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Abstract

This thesis proposes an approach to automatically handle non-corresponding re-

gions in image registration. Non-corresponding regions pose a particular challenge

because they cannot be reasonably matched to equivalent regions. Using state-

of-the-art algorithms typically leads to unwanted and unrealistic deformations in

those image regions. Although there are various approaches considering this topic,

they typically focus on specific applications and provide no general solution. The

proposed approach is not limited to a single scenario and is thus also designed to

handle different distance measures. We present an automatic weight computation,

based on the Sum of Squared Differences (SSD) and the Normalized Gradient Field

(NGF) distance measure, to reduce the effects of non-corresponding regions in a

variational registration framework with an elastic regularizer. While experiments

with the NGF distance measure could not show significant differences, several ex-

periments with SSD qualitatively and quantitatively demonstrate the superiority

of the proposed approach compared to a standard approach.

Zusammenfassung

In dieser Arbeit wird ein Ansatz zur automatischen Behandlung von nicht-korres-

pondierenden Region in der Bildregistrierung vorgestellt. Nicht-korrespondierende

Regionen stellen eine besondere Herausforderung dar, da sie nicht sinvoll auf

entsprechende Regionen abgebildet werden können. Die Nutzung von Standard-

verfahren führt typischerweise zu unrealistischen Deformationen in diesen Bild-

bereichen. Obwohl es verschiedene Ansätze zu dieser Problematik gibt, fokussieren

diese typischerweise eine spezifische Anwendung und liefern keine allgemeine Lösung.

Der hier vorgeschlagene Ansatz is nicht auf ein einzelnes Szenario beschränkt und

ist daher auch entworfen, verschiedene Distanzmaße handhaben zu können. Wir

präsentieren eine automatische Berechnung eines Gewichts, basierend auf dem

Sum of Squared Differences (SSD) und dem Normalized Gradient Field (NGF)

Distanzmaß, um den Einfluss nicht korrespondierender Regionen innerhalb eines

variationellen Registrierungskonzepts mit elastischem Regularisierer zu reduzieren.

Während Experimente mit dem NGF Distanzmaß keine signifikanten Unterscheide

zeigen konnten, demonstrieren verschiedene Experimente mit SSD sowohl quali-

tativ als auf quantitativ die Überlegenheit des vorgestellten Ansatzes gegenüber

einem Standardverfahren.
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1 Introduction

1.1 Medical Image Registration

Image registration is a central task in different fields of image processing including

medical image processing [1]. Combining the information of two images is often

needed in medical applications. Those applications include for example follow-up

examinations and image fusion. A direct comparison is not possible because the

images are obtained with different settings (e.g. angles, poses, modalities) or the

images are of similar (but different) scenes. The task of image registration is to

align the images in such a way, that corresponding objects match and information

can be compared. Figure 1.1 shows an example of an image registration task. Two

computed tomography images are aligned by two different approaches.

Therefor an optimal transformation which describes the spatial relation between

the two images has to be determined. The kind of transformation as well as the

meaning of optimal can be chosen and influence the result.

There are several kinds of transformation used in image registration like linear,

polynomial, and spline transformation as well as non-parametric transformations

which provide a displacement vector for every image position [2]. Optimality is

typically evaluated by combining a distance measure and a regularizer [2]. The dis-

tance measure evaluates the similarity of the images and the regularizer evaluates

characteristics of the transformation. There are different proposed regularizers,

for example the physical motivated elastic and fluid regularizers or the diffusion

regularizer [3].

A straight forward approach for the similarity of two images is the difference of the

voxel intensities, which leads to the well-known sum of squared differences (SSD)

distance measure [1, 2]. Evaluation of the SSD is only reasonable for images with a

standardized intensity scale, i.e. a physical phenomenon is always represented by

(approximately) the same intensity value. For computed tomography (CT) images

the Hounsfield scale provides this characteristic by fixing values for the attenuation

of air and water and interpolating other values accordingly [4]. This makes regis-

tration with SSD especially suitable and powerful for CT images. Images obtained
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1.2 A Challenge in Image Registration: Non-corresponding Regions

Figure 1.1: Image registration presented on a abdomen-thorax CT scan and an

abdomen CT scan. From left to right: Reference image, template image, template

image transformed by a standard elastic registration approach, template image

transformed by the proposed approach. Non-corresponding regions, which lead to

different transformations, occur as different filling of the intestines in the inferior

left part of the abdomen.

by different modalities like magnetic resonance imaging (MRI), positron emission

tomography (PET) or single photon emission computed tomography (SPECT) re-

quire other distance measures. Different distance measures capable to compare

multi-modal images have been proposed, including mutual information [5], nor-

malized cross correlation [6] or normalized gradient fields (NGF) [7].

1.2 A Challenge in Image Registration: Non-corresponding

Regions

Image registration is typically used to match similar images, as for example two

images showing the abdomen of a patient at different points in time. Registration

can then be used to match the liver in both images. But there are also situations

with fundamental differences besides deformations. For example surgeries, as liver

resection, can change the anatomy so that the images of the same patient feature

differences. Due to the minimization of the distance measure, these differences

are typically compensated by the transformation. In the example of the resection

2



1.3 Approaches meeting this Challenge: State of the Art

missing parts of the liver can “grow back” by the registration [8]. This behavior is

typically unwanted and can occur in different settings, for example tissue resection

[8, 9, 10, 11, 12, 13, 14], tumor growth [9, 13, 14], or display of medical equipment

[15, 16]. Further occurences of non-corresponding regions could also include bone

drill out, different filling of digestive organs, or transplantation. In Figure 1.1 the

filling of the intestines differs in the reference and the template image. Contrast

agent and air moved through the intestines and lead to non-corresponding regions,

especially in the left inferior part of the abdomen.

State-of-the-art non-rigid registration algorithms, which do not explicitly handle

non-corresponding regions typically estimate a deformation which either shrinks

or expands an image region to compensate for the missing correspondence. Effects

like this can be seen in the third image of Figure 1.1. Here some areas are expanded

and surrounding regions are shrunk to yield a better alignment.

1.3 Approaches meeting this Challenge: State of the Art

There are some approaches which cope with the problem of missing correspon-

dences. Most of them are specialized in certain applications, first and foremost in

brain resection. Due to the specialization, assumptions can be made to constraint

the registration task accordingly.

The task to register images with a medical device displayed in only one image

is considered by Berendsen et al. [15, 16]. It is assumed that the segmentation

of the medical device is known. Deformation caused by the device can thus be

compensated.

Kwon et al. develop a method to register pre- and post-operative brain images

[9]. The tumor, resection cavity, and recurrences are segmented based on models

which adapt to each scan. They include a-priori knowledge that tumor regions of

the pre-operative image will be mapped to resection regions in the post-operative

image and recurrences are likely to appear close to resected tumors.

A demon based registration algorithm which accounts for tissue resection was pro-

posed by Nithiananthan et al. [10]. A 4th dimension is added which enables to
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1.3 Approaches meeting this Challenge: State of the Art

remove volumes from the image and map it to a separate image. Here segmenta-

tion and registration are computed simultaneously. Non correspondences are only

handled for the scenario of tissue to air mapping.

Periaswamy et al. [17] suggests to model the probability for each voxel to be cor-

responding between both images based on the residual of the images. A local

affine registration is used and the parameters are determined with an expectation-

maximization approach which iteratively classifies (corresponding/ non-corresponding

regions) and registers the images. This approach was tested on different synthetic

and real data and is not specialized on a specific application. We adapted the idea

of this approach and transfer it to multi-modal image data.

Chitphakdithai et al. [11] propose a registration approach which adapts the idea

of [17] to the scenario of brain tumor resection. They use a different registra-

tion framework (maximum a posteriori estimation) and also incorporate a-priori

knowledge of the kind of non-correspondences, i.e. the area of resected brain

tissue is mainly filled with cerebrospinal fluid. An intensity-based prior is used

to determine the location of the resection. In further publications this approach

was extended to better adapt this specific setting. In [12] an indicator map is

described which classifies the kind of correspondence for every image region. Prin-

cipal component analysis is used to determine the spatial prior for segmentation.

To improve results for different time points of tumor treatment more extensions

were presented in [13]. Different probability distributions based on the indicator

map are introduced to cope with varying intensity values. Also a transformation

prior is introduced which allows stronger transformations close to the estimated

tumor location. In [14] Markov random fields are used to include spacial knowl-

edge of the resection area into to model.

Beuthien [8] developed a method to match pre- and post-operative liver images

when a part of the liver is resected. Therefor the liver vessels are considered. The

vessels span through a big part of the liver in a recognizable way and are thus a

good aid for the matching. The registration is constrained by length preservation

of these vessels.
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1.4 Contribution of this Thesis

1.4 Contribution of this Thesis

As described in the previous section, most of the state-of-the-art approaches con-

sider missing correspondences for specific applications. This enables a good adap-

tion to the problem but also further a-priori knowledge has to be included. If

it is unclear what kind of non-correspondence occurs in an image pair or if it is

unknown whether there are non-corresponding regions at all, a general approach

is desirable. Such an approach could be included in a standard registration frame-

work to conveniently register images with or without non-corresponding regions

with as little as possible user interaction necessary. Higher accuracy results could

probably be achieved by specialized approaches, but in a standard workflow such

a general handling of non-correspondences can already be beneficial. Specialized

approaches could pose a refinement of the results as a second step when necessary.

