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Abstract

In this thesis, a CUDA implementation of a complete registration algorithm, which is

capable of aligning images using affine linear transformations and the Sum of Squared

Differences (SSD) or Normalized Gradient Fields (NGF) distance measure is presented.

Through close analysis of the mathematical composition of the distance measures, pixel-

wise independent, explicit calculation rules for the function values and derivatives were

derived. These are fully parallelizable and by the extensive use of different memory

types, well handled thread management and efficient hardware interpolation extreme

fast executing code was gained. Contrary to the common technique of reducing kernel

calls, the performance was significantly increased by rearranging a single kernel into

multiple smaller ones. A speedup of the GPU implementation compared to parallelized

CPU code of up to 11.4 for a multilevel image registration using SSD and 18.8 using

NGF was achieved. Matching two 512×512 pixel images is performed in 18 milliseconds

using SSD and in 28 milliseconds using NGF, thus making state-of-the-art multimodal

image registration available in real time scenarios.

Zusammenfassung

In dieser Arbeit wird eine CUDA Implementierung eines Registrierungsverfahren, welches

Bilder mittels affin-linearen Transformationen ausrichten kann, präsentiert. Als Distanz-

maße wurden die Summe der quadrierten Differenzen (SSD) und die normalisierten Gra-

dientenfelder (NGF) gewählt. Durch eine genaue Analyse der mathematischen Zusam-

mensetzung der Distanzmaße, wurde eine pixelweise unabhängige, explizite Rechen-

vorschrift für die Funktionswerte und Ableitungen hergeleitet. Diese sind voll par-

allelisierbar und mit ausgiebiger Nutzung verschiedener Speichertypen, genau durch-

dachten Kernelaufrufen und effizienter Hardwareinterpolation wurde Code mit extrem

schnellen Laufzeiten generiert. Im Gegensatz zur herkömmlichen Technik Kernelaufrufe

zu minimieren, konnte die Leistung signifikant gesteigert werden, indem ein großer Ker-

nel in mehrere kleine Kernel aufgeteilt wurde. Ein Geschwindigkeitszuwachs der CUDA

Implementierung verglichen mit parallelisierten CPU Code von bis zu 11.4 für eine multi-

level Registrierung mit SSD und 18.8 mit NGF konnte erreicht werden. Das Registrieren

zweier Bilder der Größe 512 × 512 Pixel wird in 18 Millisekunden mit SSD und in 28

Millisekunden mit NGF durchgeführt und ermöglicht den Einsatz von modernster mul-

timodaler Bildregistrierung in Echtzeitszenarios.
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Chapter 1: Introduction

Image registration is an important task in various areas of applications including medi-

cal image computing, see e.g. [20, 32] and the references therein. Roughly speaking, the

objective of image registration is to automatically establish correspondences of struc-

tures that are measured in different poses, perspectives or modalities, see e.g. [9, 57].

This objective is achieved by transforming one image (the template) to another image

(the reference). Images can be of different spatial dimension and image registration is

possible in 2D-2D, 2D-3D, 3D-3D settings. Time can be included as another dimension

leading to 3D-4D or 4D-4D registration [20, 32, 57].

Transformations are generally divided into two classes, linear and non-linear transforma-

tions [27]. Determining the appropriate class of transformations is generally a difficult

task [65]. The class of non-linear transformations includes transformations based on

physical or statistical models, such as elastic or viscous fluid models, or spline-based

algorithms [9, 27]. They usually have a large degree of freedom for the transformation

parameters, which results in high computational demand and long execution times [57].

The class of affine linear transformations, which includes rigid transformations, is used in

numerous applications [18, 31, 49, 64] and as a pre-processing step in almost all medical

image registrations [32, 37]. Furthermore, rigid transformations are broadly established

in clinical practice as they preserve geometry and can be performed in comparably short

time.

Following [37], an optimization framework can be used to formalize the registration

problem mathematically. Here, the transformation is characterized as a minimizer of a

carefully chosen distance measure D between the reference and transformed template.

For images of the same modality, the Sum of Squared Differences (SSD) [3] is a simple,

yet powerful distance measure. In a multimodal setting, the choice of D is non-trivial.

Mutual Information (MI) [61, 7] is widely used but results in a highly non-convex opti-

mization problem [17]. The Normalized Gradient Fields (NGF) distance measure pro-

posed by Haber and Modersitzki [17] provides a fair compromise between flexibility with

respect to modalities and convexity. The computation of a solution of the registration

problem, i.e. minimizing the distance measure, can be achieved by numerical optimiza-

tion. As this is an iterative process, image registration can be a time consuming task

and speeding up the computation is an ongoing effort [54]. Clinical applications like im-

age guided surgery [45] or ultrasound tracking [24] can greatly benefit from accelerating

registration algorithms.

Over the course of the last 20 years, parallel programming gained more and more impor-

tance for writing code that uses the capabilities of modern computers. The introduction

of multi-core Central Processing Units (CPUs) and the development of user-friendly

frameworks for programming CPUs and Graphics Processing Units (GPUs) made it
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possible to write parallelized code without great effort [22]. In contrast to the few cores

of CPUs, GPUs provide thousands of threads that can work in parallel and are well

suited for speeding up problems where the same program is executed on many data

elements in parallel [43]. The growing capabilities and use of GPUs in a scientific envi-

ronment is summarized in [46]. The authors state that current GPUs are highly parallel

programmable processors that outpace their CPU counterpart and are therefore an in-

teresting choice to accelerate algorithms. Many research groups implemented different

parts of a registration algorithm on the GPU using NVIDIAs Compute Unified Device

Architecture (CUDA) [12, 48, 54]. For instance, in [21] a statistical parametric map-

ping system was accelerated by parallelizing the computation of the rigid transformation,

bilinear interpolation and joint histogram on the GPU, achieving a 14-fold speedup com-

pared to a single-threaded CPU version. Deformable image registration was accelerated

resulting in a 55-fold speedup compared to single-threaded CPU code in [39]. To gain

this performance, the authors point out the importance of memory coalescing and low-

level implementation. Comparable speedups were generated in [53] by running MI on

the GPU.

In this thesis, a CUDA implementation of an affine linear 2D registration algorithm using

SSD or NGF is presented. CUDA was chosen, since it is steadily updated, well docu-

mented and easy to learn. To my knowledge, this is the first contribution implementing

the NGF distance measure on a GPU. In contrary to many contributions [12, 48, 54], the

entire algorithm is executed on the GPU, thus minimizing costly data transfer and CPU

load. The implementation is based on a pixelwise independent, explicit calculation rule

for NGF based registration derived by Rühaak et al. [49]. This scheme was extended

by using the CUDA framework and exploiting several techniques like optimized memory

handling, specialized kernel invocation and the efficient use of hardware interpolation. In

contrast to common practice, the computationally most demanding kernel was divided

into two separate kernels, resulting in faster executions. Therefore, only by thoroughly

analyzing the mathematical foundation, reconstructing the registration algorithm for

parallel execution and fully utilizing the high and low-level features of the GPU, fast

GPU code was gained that outperforms parallelized CPU code by far.

The thesis is organized as follows. Chapter 2 provides a brief overview of the registra-

tion framework, including a short summary of the used registration algorithm and its

components. Further, the derivation of the explicit calculation rules, which form the

foundation for massively parallel computation, is explained in detail. In Chapter 3, the

CUDA programming model will be briefly discussed and the most important CUDA

techniques that were used in order to gain very fast code are highlighted. After this, the

GPU code is compared to serial and parallelized CPU code in terms of performance in

Chapter 4. Finally, in Chapter 5, a conclusion and an outlook on future tasks is given.
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Chapter 2: Mathematical Foundation

In this chapter an overview of the mathematical foundation of which the registration

algorithm is built is given. In Section 2.1, image registration will be generally introduced,

explaining the basic idea as well as the single components that compose the registration

algorithm that was implemented for this work.Detailed explanations of how the SSD and

NGF distance measure calculations can effectively be rearranged into a memory efficient

and pixelwise independent explicit calculation rule are given in Section 2.2. This chapter

is concluded with a summary in Section 2.3.

2.1 Image Registration

Medical image registration is one of the challenging problems in image computing. It de-

scribes the process of aligning two images, the reference and the template image, so that

corresponding features can be matched. Corresponding features can either be structural,

e.g. bones or organs, or functional, e.g. functionally equivalent regions in different brain

images. Images are typically of the same context, e.g. a scene taken at different time or

view points or with an emphasis on different key features. In a medical sense, applica-

tions could relate to aligning a series of computed tomography images of a lung taken

at different times or aligning computed tomography images showing the anatomy with

functional magnetic resonance images showing the brain activity. Image registration is

needed for various tasks in medicine such as monitoring disease progression, planning

and guiding surgery or dose delivery verification [20].

There are many different registration algorithms that use either rigid and affine or non-

rigid transformations [33] to match images. Non-rigid transformations usually allow

a high degree of freedom for the transformation parameters to account for non-linear

transformations. Therefore, registration algorithms using non-linear transformations of-

ten have high computation times. Since the aim is to write an extremely fast registration

algorithm, affine transformations are used. 2D affine transformations are parameterized

by six transformation parameters that can account for object translations and rotations

as well as scaling and shearing. Only six parameters are used and the transformations

can be computed faster than non-rigid transformations. Affine transformations have

been successfully used in many different medical scenarios [32].

To measure the correspondence between the transformed template and reference image,

different methods have been proposed [9]. Assuming that pixel values in the reference

and template are comparable, i.e. the images are of the same modality and similar pixel

values correlate to the same object in both images, the Sum of Squared Differences (SSD)

is a simple, yet powerful distance measure [20] and used in different applications [23, 18].

Pixel intensities of images with different modalities may not correlate with the same ob-
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2.1 Image Registration
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Figure 1: Example registration of two hand images.

ject and other distance measures have to be used. The Normalized Gradient Fields [17]

distance measure evaluates the alignment of image gradients, which are persistent and do

not change with the modality. It is well suited for optimization and fast computation.

Other distance measures, like Normalized Cross Correlation [37] or Mutual Informa-

tion [7, 61], are not discussed, since they either do not produce better results or are

computationally more demanding than SSD or NGF.

Since both distance measures can be used to express the registration problem as a

least-squares problem, Newton-type optimization is used to solve it. More specific, a

Gauss-Newton optimization scheme [40] is used to compute a solution as it offers good

numerical stability, fast convergence and can be implemented in a computationally effi-

cient way [37].

In the following sections an overview of the different components of image registration

will be given, staying close to the registration framework used in [37]. First, the general

registration framework is discussed in Section 2.1.1. In Section 2.1.2 parametric trans-

formations are explained, followed by linear interpolation in Section 2.1.3. Hereafter,

insight on the two distance measures SSD and NGF is given in Sections 2.1.4 and 2.1.5,

respectively. The multilevel approach is explained in Section 2.1.6. This part concludes

with an overview of the complete registration algorithm in Section 2.1.7.
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2.1 Image Registration

2.1.1 Registration Framework

Image registration is the process of finding a reasonable transformation y, that describes

the spatial correspondence between two images, a reference image R and a template

image T . This is typically done by minimizing a distance measure D that depends on

the transformation y [37].

The images are defined as continuous mappings R : ΩR → R and T : ΩT → R with

compact support in the domains ΩR ⊂ R
2 and ΩT ⊂ R

2 in 2D, respectively. Note that

calligraphic letters are used for continuous functionals.

The transformation y : ΩR → R
2 is a-priori unknown and can be characterized as a

minimizer of an optimization problem. This problem often describes the correspondence

of the images by evaluating the image distance. Images showing similar structures in

similar locations are considered to have high correspondence. This similarity is frequently

depicted by a distance measure depending on the reference R, the template T , the

transformation y and function φ and can be stated as

D [T [y],R] =

∫

ΩR

φ(T [y],R) dx.

Over the course of years, many different distance measures have been proposed, in-

cluding Mutual Information [7, 61], Normalized Cross Correlation [37] or Normalized

Gradient Fields [17] for multimodal images as well as Sum of Squared Differences [3] for

monomodal images. Now, finding a reasonable correspondence between the images is

done by solving the optimization problem through minimizing the objective function

D(T (y),R) =: D(y)
y
→ min, (1)

where T (y) denotes the transformed template image. The transformations y : ΩR → R
2

maps the reference domain to the template domain. The minimization of (1) is done by

using the discretize-then-optimize ansatz [37]. The transformation and distance measure

are discretized, resulting in a continuous, yet n-dimensional optimization problem, where

n ∈ N. The images are discretized using a grid of sizeM×N ,M,N ∈ N and pixel values

are interpolated at the center of the grid cells. Therefore, rather than transforming the

template image itself, the grid is deformed and the template image is interpolated at the

transformed grid points.

This is the so called Eulerian approach. The Lagrangian framework, which follows tissue

points, is not used and therefore not explained.

