80)

TV (u) :=
∫

Ω
Φ(x,Du)dx, (81)

for some input image f , closed domain Ω ⊂ R2, closed range Γ ⊂ R+, distributional
derivate Du, and a data term G(f, u) which is nonnegative, lower semi-continuous and
possibly non-convex in u. We refer to this problem as unlifted or original problem.
For simplicity reasons, we drop the dependency on the input image f from now on.
According to chapter 4.2.3 we choose some labels γ1, ..., γk+1 and perform the sublabel-
accurate lifting. This results in the lifted problem

arg min
u∈BV (Ω,Rk)

F(u), F(u) := G(u) + TV(u), (82)

G(u) :=
∫

Ω
g∗∗(x,u(x))dx, (83)

TV(u) :=
∫

Ω
Φ∗∗(x,Du(x))dx, (84)

with g∗∗(x,u(x)) as in equation (72) and Φ∗∗(x,Du(x)) as in equation (77).
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The lifted problem has a nonnegative convex data term G(u) and a nonnegative
convex regularizer TV(u). Therefore, it fulfills two basic requirements for the Bregman
iteration. We can formulate the Bregman iteration on the lifted problem as follows:
Algorithm 5.1 (Lifted Bregman Iteration)

1. Initialize p0 = 0 and u0 = 0,

2. For l = 0, 1, ..., and while the stopping criterion is not fulfilled:

Solve

ul := arg min
u∈BV

{
G(u) + TV(u)− 〈pl−1,u〉

}
. (85)

Choose pl ∈ ∂TV(ul).

Some questions arise immediately. Does the Bregman iteration on an unlifted convex
problem provide the same results as the lifted Bregman iteration? Under which re-
quirements on the data term is the lifted Bregman iteration well-posed? Does the lifted
Bregman iteration result in scale spaces with respect to the regularizer for variational
problems with a non-convex data term?

Lifted Bregman Iteration on the ROF

This section is dedicated to the question whether the Bregman iteration on a convex
problem, namely the ROF, provides the same solution as the lifted Bregman iteration.
We conjecture that this is the case and take some first steps towards proving our as-
sumption. In order to distinguish between the lifted and unlifted setting, we use the
notation presented in the previous section. In particular, bold letters indicate the lifted
setting.
The following questions need to be considered:

1. How does the subdifferential of the lifted problem relate to the subdifferential of
the original problem? For the Bregman iteration on the ROF model the authors of
(OBG+05) show in particular that pl := pl−1− (ul−f) lies in the subdifferential of
TV (ul) and use this subgradient for their proofs concerning the well-definedness of
the iterates and convergence results. Can we find a subgradient in the lifted total
variation, which is equivalent to this subgradient of the unlifted total variation?

2. Assuming the existence of a lifted subgradient in ∂TV(ul) which is equivalent to
the unlifted subgradient pl := pl−1 − (ul − f) ∈ ∂TV (ul), are the solutions of the
next unlifted and lifted Bregman iteration equivalent?

3. The implementation of the sublabel-accurate lifting presents a straightforward al-
ternative way for choosing a subgradient of the lifted regularizer. Can we also use

34



5.2 Lifted Bregman Iteration on the ROF

this subgradient for the lifted Bregman iteration and how does the choice of the
subgradient influence the results?

The first and second question are closely related. In this section, we empirically con-
sider the first question and leave the second question to future work. The experimental
results presented in Ch. 6 give some first hints to the answer of the third question.
Since the Bregman distance does not play a role in the first iteration, we assume that

the solutions of the first unlifted and lifted Bregman iteration are equivalent. More
precisely, we assume that the solution of the first lifted Bregman iteration is given by a
u1 ∈ BV (Ω, Q′), where Q′ is given by Eq. (69). Furthermore, we assume that this lifted
solution is uniquely linked to the solution u1 ∈ BV(Ω,R) of the first unlifted Bregman
iteration via the layer-cake formula (68). Let us denote this mapping for fixed x ∈ Ω via
the functional L : Γ→ Q′,

L(γαi ) = 1αi and L−1(1αi ) = γαi , (86)

for u1(·) = γαi as in Eq. (66) and u1(·) = 1αi as in Eq. (67). Furthermore, we denote by
p1 ∈ ∂TV (u1) the subgradient chosen after the first unlifted Bregman iteration and by
u2 ∈ BV (Ω,Γ) the solution of the second unlifted Bregman iteration. It follows, that
0 ∈ ∂G(u2) + ∂TV (u2)− p1 holds.
In the following, we will suggest a lifting pl = Lδi(pl) for subgradients pl ∈ TV (ul)

and ul = γαi . We leave it to future work to verify whether

L(ul+1) = arg min
u∈BV

{G(u) + TV(u)− 〈pl,u〉} (87)

holds, which would answer the second question.

Lifted Integrand of the Data Term

Before considering the question whether we can find a lifted representation for subgra-
dients of the regularizer, we take a closer look at the lifted integrand of the data term.
The following considerations will help us understand the lifted data term and to define
a lifting for subgradients later on. For simplicity reasons we drop the dependency on x
from now on. For data terms with convex integrands g(u),

g∗∗(u) =
{
g(L−1(u)), if u ∈ Q′,
∞, if u ∈ Rk\[0, 1]k,

(88)

holds. In other words, the lifted and unlifted integrand coincide on the respective part
of Γ and Q′. Outside of the convex hull of Q′ the lifted integrand becomes infinity.
In the following we formulate a representation with convex combinations for the lifted
integrand evaluated at a point within the convex hull of Q′: Essentially, the value of g∗∗
at any point u ∈ (conQ′)\Q′ can be expressed as a convex combination of its values at
boundary points, i.e., at points in Q′.
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Lemma 5.2 (Convex Combination for Lifted Integrand of the Data Term)

Let g(u(·)) : Γ → R be lower semi-continuous, proper and convex. Furthermore,
let g∗∗ be defined as in Eq. (72). Every u ∈ [0, 1]k can be represented by a convex
combination u =

∑k
i=1 λi1

αi
i with λ1, ..., λk ∈ [0, 1],

∑k
i=1 λi = 1 and 1α1

1 , ..., 1αkk ∈ Q′
such that

g∗∗
(

k∑
i=1

λi1αii

)
=

k∑
i=1

λig∗∗ (1αii ) (89)

holds.