We propose an approach which does not include application specific a-priori knowl-

edge and is thus applicable to various scenarios. Following the idea described in

[17], we extend an elastic registration framework [2, 18] to reduce the impact of

non-corresponding regions by automatically weighting the data term based on the

distance measure at every image coordinate.

To demonstrate the feasibility and the advantage compared to a standard ap-

proach, we conduct experiments on CT data of the lung, CT data of the abdomen

and CT-MR data. We alter the lung images to feature non-corresponding areas.

To this end we add an artificial tumor in one image of each pair and show the

superior handling of these regions by our proposed approach. The abdomen data

naturally feature different kinds of non-corresponding regions and were not al-

tered. Compared to the standard approach, the registration could be improved

at different critical regions by the proposed approach. On CT-MR abdomen data

it could be shown, that our approach yields neither significant advantages nor

disadvantages on multi-modal images.

In this way, we evaluate different scenarios. The general applicability without

significant disadvantages of our proposed approach is demonstrated as well as

a benefit in handling non-corresponding regions in CT data. Therefore our ap-

proach could be suitable to be used in everyday registration applications where

non-corresponding regions are possible to occur.

5





2 Medical Image Registration

In this thesis, we extend an existing registration approach. In this chapter focus

is put on the starting points of this extension. In 2.1 we give a short introduction

into the mathematical framework for image registration. The used regularizer

is described in Section 2.2. In Section 2.3 and 2.4 two distance measures are

introduced. The unchanged details on the registration algorithm used for our

experiments are mentioned in Section 2.5 and further details can be found in the

references therein. Details on the extension itself are described in Chapter 3.

2.1 Registration Framework

In this first section we give an introduction to the registration framework following

[3]. The goal of image registration is to determine an optimal transformation ϕ

which describes the spatial relation between two d-dimensional images, the refer-

ence image R and the template image T . For most of the clinical applications

it holds d ∈ {2, 3}. The images are continuous mappings with R : ΩR → R and

T : ΩT → R, where ΩR ⊂ Rd and ΩT ⊂ Rd are the domains of the images. The

continuously differentiable transformation ϕ, ϕ ∈ C1(ΩR, Rd) maps every coor-

dinate of the reference domain to a new coordinate and fulfills the Neuman-Zero

boundary conditions. The transformation can be split into the identity and the

displacement u, u ∈ C1(ΩR, Rd),

ϕ(x) = x+ u(x). (2.1)

Optimality is achieved in terms of the functional J , which combines a distance

measure D and a regularizer S in the following way

J [R, T , ϕ] = D[R, T ◦ ϕ] + αS[u]
ϕ−→ min . (2.2)

The distance measure D provides the driving force of the registrations and mini-

mization of D makes the images more similar or less distant respectively, relative

to the distance measure. Depending on what kind of distance measure is used to

describe the similarity, results can vary. On the other hand the regularizer S only
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2.2 Elastic Regularizer

depends on the displacement. This way physically unrealistic or unwanted trans-

formations can be punished with high values. The parameter α ∈ R+ controls the

ratio between both terms and can thus regulate the influence of the regularizer.

2.2 Elastic Regularizer

Equation (2.2) describes an ill-posed optimization problem, because the solution

can be ambiguous (see Hadamard [19] for details on well- and ill-posedness). There-

fore it is important to use a regularizer which provides further control of the re-

sulting transformation.

A physical motivated regularizer based on the elastic potential is described here.

As presented by Broit [20] the elastic regularizer is defined as

S[u] =

∫
Ω

µ

4

d∑
i,j=1

(
∂xjui(x) + ∂xiuj(x)

)2
+
λ

2

(
∇ · u(x)

)2
dx, (2.3)

with λ ∈ R+
0 , µ ∈ R+ non-negative scalar parameters accounting for material

properties.

2.3 Sum of Squared Differences Distance Measure

One of the most straight-forward and intuitive distance measures is the Sum of

Squared Differences (SSD) distance measure [1, 2]. The images are compared di-

rectly based on the intensity values and integration over the image domain provides

a scalar value. A typical formulation of the SSD is

DSSD[R, T ] =
1

2
·
∫

Ω

(
R(x)− T (x)

)2
dx. (2.4)

For future references, we define the residual as

rSSD(x) := R(x)− T (x). (2.5)

2.4 Normalized Gradient Field Distance Measure

If the correspondence of physical quantity and intensity value is not standardized,

like it is done by the Hounsfield scale, SSD may not be a suitable distance measure.
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2.4 Normalized Gradient Field Distance Measure

As proposed by Haber and Modersitzki [7], Normalized Gradient Field (NGF)

is a distance measure which is also applicable for those scenarios. Even if the

representations of an object by intensity values do not coincide, they may still

be described by the same boundaries. Thus comparing the image gradients is

coherent. The gradients are normalized and can be compared either by the inner or

the outer product. In this way distinctive gradients can be matched independently

of the absolute intensity values and the orientation. We used the formulation of

NGF with the inner product:

DNGF[R, T ] =
1

2
·
∫

Ω
1−

〈
∇R(x)

‖∇R(x)‖ε
,
∇T (x)

‖∇T (x)‖ε

〉2

dx, (2.6)

with

‖∇I(x)‖ε :=
√
∇I(x)>∇I(x) + ε2.

This norm regularizes the normalized gradient fields and makes it less sensitive to

small values of the image gradients. The parameter ε is chosen as suggested by

[21]

ε =
η

V

∫
Ω
|∇I(x)|dx, (2.7)

where V is the volume of the image domain and η estimates the noise level of the

image.

With this definition of DNGF the integrand yields values in [0, 1] at every posi-

tion x. Values greater than zero denote gradients with different orientation, where

greater differences yield greater values. A value of 0 implies that the image gra-

dients have parallel or anti-parallel orientation. On the one hand a value of 1

denotes gradients which form an angle of 90◦. On the other hand the integrand

also equals 1 if one or both of the gradients equals 0.

The residual of the NGF distance measure is defined as

rNGF(x) :=

〈
∇R(x)

‖∇R(x)‖ε
,
∇T (x)

‖∇T (x)‖ε

〉
. (2.8)
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2.5 Details of the Image Registration Framework

2.5 Details of the Image Registration Framework

In this section, information on the used implementation are given. These meth-

ods are not of central concern for this thesis and are thus not described in detail.

Further information can be found in the references.

For our experiments we use an implementation based on the approach described

in [18] and [22]. As the distance measure D, we used either SSD or NGF while a

regularizer S based on the elastic potential is used (see Sections 2.2-2.4 for details).

In general, the optimize-then-discretize strategy is followed. This means firstly the

calculus of the optimization problem is done analytically and secondly results are

transferred to a discrete formulation to solve it numerically.

The cell-centered discretization Ωh of Ω into nj grid points in the dimensions

j ∈ {1, ..., d} can be described as follows:

Ωh := {xi1,...,id =
(
(ij − 0.5)hj

)
j=1,...,d

| ij = 1, ..., nj}, (2.9)

with the grid spacing hj = n−1
j . The pair of a coordinate x ∈ Rd and a value

w ∈ Ru is called pixel (picture element) for d = 2 and voxel (volume element) for

d > 2. Typical values for u are 1 (intensities, grayscale images) and 3 for color

images. In (2.9) coordinates are normalized to the interval of [0, 1] in each dimen-

sion. For arbitrary coordinates in [aj , bj ] the spacing is scaled with the length of

the interval to hj =
bj−aj
nj

and aj has to be added as an offset to each coordinate.

For further details see [2]. With a suitable interpretation of the grid spacing, co-

ordinates can be transferred to measured values for distances in the real world

with the origin as an arbitrary reference point. Given the interpretation of the

spacing we can this way for example transform the information of a tumor having

a maximal diameter of 30 voxel to a real world length of 20 mm. Therefore we can

also associate a size with each voxel, i.e. the grid spacing in a given unit.

Partial derivatives which occur during the optimization are discretized by central

difference quotients [2]. The numerical optimization is then performed by a con-

jugate gradients (CG) solver [23].

10



2.5 Details of the Image Registration Framework

The elastic registration is initialized by an affine registration [2]. This enables

a pre-alignment which avoids local minima of the elastic registration. This has

shown to be especially important if one image only depicts a part of the anatomy

of the other one. In this situation the smaller volume can be shifted significantly

within the other one, which may lead the elastic registration to get stuck in local

minima when no pre-alignment is used.