Figure 1 shows exemplary images of aligning two hands using affine-linear transforma-

tions. The top row displays the reference and template image before and after the

registration, respectively. The bottom row shows the template image with the trans-

formed grid and the differences before and after the registration, respectively. The

bottom left image shows that rather transforming the image itself, a grid is transformed
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2.1 Image Registration

and the template image is interpolated at the transformed grid. It also shows, that the

transformation is not intuitive. The counterclockwise rotation of the template requires

a clockwise rotation of the grid.

2.1.2 Affine Linear Transformations

In order to solve the optimization problem (1), we concentrate on affine linear transfor-

mations, which belong to the parametrized transformations. They have a fixed, often

small, number of transformation parameters w as opposed to high degree of freedom for

the transformation parameters of non-rigid transformations. Parametrized transforma-

tions preserve straight lines and planes as well as the parallelism of lines and can be

defined as functions yw : ΩR → R
2.

For example, one of the easiest transformations is a translation of an image which can

be written as
(

y1

y2

)

=

(

x1

x2

)

+

(

w1

w2

)

,

where x1, x2 are the components of a single point x = (x1, x2)⊤ ∈ R
2. Note that

superscript indices identify components of vectors and subscript indices are used for

numbering.

Introducing additional rotation of the image gives rigid transformations. Here, yw maps

a single point x with yw : x 7→ Ax + t, t = (w2, w3)
⊤, and A := A(w1) is a rotation

matrix

A(w1) =

(

cos(w1) − sin(w1)

sin(w1) cos(w1)

)

,

where w1 denotes a rotation angle and t describes a translation in x1 and x2 direction.

The transformation yw : ΩR → R
2 enables a comparison of the reference image R and

the transformed image T (yw) := T ◦ yw by mapping the reference image domain to the

template image domain depending on the parameters w. The components are given by

y1 = cos(w1)x
1 − sin(w1)x

2 + w2,

y2 = sin(w1)x
1 + cos(w1)x

2 + w3,

where w = [w1;w2;w3] ∈ R
3 parameterizes the transformation.

Affine linear transformations can be realized by choosing an arbitrary transformation

matrix A. Here, yw : x 7→ Ax+ t, where A is a matrix and t is a vector defined as

A =

(

w1 w2

w4 w5

)

, t = (w3, w6)
⊤, (2)
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2.1 Image Registration

N = 3

M = 4
h1

h2

x1

x2

cellj
xj

Figure 2: Discretization of a 2D domain Ω [37].

where w = (w1, . . . , w6)
⊤ can be chosen completely arbitrary, as long as detA 6= 0 is

satisfied. Doing so allows for additional scaling and shearing and the components are

given by

y1 = w1x
1 + w2x

2 + w3,

y2 = w4x
1 + w5x

2 + w6,
(3)

where w = [w1; . . . ;w6] ∈ R
6 parameterizes the transformation.

2.1.3 Linear Interpolation

In order to find a solution to the optimization problem (1), the continuous model is

discretized, thus enabling the use of numerical optimization. Therefore the reference

domain ΩR is discretized into M × N cells. These cells are equally sized in x1 and x2

direction, where h1 and h2 define the step width in x1 and x2 direction, respectively. Data

is given at the cell-centered points xj =
(

x1j , x
2
j

)

∈ R
2, j = 1, . . . ,MN , as illustrated in

Figure 2. Using this, we define

Rj = R(xj) and Tj = T (xj),

where j = 1, . . . ,MN , R(xj) = 0 ∀xj 6∈ ΩR and T (xj) = 0 ∀xj 6∈ ΩT .

The transformed grid usually does not coincide with these points. Thus in order to

compute the transformed template image T (yw) := T (yw(x)) interpolation is needed.

Though spline interpolation is smoother and differentiable at all points, linear inter-

polation is used for several reasons. The main object of this work is to accelerate an

established registration algorithm and linear interpolation benefits from low computa-

tional costs.

Chapter 2: Mathematical Foundation 7



2.1 Image Registration

1 - xr2

( x1, x2 )

k00 k10

k11k01

xr2

xr1 1 - xr1

Figure 3: Simple representation of the bilinear pixel interpolation at coordinates (x1, x2).

Considering a unit square, the bilinear interpolation p : R2 → R of a pixel value at the

coordinates (x1, x2) can be written as

p = (1− x1r)((1− x
2
r)k00 + x2rk01) + x1r((1− x

2
r)k10 + x2rk11), (4)

where k00 · · · k11 are known pixel values and xir = xi −
⌊
xi
⌋
, i = 1, 2 are remainders, as

illustrated in Figure 3. The remainders are used to normalize the range of the square.

The analytical derivative of (4), needed in the optimization process, is defined as

∂p

∂x1
= (1− x2r)(k10 − k00) + x2r(k11 − k01),

∂p

∂x2
= (1− x1r)(k01 − k00) + x1r(k11 − k10).

(5)

2.1.4 Sum of Squared Differences Distance Measure

Once the template is transformed, a distance between it and the reference image needs to

be measured as stated in the optimization problem (1). The Sum of Squared Differences

distance measure is a simple, yet powerful distance measure and can be written as

DSSD(w) =
1

2

∫

ΩR

(T (yw(x))−R(x))
2 dx. (6)

In order to compute the integral, we discretize the continuous formulation using the mid-

point quadrature rule. This leads to the discretized versionD of the distance measure (6)
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2.1 Image Registration

and can be written as

DSSD(w) =
h̄

2

MN∑

j=1

(T (yw(xj))−R(xj))
2,

where h̄ = h1h2 defines the area of each cell. By discretizing the images as well the

formulation can be reduced to

DSSD(w) =
h̄

2

MN∑

j=1

(Tj(yw)−Rj)
2, (7)

Eq. (7) discloses the simplicity of the SSD distance measure. The differences for each

pixel of the reference and transformed template images are squared and summed up. This

is perfectly sufficient in a monomodal setting, where pixel values are directly comparable,

but does not perform well in a multimodal setting. To simplify further calculation steps,

the formulation is shortened by the use of a vector-valued residual function r and reads

DSSD(w) =:
h̄

2

MN∑

j=1

r2j =: ψSSD(r(T (yw))), (8)

where rj := (Tj(yw)−Rj) and ψSSD : RMN → R.

2.1.5 Normalized Gradients Field Distance Measure

SSD directly compares pixel values of the images R(x) and T (yw(x)), assuming that

intensities correspond. This is disadvantageous in a multimodal setting such as shown

in Figure 4. Mutual Information is widely used but due to its very general approach it

is very highly non-convex [37]. This leads to many local minima, which is not preferable

since the goal of minimizing (1) is to find a global minimum.

Figure 4: MRI sections of a head with T1 (left) and T2 (right) weighting. Pixel in-

tensities of the same objects do not correspond, making a direct comparison

difficult.
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2.1 Image Registration

As proposed in [17] a distance measure based on Normalized Gradient Fields is used,

which is both well suited for optimization and fast computation and can also handle

multimodal images. Image gradients refer to a change of intensity and in many scenarios

these intensity changes are assumably spatially correspondent. Because the gradient also

indicates the magnitude of the change, which is an unwanted quantity, the gradient∇T is

replaced by the normalized gradient ∇T / |∇T |. The normalized gradient field is defined

by

n [T ] = n [T , η] =
∇T

√

|∇T |2 + η2
,

where η is an edge parameter that differentiates between edges |∇T | > η and noise

|∇T | ≤ η. Using this, the correspondence of the gradient fields for the reference and

template image can be measured by examine the orientation of the gradients. The main

idea is to pointwise measure the angle between the two image gradients and to align

these in either parallel or antiparallel fashion. Considering that the scalar product of

two vectors is zero if they are orthogonal and maximal if they are parallel the continuous

NGF distance measure is defined as

DNGF(w) =

∫

ΩR

1−

(
〈∇T (yw(x)),∇R(x)〉

‖∇T (yw(x))‖η‖∇R(x)‖η

)2

dx, (9)

where ‖ · ‖η =
√

|·|2 + η2. Similar to discretizing the SSD distance measure, the contin-

uous NGF distance measure (9) is discretized by also applying the midpoint quadrature

rule. Additionally, finite differences are used to compute the various image gradients

yielding

DNGF(w) = h̄
MN∑

j=1

(

1−

(
〈gj(T (yw(x))), gj(R(x))〉

‖gj(T (yw(x)))‖η‖gj(R(x))‖η

)2
)

,

where gj is the approximation to the image gradient through central finite differences

defined as

gj(T (x)) :=

(
1

2h1
(−T (xj−1) + T (xj+1))

1
2h2

(−T (xj−M ) + T (xj+M ))

)

Finally, using the discretized formulation for the images the NGF distance measure reads

DNGF(w) = h̄
MN∑

j=1

(

1−

(
〈gj(T (yw)), gj(R)〉

‖gj(T (yw))‖η‖gj(R)‖η

)2
)

. (10)

For each pixel of the reference and template image, the scalar product of the approxi-

mated gradients is computed and normalized by dividing through the magnitudes of the
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gradients. If the gradients at point j are parallel, the division yields 1 and thus the con-

tribution to the distance is zero. Similar to the SSD distance measure the formulation

can be shortened through the use of a residual function and can finally be written as

DNGF(w) =: h̄

MN∑

j=1

(
1− r2j

)
=: ψNGF(r(T (yw))), (11)

where rj :=
〈gj(T (yw)),gj(R)〉

‖gj(T (yw))‖η‖gj(R)‖η
and ψNGF : RMN → R.

2.1.6 Multilevel Approach

In order to speed up the optimization process, the images are sampled from a very

coarse to a very fine resolution. By averaging adjacent cells into one cell, the intensity

values are smoothed and the resolution is decreased. Now, the registration starts on the

coarsest resolution and the problem is solved with relatively low computational costs.

The transformation parameters are then used as an initial guess for finer resolutions,

thus reducing the amount of iterations until a minimum if found.

Assuming that an image is of a size that is a power of two, i.e.

ml = 2l, l ∈ [lmin, lmin + 1, lmin + 2, . . . , lmax] , lmin < lmax ∈ N,

and T l ∈ R
ml×ml . Here, lmax is the finest and also initial level and lmin is the coarsest

level. A multilevel representation is obtained by

T l−1 [i, j] =

(T l [2i, 2j] + T l [2i+ 1, 2j] + T l [2i, 2j + 1] + T l [2i+ 1, 2j + 1])/4,
(12)

where i, j ∈ [0, 1, . . . ,ml−1]. The image size is chosen, so that a multilevel representation

down to a resolution of 2× 2 can be guaranteed. Figure 5 illustrates this process.

It is noticeable from a computational point of view, that the total memory allocation for

the multilevel data in 2D is never greater than one third of the original data. The size of
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0 10 20
0

5

10

15

20

25

level 6

0 10 20
0

5

10

15

20

25

level 5

0 10 20
0

5

10

15

20

25

level 4

0 10 20
0

5

10

15

20

25

level 3

0 10 20
0

5

10

15

20

25

Figure 5: Multilevel representation of a hand.
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2.1 Image Registration

each level is only one quarter of the preceding level, thus the memory requirement can

be formulated as a geometric series

∞∑

n=0

1

4

n

.

The limit of a geometric series is given by

∞∑

n=0

a0q
n = lim

n→∞
a0

1− qn+1

1− q
= a0

1

1− q
.

Now, setting a0 = 1 and q = 1/4 the limit of the series is

1

1− 1
4

=
4

3
,

showing that no matter how many levels the representation has, the total size is limited

to one third.

2.1.7 Gauss-Newton Optimization

Now that all the needed ingredients have been explained, a minimizer of the optimization

problem (1) can be computed using numerical optimization. More specific a multilevel

Gauss-Newton approach [40] was chosen. Unlike the Newton’s method [40] for finding a

minimum of a function, the Gauss-Newton method does not require second derivatives,

which are often hard to compute and susceptible to noise. Further, it offers good numer-

ical stability, fast convergence and can be implemented in a computationally efficient

way [37].

A pseudo code describing the multilevel Gauss-Newton optimization is shown in Algo-

rithm 1. In Step 1, a multilevel representation of the images in different resolutions

is generated. Starting on the coarsest level, the images are set to their multilevel rep-

resentation and the transformation parameters are initialized, as seen in Steps 2 to 4.