Proof : Consider a family of functionals {fi}ki=1 with

fi(u) :=
{
g(L−1(u)), if u = 1αi ∈ Q′,
+∞, else.

(90)

Following relationship between {fi}ki=1 and g∗∗ holds, since g is convex:

fi(u) = g∗∗(u), if u = 1αi ∈ Q′. (91)

Due to the definition of the integrand g, all functionals of the family {fi}ki=1 are proper,
lower semi-continuous and convex. According to (Roc70, Cor. 17.1.3), the convex hull f of
the family {fi}ki=1 evaluated at any u(·) is given as

f(u) = inf
λi≥0,
ui∈Rk

{
k∑
i=1

λifi(ui)

∣∣∣∣∣ u =
k∑
i=1

λiui

}
. (92)

For now, we focus on u ∈ [0, 1]k. We only need to consider linear combinations with
ui which have a representation 1αii ∈ Q′, since by definition all functionals of the family
{fi}ki=1 become infinity outside of Q′. Therefore,

f(u) = inf
λi∈[0,1],
1αi
i
∈Q′

{
k∑
i=1

λifi(1αii )

∣∣∣∣∣
k∑
i=1

λi = 1,u =
k∑
i=1

λi1αii

}
. (93)

All functionals f1, ..., fk are lower semi-continuous and their (positive weighted) sum is also
lower semi-continuous. Therefore, the search space is a bounded and closed subspace of R2k

and consequently compact. Every lower semi-continuous function has a minimizer in any
compact set. Therefore, we can replace the infimum by a minimum:

f(u) = min
λi∈[0,1],
1αi
i
∈Q′

{
k∑
i=1

λifi(1αii )

∣∣∣∣∣
k∑
i=1

λi = 1,u =
k∑
i=1

λi1αii

}
. (94)

Due to the relationship (91) between fi and g∗∗, this is equivalent to

f(u) = min
λi∈[0,1],
1αi
i
∈Q′

{
k∑
i=1

λig∗∗(1αii )

∣∣∣∣∣
k∑
i=1

λi = 1,u =
k∑
i=1

λi1αii

}
. (95)
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We proceed with the proof of (89). Since g∗∗ is convex, Jensen’s inequality

g∗∗
(

k∑
i=1

λi1αii

)
≤

k∑
i=1

λig∗∗(1αii ) (96)

holds for arbitrary 1αii ∈ Q′ and λi ∈ [0, 1] adding up to one. Note that the linear combina-
tion used to describe u is not unique, yet the equality g∗∗

(∑k
i=1 λi1

αi
i

)
= g∗∗

(∑k
j=1 λj1

αj
j

)
holds for all possible linear combinations. As a consequence, we can approximate the left-
hand side of (96) by the minimum of the right-hand side:

g∗∗(u) ≤ min
λi∈[0,1],
1αi
i
∈Q′

{
k∑
i=1

λig∗∗(1αii )

∣∣∣∣∣
k∑
i=1

λi = 1,u =
k∑
i=1

λi1αii

}
. (97)

Looking at equation (95), we get

g∗∗(u) ≤ f(u), (98)

which concludes the first part of the proof. Since the convex hull of g on [0, 1]k is proper,
the following equality holds according to equation (28)

g∗∗(u) = cl (con g(u)) = cl

 sup
φ≤g

φ convex

φ(u)

 . (99)

The convex hull f , which is defined in equation (95), is convex and bounds g from below
for any u. This means

g∗∗(u) = cl

 sup
φ≤g

φ convex

φ(u)

 ≥ f(u). (100)

The claimed equality (89) follows with the two inequalities (98) and (100).

In this section we examined the integrand of a sublabel-accurate lifted data term,
where the unlifted data term is convex. We now have the following understanding of
the integrand: For any u ∈ Rk\[0, 1]k the integrand becomes infinity, for any u ∈ Q′

the integrand is equal to the unlifted integrand evaluated at L−1(u). For any other
point u ∈ [0, 1]k\Q′ we can find in accordance to Lemma 5.2 a convex combination
u =

∑k
i=1 λi1αi , such that g∗∗(u) =

∑k
i=1 λig∗∗(1αi ) holds for the lifted integrand.
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Subgradient of the Lifted Integrand of the Data Term

Let us now consider the subgradient used in Alg. 5.1. For the l-th lifted Bregman
iteration we need a subgradient pl−1 of the lifted regularizer evaluated at the solution
of the previous step, or more explicitly pl−1 ∈ TV(ul−1). Since ul is the minimizer of
the l-th iteration,

0 ∈ ∂G(ul) + ∂TV(ul)− pl−1 (101)

holds. Therefore, we can express the subdifferential of the lifted total variation via the
subdifferential of the lifted data term:

∂TV(ul) = pl−1 − ∂G(ul). (102)

In this section we study the subdifferential of the lifted data term. Our aim is to define
a lifting for a subgradient ql of the unlifted data term G(ul), such that Eq. (87) holds
for pl = pl−1−L(ql). Here, we will only define the lifting and leave the proof of Eq. (87)
to future work.
Considering Eq. (31), we expect

∂G(u) ⊃
∫

Ω
∂g(x, u(x))dx, (103)

∂G(u) ⊃
∫

Ω
∂g∗∗(x,u(x))dx (104)

to hold, since g and g∗∗ are both proper, convex, and lower semi-continuous in u. How-
ever, a rigorous proof would be required for this integral version of Eq.(31). We point
the reader to (CHPA18).
From now on we drop the dependency on x and proceed with a couple of assumptions.