The affine pre-registration as well as the elastic registration both make use of

a multi-level approach [24]. Therefor the discretized images are downsampled to

certain resolutions. Registration starts on a coarse level and iteratively propagates

the computed displacement to the next finer level. This technique can speed up

convergence and also make it more robust. On coarse levels only coarse structures

are aligned and thus local minima are avoided.
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3 Handling Non-corresponding Regions

in Image Registration

In this chapter a strategy to handle non-corresponding regions is explained. First in

Section 3.1 an automatic weight for the SSD distance measure is presented. Then

in Section 3.2 we show how the weight can be adapted to cope with NGF as the

distance measure. In Section 3.3 the combination of the weight into the distance

measure is shown. Section 3.4 describes how the parameters of the approach

have been determined. Finally in Section 3.5 derivatives needed for the numerical

solution are presented.

3.1 Weight Computation for SSD

As shown in 1.2, applying image registration to real data often brings up the

problem of missing correspondences. This means an object or a part of it which

is shown in one image is not represented in the other one. Those regions can lead

to unwanted or unrealistic registration results.

In Section 1.3 different approaches were described which all but one handle non-

corresponding regions for specific applications. Contrary to that, our proposed

automatic weighting aims for the mutuality of different non-correspondences so

we can deal with them in a general way.

The weighting, we apply, automatically adapts to the images and decreases the

influence of non-corresponding regions. Therefor a local measure for the degree

of correspondence has to be estimated. This is done with an approach which is

based upon conditional probabilities [25]. In this section we seize the central idea

presented by Periaswamy and Farid [17] for the SSD distance measure. However,

we introduce new terms and complete missing information here.

To evaluate the degree of correspondence we compare two assumptions. The first

assumption, A1, assumes that there is a relationship of the voxels of R and T
which is explained by the transformation vector field ϕ = id + u.

13



3.1 Weight Computation for SSD

The second assumption, A2, states a non-correspondence of the voxels.

Under A1 a Gaussian distribution with zero mean for the residual rSSD is assumed.

This reflects the fact, that for similar images the residual is expected to be low in

bigger parts of the image and high values are less probable. The probability of a

certain intensity value of the residual at a position x is thus given by

Pr(rSSD(x) |A1) =
1

σ
√

2π
e−

rSSD(x)2

v·σ2 , (3.1)

where σ2 = var(rSSD(x)) is the variance of the residual image and v is a positive

parameter which can be used to handle characteristics of the image pair.

In the following we will drop the scaling of the Gaussian distribution in correspon-

dence to the reference publication [17] and define the weight W SSD
1 (x), W SSD

1 :

Rd → [0, 1],

W SSD
1 (x) := e−

rSSD(x)2

v·σ2 (3.2)

to describe this unscaled version of the distribution. W SSD
1 maps to values between

0 and 1. The lower bound is given by the characteristics of the Euler function.

The numerator of the fraction in the exponent is non-negative due to the quadra-

ture and the factors of the denominator are non-negative by definition. The lower

limit of the fraction in the exponent is therefore 0, The upper limit of the whole

exponent is 0 and W SSD
1 thus has an upper limit of 1.

The residual is assumed to have a uniform distribution under A2. Since we do

not have prior knowledge about the type of non-correspondence, any value of the

residual has the same probability to depict a non-correspondence. We define a

weight for all residual values under the second assumption as W SSD
2 which, in

analogy to W SSD
1 , equals an unscaled uniform probability distribution.

W SSD
2 (x) := p (3.3)

is therefore constant with p ∈ [0, 1].

The amount of regions without correspondence can vary highly, thus it is infeasible

to predict the a-priori probabilities for A1 and A2 without further knowledge of

the image data. Because of this we assume that the a-priori probabilities for

both assumptions are equal. In accordance with the Bayes theorem [26] we obtain

14



3.2 Weight Computation for NGF

the weight W SSD
∗ (x), W SSD

∗ : Rd → [0, 1] which, given the residual, indicates the

probability1 for every voxel to have a valid correspondence:

W SSD
∗ (x) =

W SSD
1 (x)

W SSD
1 (x) +W SSD

2 (x)
=

W SSD
1 (x)

W SSD
1 (x) + p

. (3.4)

Given the lower bound of 1 for W SSD
1 , the lower bound for W SSD

∗ follows directly.

The upper bound of 1 is reached for maximal W SSD
1 (1) and minimal p (0) and

hence is 1 as well.

3.2 Weight Computation for NGF

In 2.4 it was explained that SSD is limited to the registration of CT images. In

order to make the weighting approach applicable to multi-modal images, we adapt

it for the normalized gradient field distance measure.

If a distance measures provides residuals with certain characteristics (as the SSD

does), they can be substituted for rSSD in (3.2) without further need of adaption.

The following assumptions are required:

(a) The residual r is normally distributed with a mean of 0 and

(b) residual values of 0 contribute to a small distance measure.

Note, that the absolute values of r are irrelevant due to the normalization by the

variance.

When defining the residual for NGF as in (2.8) the criterion (b) is not fulfilled

since values of 0 lead to the maximal value in DNGF. The interpretation of the

residual values is thus negated. If the whole integrand of DNGF was used as the

residual instead, the criterion (b) is fulfilled on the one hand. On the other hand

quadrature eliminates negative values, so this term cannot have a symmetrical

distribution with zero mean and thus does not meet the requirement (a).

To use NGF with the with our weighted approach, WNGF
1 (x), WNGF

1 : Rd → [0, 1]

is computed as

WNGF
1 := 1− e−

rNGF(x)2

v·σ2 . (3.5)

1Probability is not used in the mathematical but in a more colloquial way at this point.
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3.3 Weighting of the Distance Measure in Elastic Image Registration

In this way the probabilities are inverted to account for the inverted nature of

this residual. Low values of rNGF indicate minimal similarity and yield a minimal

value of WNGF
1 .

Computation of WNGF
∗ (x), WNGF

∗ : Rd → [0, 1] is done without further changes in

analogy to (3.4):

WNGF
∗ (x) =

WNGF
1 (x)

WNGF
1 (x) + p

. (3.6)

The argumentation for upper and lower bounds for WNGF
1 and WNGF

∗ is analo-

gously to the SSD case.

3.3 Weighting of the Distance Measure in Elastic Image

Registration

In the following we will write W and W∗ as a short form if a statement holds

for the respective formulation of both distance measures as well as D and DW∗ in

analogy.

The weight W SSD
∗ is included in the SSD distance measure DSSD to multiplicatively

weight the residual:

DSSD
W∗ [R, T (ϕ)] =

1

2
·
∫

Ω

[
W SSD
∗ (x) · (R(x)− T (ϕ(x))

]2
dx. (3.7)

Analogously the weight WNGF
∗ is included in the NGF distance measure:

DNGF
W∗ [R, T (ϕ)] =

1

2
·
∫

Ω
1−
[
WNGF
∗ (x) ·

〈
∇R(x)

‖∇R(x)‖ε
,
∇T (ϕ(x))

‖∇T (ϕ(x))‖ε

〉]2

dx. (3.8)

W∗ is in the range of [0, 1]. This implies that the voxel wise distance measure is

unchanged only if W∗(x) ≡ 1 and down weighted else. Thus the inequality

DW∗ [R(x), T (ϕ(x))] ≤ D[R(x), T (ϕ(x))] (3.9)

holds. If the distance measure changes and the regularizer stays the same, the

balance of those terms and thus the elasticity changes. A decrease in the data
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3.3 Weighting of the Distance Measure in Elastic Image Registration

term means a bigger influence of the regularizer, the deformation becomes less

elastic.

Since we rely on a well tested standard value of α to control the elasticity, we

want to keep the ratio of distance measure and regularizer unchanged. Therefor

we have to compensate for the reduced weight of the distance measure caused by

the weighting with W∗.

This could be achieved by linear scaling of W∗ with the factor s, where

s =

√
D[R, T (ϕ)]

DW∗ [R, T (ϕ)]
(3.10)

and

W := s ·W∗. (3.11)

Due to the complex nature of s, this factor may change the convexity of the opti-

mization task. Also the computational complexity in each iteration would increase

significantly. On the other hand, experiments have shown, that the change of s in

each iteration is very small. Based on these reasons, we decided to approximate s

once at the beginning of the optimization and then keep it constant on each level

l of the multi-level approach. Therefor (3.10) is computed for ϕ = ϕ0
l , where ϕ0

l

denotes the initial deformation on level l.

The scaled probability map W is not limited to the range of [0, 1] but can have

values larger than one. Thus the influence of some regions on the data term is

reduced while the influence of rest is enhanced.

The final formulation of the weighted distance measure results from substituting

W∗ in (3.7) and (3.8) by the scaled weight W . For the SSD distance measure it

leads to

DSSD
W [R, T (ϕ)] =

1

2
·
∫

Ω

[
W SSD(x) · (R(x)− T (ϕ(x))

]2
dx, (3.12)

and for NGF accordingly

DNGF
W [R, T (ϕ)] =

1

2
·
∫

Ω
1−

[
WNGF(x) ·

〈
∇R(x)

‖∇R(x)‖ε
,
∇T (ϕ(x))

‖∇T (ϕ(x))‖ε

〉]2

dx.