Steps 5 to 11 describe the actual Gauss-Newton algorithm. First, the objective function

is evaluated. The objective function reads J (w) = D [T (yw(x)),R(x)] and is defined as

the distance between the reference and transformed template image. The evaluation of

the objective function at the current transformation parameters w is the computation of

the function value, i.e. D(w) = ψ(r(T (yw))), the gradient ∇D and the approximation

to the Hessian H. In Step 7 common stopping rules [16] are checked. For the current

iteration n, these stopping rules read

Stop 1: |Jn−1 − Jn| ≤ tolJ(1 + |J0|)

Stop 2: ‖(wn−1 − wn)‖ ≤ tolW(1 + ‖wn‖)
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Stop 3: h̄ · ‖dJn‖ ≤ tolG(1 + |J0|)

Stop 4: ‖dJn‖ ≤ 10−7

Stop 5: iter > maxIter

where J0 is the initial function value and tolJ, tolW and tolG are tolerance values chosen

according to the optimization problem. The first three rules measure the variation in the

function value, parameters and gradient, respectively. If all three numbers are small, the

iteration terminates. As safeguards, rule 4 and 5 are implemented. If the variation in

the gradient is very small, i.e. in the area of machine precision, or if a maximum number

of iterations maxIter is reached, the iteration terminates as well. The Quasi-Newton

system is solved and the descent direction is computed in Steps 8 and 9. In the setting

of affine linear transformations this system is small, i.e. H ∈ R
6×6 and∇D, dw ∈ R

6, and

can be solved with the aid of pivoting and LU decomposition [60]. A standard Armijo

line-search [40] is performed in Step 10 in order to guarantee a sufficient decrease in the

objective function. After the Gauss- Newton optimization terminates for any reason,

the final parameters are saved for the next level, as seen in Step 12. Steps 2 to 12 are

repeated until the finest level is reached and the final transformation parameters are

calculated.

Algorithm 1 Pseudo code for the multilevel Gauss-Newton optimization

1: get Tlevel, Rlevel ∀ level ⊲ Compute multilevel representation

2: for level← minLevel, level ≤ maxLevel do ⊲ Start multilevel loop

3: T ← Tlevel, R← Rlevel ⊲ Set images to current level

4: w ← w0 ⊲ Set initial transformation parameters

5: while stopping rules not active do ⊲ Start Gauss-Newton optimization

6: [D,∇D,H]← evalObjFctn(w, T,R) ⊲ Evaluate objective function

7: stoppingRules ← stoppingRules(w) ⊲ Evaluate stopping rules

8: H · dw = −∇D ⊲ Solve for dw

9: vdescent ← ∇D · dw ⊲ Compute descent direction

10: w ← lineSearch(ObjFctn, w,D, vdescent) ⊲ Perform Armijo line-search

11: end while

12: w0 ← w, level← level + 1 ⊲ Save parameters for next level

13: end for
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2.2 Explicit Calculation Rules

2.2 Explicit Calculation Rules

The evaluation of the objective function as needed in the Gauss-Newton optimization

scheme can be done in several ways. In [37] a modular, matrix-based approach is chosen.

Here, the transformation, interpolation and distance measure calculation are expressed

as matrix operations. Using this ansatz, the class of transformations, interpolation or

distance measure can easily be interchanged. Therefore, this approach is very versatile,

yet slow to compute, since it is not optimized for a certain kind of transformation,

interpolation and distance measure.

Rühaak et al. [49] proposed a fully parallelizable, matrix-free computation of the 3D

NGF distance measure. This enabled an extremely fast, on the fly evaluation of the

objective function with minimal memory requirements. Based on their concepts and

ideas, fully parallelizable and matrix-free 2D explicit calculation rules for the SSD and

NGF computation were derived.

In this section insight on the derivation of these rules is provided, starting with some

general remarks in Section 2.2.1. The calculation of the function value, gradient and

approximation to the Hessian for the SSD distance measure is shown in Section 2.2.2.

In Section 2.2.3 the differences for the NGF distance measure are discussed and the

calculation rule for NGF is presented.

2.2.1 General Concept

In order to derive an efficient and pointwise independent explicit calculation rule for the

function value D, the gradient ∇D and the approximation to the Hessian H, a close

analysis of their mathematical composition is inevitable. The straightforward matrix-

based approach, as used in the image registration toolbox FAIR [37], is hard to implement

efficiently on the GPU with respect to memory usage and execution time. Therefore,

the internal structures of the single matrices are exposed and exploited. Many of these

matrices exhibit a sparse structure. By carefully dissecting the interdependency of the

single entries, a very memory and time conserving problem specific algorithm can be

derived. The same principles are used to derive closed form formulas for the gradient

and Hessian computation as well.

2.2.2 Sum of Squared Differences

In this section, the derivation of explicit calculation rules for the SSD function value and

derivatives are explained in detail.

Preliminary Considerations The cascaded formulation of the SSD distance measure in

(8) reveals that the optimization problem can be stated as a minimization of a function
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DSSD : R6 → R. The six parameters of the affine transformation are mapped to one

function value that represents the distance between the transformed template image and

the reference image. The cascaded formulation (8) can be decomposed into vector-valued

functions which are defined as

y : R6 → R
2MN ,






w1

...

w6




 7→











(Ax1 + t)1
(Ax1 + t)2

...

(AxMN + t)1
(AxMN + t)2











, (13)

where A, t are defined as in Equation (2). Here, the transformation y maps six param-

eters w to a vector of 2MN transformed points. By using y =
(
y1, y2

)⊤
the evaluation

of the template image at the transformed points can be written as

T : R2MN → R
MN ,






y1
...

yMN




 7→






T (y1)
...

T (yMN )




 . (14)

The residual is then formulated as

r : RMN → R
MN ,






T1
...

TMN




 7→






T1 −R1

...

TMN −RMN




 , (15)

leading to the definition of the outer function as the sum of the squared residual elements

ψ : RMN → R,






r1
...

rMN




 7→

h̄

2

MN∑

j=1

r2j . (16)

Thus, the discretized objective function of the SSD distance measure (7) can be seen as

a concatenation of the functions

DSSD : R6 y
−→ R

2MN T
−→ R

MN r
−→ R

MN ψ
−→ R.

Using the above formulation and the chain rule, the analytical gradient is given by

∇DSSD(w) =
∂ψ

∂r
[r(T (y(w)))] ·

∂r

∂T
[T (y(w))] ·

∂T

∂y
[y(w)] ·

∂y

∂w
[w]. (17)

Again, we examine the components individually. The derivative of the first factor is

given by

∂ψ

∂r
= h̄(r1, . . . , rMN ) ∈ R

1×MN .
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The derivative of the residual function is defined as

∂r

∂T
= IMN ∈ R

MN×MN ,

where IMN is the identity matrix. Therefore, the derivative of the residual function has

no influence on the computation of the analytical gradient and can be omitted. The

derivative of the template image at point x =
(
x1, x2

)
is obtained by using the notation

of Equation (5) and can be written as

∂1T (x) =
∂p

∂x1r
= (1− x2r)(k10 − k00) + x2r(k11 − k01),

∂2T (x) =
∂p

∂x2r
= (1− x1r)(k01 − k00) + x1r(k11 − k10),

with the corresponding Jacobian

∂T

∂y
=









∂1T (y1) ∂2T (y1)

∂1T (y2) ∂2T (y2)
. . .

. . .

∂1T (yMN ) ∂2T (yMN )









,

∂T

∂y
∈ R

MN×2MN . (18)

Following Equation (3) the derivative of the transformation y with respect to the pa-

rameters w reads

∂y

∂w
=











x11 x21 1 0 0 0

0 0 0 x11 x21 1
...

...
...

...
...

...

x1MN x2MN 1 0 0 0

0 0 0 x1MN x2MN 1











∈ R
2MN×6, (19)

completing the analysis of the single components of the analytical gradient ∇DSSD(w)

from (17). As mentioned in Section 2.1.7, through the use of Gauss-Newton optimization

the computation of second order image derivatives, which are highly susceptible to noise,

is not needed. Instead the Hessian is replaced by an approximation that is given by

∇2DSSD(w) ≈ HSSD(w) := h̄ dr⊤dr, (20)

where dr := ∂r
∂T [T (y(w))] ·

∂T
∂y [y(w)] ·

∂y
∂w [w].
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∂ψ

∂r
︷ ︸︸ ︷

∂T

∂y
︷ ︸︸ ︷

∂y

∂w
︷ ︸︸ ︷

∇DSSD =
(
• • • • • •

)












• •

• •

• •

• •

• •

• •




































• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

























Figure 6: Schematic view of the sparse matrix structure in the computation of ∇DSSD.

Problem Specific Derivative Calculation In the previous segment the derivation for

the computation of the function value DSSD, the gradient ∇DSSD and the approximation

to the Hessian ∇2DSSD was shown. However, the computations are matrix-based and

further analysis is required in order to obtain pointwise independent calculation rules.

Therefore, the sparse structure of the matrices, shown in Figure 6, that compose the

gradient (17) are exploited. The complete analytical gradient is defined as

∇DSSD = (∂w1
DSSD, ∂w2

DSSD, ∂w3
DSSD, ∂w4

DSSD, ∂w5
DSSD, ∂w6

DSSD) .

By knowing the interdependency of the matrices, the entries of the gradient can then be

written as

∂w1
DSSD(w) = h̄

MN∑

j=1

(T (yw(xj))−R(xj)) · ∂1T (yw(xj)) · x
1
j

∂w2
DSSD(w) = h̄

MN∑

j=1

(T (yw(xj))−R(xj)) · ∂1T (yw(xj)) · x
2
j

∂w3
DSSD(w) = h̄

MN∑

j=1

(T (yw(xj))−R(xj)) · ∂1T (yw(xj)) (21)

∂w4
DSSD(w) = h̄

MN∑

j=1

(T (yw(xj))−R(xj)) · ∂2T (yw(xj)) · x
1
j
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∂w5
DSSD(w) = h̄

MN∑

j=1

(T (yw(xj))−R(xj)) · ∂2T (yw(xj)) · x
2
j

∂w6
DSSD(w) = h̄

MN∑

j=1

(T (yw(xj))−R(xj)) · ∂2T (yw(xj)).

The same approach is used to compute the entries of the approximation H to the Hessian

∇2DSSD. First, we define dx1j = ∂1T (yw(xj)), dx
1x1j = dx1j · x

1
j , dx

1x2j = dx1j · x
2
j

and dx2j = ∂2T (yw(xj)), dx
2x1j = dx2j · x

1
j , dx

2x2j = dx2j · x
2
j . Finally, we phrase the

approximation as

HSSD(w) = h̄

MN∑

j=1

lj , (22)

with

lj :=































dx1x1j · dx1x1j dx1x1j · dx1x2j dx1x1j · dx1j dx1x1j · dx2x1j dx1x1j · dx2x2j dx1x1j · dx2j

• dx1x2j · dx1x2j dx1x2j · dx1j dx1x2j · dx2x1j dx1x2j · dx2x2j dx1x2j · dx2j

• • dx1j · dx1j dx1j · dx2x1j dx1j · dx2x2j dx1j · dx2j

• • • dx2x1j · dx2x1j dx2x1j · dx2x2j dx2x1j · dx2j

• • • • dx2x2j · dx2x2j dx2x2j · dx2j

• • • • • dx2j · dx2j































.

For clarification only the upper triangular part is shown in Equation (22). Since H is

symmetric by definition the lower triangular part is easy to fill by mirroring the upper

part. Both, the explicit calculation rule for the gradient and the approximation to

the Hessian, only depend on the j-th pixel and can be evaluated independently. In

addition, there are two other handy advantages. First, the memory costs are kept at

minimum as everything is computed on the fly, whereas in the matrix-based approach

the deformed template and various sparse matrices among other data need to be stored.

Second, equations for the function value DSSD (7), the gradient ∇DSSD (21) and the

approximation to the Hessian HSSD (22) can be directly parallelized pixelwise. There

are no interdependencies between the pixels, thus allowing the computation of the values

for every pixel at once.

2.2.3 Normalized Gradient Fields

In the previous section, explicit calculation rules for the SSD function value and deriva-

tives were derived. The same ideas are applied to derive calculation rules for the NGF

function value and derivatives. For the effective computation of the function value the

discretized formulation from Equation (10) can straightforwardly be used. To derive the

calculation of the gradient we follow the example given in Section 2.2.2.
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Preliminary Considerations The cascaded formulation of the NGF distance measure (11)

can also be decomposed, yet there are several differences to the SSD distance measure.

Compared to the definitions of the residual (15) and outer (16) function of the SSD, the

outer function for the NGF is defined as

ψ : RMN → R,






r1
...

rMN




 7→ h̄

MN∑

j=1

(
1− r2j

)
,

and the residual function is written as

r : RMN → R
MN ,






T1
...

TMN




 7→








(
s(g1(T ))

‖g1(T )‖η‖g1(R)‖η

)2

...
(

s(gMN (T ))
‖gMN (T )‖η‖gMN (R)‖η

)2







,

where s is the scalar product of two vectors define as

s : R2 → R, a 7→ 〈a, gj(R)〉,

with a ∈ R
2 and gj is an approximation to the image gradient using central finite

differences

gj : R
MN → R

2, T 7→

(
1

2h1
(−Tj−1 + Tj+1)

1
2h2

(−Tj−M + Tj+M )

)

,

The other two terms are defined just as in Equations (13) and (14) and the discretized

objective function of the NGF distance measure (10) can also be seen as a concatenation

of the functions

DNGF : R6 y
−→ R

2MN T
−→ R

MN r
−→ R

MN ψ
−→ R.