Having found the solution ul = γαi of the l-th unlifted Bregman iteration, we assume
that this solution has a lifted counterpart of the form L(ul) = 1αi ∈ Q′, which is the
solution of the l-th lifted Bregman iteration. Furthermore, we assume that any subgra-
dient pl ∈ ∂ G(ul) can be decomposed according to equation (104) and consider the
integrand only. Given p ∈ ∂g(u1), we define a lifting functional L∂i which provides a
lifted counterpart p ∈ ∂g∗∗(L(u1)).
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Theorem 5.3 (Lifting of a Subgradient of the Integrand of the Data Term)
Let u = γαi ∈ Γ be the minimizer of the unlifted problem (79) evaluated at a fixed
point x ∈ Ω. If the unlifted integrand g of the data term in Eq. (79) is convex and
if p is a subgradient of g evaluated at u, define

p := L∂i(p) :=





0
...
0

p(γi+1 − γi)
...

p(γk+1 − γk)


, if p ≤ 0,



p(γ2 − γ1)
...

p(γi+1 − γi)
0
...
0


, if p ≥ 0,

(105)

with p(γi+1−γi) in the i-th row. Then p = L∂i(p) satisfies p ∈ (∂(g∗∗))(L(γαi )) with
g∗∗ defined in Eq. (72) and L given in Eq. (86). In other words: for any subgradient
of g evaluated at u we can find a lifted counterpart L∂i(p) in the subdifferential of
the lifted integrand g∗∗ evaluated at L(u).

Proof : In order to show that Thm. 5.3 holds, we need to prove that p ∈ (∂(g∗∗))(L(u)) holds,
which is equivalent to the following inequation:

g∗∗(v) ≥ g∗∗(L(u)) + 〈p,v− L(u)〉, ∀v ∈ [0, 1]k. (106)

Please note that the case v ∈ Rk\[0, 1]k is trivial, since g∗∗ becomes infinity outside of
[0, 1]k. We are going to consider the two cases v ∈ Q′ and v ∈ [0, 1]k\Q′ separately.

First Case Let v ∈ Q′ and define p according to (105). Let

L(u) = u = 1αi ∈ Q′, (107)

L(v) = v = 1βj ∈ Q
′, (108)

u = γi + α(γi+1 − γi), (109)
v = γj + β(γj+1 − γj). (110)

Since g is convex, g∗∗(L(v)) = g(v) and g∗∗(L(u)) = g(u) hold for any u, v ∈ Γ. Due to the
assumption p ∈ ∂g(u),

g(v) ≥ g(u) + p(v − u) (111)
(109)(110)⇔ g(v) ≥ g(u) + p(γj + β(γj+1 − γj)− γi − α(γi+1 − γi)) (112)
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holds for any v. In case of i = j this reduces to

g(v) ≥ g(u) + p(γi+1 − γi)(β − α). (113)

In the following, we consider all possible cases for p, i, j. For each case we proceed by
substituting p, L(u) = 1αi , L(v) = 1βi , g∗∗(L(v)) = g(v) and g∗∗(L(u)) = g(u) on the
right-hand side of equation (106) and consequently we show that the inequality holds by
referring to the equations (112) and (113).
Let i = j and p ∈ ∂g(u) arbitrary. After the substitution we get

g(v) ≥ g(u) + p(γi+1 − γi)(β − α), ∀v ∈ Q′, (114)

which holds according to (113).
Let us next consider the case of a non-negative subgradient p ≥ 0. This means, that its
lifted representation p is a vector which contains zeros at the positions (i + 1) to k. For
j > i the vector L(v) − L(u) has (i − 1) zeros followed by (1 − α) and some other terms,
which are of no interest to us. We can estimate

g∗∗(L(u)) + 〈p, L(v)− L(u)〉 (115)
= g(u) + p(γi+1 − γi)(1− α) (116)
≤ g(u) + p((γj − γi)− α(γi+1 − γi)) (117)
≤ g(u) + p((γj − γi)− α(γi+1 − γi)) + β(γj+1 − γj)) (118)
(112)
≤ g(v) = g∗∗(v). (119)

For j < i the vector L(v)− L(u) is non-zero at the positions j, ..., i. After the substitution
and with equation (112) we get

g∗∗(L(u)) + 〈p, L(v)− L(u)〉 (120)

= g(u) + p(β − 1)(γj+1 − γj)−
i−1∑

k=j+1
p(γk+1 − γk)− αp(γi+1 − γi) (121)

= g(u) + βp(γj+1 − γj)−
i−1∑
k=j

p(γk+1 − γk)− αp(γi+1 − γi) (122)

= g(u) + βp(γj+1 − γj) + pγj − pγi − αp(γi+1 − γi) (123)
= g(u) + p((γj − γi)− α(γi+1 − γi)) + β(γj+1 − γj)) (124)
(112)
≤ g(v) = g∗∗(v). (125)