(3.13)
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3.4 Parameter Choice

With this extended data term and the unaltered elastic regularizer S[u], regis-

tration is performed according to the implementation described in 2.5. With the

scaled Weight W on the one hand and an unchanged regularizer on the other hand,

we ensure a similar transformations for corresponding regions independent of us-

ing the the original implementation with D or the proposed approach with DW .

Differences in the handling of non-corresponding regions can thus be explained by

effects of the proposed approach and not by substantial differences of the elasticity.

3.4 Parameter Choice

In the previous section two parameters, v and p, have been introduced to adapt

the weight computation to different settings. These parameters are desirable to

adjust the effect of the weight for specific needs. Furthermore they are essential

to cope with the fundamental disparity of different distance measures. While the

scaling of the weight to retain the ratio of distance measure and regularizer could

be automated, useful parameters for v and p have been determined empirically.

An automated computation is thinkable but is beyond the scope of this work. The

parameters used in the experiments described in the next chapter are summarized

in Table 3.1.

3.5 Optimization with the Weighted Distance Measure

In Section 2.1 the mathematical framework of the registration task was described.

Essentially, the registration accords to the minimization of the functional J as

described in (2.2). J is a sum of the distance measure D and the regularizer S.

Because both summands are integrals and thus non-negative, optimization of J

Table 3.1: Exemplary values for both parameters of the proposed approach for

the different test data sets.

p v

CT lung 0.0025 16

CT abdomen 0.0025 8

CT-MR 0.01 4
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3.5 Optimization with the Weighted Distance Measure

can be split up in the optimization of D and S.

Calculation of the Gâteux differential of S as described in [27] leads to the Euler-

Lagrange Equation

−µ∆u(x)− (λ+ µ)∇ · ∇u(x) = 0, x ∈ Ω. (3.14)

As the regularizer is unchanged in the proposed approach, this calculation is not

described further.

In the following we present the results for the minimization of the distance measure

D. The calculations can be found in detail in the appendix A.

Let F denote the integrand of the distance measure

F SSD(x) :=
[
W SSD(x) · rSSD(x)

]2
(3.15)

and

FNGF(x) := 1−
[
WNGF(x) · rNGF(x)

]2
. (3.16)

Then an optimum of F is given by

∇ϕF (x) = 0, x ∈ Ω, (3.17)

where ∇ϕ denotes the gradient operator with respect to the transformation ϕ. In

the results this operator vanishes and only the gradient with respect to the coordi-

nates remains. In the following (∇·)i denotes the i-th component of a derivative.

First the derivative for the SSD distance measure is presented component wise:

(∇ϕF
SSD)i = 2

(
W · rSSD

)
·
[
(∇ϕW )i · rSSD −W · (∇Tϕ)i

]
. (3.18)

The derivative of the weight W holds for both distance measures

(∇ϕW )i = s · p (∇ϕW1)i
(W1 + p)2

, (3.19)

while W1 depends on the distance measure. For SSD it yields

(∇ϕW
SSD
1 )i = W SSD

1 · (rSSD)2 · ∇ϕσ
2 − 2σ2 · rSSD · (∇Tϕ)i
v · (σ2)2

. (3.20)
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3.5 Optimization with the Weighted Distance Measure

The derivative of the standard deviation for discrete images is given by

∇ϕσ
2 = − 2

n

n∑
k=1

((
rSSD(xk)

)
−mean

(
rSSD

) )
·
(

(∇Tϕ)i(xk)−mean (∇Tϕ)
)
,

(3.21)

where n is the number of voxels.

The NGF distance measure yields a derivative similar to 3.18:

(∇ϕF
NGF)i = −2

(
W · rNGF

)
·
[
(∇ϕW )i · rNGF +W · (∇ϕr

NGF)i
]
, (3.22)

with ∇ϕW as in (3.19) and

(∇ϕr
NGF)i =

d∑
k=1

∇((∇Tϕ)k)i
‖∇Tϕ‖ε

·
(

(∇R)k
‖∇R‖ε

− rNGF · (∇Tϕ)k
‖∇Tϕ‖ε

)
. (3.23)

The derivative of WNGF
1 is similar to the SSD case but with opposite sign:

(∇ϕW
NGF
1 )i = −WNGF

1 · (rNGF)2 · ∇ϕσ
2 − 2σ2 · rSSD · (∇Tϕ)i
v · (σ2)2

. (3.24)

The equations (3.14) and (3.17) can be solved numerically with respect to certain

boundary conditions. For details on the specific numerical methods see [22].
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4 Experiments and Results

This chapter describes the experiments conducted including the used data and

evaluation of the results.

In each experiment medical image pairs of different databases are registered with

both approaches, the standard and the extended approach, and the same settings.

Each experiment is described and evaluated in a separate section. The first three

experiments make use of the SSD distance measure, the last one uses NGF.

In the first Section 4.1 we apply both approaches on inhale-exhale lung CT im-

ages to show their similar results on an established scenario. The second experi-

ment, described in Section 4.2, uses the same CT lung images but with artificially

added tumors as non-corresponding regions. Here we compare the differences in

the results of both approaches in areas where non-correspondences appear. Our

extended approach proofs to be superior in this experiment, supported with quan-

titative evaluations of the tumor volume change. Real life CT data of the abdomen

without any alterations support the results obtained on the lung data. These ex-

periments with more complex image data are described in Section 4.3. To evaluate

results with the NGF distance measure and to compare it with the SSD results,

the altered CT lung images of the second experiment are evaluated with NGF.

Additionally multi-modal data in the form of CT-MR cases of the abdomen are

evaluated as well. Section 4.4 describes the results of these experiments which

could not show significant differences between the two approaches for the NGF

distance measure.

Note that in this chapter all images are discrete.

In this chapter several figures show examples of the registration results of both ap-

proaches. For each example two figures, each consisting of six images, is presented.

These figures are always structured the same way. To avoid repetitive captions

the configurations of both types of figure are described here in a general way. The

captions of the individual figures first refer to the type of figure and then only give

information for the specific example.
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4.1 SSD: CT Lung without Tumor

Configuration (a), left page These figures give an overview about the images

which are registered and the respective results of the two approaches. The

reference R, the template T and the difference image of reference and tem-

plate R − T demonstrate the initial registration task. The transformed

templates of the standard algorithm T (ϕstd) and the extended algorithm

T (ϕext) as well as the difference of the warped templates T (ϕext)− T (ϕstd)

show the results of the registration.

Configuration (b), right page This type of figure gives further details about the

registration results. The residual images of the standard algorithm R −
T (ϕstd) and the extended algorithm R− T (ϕext) show how well the images

got aligned by the registration. An enlarged detail of the difference image

of the warped template images T (ϕext) − T (ϕstd) focuses on specific re-

gions of interest. The volume change resulting from the standard algorithm

det(∇(ϕstd)) and the extended algorithm det(∇(ϕext)) give an impression

of how the transformation looks like. Orange and red colors in the volume

change denote shrinkage, while blue values denote expansion. Finally the

weight W of the extended algorithm gives information about on which re-

gions the data term was down-weighted. Values close to 0 in W are shown

dark and values close to the maximum are shown white.

4.1 SSD: CT Lung without Tumor

The first experiments aims to show that standard and extended approach yield

similar results for data without relevant non-correspondences. We chose lung data

with a pair of inhale-exhale images, because deformation stems from the breathing

motion and is thus relative predictable. This helps to avoid unclear influences on

the transformation and makes the results easier to explain. We use five inhale-

exhale lung 3D-CT image pairs provided by the DIR-lab project [28]. Each image

has a size of 256×256 voxel in-slice, depicting the thorax with a voxel size between

(0.97× 0.97) and (1.16× 1.16) mm2 and a slice thickness of 2.5 mm. For each im-

age pair 300 corresponding reference landmarks are provided enabling quantitative

analysis of the registration results.
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4.1 SSD: CT Lung without Tumor

Table 4.1: TRE in mm of all unaltered lung images (cases 1-5) and the overall

mean, showing slightly better result for registration with the standard approach.

The evaluation is based on 300 landmark pairs. Case 5 is shown in Figure 4.1 as

an example.

case 1 case 2 case 3 case 4 case 5
∑

no registration 3.89 4.34 6.94 9.83 7.48 6.50

standard approach 1.03 1.09 1.59 1.68 1.77 1.43

extended approach 1.04 1.12 1.67 1.68 1.80 1.46

Evaluation of the original CT lung data sets shows basically no significant differ-

ence between the results of the standard and the extended algorithm. In Figure 4.1

and 4.2 the results of case 5 are shown as an example. Especially the difference

image of the transformed template images T (ϕext)− T (ϕstd) makes the little dif-

ference clear.

To quantitatively compare registration results given landmarks which are either

manual, semi-automatic or even full-automatic can be evaluated. A set of land-

marks identifies recognizable (anatomical) points in both discrete images R, T .