Identical to (17), the analytical gradient can be written as

∇DNGF(w) =
∂ψ

∂r
[r(T (y(w)))] ·

∂r

∂T
[T (y(w))] ·

∂T

∂y
[y(w)] ·

∂y

∂w
[w]. (23)

Here, the partial derivatives for the first two factors differ from the SSD distance measure.

The derivative of the first factor is defined as

∂ψ

∂r
= −2h̄(r1, . . . , rMN ) ∈ R

1×MN .

We define

rj : R→ R, Tj 7→

(
s(gj(T ))

‖gj(T )‖η‖gj(R)‖η

)2
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as the j-entry of r. Now, using the quotient rule and rj :=
rj1
rj2

we can write the derivative

of rj as

∂rj
∂T

=
1

r2j2

(
∂rj1
∂T

rj2 − rj1
∂rj2
∂T

)

. (24)

Further, the derivative of the dividend is given by

∂rj1
∂T

=
∂s(gj(T ))

∂T
=

∂s

∂gj(T )

∂gj(T )

∂T
.

This leads to

∂s

∂gj(T )
=

(
1

2h1
(−Rj−1 +Rj+1) ,

1

2h2
(−Rj−M +Rj+M )

)

∈ R
1×2

and j−M

̂

j−1

̂

j

̂

j+1

̂

j+M

̂

∂gj(T )

∂T
=

(
· · · 0 · · · − 1

2h1 0 1

2h1 · · · 0 · · ·

· · · − 1

2h2 · · · 0 0 0 · · · 1

2h2 · · ·

)

∈ R
2×MN , (25)

where the entries of the matrix are zero except at the positions j−M, j−1, j+1, j+M .

We are using zero Neumann boundary conditions and specify the values of the derivative

on the boundary as zero. Finally we get

∂rj1
∂T

=























...
1

4(h2)2
(Rj−M −Rj+M )

...
1

4(h1)2
(Rj−1 −Rj+1)

0
1

4(h1)2
(Rj+1 −Rj−1)

...
1

4(h2)2
(Rj+M −Rj−M )

...























⊤

∈ R
1×MN . (26)

Here, the index of the first operand denotes the position of the entry in the vector, e.g.

the entry Rj−M −Rj+M is found on the position j−M . The rest of the entries are again

zero.

The derivative of the divisor is given by

∂rj2
∂T

=
∂‖gj(T )‖η‖gj(R)‖η

∂T
= ‖gj(R)‖η

∂‖ · ‖η
∂gj(T )

∂gj(T )

∂T
.
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Further is

∂‖ · ‖η
∂gj(T )

=
1

‖gj(T )‖η
gj(T )

⊤,

so that with the aid of (25) follows

∂rj2
∂T

=
‖gj(R)‖η
‖gj(T )‖η

gj(T )
⊤∂gj(T )

∂T

=
‖gj(R)‖η
‖gj(T )‖η























...
1

4(h2)2
(Tj−M − Tj+M )

...
1

4(h1)2
(Tj−1 − Tj+1)

0
1

4(h1)2
(Tj+1 − Tj−1)

...
1

4(h2)2
(Tj+M − Tj−M )

...























⊤

∈ R
1×MN . (27)

Combining (26) and (27) we can write (24) as

∂rj
∂T

=

























...
1

4(h2)2

[
Rj−M−Rj+M

‖gj(R)‖η‖gj(T )‖η
−

〈gj(T ),gj(R)〉
‖gj(R)‖η‖gj(T )‖3η

(Tj−M − Tj+M )
]

...
1

4(h1)2

[
Rj−1−Rj+1

‖gj(R)‖η‖gj(T )‖η
−

〈gj(T ),gj(R)〉
‖gj(R)‖η‖gj(T )‖3η

(Tj−1 − Tj+1)
]

0
1

4(h1)2

[
Rj+1−Rj−1

‖gj(R)‖η‖gj(T )‖η
−

〈gj(T ),gj(R)〉
‖gj(R)‖η‖gj(T )‖3η

(Tj+1 − Tj−1)
]

...
1

4(h2)2

[
Rj+M−Rj−M

‖gj(R)‖η‖gj(T )‖η
−

〈gj(T ),gj(R)〉
‖gj(R)‖η‖gj(T )‖3η

(Tj+M − Tj−M )
]

...

























⊤

(28)

or

∂rj
∂T

=:






∂rj1
...

∂rjMN






⊤

∈ R
1×MN .

Chapter 2: Mathematical Foundation 21



2.2 Explicit Calculation Rules

This finally leads to

∂r

∂T
=









∂r1
∂T
∂r2
∂T
...

∂rMN

∂T









∈ R
MN×MN . (29)

The other two factors that compose ∇DNGF(w) as in Equation (23) are the same as in

Equations (18) and (19). Now, using ∂ψ
∂r = −2h̄r⊤, the gradient of the NGF distance

measure results in

∇DNGF(w) = −2h̄

MN∑

j=1

rjdrj ,

where drj =
∂rj
∂T

∂T
∂y

∂y
∂w . The approximation to the Hessian is given by

∇2DNGF(w) ≈ HNGF := 2h̄

MN∑

j=1

dr⊤j drj .

∂r

∂T
=



































• •

• • •

• • •

• • •

• • • •

• • • •

• • • •

• • • •

• • • •

• • • •

• • • •

• • • •

• • •

• • •

• • •

• •



































Figure 7: Schematic view of the sparse matrix structure of ∂r
∂T for the computation of

gradient ∇DNGF.
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Problem Specific Derivative Calculation Analog to the problem specific derivative

calculation for the SSD distance measure, compact formulations for the NGF distance

measure are derived. The layout of the matrices is the same as in Figure 6. The

difference is that ∂r
∂T is not the identity matrix anymore and thus plays a role in the

gradient computation. In this case, ∂r
∂T is a sparse matrix with a maximum of only four

entries per row, as seen in Equations (28) and (29) and Figure 7. Exploiting the sparse

matrix structure, drj can be written as

drj =





































∂rjj−M
∂1Tj−Mx

1
j−M + rjj−1

∂1Tj−1x
1
j−1

+∂rjj+1
∂1Tj+1x

1
j+1 + ∂rjj+M

∂1Tj+Mx
1
j+M

∂rjj−M
∂1Tj−Mx

2
j−M + rjj−1

∂1Tj−1x
2
j−1

+∂rjj+1
∂1Tj+1x

2
j+1 + ∂rjj+M

∂1Tj+Mx
2
j+M

∂rjj−M
∂1Tj−M + rjj−1

∂1Tj−1

+∂rjj+1
∂1Tj+1 + ∂rjj+M

∂1Tj+M

∂rjj−M
∂2Tj−Mx

1
j−M + rjj−1

∂2Tj−1x
2
j−1

+∂rjj+1
∂2Tj+1x

1
j+1 + ∂rjj+M

∂2Tj+Mx
1
j+M

∂rjj−M
∂2Tj−Mx

2
j−M + rjj−1

∂2Tj−1x
2
j−1

+∂rjj+1
∂2Tj+1x

2
j+1 + ∂rjj+M

∂2Tj+Mx
2
j+M

∂rjj−M
∂2Tj−M + rjj−1

∂2Tj−1

+∂rjj+1
∂2Tj+1 + ∂rjj+M

∂2Tj+M





































.

Using this, the components which compose the gradient are defined as

∂w1
DNGF(w) = −2h̄

MN∑

j=1

rj · drj [1]

∂w2
DNGF(w) = −2h̄

MN∑

j=1

rj · drj [2]

∂w3
DNGF(w) = −2h̄

MN∑

j=1

rj · drj [3] (30)

∂w4
DNGF(w) = −2h̄

MN∑

j=1

rj · drj [4]

∂w5
DNGF(w) = −2h̄

MN∑

j=1

rj · drj [5]
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∂w6
DNGF(w) = −2h̄

MN∑

j=1

rj · drj [6],

where drj [i], i = 1, . . . , 6 is the i-th entry of the vector and rj =
〈g(Tj(yw)),gj(R)〉

‖g(Tj(yw))‖η‖gj(R)‖η
, see

Equation (10) and (11). The complete analytical gradient reads

∇DNGF = (∂w1
DNGF, ∂w2

DNGF, ∂w3
DNGF, ∂w4

DNGF, ∂w5
DNGF, ∂w6

DNGF) .

The approximation to the Hessian can then be phrased as

HNGF(w) = 2h̄
MN∑

j=1

lj , (31)

with

lj :=































drj [1] · drj [1] drj [1] · drj [2] drj [1] · drj [3] drj [1] · drj [4] drj [1] · drj [5] drj [1] · drj [6]

• drj [2] · drj [2] drj [2] · drj [3] drj [2] · drj [4] drj [2] · drj [5] drj [2] · drj [6]

• • drj [3] · drj [3] drj [3] · drj [4] drj [3] · drj [5] drj [3] · drj [6]

• • • drj [4] · drj [4] drj [4] · drj [5] drj [4] · drj [6]

• • • • drj [5] · drj [5] drj [5] · drj [6]

• • • • • drj [6] · drj [6]































.

For clarification only the upper triangular part is shown in Equation (31) as the lower

triangular part can easily be filled by mirroring the upper part. Also, the two advantages

presented at the end of Section 2.2.2 apply here as well, thus enabling a fast and memory

efficient computation of the NGF distance.

This concludes the lengthy derivation of the explicit calculation rules for the SSD and

NGF distance measures.

2.3 Summary

In this chapter, the mathematical foundation of the registration algorithm was explained.

First, an overview of all the needed components for the registration algorithm was given.

Using these components and with the help of pseudo code in Algorithm 1, the affine lin-

ear multilevel registration algorithm was then discussed in detail. In the second part

of this chapter, explicit calculation rules for the SSD and NGF distance measures were

derived. This was achieved by carefully analyzing the sparse matrix structures that

compose the distance measure calculations and examine the interdependencies of the

single entries. Thus, it was possible to derive pixelwise independent, memory efficient

explicit calculation rules that can be effectively parallelized and computed using GPUs

and NVIDIA’s CUDA.

In the next chapter, the key features of CUDA will be explained and the GPU imple-

mentation will be discussed in detail.
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Chapter 3: General-Purpose Computing

on Graphics Processing Units

In this chapter, NVIDIA’s Compute Unified Device Architecture (CUDA) is introduced.

It is used to implement the algorithm and a detailed explanation about the most impor-

tant features will be given. Starting with a brief introduction to CUDA in Section 3.1,

the reasons why CUDA was chosen are stated and the programming model and memory

layout are explained. An overview of the workstation on which all experiments were

conducted is given in Section 3.2. In Section 3.3 the most important CUDA techniques

in order to gain high performing code are analyzed. This chapter concludes with a

summary in Section 3.4.

3.1 An Introduction to GPGPU

Starting with the turn of the century, graphics processing units (GPUs) became an inter-

esting choice for computations other than graphics related. Programmable shaders and

floating point support on GPUs made them a target for highly parallel numerical work-

loads and the term general-purpose computing on graphics processing units (GPGPU)

was introduced.

Implementations of matrix-matrix multiplications on the GPU date back to 2001 [25]

but suffered from slow memory bandwidth and were not faster than optimized CPU

code. One of the first applications that actually ran faster on a GPU than on a CPU

was a LU decomposition [14].

However, writing code for the GPU was difficult, since the two major application pro-

gramming interfaces (APIs) were Silicon Graphics Inc. OpenGL [56] and Microsoft

DirectX [30]. They are shading languages and programmers must express numerical

computations in graphics terms, e.g. textures or vertices [46]. The introduction of high

level languages like BrookGPU [4] allowed for stream programming [47]. Streams are

similar to arrays, but it is possible to work on every element in parallel.

The advent of NVIDIA’s CUDA [50] in 2007 improved the performance for many ap-

plications and simplified GPU programming [11]. Much like Khronos Group’s Open

Computing Language (OpenCL) [58], it features a C-like syntax, but offers more low-

level features to fully utilize the capabilities of the GPU.

These and ongoing developments allowed programmers to write GPU code more easily

and for more complex applications. The importance of GPGPU is known to hardware

companies and a new focus is laid on novel technological features that further simplify

GPU programming. For example, CUDA’s latest major release of version 6.0 features

Unified Memory, memory that is accessible to CPU and GPU and is managed by the
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system rather than the developer.

These and past developments made GPGPU an interesting choice to accelerate different

applications in medical imaging [34, 54, 55] as well as many other applications in many

other fields of research [47, 46].

Section 3.1.1 explains why a GPU implementation was chosen over a parallelized CPU

implementation. More insight into the CUDA framework will be given in Section 3.1.2

by starting with an discussion about why CUDA was selected over other computing

languages. Thereafter, the programming model will be explained in Sections 3.1.3 and

illustrated with the help of a simple example in Section 3.1.4. The different types of

memory including their features are discussed in Section 3.1.5.