Let us now consider the case of a non-positive subgradient p ≤ 0. In this case, the proposed
lifting results in a vector whose first i entries are zero. For j < i, the vector L(v)− L(u) is
(−α) at the i-th position followed by zeros. This leads to the estimation

g∗∗(L(u)) + 〈p, L(v)− L(u)〉 (126)
= g(u) + p(γi+1 − γi)(−α) (127)
≤ g(u) + p((γi+1 − γi)(−α) + (β − 1)(γj+1 − γj)) (128)
≤ g(u) + p((γi+1 − γi)(−α) + β(γj+1 − γj)− (γi − γj)) (129)
(112)
≤ g(v) = g∗∗(L(v)). (130)
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For j > i the vector L(v)− L(u) has non-zero entries at the positions i, ..., j. One last time
we apply the substitution and get

g∗∗(L(u)) + 〈p, L(v)− L(u)〉 (131)

= g(u) + (1− α)p(γi+1 − γi) +
j−1∑
k=i+1

p(γk+1 − γk) + βp(γj+1 − γj) (132)

= g(u)− αp(γi+1 − γi) +
j−1∑
k=i

p(γk+1 − γk) + βp(γj+1 − γj) (133)

= g(u)− αp(γi+1 − γi) + pγj − pγi + βp(γj+1 − γj) (134)
= g(u)− pα(γi+1 − γi) + p(γj + β(γj+1 − γj)− γi) (135)
(112)
≤ g(v) = g∗∗(L(v)). (136)

This concludes the proof of the first case.
Second Case It remains to consider v ∈ [0, 1]k\Q′. According to Lemma (5.2), there
exists a convex combination v =

∑k
j=1 λj1

βj
j with λ1, ..., λk ∈ [0, 1],

∑k
j=1 λj = 1, and

β1, ..., βk ∈ [0, 1], for which

g∗∗
 k∑
j=1

λj1
βj
j

 =
k∑
j=1

λjg∗∗
(
1βjj
)

(137)

holds. For arbitrary v =
∑k
j=1 λj1

βj
j ∈ [0, 1]k\Q′ with vj := 1βjj ∈ Q′ and p as in (105),

the following approximation holds:

g∗∗(v) = g∗∗
 k∑
j=1

λj1
βj
j

 =
k∑
j=1

λjg∗∗
(
1βjj
)

=
k∑
j=1

λjg(vj) (138)

≥
k∑
j=1

λj(g(L(u)) + 〈p,vj − L(u)〉) (139)

=
k∑
j=1

λjg(L(u)) +
k∑
j=1

λj〈p,vj − L(u)〉 (140)

=
k∑
j=1

λjg(L(u)) + 〈p,
k∑
j=1

λj(vj − L(u))〉 (141)

=
k∑
j=1

λjg(L(u)) + 〈p,
k∑
j=1

λjvj −
k∑
j=1

λjL(u)〉 (142)

= g(L(u)) + 〈p,
k∑
j=1

λjvj − L(u)〉 (143)

= g(L(u)) + 〈p,v− L(u)〉. (144)

This concludes the proof of (105). We have indeed found a lifting, which gives us for any
subgradient of the integrand of the unlifted data term a subgradient of the integrand of the
lifted data term.
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In this chapter, we introduced the lifted Bregman iteration Alg. 5.1. We made the
conjecture that the Bregman iteration and its lifted counterpart lead to equivalent results
on convex variational problems with total variation regularizer. We took a first step
towards proving this assumption by defining a lifting for subgradients of the integrands of
the unlifted data term. For a comprehensive proof it remains to show that the inclusion in
Eq. (103) holds, and that using the subgradient and its lifted counterpart in the original
and lifted Bregman iteration respectively results in equivalent minimizers. As a useful
supplementary insight, we proved that any integrand of the sublabel-accurate lifted
data term evaluated at some point in [0, 1]k can be rewritten as a convex combination
of evaluations at points in Q′.
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We aim to experimentally validate some of our conjectures concerning the lifted Bregman
iteration, which we introduced in the last chapter. First, we discuss details on the
discretization and implementation of the algorithm. Then, consider the ROF model in
order to compare the results and behavior of the original and lifted Bregman iteration
on convex problems. Finally, we show first results achieved with the novel algorithm on
the non-convex stereo matching problem.

Discretization and Implementation

Discretization an Numerical Optimization. We begin by providing the formula-
tion for the discretization of the sublabel-accurate lifted problem and recall some steps
deduced for numerical optimization in (MLM+15). As we will see later, this formulation
of the discretized lifted problem is easily extended to the Bregman iteration and offers
a straightforward way of choosing subgradients. For more details and interim steps on
the numerical optimization, we refer the reader to the original paper.
Let Ωh denote the 2-dimensional Cartesian grid with grid spacing h representing the

discretized image domain Ω ⊂ R2. According to (MLM+15), the sublabel-accurate lifted
problem (82) is discretized to

arg min
u:Ωh→Rk

∑
x∈Ωh

{g∗∗(x,u(x)) + Φ∗∗(x,∇u(x))} , (145)

where g∗∗(x,u(x)) is given by Eq. (72) and Φ∗∗(x,∇u(x)) by Eq. (77). Following
(MLM+15), we drop the dependency on x when possible for simplicity reasons. The
data term requires to calculate the maximum over the conjugates g∗i (73) with respect
to the labels i = 1, ..., k. This is simplified by introducing the real variable t (147). We
get the formulation:

arg min
u:Ωh→Rk

max
t:Ωh→R

v:Ωh→Rk
q:Ωh→Rk×d

〈u,v〉 − ∑
x∈Ωh

t(x) + 〈q,∇u〉

 , (146)

s.t. t(x) ≥ g∗i (v(x)), (147)
|qi|2 ≤ γi+1 − γi, (148)

with qi denoting the i-th row of q. Solving this problem using proximal methods such
as PDHG, requires to implement explicit projections on the constraint sets. In order to
simplify the projections onto (147),
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the authors introduce another auxiliary variable z : Ωh → Rk (150) with rows zi, which
results in the problem

arg min
u:Ωh→Rk

max
t:Ωh→R

v:Ωh→Rk
q:Ωh→Rk×d

〈u,v〉 −
∑
x∈Ωh

t(x) + 〈q,∇u〉, (149)

s.t. zi(x) = (t(x)− ci(v(x)))(γi+1 − γi), (150)

zi(x) ≥ g∗i
( vi(x)
γi+1 − γi

)
(γi+1 − γi), (151)

|qi|2 ≤ γi+1 − γi. (152)