This way the correspondence between the representations of a physical point in

both images, xR and xT is given. These landmarks can be used to evaluate the

accuracy of a transformed template image T (ϕ) [29]. Therefor the Euclidean dis-

tance between the mapped landmark position xpredR := ϕ(xT ) (the prediction) and

the actual position xactualR is evaluated

TRE(xT ) :=
∥∥∥xpredR − xactualR

∥∥∥
2
. (4.1)

This is called the Target Registration Error (TRE) for one landmark pair. For a

set of landmarks interesting features may be average TRE, maximal TRE, quan-

tiles or standard deviation of the TRE.

The average TRE of all cases of the lung database as well as the overall average is

listed in Table 4.1. In general the standard approach yields slightly better (lower)

TRE values on these data. Although the average difference can be considered very

small with only 0.03 mm (note that misalignment of a landmark by one voxel in
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4.2 SSD: CT Lung with Synthetic Tumor

slice already results in a TRE between 0.97 mm and 1.16 mm and a misalignment

of one slice results in a TRE of 2.5 mm).

4.2 SSD: CT Lung with Synthetic Tumor

An example where non-corresponding regions become evident is two pictures taken

at different points in time documenting tumor growth. To simulate such images,

we altered each of the template lung images by adding an ellipsoid into the right

lung, once centered and once peripheral. Besides this change, the experiment is

conducted like the previous one. The synthetic nature of the tumor as well as the

given landmarks enable quantitative analysis of the registration results.

Because this experiment only differs from the previous one in Section 4.1 in the

synthetic tumor in the template image, the results are very similar. This local

change leads to local differences in the registration. In the biggest area the trans-

formed template images of both experiments are basically the same. Only in the

area around the tumor location distinctive differences can be seen. The standard

approach clearly compresses the tumor for every case. By reducing the volume, the

distance measure is decreased as well. On the other hand, the extended approach

only slightly changes the tumor volume.

Figure 4.3 and 4.5 illustrate two examples with peripheral tumors. In both cases

the tumor is compressed significantly by the standard algorithm (see the deformed

template images T (ϕstd)) while the extended algorithm yields a transformed tem-

plate T (ϕext) with only marginal tumor shrinkage. Although the tumor located at

the diaphragm (Figure 4.3 T ) is moved in inferior direction along with the breath-

ing motion, its shape is retained by the extended approach. The differences in the

remaining lung are small as can be seen in the difference images T (ϕext)−T (ϕstd).

The Weight W (Figure 4.4 and 4.6), computed in the end of the registration,

mainly shows the region of the tumor as a dark blob which indicates a low weight

and thus a assumed non-correspondence. Because of the low weight in the distance

measure the transformation of these regions is dominated by the regularizer and

thus strong deformation of the tumor is avoided. This also becomes apparent when

looking at the determinant of the Jacobian of the transformation det(∇(ϕstd)),

24



4.2 SSD: CT Lung with Synthetic Tumor

Table 4.2: TRE in mm of all lung images with synthetic tumor (cases 1-5) and the

overall mean. Tumor presence slightly impairs the TRE for the standard approach

and improves the TRE of the extended approach. The evaluation is based on 300

landmark pairs. Cases 2 and 3 are shown as examples in Figures 4.3-4.6.

tumor approach case 1 case 2 case 3 case 4 case 5
∑

peripheral
standard 1.04 1.09 1.59 1.70 1.79 1.44

extended 1.05 1.10 1.62 1.68 1.77 1.44

central
standard 1.03 1.11 1.63 1.73 1.79 1.46

extended 1.04 1.10 1.64 1.72 1.78 1.45

indicating the volume change. The standard approach yields a very strong volume

change in the area of the tumor while the rest of the image is very homogeneous.

Our proposed approach deforms the tumor area with only a marginal difference to

the surrounding area.

When considering the average TRE for the altered lung images, the advantage of

the standard approach disappears. The average TRE of the standard approach

is 1.44 mm for peripheral tumors and 1.46 mm for central tumors. The extended

approach yields very similar results of 1.44 mm and 1.45 mm. This means that,

compared to the previous experiment without tumors, the error of standard ap-

proach increases while the error of the extended approach decreases. The error

increase is expected. The transformation changes locally due to the tumor while

the landmarks in this area stay unchanged. The error decrease of the extended

approach on the other hand is somehow contra intuitive. When looking at the

average TRE of the unaltered images (Table 4.1) we find the biggest difference

between both approaches for case 3. For this case the TRE of the extended ap-

proach is 0.08 mm higher. The difference for this case with included tumor is

reduced to 0.03 mm for the peripheral tumor and only 0.01 mm for the central

tumor. This suggests, that the disadvantage of the extended approach for the

unaltered lung images is balanced by the the presence of the tumor. It can be

assumed that worse average TRE values of the extended approach compared to

the standard approach are due to falsely detected non-correspondences. These

small areas with a low weight negatively influence the transformation. If there is

a real non-corresponding region, as introduced by the synthetic tumor, this region
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4.2 SSD: CT Lung with Synthetic Tumor

Table 4.3: Volume change of the tumor in the altered lung images relative to

the baseline deformation, showing the different effect of the standard and the

extended algorithm. For both algorithms, the relative volume change of each test

image pair with central and peripheral tumor as well as the overall mean value is

given. Cases 2 and 3 are shown as examples in Figures 4.3-4.6.

tumor approach case 1 case 2 case 3 case 4 case 5
∑

peripheral
standard −50% −52% −37% −30% −45% −43%

extended −14% − 8% − 6% −11% −11% −10%

central
standard −71% −72% −61% −56% −70% −66%

extended −14% −13% −10% −15% −14% −13%

yields a low weight and the false positive regions might not appear anymore. In

this way, the overall TRE may be improved because less false positive low weights

occur.

Although the advantage of the extended approach is clearly visible in the example

images, TRE evaluation shows no significant difference. This can be explained by

the limited number of landmarks. The 300 landmarks do not cover the lung en-

tirely, so that especially the peripheral tumors barely have landmarks close enough

to influence their transformation. The central tumors are more likely to have land-

marks close by, but still this number of landmarks is very little to have a strong

influence on the average TRE.

To evaluate the difference of the transformations at the tumor region quantita-

tively, we analyze the volume change of the tumor. The ground-truth volume is

computed with the baseline deformation, i.e. the deformation resulting from stan-

dard registration of the unaltered images. This is done to estimate the volume of

the tumor region, only deformed by the breathing motion. If the registration of

the altered images was not influenced by the tumor, we assume the deformation to

be the same as the baseline deformation. Thus we compare the volume resulting

from the registration of the altered images with the ground-truth volume. The

relative volume change for central and for peripheral tumors is shown in Table 4.3.

The standard algorithm yields an average reduction of the tumor volume of 66%

for central location and 43% for peripheral location while the extended algorithm
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4.3 SSD: CT Abdomen

better retains the size of the tumor with an average reduction of 19% and 14%,

respectively. The magnitude of the volume change depends on the tumor location.

The peripheral tumors are located on the lung boundary. Since the surrounding

tissue of the lung has intensity values similar to the tumor, the volume of the tumor

part located outside of the lung is less deformed. This results in less volume change

for the peripheral tumors.

4.3 SSD: CT Abdomen

Registration of abdomen images is typically more complex than of lung images

since more effects can can contribute to the deformation. Differences in the pose

of the patient as well as differences in the filling of digestive organs or breathing

can deform the anatomy significantly.

The abdomen CT cases we investigated pose different challenges. The main dif-

ficulty is posed by contrast agent and gas inside the digestive organs at varying

locations. Besides this also tumor growth and resection yield non corresponding

regions. In total we evaluated the results of nine image pairs. The images have a

size of 512×512 voxel in-slice and covering the abdomen with a voxel size between

(0.69× 0.69) and (1.17× 1.17) mm2 and slice thickness between 0.45 and 5 mm.

The experiments conducted on these CT abdomen images support the results of

the previous experiments. Using the standard approach several regions show un-

wanted transformations due to non-correspondences which can be avoided with our

proposed approach. In the following three representative examples are described.

The first example (Figure 4.7 and 4.8) shows strong differences in the filling of the

small intestine. Especially in the reference image, a big part of the intestine in the

right body part is filled with gas. In the template image there are less and differ-

ent parts of the intestine filled with gas. During the registration of the standard

approach, the big differences in gas-tissue overlap are reduced by either shrinking

or dilatation of gas areas. Comparing the inferior right part of the intestine of the

deformed template of both approaches, T (ϕstd) and T (ϕext), it can be seen, that

the volume filled with gas is reduced in the standard approach. This is due to

the lack of correspondence in the reference image. The extended approach avoids
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4.3 SSD: CT Abdomen

R T R− T

T (ϕstd) T (ϕext) T (ϕext)− T (ϕstd)

Figure 4.1: (a) Coronal view of the 3D results (using DSSD
W ) for case 5 of the CT

lung database. The unaltered lung images yield almost identical results for both

approaches. The average TRE of this case can be found in Table 4.1.

this reduction, because the distance measure has a low weight in this image region

as can be seen in the weight W . Other areas of the template image are dilated

by the standard approach so that bigger volumes with low intensity matching the

intestinal gas appear. The Jacobians of the transformations, det(∇(ϕstd)) and

det(∇(ϕext)), also indicate that strong deformation is located at the intestines of

the right body. Comparing the Jacobians, it can be seen that the standard ap-

proach yields stronger deformation in the discussed region of the intestines.