3.1.1 Why GPGPU?

There are many options in order to improve the computational performance of an algo-

rithm. On the one hand the algorithm itself can be analyzed and optimized in terms of

avoiding unnecessary computations and operations. On the other hand the implemen-

tation of the algorithm has a big impact on the performance as well. The first option

was dealt with in Section 2.2 and problem specific, memory efficient calculation rules

for computationally expensive operations of the registration algorithm were derived. In

this chapter, the implementation of the algorithm itself is dealt with.

The explicit calculation rules derived in Section 2.2, expose pixelwise parallelism, which

makes them a perfect choice for massively parallel computing. Modern computing de-

vices, starting from ordinary personal computers to huge computer clusters or even

mobile phones, offer multi-core processors or GPUs that enable parallel computing.

Parallelizing CPU code can be done by using the Open Multi-Processing (OpenMP)

API [10]. The programmer can run C/C++ code in parallel through the use of compiler

Figure 8: Schematic design of a CPU and GPU. Whereas the CPU devotes a large por-

tion of transistors to flow control and data caching, the GPU provides more

arithmetic logic units (ALUs) needed for data processing [43].
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Figure 9: Comparison of the theoretical peak performance of various CPUs and

GPUs [43].

directives.

GPU code can be created through the use of high level programming languages like

OpenCL or CUDA. Current GPUs provide thousands of small cores designed to han-

dle multiple tasks simultaneously, whereas CPUs only consist of up to 16 cores (AMD

Opteron) with many transistors devoted to different tasks such as data caching and flow

control [43], schematically illustrated by Figure 8.

The number of single precision floating point operations per second on current GPUs is

nearly ten times higher compared to CPUs, as seen in Figure 9. This shows, that the

computational much more powerful device is the GPU.

So, why is not every computation done on a GPU? One downside of graphics cards is

the data transfer. Whereas the transfer does not matter for CPU computations, since

the data is already available in main memory, it needs to be transferred from the main

RAM to the GPU memory before it can be accessed. This results in a non-negligible

overhead which impacts the overall runtime of the code.

Another fact to be considered is the ratio of serial and parallel code. If a program runs

mainly serial and only a little portion of the code runs parallel, the performance benefit

of using a GPU will be small. This is described by Amdahl’s law [1], which reads

S(N) =
1

(1− P ) + P
N

, (32)
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where S is the theoretical speedup, P is the portion of the code that can be parallelized

and N is the number of processors. As an illustrative example, let 90% of the code be

parallelizable. Amdahl’s law then states that no matter how many cores are used, the

maximum speedup is capped at 10. Therefore, GPUs require a very high amount of

parallelism to outperform CPUs.

Since the computational most expensive part of the algorithm is pixelwise parallelizable

and data transfer between the CPU and GPU is kept at a minimum, see Section 3.3.1,

implementing a GPU version of the algorithm was very promising. That said, there is

no general opinion on whether to implement parallelizable code on CPUs or GPUs. The

programmer has to consider many factors to find an optimal solution and in many cases

highly optimized CPU code can compete with GPU code [62, 26].

3.1.2 Why CUDA?

The implementation of the registration algorithm was done using CUDA for numerous

reasons. The main reason is that CUDA offers a good trade-off between low-level and

high-level features. The high-level features and the C-like syntax make it easy to learn

and use. Programmers do not need to understand OpenGL or DirectX APIs or restruc-

ture the problems in terms of graphics primitives [50]. Yet, the low-level features enable

the developer to unleash the full power of the GPU.

The use of different memory spaces and problem specific kernel layout and launch are

mandatory in obtaining high performing code, as will become clear in Section 3.3. More-

over, CUDA is steadily updated and very well documented. Compared to OpenCL

CUDA offers better memory and thread handling and faster transfer rates [55, 29].

These reasons make CUDA a widely used framework by researchers across the world

and for different tasks like weather prediction [35], molecular dynamics [28] or medical

image registration [5, 39, 52, 59].

Disadvantages of using CUDA are the restriction to NVIDIA GPUs and the low per-

formance when using double precision floating point operations. The latter requires the

programmer to find a reasonable trade-off between runtime and accuracy.

3.1.3 Programming Model

In order to briefly explain the principles behind the CUDA framework, the CPU and the

system’s memory is referred to as the host and the GPU and its memory as the device,

staying close to common literature [43, 50, 63].

CUDA uses a single-program multiple-data programming model, allowing the user to

pass a program, called kernel, to the device. The kernels will execute N times in parallel
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Figure 10: Thread, block and grid hierarchy [44].

by N different CUDA threads1. This makes it similar to the single-instruction multiple-

data model, yet CUDA allows branching within the kernel, providing a much broader

instruction set.

Threads are identified by a d-dimensional thread index forming d-dimensional thread

blocks, with d = 1, 2, 3. Again, these blocks are identified by a block index and grouped

into a d-dimensional grid, as shown in Figure 10.

Threads are executed in groups of 32 parallel threads called warps1. In order to gain full

efficiency, all 32 threads of the warp should execute the same instruction. Otherwise, each

instruction branch will be executed serially resulting in increased execution time [43].

The exact layout of the thread blocks and grid is defined by the user when calling a kernel.

The thread blocks of the grid are then distributed to available streaming multiprocessors

(SMs). A SM can concurrently execute threads of a thread block as well as multiple

thread blocks. After the termination of a thread block, the vacancy is filled by launching

new thread blocks.

1The terms thread and warp are an analogy to the weaving industry, one of the first technologies using

parallel threads.
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1 // define kernel

2 __global__ void add(int *a, int *b, int *result)

3 {

4 // compute global thread index

5 const int tid = blockIdx.x*blockDim.x + threadIdx.x;

6

7 // elementwise addition of the vectors

8 if(tid <N)

9 result[tid] = a[tid] + b[tid];

10 }

11

12 // main routine , analog to every other C main routine

13 int main(void)

14 {

15 // initialize arrays on host

16 int h_a[N], h_b[N], h_result[N];

17

18 // fill arrays with values

19 ...

20

21 // initialize arrays on device

22 int *d_a , *d_b , *d_result;

23

24 // allocate memory on device

25 cudaMalloc( (void **)&d_a , N*sizeof(int) );

26 ...

27

28 // transfer data from host to device

29 cudaMemcpy(d_a , h_a , sizeof(int)*N, cudaMemcpyHostToDevice);

30 ...

31

32 // define grid and block layout

33 dim3 gridDim( 1, 1, 1 );

34 dim3 blockDim( N, 1, 1 );

35

36 // call kernel

37 add <<<gridDim , blockDim >>>(d_a , d_b , d_result);

38

39 // transfer data from device to host

40 cudaMemcpy(h_result , d_result , sizeof(int)*N, cudaMemcpyDeviceToHost);

41

42 // do whatever you want with the result ...

43

44 // free allocated memory on the GPU

45 cudaFree(d_a);

46 ...

47

48 return 0;

49 }

Figure 11: Pseudo C code showing a simple CUDA program that performs the elemen-

twise addition of two vectors and saves the result to a third vector.
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3.1.4 CUDA Example

To illustrate a simple kernel call, Figure 11 shows pseudo-code for a very basic example

of adding two vectors and storing the result in a third vector. Lines 1 − 10 define the

kernel. The global qualifier is an indicator for the compiler that the function should

run on the device rather than on the host. Other than that, the function looks the same

as a simple C function. The global thread index is computed in line 5 depending on the

current block index, the block dimension and the local thread index.

Additional to the kernel definition, some more CUDA specific commands in the main

function are needed. Arrays on the GPU need to be initialized and allocated. The latter

is done with the cudaMalloc() function, see line 25. It behaves much like the standard

C function malloc() but it tells the compiler to allocate memory on the device. This

shows how thin the line between standard C and CUDA really is. It leaves the respon-

sibility to the programmer to differentiate between memory allocated on the device and

on the host. This is typically done by naming variables in the Hungarian notation.

After reserving enough space, data needs to be copied unto the device. This is done by

calling cudaMemcpy(). Again, it behaves exactly like the standard C memcpy() with the

difference that a direction is specified in the last argument. Simple enough, memory can

be copied from the host to the device or vice versa, as shown in lines 29 and 40. If both

pointers remain on the device cudaMemcpyDeviceToDevice is passed.

Now, the data is on the device and everything is set to call the kernel and to do some

work. The kernel call is shown in line 37 and looks much like a standard C function call,

except for the angle brackets. Inside the angle brackets the grid and thread block layout

is defined. These can be special variables of the type dim3 as seen in lines 33 and 34.

Both, grid and thread blocks, are three dimensional structures and in this case the grid

contains one thread block which holds N threads in form of a long vector. When calling

the kernel each of the threads will perform one pair-wise addition and store the result

in the result vector.

The threads are not launched in sequence. Thus, it is important to ensure that the com-

putation can be done in any order. This ensures that the thread blocks can be scheduled

in any order across all cores, so that the code scales with the number of cores. Since

all of the threads of one thread block reside on the same processor core, the number of

threads per thread block is limited [43]. Current GPUs support up to 1024 threads per

thread block. So, if the size N of the vectors exceeds 1024, additional blocks need to

be launched. It is common practice to have a fixed number of threads per block and to

launch
⌈

N
threads

⌉
blocks.

After the kernel was executed the result is copied back to the host. In order to free the

memory space that was allocated on the device, cudaFree() needs to be called, which

also behaves exactly as free() does.

Before the program can be run, it needs to be compiled. For that, CUDA comes with

Chapter 3: General-Purpose Computing on GPUs 31



3.1 An Introduction to GPGPU

its own NVIDIA CUDA compiler driver nvcc. The device functions are compiled using

NVIDIA compilers/assemblers, the host functions are handed-off to a supported C com-

piler. The compiled GPU functions are then embedded in the host object file [42].

This concludes the illustrative example in order to get a grasp of the principle behavior

of a CUDA program. For a more detailed introduction, the reader is referred to [50].

3.1.5 Memory Layout

CUDA threads can access data from different memory spaces, as shown in Figure 12.

Device memory is located off-chip. Therefore, it is visible to all threads, but very slow

to access directly. Global memory, constant memory and texture memory reside in the

device memory space. Global memory offers the largest space with up to 12 GB on

current GPUs, but cannot be cached.

In contrary, constant memory is cached in the constant memory cache. Therefore, only

cache misses result in reads from the device memory, otherwise data will be read from

the constant cache. A read from constant memory can be broadcasted to nearby threads

within a warp and consecutive reads do not incur additional memory traffic.

Similarly to constant memory, texture memory resides in device memory and is cached

in texture cache. Only cache misses result in reading from device memory, otherwise

data will be fetched from texture cache. Textures are optimized for 2D/3D spatial read-

out patterns, by using a specialized address calculation. High performance is achieved

Figure 12: Schematic view of the memory hierarchy [43].
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Figure 13: Different addressing for global (left) and texture memory (right).
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when reading from addresses that are close together in 2D/3D, as illustrated for 2D in

Figure 13. Additional to the 2D/3D read-out pattern, textures offer hardware interpola-

tion and boundary handling, by defining filtering and address modes, respectively. The

filtering mode allows for nearest neighbor or linear interpolation of data. The address

mode defines how to handle out of range texture fetches and provides different options

like mirroring or wrapping pixel values. The downside of using texture memory is the

limitation to single precision. Fetching data from the texture cache returns only single

precision values. This can have an impact on the accuracy of the algorithm and has to

be considered by the programmer, see [43] for more details.

Shared memory resides in cached memory and is visible to all threads of a block. Being

on-chip, it provides higher bandwidth and less latency than local or global memory. The

access is about 100 times faster than global memory, but the space is limited to 48 kB.

Shared memory is divided into equally sized memory portions, called banks. If n threads

address n different memory banks, they can be serviced at once, resulting in a n times

higher bandwidth. Yet, if two ore more threads access the same bank, it results in a

bank conflict and the access is serialized. The throughput is then reduced by a factor

equal to the number of separate requests [41].

Other memory types, which are not discussed, are registers and local memory. They did

not have a significant role in the implementation and the reader is referred to [41, 63]

for additional information. A summary of all memory types is given in Table 1.

Table 1: Summary of the different memory spaces accessed by threads [41].

Memory Location Cached Access Scope Lifetime

Register On-chip n/a R/W 1 thread Thread

Local Off-chip † R/W 1 thread Thread

Shared On-chip n/a R/W All threads in block Block

Global Off-chip † R/W All threads + host Host allocation

Constant Off-chip Yes R All threads + host Host allocation

Texture Off-chip Yes R All threads + host Host allocation

†: Cached only on devices of compute capability 2.x.
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3.2 Test Environment

Unless otherwise stated, all tests and results where generated on a workstation as shown

in Table 2. The CPU features four cores with a clock speed of 3.40 GHz and supports

multi threading. The instruction set is 64-bit and it offers 8 MB cache. The GPU

provides 1536 CUDA cores with a base clock speed of 1.046 GHz and 2 GB GDDR5

memory with a theoretical bandwidth of 224.3 GB/s. It is connected to the motherboard

via a PCIe 3.0 16x slot and can achieve a theoretical bandwidth of 15.75 GB/s. The

GPU offers compute capability 3.0 based on the Kepler architecture which features more

CUDA cores for arithmetic operations than previous versions [43]. The DDR3 RAM has

a memory clock speed of 1662
3 MHz and therefore a theoretical bandwidth of 10.42 GB/s.