The first equality constraint (150) is implemented with the help of a Lagrange multiplier
s : Ωh → Rk. For the second constraint (151), the authors provide two options for
the orthogonal projections onto the epigraphs of the conjugates g∗i for quadratic and
piecewise linear convex pieces gi.
Most importantly, the discretized total variation is given by the term

F h(∇u) :=
∑
x∈Ωh

Φ∗∗(∇u(x)) = max
q:Ωh→Rk×d

∑
x∈Ωh
〈q(x),∇u(x)〉 − δK(q(x))

 . (153)

with set K given by Eq. (78). Here, the F h – which denotes the sum over Φ∗∗ – is proper
and convex, ∇ is a linear transform, and the range of ∇ contains a point of the relative
interior of the domain of F h. Therefore, we can apply (Roc70, Thm. 23.9) and get

∂(F h ◦ ∇)(u(x)) = ∇>(∂F h)(∇u(x)). (154)

Since Φ∗∗ is proper and lower semi-continuous, we get with Eq. (31)

∂F h(∇u(x)) ⊃
∑
x∈Ωh

∂Φ∗∗(∇u(x)). (155)

In addition, Φ∗∗ is convex and for fixed x ∈ Ωh a subgradient of Φ∗∗ fulfills (RW09,
Prop. 11.3)

p ∈ ∂Φ∗∗(z)⇔ p ∈ arg max
p∈Rk×d

{〈p, z〉 − δK(p)} . (156)

This means that ∇>q, with q being the miximizer of Eq. (153) is a subgradient of
F h(∇ul). We can use this for the discretized lifted Bregman iteration by incorporating
the maximizer q ascertained in the preceding iteration into the subsequent iteration.
This results in the following formulation for the discretization of the lifted Bregman
iteration:
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6.1 Discretization and Implementation

Algorithm 6.1 (Discretized Lifted Bregman Iteration)

1. Initialize p0 = 0.

2. For l = 0, 1, ... and while the stopping criterion is not fulfilled, solve

ul = arg min
u:Ωh→Rk

max
t:Ωh→R

v:Ωh→Rk
q:Ωh→Rk×d

〈u,v〉 − ∑
x∈Ωh

t(x) + 〈q,∇u〉 − 〈pl−1,∇u〉

 , (157)

s.t. zi(x) = (t(x)− ci(v(x)))(γi+1 − γi), (158)

zi(x) ≥ g∗i
( vi(x)
γi+1 − γi

)
(γi+1 − γi), (159)

|qi|2 ≤ γi+1 − γi. (160)

Set pl = q.

Implementation. The implementation in this thesis is based on the libraries prost
and sublabel_relax (MLM+15). Prost allows to solve large-scale problems of the form

min
u∈Rn

max
v∈Rm

{g(u) + 〈Ku, v〉 − f∗(v)} . (161)

Here, K is a linear operator, g : Rn → R and f∗ : Rm → R are convex functionals. The
library provides the ADMM (Hes69, EB92) and the PDHG (EZC10, PCBC09, PC11,
GLY+13) solver. Both solvers are implemented in CUDA. Sublabel_relax offers an
extension of prost to the functional-lifting setting. In this thesis, we extend the libraries
to the lifted Bregman iteration, in particular we reuse and extend some of the examples
presented in the libraries. Since the libraries are not well documented, we provide a
short introduction and some helpful information in the appendix.
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Numerical Results

We present the results of the lifted Bregman iteration on two well-known problems.
First, we consider the convex ROF model. Since the original Bregman iteration is also
applicable to the ROF model, we can compare the results obtained in the lifted and
unlifted setting. The second considered example is the non-convex stereo matching
model. Unlike the first example, there is no empirical way to verify the results, since the
combination with the sublabel-accurate lifting allows the use of the iterative Bregman
regularization on this specific problem for the first time.
The experiments were run on a computer with the following specifications:

• Ubuntu 16.04.3 LTS

• CPU Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz

• RAM 15 GB

• NVIDIA GeForce GTX 480, 1536 MB

• NVIDIA CUDA, release 8.0, V8.0.61

• Matlab 2017a

Iterative Bregman Regularization on Lifted ROF

Consider the ROF energy term∫
Ω
||u(x)− f(x)||22dx+ λTV (u(x)), (162)

where f is the input picture. We want to compare the results of the iterative Breg-
man regularizer on the unlifted and the sublabel-accurate lifted problem. We use an
image w from the prost library (MLM+15) and add artificial Gaussian white noise v
with standard deviation 0.1, such that our input image is f = w + v.
First, we solve the unlifted problem using CVX, a package for specifying and solving

convex programs (GB14, GB08). We choose λ = 20 and use the forward Neumann
difference operator for the discretized TV in order to match the implemented example
in sublabel_relax. We stop the iteration according to the discrepancy principle as
soon as we have a solution ul such that ||f − ul||L2 < ||f − v||L2 .
For the lifted Bregman iteration we consider the case of two- and five-label lifting.