In the second example (Figure 4.9 - 4.10) a noticeable bad registration result of

the standard approach is shown. The intestines are partly filled with contrast

agent, smaller parts are also filled with gas. The locations of the contrast agent

differ between reference image R and template image T as well as the intensity
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4.3 SSD: CT Abdomen

rSSDstd rSSDext Detail of T (ϕext)− T (ϕstd)

det(∇((ϕstd)) det(∇(ϕext)) W

Figure 4.2: (b) Coronal view of the 3D results (using DSSD
W ) for case 5 of the

CT lung database. The detail of the difference image of the warped templates

T (ϕext) − T (ϕstd) shows the diaphragm of the right lung. The unaltered lung

images yield almost identical results for both approaches. The average TRE of

this case can be found in Table 4.1.

of the contrast agent itself (in the T , the contrast agent appears to have higher

intensity values). In areas, where contrast agent in one image aligns with gas or

tissue in the other image, big intensity differences and therefor high values for

the distance measure arise. Here the difference between gas and contrast agent

yields the biggest difference of intensities and thus the highest distance measure.

This leads to strong deformations in the standard approach, for example in the

inferior part of the intestines, close to the left pelvis, where the contrast agent is

strongly compressed and moved towards the bone. This is shown in the introduc-

tory example Figure 1.1. Furthermore air from outside the patient is transformed

to match gas in one part of the intestine, which even leads to a misalignment of
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4.3 SSD: CT Abdomen

R T R− T

T (ϕstd) T (ϕext) T (ϕext)− T (ϕstd)

Figure 4.3: (a) Coronal view of the 3D results (using DSSD
W ) for case 3 of the CT

lung database with a synthetic tumor located at the diaphragm of the right lung

in the template image T . A strong transformation of the tumor can be seen in

the results of the standard approach. The relative volume change of the tumor in

the transformed template images can be seen in Table 4.3 and the average TRE

is listed in Table 4.2.

the spine, see T in Figure 4.9. Those deformations are physically unrealistic and

useless for practical applications. In the extended approach those critical regions

which lead to unwanted deformations have a very low weight W in the distance

measure and thus barely contribute. The transformed templates provided by the

extended approach better represent anatomically reasonable images.

The third example (Figure 4.11 and 4.12) is an image pair which features contrast

agent in parts of the intestines only in the template image T . The transformed

template of the standard approach T (ϕstd) shows a compression of this contrasted

region. Additionally the high intensity region is shifted to the location of the
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4.3 SSD: CT Abdomen

rSSDstd rSSDext Detail of T (ϕext)− T (ϕstd)

det(∇((ϕstd)) det(∇(ϕext)) W

Figure 4.4: (b) Coronal view of the 3D results (using DSSD
W ) for case 3 of the CT

lung database with a synthetic tumor located at the diaphragm of the right lung in

the template image T . The detail of the difference image of the warped templates

T (ϕext)− T (ϕstd) shows the tumor region. A strong transformation of the tumor

can be seen in the results of the standard approach. The relative volume change

of the tumor in the transformed template images can be seen in Table 4.3 and the

average TRE is listed in Table 4.2.

liver in the reference image. Because the liver has higher intensity values than

the surrounding tissue, the distance measure is decreased that way. Nonetheless

the transformed template is unsuitable for certain clinical problems since the liver

is badly aligned at the inferior edge. In the relevant figures the position of the

inferior liver tip is indicated with red arrows. Accordant to the previous exam-

ples, the extended approach reduces the impact of the high distance measure at

the contrast agent’s location and provides a transformed template T (ϕext) with a

much better aligned liver.
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4.4 NGF: CT Lung with Synthetic Tumor & CT-MRI Abdomen

4.4 NGF: CT Lung with Synthetic Tumor & CT-MRI

Abdomen

The last experiments evaluate the effectivity of the proposed approach with the

NGF distance measure. First the CT lung images with the synthetic tumor are

evaluated in analogy to 4.1. This enables a direct comparison of the two used

distance measure. Then multi-modal image data which cannot be registered rea-

sonably with SSD, are evaluated with NGF as well. Both experiments show, that

standard and extended approach yield basically the same results. The distinctive

difference of the approaches with SSD demonstrated with the lung images cannot

be seen for NGF because both approaches do not decrease the tumor volume.

The abdomen specific difficulties as described for the CT data also apply to the

CT-MR data. Furthermore images of different modalities naturally feature differ-

ent poses of the subject. Because tomographic imaging is sensitive to attenuation,

larger amounts of radiation are needed to depict larger regions. Due to the po-

tentially impairment of health caused by x-rays, radiologists try to minimize the

radiation dose and thus the depicted anatomy. This causes that subjects are placed

with their arms above the head. In contrast to CT scanners, MR scanners pro-

vide no ionizing radiation. For a more comfortable experience, subjects usually

keep their arms along their body during MR scans with no cutback of the image

quality. Especially for obese subjects this can lead to considerable changes of the

body contour.

The multi-modal data used for this experiment consists of eight very heteroge-

neous image pairs. They consist of a reference CT scan and a template MR scan

with various MR protocols used. Some were taken at the same day while some

were taken up to 4 months apart. Most of the scans depict the abdomen with a

differing field of view and some the whole body. Each image has a size of 512×512

voxel in-slice and covering the abdomen or 339×34 voxel in-slice for the combined

whole body scan. The voxel size is between (0.66 × 0.66) and (1.34 × 1.34) mm2

and slice thickness between 1 and 6 mm.

When conducting the experiments with NGF as the distance measure, the standard

and the extended approaches show almost identical results. This can be seen in
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4.4 NGF: CT Lung with Synthetic Tumor & CT-MRI Abdomen

the difference image of the transformed templates T (ϕext)−T (ϕstd) in Figure 4.13

and 4.15. Although no improvement can be shown we can state, that the extended

approach for NGF also does not impair the results compared with the standard

approach.

Comparing the weights W of a lung case evaluated with SSD (Figure 4.4) and

NGF (Figure 4.14) the fundamental differences caused by the choice of the simi-

larity measure become clear. With the SSD approach only an area of the image

corresponding to the tumor part inside of the lung and a few other smaller areas

are black on the otherwise white depiction of the weight W . This demonstratively

shows which areas receive a low weight (black) while the majority of the image

receives a uniform high weight (white). On the other hand the weight of the NGF

approach is mainly black. This is due to the different mode of operation of the

distance measures. Low weights in W are caused by high values of the residual

in the SSD setting. For NGF, low weights are caused by big angles between the

image gradients or by zero gradients. The latter condition occurs relatively often,

for example inside an organ like the liver. There only a few regions with distinct

gradients can be found the rest almost equals zero. Big angles between the im-

age gradients are more uncommon and as a result the low weights of P for NGF

are in large part caused by zero gradients. Although these regions yield a high

distance measure, they do not influence the deformation in a strong way, since

(typical) transformations do not change the gradient essentially. A homogenous

area will still be homogenous for the biggest part after a transformation, the gra-

dient will stay zero and thus the distance measure will still be high. Since those

areas are no big influence, the low weights introduced by W can barely influence

the registration as well.
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4.4 NGF: CT Lung with Synthetic Tumor & CT-MRI Abdomen

R T R− T

T (ϕstd) T (ϕext) T (ϕext)− T (ϕstd)

Figure 4.5: (a) Sagittal view of the 3D results (using DSSD
W ) for case 2 of the CT

lung database with a synthetic tumor located at superior-dorsal edge of the right

lung in the template image T . A strong transformation of the tumor can be seen

in the results of the standard approach. The relative volume change of the tumor

in the transformed template images can be seen in Table 4.3 and the average TRE

is listed in Table 4.2.
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4.4 NGF: CT Lung with Synthetic Tumor & CT-MRI Abdomen

rSSDstd rSSDext Detail of T (ϕext)− T (ϕstd)

det(∇(ϕstd)) det(∇(ϕext)) W

Figure 4.6: (b) Sagittal view of the 3D results (using DSSD
W ) for case 2 of the CT

lung database with a synthetic tumor located at superior-dorsal edge of the right

lung in the template image T . The detail of the difference image of the warped

templates T (ϕext)− T (ϕstd) shows the tumor region. A strong transformation of

the tumor can be seen in the results of the standard approach. The relative volume

change of the tumor in the transformed template images can be seen in Table 4.3

and the average TRE is listed in Table 4.2.
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4.4 NGF: CT Lung with Synthetic Tumor & CT-MRI Abdomen

R T R− T

T (ϕstd) T (ϕext) T (ϕext)− T (ϕstd)