Ubuntu 12.04 is installed as an operating system.

Table 2: Overview of the workstation used to analyze the code and generate results.

Motherboard Asus P8P67 Evo

CPU Intel Core i7-2600S

GPU NVIDIA GeForce GTX 770

Memory 16 GB DDR3

OS Ubuntu 12.04

3.3 Accelerating Affine Linear Image Registra-

tion

Writing high performing GPU code requires the developer to not only derive parallel

algorithms, but also to fully utilize the capabilities of the graphics card. As mentioned

in Section 3.1.2, CUDA enables programmers to unleash the full power of the GPU, but

in order to do so, many features must be analyzed and used in an efficient way.

The first and näıve GPU implementation was four times slower than the competing

OpenMP code. Only through the use of specialized kernel invocation, optimized mem-

ory handling and the efficient use of hardware interpolation, high performing and fast

executing code was gained.

Starting with an computational analysis of the registration algorithm in Section 3.3.1,

the most important techniques used to implement the algorithm are explained. With this

analysis we determine which parts of the algorithm are computationally most expensive

and would benefit most from parallelizing. In Section 3.3.2 specialized kernel invocation

is explained and insight into the optimal grid and layout is given. The efficient use of the

different memory types and the thereby enabled hardware interpolation is examined in

Section 3.3.3 and 3.3.4, respectively. Thereafter, the benefits of minimizing data transfer
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by running the complete algorithm on the GPU are shown in Section 3.3.5. In the final

Section 3.3.6 the limitation to single precision floating point operations are discussed.

3.3.1 Parallelizable Operations

Not all parts of an algorithm are computationally so demanding that they benefit from

a CUDA implementation. And those which are, are not necessarily effectively paralleliz-

able. Additionally, there are costly operations which are called only a few times opposed

to less demanding operations which are called countless times. Both may contribute the

same amount of time to the overall runtime.

Thus, a thorough analysis of the key parts of the registration algorithm is needed in

order to find the most time-consuming tasks. The implemented registration algorithm

consists of six main tasks:

• Computing the multilevel representations for the data

• Evaluating the objective function

• Evaluating the stopping rules

• Solving the Quasi-Newton system

• Computing the descent direction

• Performing the Armijo line-search

The creation of the multilevel representations for the image data, as shown in Sec-

tion 2.1.6, can be a costly task depending on the size of the input images. In general,

the minimum level lmin was set to 3 and therefore the number of evaluations of Equa-

tion 12 can be written as

n =

lmax−1∑

l=3

22l.

Considering a typical image size of 1024 × 1024 pixels, i.e. lmax = 10, nearly 350000

sums need to be computed. These computations are completely independent for each

level and can be parallelized in a very efficient way, therefore making it a perfect task

to be computed on the GPU.

The computational cost of the evaluation of the objective function depends linearly on

the image size as can be seen by analyzing the Equations (7), (21), (22), (10), (30) and

(31). The equations state, that sums of a constant number of operations across the

number of pixels are needed. Thus, with increasing image size, the number of operations

increases linearly.

The function value D, the gradient ∇D and the approximation to the Hessian H need
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to be computed in every iteration, plus the function value needs to be computed at least

once per Armijo line search iteration. Therefore, the main focus is laid on finding an

explicit calculation rule for the SSD and NGF distance measure, as shown in Section 2.2.

It was also pointed out, that these calculation rules can be directly parallelized pixelwise

and are ideal for GPU computation.

The next three tasks, namely evaluating the stopping rules, solving the Quasi-Newton

system and computing the descent direction, are independent of the image size and

merely require a low constant number of floating point operations.

The evaluation of the stopping rules is done by a comparison of ten numbers. Solving

the Quasi-Newton system for affine linear registration is done by solving a 6× 6 system

of linear equations. To solve H · dw = −∇D for dw a parallelized implementation of

a pivotized LU decomposition is used. The descent direction is calculated by a simple

scalar multiplication of two vectors ∇D, dw ∈ R
6. Hence, all three tasks have little

impact on the overall performance of the code.

Other than the calculation of the function value, the Armijo line-search demands only

minor computations with a constant number of floating point operations. An overview

of the tasks and their computational relevance is given in Table 3.

Now, that the computational most demanding operations have been identified, the most

important CUDA features used to write the CUDA code are explained. This includes

specialized kernel invocation, the use of different memory types and the benefits of

hardware interpolation.

Table 3: Summary of the six main tasks of the registration algorithm. In the column

Complexity, n ∈ N is the number of image pixels, i.e. n =MN , and c ∈ N is

a low constant number. The column Ranking ranks the operations according

to their influence on the overall runtime. Since no clear differences could be

made for the operations of complexity O(c) they all rank lowest.

Task Occurrence Complexity Ranking

Compute multilevel data once O(n log n) 3.

Evaluate objective function every iteration O(n) 1.

Evaluate stopping rules every iteration O(c) 4.

Solve Quasi-Newton system every iteration O(c) 4.

Compute descent direction every iteration O(c) 4.

Perform Armijo line-search every iteration O(n) 2.

3.3.2 Kernel Invocation

As stated in Section 3.3.1, the computationally most demanding task is evaluating the

objective function and computing the scalar values that compose the function value D,
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the gradient ∇D and the approximation to the Hessian H. These have to be computed

at least once per optimization level, see Table 3.

Since the Gauss-Newton approximation to the Hessian is symmetric [40], it is sufficient

to compute the upper triangular part of the matrix and mirror the entries to the lower

triangular part. Thus, only 21 instead of 36 entries of the Hessian need to be computed.

Adding the six components of the gradient and the function value itself, we get 28 scalar

values in total.

Different setups for the grid layout were evaluated by changing the number of threads

per block. Based on the image size and the total amount of possible active threads,

blocks were allocated. Furthermore the amount of scalar values that were computed per

kernel call were changed ranging from 1, 2, 4, 7, 14 and 28, respectively. These numbers

were chosen in order to get an integer amount of kernel calls.

To ensure that the workload of the kernel was high, testing images of the size 4096×4096

pixels were used. The high workload minimizes the impact of the overhead that arises

from multiple kernel calls. Further, single and double precision was employed when

adding up the values to compute the sums in order to evaluate the impact on the overall

timing of the algorithm. Tables 4 and 5 show the execution times for different setups

using single and double precision, respectively.

Table 4 states that the best setup consists of two different kernels which calculate 14

scalar values each and have 64 threads per block when using single precision. Whereas

the benefit of rearranging the kernel calls for single precision calculations is not great,

Table 5 indicates that the execution time for double precision computations can be

improved by roughly 40%. While one kernel call needs 162.4 ms at best, two kernel

calls computing 14 scalar values each and having 32 threads per block need only 97.9

ms. This may be contrary to the belief that one kernel doing all the work is the best

choice [5]. The used setup results in double overhead, generated by initializing kernel

calls and computing needed parameters, yet the performance increases immensely.

Interestingly, the overhead is also negligible when the workload of the kernels is smaller.

For images of the size 512 × 512 pixels the computation time can be reduced by 14%

for single and 36% for double precision floating point operations compared to a single

kernel launch, as indicated in Tables 6 and 7, respectively.

Developers should avoid launching only 16 threads per thread block, due to the fact

that CUDA operates best with a thread number that is a multiple of 32. The tables

also show that the optimal layout changes depending on the data type, making general

conclusions about an optimal grid layout hard to derive. Further analysis of the impact

of threads per block and the kernel layout is a topic of future work.

The use of concurrent kernel calls to improve the performance was also analyzed. Since

the kernels have full workload and there is only little data to be copied, concurrent kernel

calls did not enhance the overall runtime. Therefore, all kernels are called serially.
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Table 4: Performance overview for different kernel setups using single precision. The

table shows the computation time for calculating D, ∇D and H for an image

of size 4096× 4096 pixels in milliseconds with single precision. For some cases

it was not possible to allocate enough shared memory, these cases are marked

”out of memory” (o.o.m.). The bold values highlight the fastest execution times

for each layout. The red value indicates the overall fastest execution time.

Kernel Setups, Single Precision, 4096× 4096

Number of Number of scalar Threads per block

kernel calls values per kernel 16 32 64 128 256 512 1024

Timings in milliseconds

1 28 74.7 45.9 51.0 55.1 84.7 o.o.m. o.o.m.

2 14 109.3 56.6 44.4 45.9 48.4 75.4 o.o.m.

4 7 189.1 96.8 80.1 79.2 83.7 88.6 100.8

7 4 344.2 176.8 139.3 138.2 148.2 161.5 173.0

14 2 657.7 334.1 274.7 274.9 284.9 306.2 332.7

28 1 1291.8 652.6 547.1 547.9 570.1 641.2 677.7

Table 5: Performance overview for different kernel setups using double precision. The

table shows the computation time for calculating D, ∇D and H for an image

of size 4096× 4096 pixels in milliseconds with double precision. For some cases

it was not possible to allocate enough shared memory, these cases are marked

”out of memory” (o.o.m.). The bold values highlight the fastest execution times

for each layout. The red value indicates the overall fastest execution time.

Kernel Setups, Double Precision, 4096× 4096

Number of Number of scalar Threads per block

kernel calls values per kernel 16 32 64 128 256 512 1024

Timings in milliseconds

1 28 221.6 167.4 162.4 229.5 o.o.m. o.o.m. o.o.m.

2 14 167.7 97.9 102.7 101.1 153.4 o.o.m. o.o.m.

4 7 242.4 126.2 117.3 106.0 109.9 147.2 o.o.m.

7 4 395.3 203.5 176.3 164.2 165.9 180.5 191.7

14 2 716.9 365.3 313.2 317.1 331.6 346.1 364.1

28 1 1351.8 684.5 583.4 584.3 606.1 649.3 733.4
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Table 6: Performance overview for different kernel setups using single precision. The

table shows the computation time for calculating D, ∇D and H for an image of

size 512×512 pixels in milliseconds with single precision. For some cases it was

not possible to allocate enough shared memory, these cases are marked ”out

of memory” (o.o.m.). The bold values highlight the fastest execution times for

each layout. The red value indicates the overall fastest execution time.

Kernel Setups, Single Precision, 512× 512

Number of Number of scalar Threads per block

kernel calls values per kernel 16 32 64 128 256 512 1024

Timings in milliseconds

1 28 1.97 1.45 1.58 1.67 2.07 o.o.m. o.o.m.

2 14 2.29 1.42 1.25 1.33 1.39 1.62 o.o.m.

4 7 3.65 2.13 1.87 1.88 2.00 1.99 2.05

7 4 6.28 3.50 2.94 2.99 3.37 3.20 3.27

14 2 11.79 6.39 5.45 5.54 5.94 5.94 6.10

28 1 22.52 11.96 10.36 10.48 11.08 11.56 11.92

Table 7: Performance overview for different kernel setups using double precision. The

table shows the computation time for calculating D, ∇D and H for an image

of size 512 × 512 pixels in milliseconds with double precision. For some cases

it was not possible to allocate enough shared memory, these cases are marked

”out of memory” (o.o.m.). The bold values highlight the fastest execution times

for each layout. The red value indicates the overall fastest execution time.

Kernel Setups, Double Precision, 512× 512

Number of Number of scalar Threads per block

kernel calls values per kernel 16 32 64 128 256 512 1024

Timings in milliseconds

1 28 4.28 3.37 3.25 4.36 o.o.m. o.o.m. o.o.m.

2 14 3.48 2.08 2.24 2.27 3.05 o.o.m. o.o.m.

4 7 4.79 2.63 2.50 2.41 2.46 2.84 o.o.m.

7 4 7.30 3.96 3.55 3.42 3.45 3.46 3.62

14 2 13.01 6.95 6.09 6.36 6.26 6.32 6.65

28 1 23.69 12.60 10.85 11.07 11.36 11.94 12.94
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1 // initialize variable in constant memory space

2 __constant__ int const_two = 2;

3 // simple elementwise vector multiplication

4 // the number 2 is fetched from constant memory space

5 __global__ void kernel_mul2constant(float *inputA , // input vector

6 const int N) // number of elements

7 {

8 // compute global index

9 const unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;

10

11 // execute multiplication

12 if(i < N)

13 inputA[i] = const_two*inputA[i];

14 }

15 // simple elementwise vector multiplication

16 // the number 2 is directly multiplied

17 __global__ void kernel_mul2(float *inputA , // input vector

18 const int N) // number of elements

19 {

20 // compute global index

21 const unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;

22

23 // execute multiplication

24 if(i < N)

25 inputA[i] = 2* inputA[i];

26 }

Figure 14: Pseudo C code showing two simple kernels performing an elementwise multi-

plication of a vector with the number 2. The first kernel fetches the number

from constant memory space, the second fetches it from register space.