The first case is equivalent to the unlifted problem and we can use its solution as an
indicator of the error introduced by projecting the lifted solution onto the original label
space.
We choose the PDHG solver. Before running the lifted Bregman iteration, we need

to adjust the parameters of the solver. Our aim is to avoid deviations of the solution
of the lifted from the ones of the unlifted Bregman iteration induced by the choice of
the solver parameters. Therefore, we begin by solving the first iteration step of the two
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6.2 Numerical Results

two labels five labels
step-size alg2 alg2
residual_iter 16 12
alg2_gamma 0.001 λ 0.00001 λ
tau0 15 13
sigma0 0.09 0.11

Table 1: Parameters of PDHG solver for lifted Bregman iteration on ROF

lifted problems. We project both solutions onto the original label space and calculate
both objective function values without the Bregman term according to Eq. (162). We
compare these values to the optimality value of the solution of the first unlifted iteration
step. We then fine-tune the parameters of the solver, until the difference between the
lifted and the unlifted optimality value becomes minimal. This results in the parameters
listed in Tab. 1.
After specifying the parameters, we continue by solving the remaining iteration steps.

Since the ROF is a convex problem, we expect the results of the lifted and unlifted
Bregman iteration to be equal up to machine accuracy. Both the unlifted Bregman
iteration and the two-label lifted Bregman iteration take 15 iteration steps before the
discrepancy principle is fulfilled. The five-label lifted Bregman iteration requires 18
iteration steps and takes almost twice as long as the two-label lifted iteration. For
details on the runtime, see Fig. 13. We calculate the optimality values of all solutions
by inserting the solutions into Eq. (162). The result is shown in Fig. 12. The optimality
values of the unlifted and the two-label lifted problem are equal up to machine accuracy.
The optimality values of the unlifted and the five-label lifted problem show some larger
deviations, especially around iteration three to six.
Next, we compare the actual output images. In Fig. 14 we show a selection of inter-

esting interim steps. The solutions of the unlifted and the two-label lifted problem are
visually identical. The five-label lifted iteration shows a similar qualitative behavior.
However, we observe that in the case of the five-label lifting, the algorithm needs more
iteration steps to recover the basic outline of the shape. This is particularly noticeable
in iteration three to six, as is shown in Fig. 15.
The different convergence behavior of the unlifted and five-label lifted problem might

be due to the fact, that we were not able to determine solver parameters (see Tab. 1) for
which the solution of the first five-label lifted iteration came as close to the solution of
the first unlifted iteration, as the solution of the first two-label lifted iteration. Another
possible explanation is that the choice of the subgradient affected the results. For the
unlifted Bregman iteration we followed (OBG+05) and chose subgradients by solving
pl := pl−1−ul+f . For the lifted Bregman iteration, we chose the subgradient according
to Alg. 6.1.
Although we were not able to reproduce the exact results of the Bregman iteration

with the five-label lifted version, the results look very promising. It appears that the
lifted Bregman iteration shows overall the same qualitative properties as the original
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Bregman iteration.

Figure 12: Objective function values. Left: Values obtained by plugging the solutions
of the Bregman iteration into the objective function of the unlifted ROF problem (162).
Middle: Per-pixel averaged absolute difference between the optimality of the two-label
lifted and unlifted iteration. Right: Respective difference between the solutions of the
five-label lifted and unlifted iteration. Note the different scales of the y-axes of the middle
and right plot. The unlifted and two-label lifted iteration render the same optimality
up to machine accuracy. The optimality values of the five-label lifted iteration deviate
especially for the first iterations. When we fitted the parameters of the PDHG solver so
as to obtain preferably equivalent solutions in the first unlifted and lifted iteration, the
difference in optimality was larger for the five-label lifting than in the two-label lifting
scenario (10−4 as opposed to 10−7). This difference might have propagated through the
choice of subgradients. For solutions of the iterations see Fig. 15.

Figure 13: Duration of iteration steps. The plot depicts the runtime needed to
solve the single Bregman iterations on the ROF problem. The two-label lifted Bregman
iteration takes half as long as the five-label lifted one. Overall, the runtime does not
change much over the iterations. The only exception is the runtime of the first iteration
in the five-label lifting scenario. We do not have an explanation for this outlier.
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(a) Unlifted, l = 1 (b) Two labels, l = 1 (c) Five labels, l = 1

(d) Unlifted, l = 3 (e) Two labels, l = 3 (f) Five labels, l = 3 (g) Difference, l = 3

(h) Unlifted, l = 5 (i) Two labels, l = 5 (j) Five labels, l = 5 (k) Difference, l = 5

(l) Unlifted, l = 15 (m) Two labels, l = 15 (n) Five labels, l = 15 (o) Difference, l = 15

Figure 14: Results of the Bregman iteration on ROF (1). Solutions of the first,
third, fifth, and last Bregman iteration on the unlifted (left column), two-label lifted
(second column) and five-label lifted (third column) ROF problem. The right column
shows the absolute difference of the two-label and five-label lifted iteration multiplied
by factor ten. The solutions of the unlifted and two-label lifted problem show no visible
difference. The Bregman iteration on the five-label lifted ROF problem needs three more
steps until the iteration is terminated according to the discrepancy principle and some
differences are visible in the third and fifth iteration. The plots have been generated
using CVX (GB14, GB08), and the prost and sublabel_relax library (MLM+15).
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(a) Unlifted, l = 2 (b) Five labels, l = 2 (c) Unlifted, l = 6 (d) Five labels, l = 6

(e) Unlifted, l = 3 (f) Five labels, l = 3 (g) Unlifted, l = 7 (h) Five labels, l = 7

(i) Unlifted, l = 4 (j) Five labels, l = 4 (k) Unlifted, l = 8 (l) Five labels, l = 8

(m) Unlifted, l = 5 (n) Five labels, l = 5 (o) Unlifted, l = 9 (p) Five labels, l = 9