Figure 4.7: (a) Coronal view of the 3D results (using DSSD
W ) for case 2 of the CT

abdomen database. This example demonstrates differences in the transformation

of both approaches at the intestines.
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4.4 NGF: CT Lung with Synthetic Tumor & CT-MRI Abdomen

rSSDstd rSSDext Detail of T (ϕext)− T (ϕstd)

det(∇(ϕstd)) det(∇(ϕext)) W

Figure 4.8: (b) Coronal view of the 3D results (using DSSD
W ) for case 2 of the CT

abdomen database. The detail of the difference image of the warped templates

T (ϕext) − T (ϕstd) shows the contrasted intestines. This example demonstrates

differences in the transformation of both approaches, with the standard approach

stronger deforming the intestines.
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4.4 NGF: CT Lung with Synthetic Tumor & CT-MRI Abdomen

R

T

R− T

T (ϕstd) T (ϕext) T (ϕext)− T (ϕstd)

Figure 4.9: (a) Sagittal view of the 3D results (using DSSD
W ) for case 3 of the CT

abdomen database. The standard approach transforms air into the abdomen and

strongly deforms the surrounding anatomy while the extended approach yields a

anatomical reasonable transformation.
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4.4 NGF: CT Lung with Synthetic Tumor & CT-MRI Abdomen

rSSDstd rSSDext Detail of T (ϕext)− T (ϕstd)

det(∇(ϕstd)) det(∇(ϕext)) W

Figure 4.10: (b) Sagittal view of the 3D results (using DSSD
W ) for case 3 of

the CT abdomen database. The detail of the difference image of the warped

templates T (ϕext) − T (ϕstd) shows the left inferior part of the intestines. The

standard approach transforms air into the abdomen and strongly deforms the

surrounding anatomy while the extended approach yields a anatomical reasonable

transformation.

39



4.4 NGF: CT Lung with Synthetic Tumor & CT-MRI Abdomen

R T R− T

T (ϕstd) T (ϕext) T (ϕext)− T (ϕstd)

Figure 4.11: (a) Coronal view of the 3D results (using DSSD
W ) for case 9 of

the CT abdomen database. A part of the intestines filled with contrast agent

is transformed onto the liver by the standard approach. This impairs alignment

of the liver. The Location of the inferior tip of the liver in the reference image is

indicated by the red arrow in all relevant images, showing a better match by the

extended approach.
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rSSDstd rSSDext Detail of T (ϕext)− T (ϕstd)

det(∇(ϕstd)) det(∇(ϕext)) W

Figure 4.12: (b) Coronal view of the 3D results (using DSSD
W ) for case 9 of the

CT abdomen database. The detail of the difference image of the warped templates

T (ϕext)−T (ϕstd) shows the liver. A part of the intestines filled with contrast agent

is transformed onto the liver by the standard approach. This impairs alignment

of the liver. The Location of the inferior tip of the liver in the reference image is

indicated by the red arrow in all relevant images, showing a better match by the

extended approach.
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4.4 NGF: CT Lung with Synthetic Tumor & CT-MRI Abdomen

R T R− T

T (ϕstd) T (ϕext) T (ϕext)− T

Figure 4.13: (a) Coronal view of the 3D results (using DNGF
W ) for case 3 of the

CT lung database with a synthetic tumor located at the diaphragm of the right

lung in the template image T . Both approaches yield almost identical results.
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4.4 NGF: CT Lung with Synthetic Tumor & CT-MRI Abdomen

rNGF
std rNGF

ext Detail of T (ϕext)− T (ϕstd)

det(∇((ϕstd)) det(∇(ϕext)) W

Figure 4.14: (b) Coronal view of the 3D results (using DNGF
W ) for case 3 of the

CT lung database with a synthetic tumor located at the diaphragm of the right

lung in the template image T . The detail of the difference image of the warped

templates T (ϕext)−T (ϕstd) shows the tumor region. Both approaches yield almost

identical results.
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4.4 NGF: CT Lung with Synthetic Tumor & CT-MRI Abdomen

R

T

R− T

T (ϕstd T (ϕext) T (ϕext)− T (ϕstd)

Figure 4.15: (a) Coronal view of the 3D results (using DNGF
W ) for case 1 of the

CT-MRI abdomen database. Both approaches yield almost identical results.
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4.4 NGF: CT Lung with Synthetic Tumor & CT-MRI Abdomen

rNGF
std rNGF

ext Detail of T (ϕext)− T (ϕstd)

det(∇(ϕstd)) det(∇(ϕext)) W

Figure 4.16: (b) Coronal view of the 3D results (using DNGF
W ) for case 1 of

the CT-MRI abdomen database. The detail of the difference image of the warped

templates T (ϕext)−T (ϕstd) shows the liver. Both approaches yield almost identical

results.
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5 Conclusion and Outlook

In this thesis a standard variational registration algorithm is extended to handle

non-corresponding regions. The weight W is automatically computed based on

the Sum of Squared Differences (SSD) or the Normalized Gradient Field (NGF)

distance measure, to reduce the effects of non-corresponding regions. The pro-

posed approach is compared to a standard approach to demonstrate the superior

handling of non-correspondences.

Experiments with lung CT images prove, that the extended approach with SSD

yields transformations akin the standard approach when non-correspondences are

not present. Evaluation of the average target registration error (TRE) shows only

marginal higher accuracy of the standard approach. Non-corresponding regions

are simulated by adding a synthetic tumor in one image of each lung image pairs.

Evaluation of these experiments makes clear that the unwanted shrinking of the

tumor by the standard approach is avoided in the proposed approach. We ob-

serve a significantly smaller average tumor shrinkage of 19% for central locations

and 14% for peripheral locations compared to 66% and 43%, respectively, of the

standard approach. For these cases the average TRE of both approaches is almost

the same, indicating no relevant differences of the transformation in the rest of

the lung. Real world data in the form of CT abdomen images featuring different

kinds of non-correspondences support the findings of the previous experiments and

yield different demonstrative examples for superior and physically more reasonable

results. In the last experiment the altered lung CT data as well as multi-modal

CT-MRI data were registered using the NGF distance measure. No significant

differences of the approaches can be found for these cases.

While using the NGF distance measure could neither show improvement nor im-

pairment of the results, the experiments with SSD document that regions without

correspondences only slightly affect the registration when using the proposed ap-

proach.
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In general the parameter choice strongly influences the registration. It can control

the size of the low-weighted image regions and the grade of “binarization” of W ,

i.e. the steepness of the transition between minimum and maximum. With poor

parameter choice the results of both approaches differ significantly with much

worse results for the extended approach. Hence parameter choice is an important

topic.

The two parameters used for the extended approach v, p are chosen empirically.

Optimization of the parameters for different scenarios could further improve the

results. An automatic adaption depending on the image data could be investigated

as well. It is also possible, that both parameters can be linked into a single param-

eter with comparable effects. First indications were found in some experiments

but further analyses are necessary for any conclusion.

An interesting experiment would be to apply the proposed algorithm on the same

data as different algorithms mentioned in the state of the art section 1.3. This

could show the practical applicability of this approach and compare it to special-

ized methods. This brings up the choice between generalization and specialization.

In the current form, our approach is kept as general as possible. Application spe-

cific knowledge could be included to optimize the results for a precise setting. An

approach similar to the one described by Chitphakdithai et al. [14] is thinkable.

So far two distance measures were adapted for this approach. Theoretically other

distance measure which provide a voxel-wise evaluation could be used as well. Fu-

ture work may thus include exploration of other distance measures.

The examples presented in this thesis often feature a weight W which clearly

locates the non-corresponding regions. Therefore a segmentation based on W

could identify these regions for further processing. Different applications like tumor

localization or contrast agent analysis are possible.
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[5] André Collignon, Frederik Maes, Dominique Delaere, Dirk Vandermeulen,

Paul Suetens, and Guy Marchal. Automated multi-modality image regis-

tration based on information theory. In Information Processing in Medical

Imaging, volume 3, pages 263–274, 1995.

[6] JP Lewis. Fast normalized cross-correlation. In Vision Interface, volume 10,

pages 120–123, 1995.

[7] Eldad Haber and Jan Modersitzki. Intensity gradient based registration

and fusion of multi-modal images. In Rasmus Larsen, Mads Nielsen, and

Jon Sporring, editors, Medical Image Computing and Computer-Assisted

Intervention-MICCAI 2006, pages 726–733. Springer, 2006.

[8] Björn Beuthin. Restringierte medizinische Bildregistrierung. PhD thesis, Uni-

versity of Lübeck, 2014.
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A Minimization of the Distance Measure

In this appendix details on the calculation of the derivatives summarized in Sec-

tion 3.5 are given.

Starting point is the optimization of the functional J . A stationary point of a

Gâteaux-differentiable functional J

J [ϕ] =

∫
Ω
F [x, ϕ(x),∇ϕ(x)]dx (A.1)

is given by ϕ, if

∇ϕF (x)−∇ · ∇∇ϕF (x) = 0, x ∈ Ω. (A.2)

This can be found in [27] and it is derived in more detail for this setting in [22].