3.3.3 Memory Types

The use of the different memory types is crucial for writing a fast CUDA kernel. The

use of shared memory for computing sums by reduction is very well explained in [19].

In this white paper, different implementations are presented and discussed in regards to

execution time and bandwidth. Tests with the different kernel variants were conducted

and a implementation without unrolling of loops was decided on. Though, the paper

presents better optimized kernels than the one that was adapted for the numerous re-

ductions needed for the evaluation of the objective functions, no increase in performance

was found when adapting the best kernel of the paper. For more information on the

different kernels and their characteristics see [19].

Due to the heavy use of shared memory, larger shared memory was preferred by setting

cudaDeviceSetCacheConfig() to cudaFuncCachePreferShared. This tells the com-

piler to minimize L1 cache and maximize shared memory. Another fine tuning option is

to set the memory bank size of the shared memory to four byte. Since single precision

floating point variables of four bytes size are used, cache misses are reduced. This is done
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Figure 15: Execution times for elementwise vector multiplication in µs. Using constant

memory results in faster execution times.

by setting cudaDeviceSetSharedMemConfig() to cudaSharedMemBankSizeFourByte.

Another improvement was achieved by writing fixed and often read variables into the

constant memory space of the GPU. Values that where often read include the reference

and template image sizes and domains, the cell sizes h1, h2 as well as their recipro-

cals 1/h1, 1/h2 and tolerances for the evaluation of the stopping rules. Especially the

cell sizes and their reciprocals are needed numerous times. To illustrate the impact of

constant memory, a little test scenario was constructed. Consider a simple elementwise

multiplication of a vector with the number 2. In the first case, each element of the vector

is directly multiplied with 2 and in the second case the number is fetched from constant

memory space prior to the multiplication, as shown in the pseudo code of Figure 14.

Figure 15 displays the execution times in µs for different vector sizes. Using constant

memory results in faster execution times compared to the direct method. Unfortunately,

the impact on the overall performance is little, due to very small differences of a few

microseconds.

The most performance, however, was gained by binding both the template and reference

image to texture memory. Pixel values of both images are needed several times for the

computation of the function value, gradient and approximation to the Hessian. Through

specialized 2D access patterns, the read-out is optimized for texture memory and results
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in fewer cache misses than reading from global memory using the same pattern [43].

Further performance is gained by the use of the right address mode. The address modes

are summarized in Table 8. Since zero Neumann boundary conditions are used, the

address mode is set to cudaAddressModeBorder and free boundary handling is gained.

This saves additional if-conditions or the use of zero padding as done by Rühaak et.

al. [49].

Table 8: Summary of the different address modes for texture memory.

Address mode Out of bounds index handling

Border Fetched values are set to zero

Clamp Fetched values are set to closest boundary

Wrap Fetched values are interpreted as texture is continuous

Mirror Fetched values are interpreted as texture is mirrored

3.3.4 Hardware Interpolation

The use of texture memory also enables hardware interpolation. Instead of calculating

a bilinear interpolation from given pixel values, an interpolated value is fetched from

the texture cache, which improves performance. Linear interpolation can be activated

by setting the filter mode of the texture to cudaFilterModeLinear. As a reminder, the

interpolation of a pixel value at the coordinates (x1, x2) can be written as

p = (1− x1r)((1− x
2
r)k00 + x2rk01) + x1r((1− x

2
r)k10 + x2rk11) (33)

where k00 · · · k11 are known pixel values and xir = xi −
⌊
xi
⌋
, i = 1, 2 are remainders, as

illustrated in Figure 3. The analytical derivative of (33) is defined as

∂p

∂x1
= (1− x2r)(k10 − k00) + x2r(k11 − k01),

∂p

∂x2
= (1− x1r)(k01 − k00) + x1r(k11 − k10).

Using textures, the linear interpolation of a pixel value and its analytical derivative can

directly be computed by only five texture fetches

p = f(x1, x2),

∂p

∂x1
= f(1, x2)− f(0, x2),

∂p

∂x2
= f(x1, 1)− f(x1, 0),

where f(x1, x2) denotes a texture fetch at the given coordinates. The four texture fetches

needed for the derivative computation also benefit from a specialized 2D read-out pattern

optimized for texture memory, since they are close together in 2D.
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3.3.5 Data Transfer Minimization

Besides the aforementioned techniques, reducing data transfers and storage is one of the

most important tasks in order to gain high performing code [13, 41].

The first step was to analyze the registration algorithm and derive formulations that

save memory. As shown in Section 2.2, the derived calculation rules are very memory

efficient as they compute the relevant values on the fly. The data is limited to the refer-

ence and template images, the transformation parameters and some additional constants

like cell size or image domains. No matrices or temporal data needs to be stored, thus

minimizing the overall memory requirements.

The second step was to reduce the device-host-communication to a minimum. Using

PCIe 3.0 (Peripheral Component Interconnect Express) to connect the GPU to the host

allows for a theoretical bandwidth of ≈ 16 GB/s for host-device transfers. The theo-

retical bandwidth of device-device transfers is ≈ 224 GB/s making it 14 times faster.

Intensive bandwidth tests with tools provided by NVIDIA showed a practical peak band-

width rate of 6.659 GB/s for host-device transfers and 175.781 GB/s for device-device

transfers making it over 26 times faster. An overview of the theoretical and practical

bandwidths can be found in Table 9.

Therefore, the whole registration algorithm was implemented using CUDA, even parts

that got little to no speedup. Only the template and reference images, as well as the

transformation parameters and some additional small data is copied to the GPU. The

registration then runs completely independent of the host and leaves the CPU open for

further computations. When the algorithm is done, the final transformation parameters

are copied back to the host.

For the Gauss-Newton optimization, many kernels are needed for operations other than

evaluating the objective function, like solving the Quasi-Newton system or calculating

L2-norms for the stopping criteria. This requires the storage and transfer of additional

data. Unfortunately, the algorithm leaves little room to make use of asynchronous mem-

ory transfers in order to improve performance.

Every step of the Gauss-Newton optimization, relies on the results of the prior step.

Therefore, these results need to be computed and transfered in total in order to start

Table 9: Overview of the bandwidth rates for different memory transfers. The theoretical

peak bandwidths are hardware specified. The practical peak bandwidths were

determined with NVIDIA tools.

transfer direction theoretical peak bandwidth practical peak bandwidth

host-device 16 GB/s 6.659 GB/s

device-host 16 GB/s 6.659 GB/s

device-device 224 GB/s 175.781 GB/s
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the next step.

Only the evaluation of the stopping rules could be handled parallel to some other compu-

tation, but the computation time is so little, that it is irrelevant for the entire algorithm.

Thus, only synchronous memory transfers are performed.

3.3.6 Single Precision Accuracy

The downside of using texture memory is the limitation to single precision. Fetching

data from a texture, returns a single precision value, impacting the overall accuracy of

the algorithm.

In all conducted tests, the approximation to the Hessian had a condition number greater

than 100 and was therefore ill-conditioned. A small error in the gradient falsified the

calculation of the descent direction when solving the Quasi-Newton system H · dw =

−∇D and vdescent = ∇D · dw.

Further, the many summations of one hundred thousand and more elements introduces

a probable error of order n3/210−tx [36], where n is the number of addends, t is the

number of places in the mantissa of the machine accuracy and x is the magnitude of the

addends. Though the error is small, it is non-negligible considering the ill-conditioned

Hessian.

3.4 Summary

In this chapter, an introduction to CUDA was given and the most important techniques

of implementing the GPU code were explained. First, the reasons for the choice of a

GPU implementation using CUDA were discussed. Hereafter, the programming model

and memory layout were summarized and an illustrative example showing a basic CUDA

program was given.

In the second part of the chapter, the CUDA implementation of the registration al-

gorithm was explained in detail. The most important techniques, including kernel in-

vocation, the use of different memory types and hardware interpolation, are exposed.

Extensive tests of the right kernel invocation showed, that a setup consisting of two

kernels, each computing one half of the solution, offers the most performance.

In the next chapter, the CUDA implementation is tested in many scenarios. The results

are compared to other implementations with a focus on speedup compared to optimized

and parallelized CPU code.
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The aim of this thesis was to write a very fast executing GPU implementation of an

established registration algorithm. Not only should the computation time be short, but

the CUDA code should also outperform optimized and parallel CPU code in order to

prove that GPU computing is indeed an interesting choice in medical image registration.

Therefore, the performance of the GPU code is measured by conducting numerous ex-

periments, which are presented and discussed in this chapter. In order to classify the

performance within the context of execution time, the results are compared to four other

implementations. All tests were conducted on hardware as described in Section 3.2 and

Table 2.

Different abbreviations are used to identify the different implementations of the image

registration algorithm. Here, FAIR stands for MATLAB code written with the aid of

the image registration toolbox FAIR [37]. FAIR also provides the option of using C++

code to accelerate the computation. These files are part of the toolbox and can be

used through MATLAB’s MEX-interface [15]. This method is identified by FAIR-MEX.

FAIR is mainly used for research and educational purposes and is optimized in terms

of usability and flexibility rather than performance. Nevertheless, for a demonstration

of how much research code can be sped up by writing specialized production code, the

FAIR runtimes are listed as well. The magnitude of speedup compared to FAIR code,

however, should not be overrated by the reader.

Rühaak et al. wrote optimized C++ versions for the evaluation of the objective func-

tion, referenced by C++, with the option to enable the use of OpenMP in order to speed

up the calculation, referred to as OpenMP. More details on their implementation of the

algorithm using the NGF distance measure can be found in [49]. C++ code for the

multilevel generation with the optional use of OpenMP was written for this thesis. Due

to the fact that the multilevel generation and the evaluation of the objective function are

the computationally most demanding operations by far, the Gauss-Newton optimization

was not implemented using C++ and functions from the FAIR toolbox were used for this

purposes. This adds a little overhead to the overall runtime of the C++ and OpenMP

code.

Two different approaches were followed for the CUDA implementation. The first idea

is analog to the handling of the optimized C++ code. We only ran the computational

demanding evaluation of the objective function on the GPU and copy back the results

for each iteration. The rest of the registration algorithm is managed in MATLAB. This

method is identified by CUDA-Obj. The second approach was to run the whole algorithm

on the GPU and thereby reduce the memory traffic. This required extra CUDA code

in order to run the Gauss-Newton optimization on the GPU, which was also written as

part of this thesis. This method is named CUDA.
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For both, the SSD and NGF distance measure, three different tests were conducted.

First, the performance of the evaluation of the objective function is measured outside

an image registration context. This is the computational most demanding task and the

most work was put into optimizing and parallelizing its computation. Secondly, the per-

formance of the affine linear registration algorithm without the multilevel approach was

measured. The percentage of time spent evaluating the objective function is very high

compared to the percentage of time spent for memory transfers or initializations, which

is advantageous for a GPU computation. Thirdly, the performance of the multilevel

registration was measured as this is the preferred algorithm in many applications. Here,

other operations such as generating the multilevel data and memory transfers have a

much larger influence on the overall runtime. Since a GPU is optimized for massively

parallel computations and not for memory transfers it is much harder to compete with

optimized OpenMP code.

This chapter is organized as follows. A general overview of the image data used in

the experiments is given in in Section 4.1. The multilevel implementation is compared

to MATLAB code based on the FAIR framework and optimized C++ code with and

without OpenMP in Section 4.2. The detailed performance analysis of the GPU im-

plementation of the registration algorithm using both the SSD and the NGF distance

measure can be found in Sections 4.3 and 4.4, respectively. Finally, this chapter ends

with a short statement on the accuracy of the GPU code in Section 4.5. The general

quality of the algorithms is shown in [37] and will not be discussed in this thesis.

4.1 Experimental Data

To conduct the experiments, five different registration scenarios were chosen. There are

three monomodal and two multimodal settings, as shown in Figure 16.

A relatively simple image registration two brain slices, referenced as HNSP, as shown in

the first row of Figure 16. They were acquired for histological serial sectioning for the

Human NeuroScanning Project (HNSP) and are courtesy of Oliver Schmitt, Institute

of Anatomy, University of Rostock, Germany [51]. The shape of the brain stays mostly

intact and primarily rotations and translations occur. A more complicated test scenario

is the registration of two hand images, referenced as HANDS. They are courtesy of Ste-

fan Heldmann, Institute of Mathematics and Image Computing, University of Lübeck,

Germany, and Yali Amit [2]. Here, the template image needs to be rotated as well as

scaled and sheared, as seen in the second row of Figure 16. Additionally, the solution

to this problem is hard to find, due to local minima. These occur when the template

image is rotated and the fingers of the images overlap. Similar to the HNSP scenario is

the registration of two histological tissue slices [38], referenced as CELLS, as presented

in the third row of Figure 16.
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[A] [B] [C] [D]
HNSP

HANDS

CELLS

SQUARES

MRI

Figure 16: Overview of the five different image pairs for the different test scenarios. Col-

umn [A]: reference image R, column [B]: template image T , column [C]: final

transformed image T (yw), column [D] final difference: |R−T (yw)|. Generated

with the FAIR toolbox
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A simple multimodal test scenario is the registration of two squares with different in-

tensities, referenced as SQUARES, fourth row of Figure 16. The template image was

generated by translating the reference image and increasing the intensity. Lastly, a clin-

ical more relevant test case is the registration of two MRI images, referenced as MRI,

of the same brain with T1 and T2 weighting, as shown in last row Figure 16. They are

courtesy of BrainWeb [6]. These images have many local differences and are therefore

hard to align using affine linear transformations.