Figure 15: Results of the Bregman iteration on ROF (2). Solutions of the second
to ninth Bregman iteration on the unlifted (first and third column) and five-label lifted
(second and fourth column) ROF problem. In between the third and sixth iteration some
basic contours are recovered faster in the unlifted than in the five-label lifted scenario. As
of the seventh iteration, the solutions of the unlifted and five-label lifted problem show
no more visible differences. The plots have been generated using CVX (GB14, GB08),
and the prost and sublabel_relax library (MLM+15).
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Iterative Bregman Regularization on Lifted Stereo Matching

For our second example we consider the stereo matching model as a non-convex problem.
Following (MLM+15), we use a truncated sum of absolute gradient differences calculated
on 4 × 4 patches as penalty term. We use two preprocessed images from (SHK+14) as
input. We solve the lifted Bregman iteration Alg. 6.1 with λ = 20 for four and eight
labels respectively. Again, we use the forward Neumann difference operator and the
PDHG solver.
In this scenario, we cannot use the discrepancy principle as a stopping criterion for

the Bregman iteration, since we do not have a ground truth. Therefore, we stop the
iteration after fifty steps. The runtime of the iteration steps is depicted in Fig. 16. The
eight-label lifted Bregman iteration takes more than twice as long as the four-label lifted
one. Whereas the ROF Bregman iteration steps were solved within seconds, the stereo
matching iteration steps take around 4-9 minutes.

Figure 16: Duration of iteration steps. Runtime needed to solve single iterations on
the stereo matching problem. In the eight-label lifting scenario, the runtime is approxi-
mately twice as long as in the four-label lifting scenario. The runtime almost does not
change over the iterations.

The results of the four- and eight-label lifted Bregman iteration are shown in Fig. 17
and Fig. 18. Although we have not yet analyzed the lifted Bregman iteration on non-
convex problems theoretically, the first experimental results look promising: The lifted
Bregman iteration appears to present the same inverse scale-space properties on the
stereo matching problem as on the ROF problem. The solution of the first iteration
shows an oversimplified approximation of the actual depth and as the iteration proceeds
more and more detail is added to this approximation. In the eight-label lifting case,
details appear slightly sooner than in the four-label lifting case.
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(a) Four labels, l = 1 (b) Four labels, l = 2 (c) Four labels, l = 3 (d) Four labels, l = 4

(e) Four labels, l = 5 (f) Four labels, l = 6 (g) Four labels, l = 7 (h) Four labels, l = 8

(i) Four labels, l = 9 (j) Four labels, l = 10 (k) Four labels, l = 11 (l) Four labels, l = 12

(m) Four labels, l = 13 (n) Four labels, l = 14 (o) Four labels, l = 15

Figure 17: Results of the Bregman iteration on stereo matching (1). Left
to right, top to bottom: Solutions of the four-label lifted Bregman iteration on the
stereo matching model. The first solution gives very vague depth information and as
the iteration continues more and more details become visible. This reminds of inverse
scale spaces. The iteration was solved using the prost and sublabel_relax libraries
(MLM+15).
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(a) Eight labels, l = 1 (b) Eight labels, l = 2 (c) Eight labels, l = 3 (d) Eight labels, l = 4

(e) Eight labels, l = 5 (f) Eight labels, l = 6 (g) Eight labels, l = 7 (h) Eight labels, l = 8

(i) Eight labels, l = 9 (j) Eight labels, l = 10 (k) Eight labels, l = 11 (l) Eight labels, l = 12

(m) Eight labels, l = 13 (n) Eight labels, l = 14 (o) Eight labels, l = 15

Figure 18: Results of the Bregman iteration on stereo matching (2). Left to
right, top to bottom: Solutions of the first to fifteenth Bregman iteration on the eight-
label lifted stereo matching model, solved with the libraries prost and sublabel_relax
(MLM+15). Consistent to the four-label lifted scenario, the first solution gives very
vague information on the depth and as the iteration continues more and more details is
gained. However, the details appear slightly sooner than in the four-label lifted scenario.
Maybe the eight-label lifting gives a better approximation of the originally non-convex
energy term, or the choice of different subgradients lead to better results.

53



Implementation and Numerical Results

54



Conclusion and Discussion
In this thesis, we proposed a novel approach that combines two powerful methods used
in imaging. The iterative Bregman regularization (OBG+05), which reduces the loss of
contrast and results in inverse scale spaces, and functional lifting, which is used in order
to find better – ideally globally optimal – minimizers of non-convex model, by approx-
imating the original problem with a larger although convex model. In particular, we
considered a functional lifting method, which allows for sublabel-accurate discretization
(MLM+15). By combining both methods, we obtained the lifted Bregman iteration,
which allows to apply the iterative Bregman regularization to non-convex variational
problems. We anticipated that the proposed method results in equivalent minimizers as
the original Bregman iteration, when applied to convex problems.
We investigated the latter assumption both theoretically and experimentally. In Ch. 5,

we took some first steps towards proving that both iterations lead to equivalent results
on convex problems with total variation regularizer. Since the first iteration in both
the old and the new method do not include the Bregman term, we took equivalency in
this step for granted (PSG+08, MLM+15). We then argued, that for any subgradient
used in the unlifted iteration, we should be able to find an equivalent lifted subgradient.
In Thm. 5.3 we deduced a lifting for subgradients of the unlifted data-term integrands,
which results in subgradients of the lifted data-term integrands. In order to complete
the proof a few more steps are required, which we leave to future work. It still remains
to be shown, that we can find a decomposition of the subgradient used in the unlifted
iteration with respect to the integrands of the data term. Furthermore, it needs to be
shown, that the use of this lifted subgradient in the lifted Bregman iteration results in
a minimizer, which is equivalent to the minimizer of the unlifted Bregman iteration.
In the experimental section we examined two problems numerically. The convex ROF

model on artificial input data and the non-convex stereo matching model on a real-life
example. In order to solve the lifted Bregman iteration, we used the two libraries prost
and sublabel_relax (MLM+15).
We performed both the unlifted and lifted Bregman iteration on the ROF problem.