The result for the regularizer is given in 3.5 and only the calculation for the new

extended distance measure will be shown here.

In this context ∇ϕ denotes the gradient operator with respect to the transforma-

tion ϕ. In the results this operator and the need for Gâteaux differentials vanishes

because only the gradient with respect to the coordinates remains. (∇·)i denotes

the i-th component of a derivative.

In the following let F denote the integrand of the distance measure D

F SSD :=
[
W SSD(x) · rSSD(x)

]2
(A.3)

and

FNGF := 1−
[
WNGF(x) · rNGF(x)

]2
. (A.4)

Because D does not depend on the gradient of ϕ the equation A.2 can be shortened

to

∇ϕF (x) = 0, x ∈ Ω. (A.5)

The derivative of the transformed template Tϕ image is

(∇ϕTϕ)i =
∂ Tϕ
∂ ϕi

=
∂ Tϕ
∂ x1

dx1

dϕi
+
∂ Tϕ
∂ x2

dx2

dϕi
+
∂ Tϕ
∂ x3

dx3

dϕi
(A.6)

=
∂ Tϕ
∂ xi

. = (∇Tϕ)i (A.7)
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The second equality in (A.6) is due to the chain rule. By definition the trans-

formation can be written as ϕ(x) = x + u(x), where u denotes a vector field so

that u(x) can be an arbitrary vector in Rn. Therefore a local component of the

transformation is ϕi(x) = xi + ui(x). A derivation of xk with respect to ϕi equals

0 for i 6= k and 1 for i = k because ui is constant at x, which leads to (A.7).

Calculation for SSD

Using the result of (A.7) the derivation of the residual is straightforward

(∇ϕr
SSD)i = (∇ϕR)i − (∇ϕTϕ)i

(A.7)
= −(∇Tϕ)i. (A.8)

The derivatives of F SSD can be calculated component wise as

(∇ϕF
SSD)i =

(
∇ϕ

[
W SSD · rSSD

]2)
i

= 2 ·
(
W SSD · rSSD

)
·
[
(∇ϕW

SSD)i · rSSD +W SSD · (∇ϕr
SSD)i

]
(A.8)
= 2 ·

(
W SSD · rSSD

)
·
[
(∇ϕW

SSD)i · rSSD −W SSD · (∇Tϕ)i
]
. (A.9)

The derivative of W is independent of the distance measure and can be computed

with the quotient rule

(∇ϕW )i
(3.11)

= s · (∇ϕW1)i · (W1 + p)−W1 · (∇ϕW1)i
(W1 + p)2

= s · (∇ϕW1)i · [(W1 + p)−W1]

(W1 + p)2

= s · (∇ϕW1)i · p
(W1 + p)2

. (A.10)

The weights W1 have to be considered with respect to the distance measure. For

the computation of the derivative of W SSD
1 = e−

(rSSD)2

v·σ2 the chain rule is applied
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(∇ϕW
SSD
1 )i = e−

(rSSD)2

v·σ2 ·

(
−
(
2rSSD · (∇ϕTϕ)i

)
· v σ2 − (rSSD)2 · v · (∇ϕσ

2)i

(v · σ2)2

)
(A.7)
= W SSD

1 · (rSSD)2 · (∇ϕσ
2)i − 2σ2 · rSSD · (∇Tϕ)i
v · (σ2)2

. (A.11)

Let mean(I(x)) denote the mean of a discrete image I with a total of n voxels

mean(I(x)) =
1

n
·

n∑
l=1

I(xl)

The derivative of the variance of the residual

(∇ϕσ
2)i =

1

n

n∑
k=1

[(
∇ϕ

(
(rSSD(xk))−mean(rSSD)

)2
)

i

]

=
2

n

n∑
k=1

[(
(rSSD(xk))− 1

n
·

n∑
l=1

(rSSD(xl))

)

·

(
∇ϕ

(
(rSSD(xk))− 1

n
·

n∑
l=1

(rSSD(xl))

))
i

]
(A.8)
=

2

n

n∑
k=1

[(
(rSSD(xk))−mean(rSSD)

)
·
(
− (∇Tϕ)i(xk)−mean ((∇Tϕ)i(xk))

)]
=− 2

n

n∑
k=1

[(
(rSSD(xk))−mean(rSSD)

)
·
(

(∇Tϕ)i(xk)−mean ((∇Tϕ)i(xk))
)]
.

(A.12)
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Calculation for NGF

Computation of the partial derivatives of FNGF yields component-wise

(∇ϕF
NGF)i =

(
∇ϕ

(
1−

[
W · rNGF

]2))
i

=− 2 ·
(
W · rNGF

)
·
[
(∇ϕF

NGF)i · rNGF +W · (∇ϕr
NGF)i

]
. (A.13)

The NGF distance measure has a more complex residual than SSD which makes

the calculations a bit longish.

For the calculation of the derivative of the residual we substitute the scalar product

by a sum and obtain

(∇ϕr
NGF)i =

(
∇ϕ

〈
∇R
‖∇R‖ε

,
∇Tϕ
‖∇Tϕ‖ε

〉)
i

=

(
∇ϕ

d∑
k=1

∂R
∂ xk

‖∇R‖ε
·

∂ Tϕ
∂ xk

‖∇Tϕ‖ε

)
i

=
d∑

k=1

∂R
∂ xk

‖∇R‖ε
·

(
∇ϕ

∂ Tϕ
∂ xk

‖∇Tϕ‖ε

)
i

(A.7)
=

d∑
k=1

∂R
∂ xk

‖∇R‖ε
·

∂2 Tϕ
∂ xi∂ xk

· ‖∇Tϕ‖ε − ∂ Tϕ
∂ xk
· ∂
∂ ϕi
‖∇Tϕ‖ε

‖∇Tϕ‖2ε
. (A.14)

In (A.14) the derivative of the norm of the template image needs to be calculated.

The definition of the norm as ‖∇I(x)‖ε :=
√
∇I(x)>∇I(x) + ε2 and multiple

application of the chain rule yield

56



(∇ϕ‖∇Tϕ‖ε)i =

∇ϕ

[
ε2

d∑
l=1

(
∂ Tϕ
∂ xl

)2
] 1

2


i

=
1

2

[
ε2

d∑
l=1

(
∂ Tϕ
∂ xl

)2
]− 1

2

·

[
2

d∑
l=1

∂ Tϕ
∂ xl

· ∂2 Tϕ
∂ ϕi∂ xl

]
(A.7)
=

1

‖∇Tϕ‖ε
·

d∑
l=1

∂ Tϕ
∂ xl

· ∂2 Tϕ
∂ xi∂ xl

. (A.15)

Combining equations A.14 and A.15 ∇ϕr
NGF can be brought into a more compact

form. Therefor the fraction is split up and the definition of the residual is applied

(∇ϕr
NGF)i =

d∑
k=1

∂R
∂ xk

‖∇R‖ε
·

∂2 Tϕ
∂ xi∂ xk

· ‖∇Tϕ‖ε − 1
‖∇Tϕ‖ε ·

∂ Tϕ
∂ xk
·

d∑
l=1

∂ Tϕ
∂ xl
· ∂2 Tϕ
∂ xi∂ xl

‖∇Tϕ‖2ε

=

d∑
k=1

∂R
∂ xk

‖∇R‖ε
·

∂2 Tϕ
∂ xi∂ xk

‖∇Tϕ‖ε
−

d∑
k=1

∂R
∂ xk

‖∇R‖ε
·

∂ Tϕ
∂ xk

‖∇Tϕ‖ε
·

d∑
l=1

∂ Tϕ
∂ xl
· ∂2 Tϕ
∂ xi∂ xl

‖∇Tϕ‖2ε

(2.5)
=

d∑
k=1

∂R
∂ xk

‖∇R‖ε
·

∂2 Tϕ
∂ xi∂ xk

‖∇Tϕ‖ε
−

d∑
l=1

rNGF ·
∂ Tϕ
∂ xl
· ∂2 Tϕ
∂ xi∂ xl

‖∇Tϕ‖2ε

=

d∑
k=1

∂R
∂ xk

‖∇R‖ε
·

∂2 Tϕ
∂ xi∂ xk

‖∇Tϕ‖ε
− rNGF ·

∂ Tϕ
∂ xk
· ∂2 Tϕ
∂ xi∂ xk

‖∇Tϕ‖2ε

=
d∑

k=1

∂2 Tϕ
∂ xi∂ xk

‖∇Tϕ‖ε
·

(
∂R
∂ xk

‖∇R‖ε
− rNGF ·

∂ Tϕ
∂ xk

‖∇Tϕ‖ε

)
(A.16)

The derivative of WNGF
1 is calculated in analogy to the SSD case but with opposite

sign:

(∇ϕW
NGF
1 )i = −WNGF

1 · (rNGF)2 · ∇ϕσ
2 − 2σ2 · rSSD · (∇Tϕ)i
v · (σ2)2

. (A.17)

57





Erklärung

Ich versichere an Eides statt, die vorliegende Arbeit selbstständig und nur unter
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