For the lifted iteration we considered the case of two- and five-label lifting. The two-
label lifting does in fact not imply a lifting, since the solution space remains of the same
dimension. We used this case to estimate how much difference in the results should be
attributed to machine inaccuracy and the use of different solvers – cvx (GB14, GB08)
in the unlifted and PDHG (ZC08) in the lifted case. The results on the lifted and
unlifted Bregman iteration were only for the two-label lifting equivalent up to machine
accuracy. The five-label lifting resulted in a different convergence velocity, yet overall
the five-label lifted Bregman iteration showed the same behavior as the unlifted one.
We conjecture that the difference in convergence velocity is caused by the fact that
the solutions of the first lifted and unlifted iteration were already not equivalent up to
machine accuracy. For the five-label lifting we were not able to adjust the parameters
of the PDHG solver as well as in the two-label lifting case. Due to the different first
solutions it is standing to reason, that subgradients which are not equivalent were chosen
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and used in the following iterations. In order to further investigate this issue, future
experiments could include using lifted versions (Thm. 5.3) of the unlifted subgradients
in the lifted Bregman iteration.
In our second experiment, we considered the stereo matching model as a non-convex

variational problem. Although we have not yet analyzed this scenario theoretically, the
first experimental results look promising. The lifted Bregman iteration appears to show
the same inverse scale space flow properties as in the convex scenario. The first result
is a vague approximation of the actual depth map and as the iteration continues the
output acquires more and more detail.
We made some observations concerning the library sublabel_accurate, which are not

directly related to the topic of this thesis, but might be of interest for future research.
Due to the connection of the implemented lifting approach to the one introduced in
Ch. 4.2.2, we have some expectations concerning the solution of a sublabel-accurate
lifted problem: for the lifted formulation of an originally convex problem, we expect to
find a minimizer in Q′ defined by Eq. (69). Concerning originally non-convex problems,
we expect to find a minimizer u = (u1, ...,uk) for which u1 ≥ u2 ≥ ... ≥ uk holds.
This was only the case, when we solved minimization problems without regularization
term. As soon as we added the total variation regularizer to the equation, the results did
not take the expected forms anymore. This behavior is another possible explanation for
the deviations in the five-label lifted ROF scenario. The possibility of adding another
constraint to the sublabel-accurate lifting should be examined in the future.
In summary, the lifted Bregman iteration is an interesting new approach, which might

extend the application field of the iterative Bregman regularization to non-convex prob-
lems. There are many open mathematical and numerical questions; under which con-
ditions is the iteration well defined? How does the choice of the subgradient affect the
result of the Bregman iteration? How can our proof in Ch. 5.2 be completed? Does
the lifted Bregman iteration – for convex and non-convex problems alike – result in
an inverse scale space flow in its continuous limit? Although there remain many open
theoretical questions, the first experimental results look promising and entice to future
research.
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Appendix
Source Code Overview

Since the libraries sublabel_relax and prost are not well documented, we provide
a short introduction for convenience reasons. As mentioned in chapter 6.1, prost is
designed to solve variational problems of the form

min
u∈Rn

max
v∈Rm

g(u) + 〈Ku, v〉 − f∗(v). (163)

Here, K is a linear operator, g : Rn → R and f∗ : Rm → R are convex functionals. The
prost library allows the user to describe a given variational problem quite naturally.
This is done by following these steps:

1. Declaration of variables ui ∈ Rni

→ u1 = prost.variable(n1);
→ u2 = prost.variable(n2);

2. Declaration of sub-variables if necessary vz = (v, z) ∈ Rn1+n2

→ vz = prost.variable(n1 + n2);
v = prost.sub_variable(vz, n1);
z = prost.sub_variable(vz, n2);

3. Allocation of primal or dual status to the variables

→ problem = prost.min_max_problem({u, s} ,{vz, q, p});
Minimizes over u and s
Maximizes over vz, q and p

4. Description of variational problem

→ problem.add_function(q, prost.function.(...));
Describes g(u) and f∗(v) in equation 163

→ problem.add_dual_pair(u, v, prost.block.(...));
Describes 〈Ku, v〉 in equation 163, where K = prost.block.(...)

5. Choice of backend

→ backend = prost.backend.pdhg(...);
→ backend = prost.backend.admm(...);
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6. Specification of solver options

→ opts = prost.options(...);

7. Solution of problem

→ solution = prost.solve(problem, backend, opts);

In the third step it is also possible to describe a primal or dual problem. In the
fourth step we usually need to add multiple functions to describe the problem, since
each added function can only depend on one variable. Both libraries provide a couple of
implemented functions, such as the Euclidean or absolute difference. In order to add a
dual pair we always need one primal and one dual variable. The variables are connected
as a semi inner product, where the matrix given in the third argument is a prefactor of
the primal variable. Both libraries provide some implemented matrices, such as sparse
or the forward Neumann gradient operator.
The fourth step can be quite restrictive, since there is only a limited amount of imple-

mented functions and matrices. In Alg. 6.1 we can replace the Bregman term with the
equivalent expression 〈ql−1,∇u〉, were ql−1 is a real-valued vector and u a primal vari-
able. Since the difference operator ∇ is only implemented for primal dual pairs, we need
to declare an auxiliary dual variable a with the size of ql−1. The restriction a = ql−1
can be specified as an auxiliary function. Only then the artificial dual variable a and
the primal variable u can be combined. The formulation of 〈ql−1,∇u〉 then presents as
〈a,∇u〉+ δql−1(a), where δql−1(a) is only zero for a = ql−1 and infinity otherwise.
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