The columns [C] and [D] of Figure 16 show the final transformed template image and

final difference to the reference image as generated with the FAIR toolbox. The results

of the other implementations bear no visual difference to these results.

Image Attributes Since the images are stored in the texture memory space, the image

data cannot be double precision floating point and single precision floats have to be

used instead. The images must be quadratic and can be of any size when using the

registration without the multilevel representations. The multilevel ansatz (12) that was

implemented works only for quadratic images of size 2n × 2n pixels, where n ∈ N
+.

Thus, the images must be of this size when using the multilevel approach. Implementing

another multilevel method that can work with image sizes other than a power of two is

a task for future work. With this new method, the multilevel image registration should

also work with quadratic images of any size.

Though, many functions of the code are optimized to work with data sizes that are a

power of two, using different sized images had only little to no impact on the overall

runtime, as shown in Table 10. We registered the HNSP images as shown in images

[A] and [B] of the first row of Figure 16. The algorithm computed a solution after 133

iterations. The differences in the runtime are just a few milliseconds and can also arise

due to random influences from the system. It is not possible to single out the GPU for

computation purposes only. Every running system process that needs the GPU in any

way impacts the computations and runtimes vary in the scope of milliseconds.

Table 10: Runtime for the registration of two brain images using affine transformations

and the SSD distance measure without multilevel. The registration algorithm

terminated after 133 iterations. Image sizes other than a power of two have

only little to no impact on the overall runtime.

Image size in pixel Runtime of CUDA algorithm

510× 510 0.1199 s

512× 512 0.1200 s

514× 514 0.1212 s
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4.2 Multilevel Data Generation

As one of the more time consuming components of the registration algorithm, the multi-

level data generation was parallelized. The runtime of different implementations can be

found in Table 11. For this experiment, multilevel data down to the resolution of 8× 8

pixels was generated. The runtimes are averaged over 20 runs.

As expected, the FAIR code runs slowest while the CUDA code runs fastest. Most

noticeable is the different runtime increase for the OpenMP and CUDA version. The

number of pixels quadruples for each image, whereas the runtime for the CUDA methods

increases by 3.33, 3.45 and 3.86, respectively, and for the OpenMP method by 2.05, 3.02

and 2.83, respectively.

This difference can be explained through more memory management on the GPU for

the greater images. Each increase in image size results in one additional level of data

that needs to be generated and stored. Furthermore, the initialization of OpenMP takes

some time as well. The influence of this overhead decreases as more computations are

made. This leads to a speedup of 3 for the CUDA version compared to the optimized

OpenMP version for small images that reduces to 1.5 for large images. It is likely, that

the OpenMP implementation outperforms the CUDA implementation for images greater

than 4096× 4096 or when using more than four cores.

We could not test this hypothesis due to hardware limitations of the workstation.
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Table 11: Runtimes and speedup factors for the generation of multilevel data for different

image sizes.

Multilevel Data Generation

Image size in Pixel Version Runtime in s CUDA speedup

512× 512

FAIR 0.0892 129.8

FAIR-MEX 0.0245 35.6

C++ 0.0032 4.6

OMP 0.0022 3.1

CUDA 0.0006 1.0

1024× 1024

FAIR 0.3172 158.8

FAIR-MEX 0.0649 32.5

C++ 0.0080 4.0

OMP 0.0045 2.3

CUDA 0.0020 1.0

2048× 2048

FAIR 1.7598 256.7

FAIR-MEX 0.3022 44.1

C++ 0.0273 4.0

OMP 0.0136 2.0

CUDA 0.0069 1.0

4096× 4096

FAIR 6.6850 266.8

FAIR-MEX 1.3087 51.0

C++ 0.1133 4.4

OMP 0.0386 1.5

CUDA 0.0257 1.0
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4.3 Image Registration using SSD

In this section, the test results of the evaluation of the objective function and the affine

linear registration routine with and without multilevel data using the SSD distance

measure are presented and discussed.

4.3.1 Objective Function Evaluation

The main work of this thesis was to optimize the evaluation of the objective function

as its computation is the most demanding task of the registration algorithm. Therefore,

different implementations to evaluate the objective function using the SSD distance

measure are analyzed. The time it takes to transform a template image with given

transformation parameters, interpolate the new pixel values and compute the distance

D between the transformed template and the reference image as well as the gradient ∇D

and the approximation to the Hessian H was measured for the HNSP images. Tests for

the other images are not presented as the results were identical. Table 13 summarizes

the execution times for all implementations and different image sizes. The timings are

averaged over ten test runs to minimize outliers. Since the C++ and CUDA imple-

mentations are managed through MATLAB, a differentiation between the full routine,

including the MATLAB and memory transfer overhead (column With overhead) and

the sole computation times (column Without overhead) was made. The CUDA im-

plementation will be referenced as evalObjSSD-kernels.

The timings show that the CUDA version is faster than all other versions, yet the

speedup compared to the optimized OpenMP code including the overhead is less than 2.

For large images, the speedup of the CUDA version compared to the OpenMP version

for the sole computation is 3.5.

The table reveals the big impact of the overhead on the overall execution time. The

evaluation of the objective function requires only a few kernel launches, yet the data

transfer is the same as for the whole registration algorithm. In both cases, the template

and reference images and the transformation parameters need to be copied onto the

GPU. Therefore, the memory transfer and CUDA initialization account for over half the

runtime of the CUDA implementation. The overhead is also noticeable in the OpenMP

implementation as it makes up roughly 25 % of the runtime. Here, the overhead is

composed of C++ and OpenMP initializations and MATLAB and MEX management.

Analysis with the NVIDIA Visual Profiler [8] revealed that the CUDA implemen-

tation achieved an average branch efficiency of 100 %, shared memory efficiency of 100

%, multiprocessor activity of 99.9 % and texture cache hit rate of 81.4 %. A description

of these values can be found in Table 12. Additionally, the texture cache throughput for

images of size 512× 512 pixels was 102.4 GB/s and increased to 127.6 GB/s for images

of size 4096 × 4096 pixels. These rates are lower than the theoretical peak bandwidth
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of 175.8 GB/s and could be raised by further specialize the 2D indexing and reduce the

texture cache misses. The increased bandwidth would also further reduce the runtime.

Table 12: Description of different kernel metrics [8].

Metric name Description

Branch efficiency Ratio of non-divergent branches to total branches expressed

as percentage

Shared memory efficiency Ratio of requested shared memory throughput to required

shared memory throughput expressed as percentage

multiprocessor activity The percentage of time at least one warp is active on a mul-

tiprocessor averaged over all multiprocessors on the GPU

Texture cache hit rate Texture cache hit rate in percent

Texture cache throughput Texture memory throughput in GB/s
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Table 13: Runtimes and speedup factors for the evaluation of the objective function using

affine transformations and SSD. The timings are averaged over 10 runs. The

columns CUDA speedup display runtimemethod/runtimeCUDA. The columns

With overhead include the MATLAB and memory transfer overhead in their

timings, whereas the columns Without overhead show the sole computation

times of the C++, OMP and CUDA implementations.

SSD: Objective Function Evaluation

Image size Version Runtime CUDA Runtime CUDA

in Pixel in s speedup in s speedup

With overhead Without overhead

512× 512

FAIR 0.136601 35.5 - -

FAIR-MEX 0.071462 18.6 - -

C++ 0.011575 3.0 0.010519 6.7

OMP 0.004762 1.2 0.003577 2.3

CUDA 0.003846 1.0 0.001576 1.0

1024× 1024

FAIR 0.689126 78.6 - -

FAIR-MEX 0.365954 41.8 - -

C++ 0.047361 5.4 0.045114 12.7

OMP 0.014161 1.6 0.011762 3.3

CUDA 0.008763 1.0 0.003557 1.0

2048× 2048

FAIR 2.786645 99.0 - -

FAIR-MEX 1.496077 53.2 - -

C++ 0.155262 5.5 0.147031 12.2

OMP 0.049627 1.8 0.041267 3.4

CUDA 0.028145 1.0 0.012058 1.0

4096× 4096

FAIR 11.557897 103.5 - -

FAIR-MEX 5.718299 51.2 - -

C++ 0.666001 6.0 0.626058 13.7

OMP 0.201267 1.8 0.158932 3.5

CUDA 0.111669 1.0 0.045667 1.0
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4.3.2 Affine Linear Registration without Multilevel

The algorithm was tested without the multilevel approach and registered the HNSP,

HANDS and CELLS images. The SSD works best with monomodal images and thus the

multimodal images were not registered. As a safeguard, a maximum of 200 iterations

was allowed. All registrations reached a solution without hitting the iteration limit. The

HNSP images needed about 140 iterations, the HANDS images required roughly 180 it-

erations and the registration of the CELLS images terminated after about 60 iterations.

The exact number of iterations changed based on the image resolution. To minimize

outliers, the timings are averaged over ten test runs. An overview of the runtimes for

all implementations can be found in Table 15.

The CUDA implementation outperforms every other method and the performance in-

creases with increasing image size. For smaller images, the speedup of the CUDA ver-

sion compared to the OpenMP version is at least 6, while for larger images the speedup

increases to 16. This was expected, since increasing image size relates to more compu-

tational work and the overhead of transferring data to and from the GPU diminishes.

The registration of the images using the CUDA-Obj method results in a speedup

of 1.5 to 2 compared to the OpenMP version, which correlates to the findings in Ta-

ble 13. The overhead of data transfer in every iteration is too large compared to the fast

computations resulting in a low speedup compared to the OpenMP code. Implementing

the whole registration algorithm using CUDA minimizes the host-device communication

and most of the memory transfers are made on the device with much higher bandwidth.

Table 14 shows the ratio of computation and memory transfers for the registration of the

HNSP images. In the case of the 4096× 4096 pixels image, 99.3 % of the execution time

are spent for evaluating the objective function. Since the time spent executing kernels

is very high, optimizations of the memory handling will not improve the overall runtime

by much.

The registration of the CELLS images shows that specialized and optimized production

code is enormously faster than research code. A speedup of the CUDA implementa-

tion compared to the MATLAB implementation of over 800 was reached for the largest

image. The execution time was reduced from more than 18 minutes to 1.4 seconds.

Table 14: Relation of computation and memory transfers for the registration of the

HNSP images without multilevel.

Image size in pixel Computation Memory transfers

512× 512 83.95 % 16.05 %

4096× 4096 99.40 % 0.6 %
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Table 15: Runtimes and speedup factors for the registration of different monomodal sce-

narios as shown in the first three rows of Figure 16 using affine transformations

and SSD without multilevel. The HNSP images needed about 140 iterations,

the HANDS images required roughly 180 iterations and the registration of the

CELLS images terminated after about 60 iterations. The exact number of iter-

ations changed based on the image resolution. The timings are averaged over

10 runs. The columns CUDA speedup display runtimemethod/runtimeCUDA.

SSD: Affine Linear Image Registration without Multilevel

Image size Version Runtime CUDA Runtime CUDA Runtime CUDA

in Pixel in s speedup in s speedup in s speedup

HNSP HANDS CELLS

512× 512

FAIR 20.88 163.4 17.86 168.8 12.97 216.1

FAIR-MEX 10.06 78.7 7.73 73.1 4.94 82.3

C++ 2.37 18.6 1.92 18.1 1.22 20.3

OMP 0.82 6.4 0.68 6.5 0.76 12.6

CUDA-Obj 0.81 6.4 0.78 7.4 0.46 7.6

CUDA 0.13 1.0 0.11 1.0 0.06 1.0

1024× 1024

FAIR 96.96 395.4 110.84 444.7 76.00 538.3

FAIR-MEX 44.44 181.2 46.72 187.5 29.44 208.5

C++ 8.54 34.8 8.97 36.0 4.95 35.1

OMP 2.56 10.4 2.71 10.9 1.93 13.6

CUDA-Obj 1.77 7.2 2.29 9.2 1.26 8.9

CUDA 0.25 1.0 0.25 1.0 0.14 1.0

2048× 2048

FAIR 393.60 522.0 490.12 587.8 297.03 749.4

FAIR-MEX 183.77 243.7 211.78 254.0 117.89 297.4

C++ 33.57 44.5 39.42 47.3 19.68 49.7

OMP 9.40 12.5 10.99 13.2 6.23 15.7

CUDA-Obj 5.14 6.8 7.74 9.3 3.87 9.8

CUDA 0.75 1.0 0.83 1.0 0.40 1.0

4096× 4096

FAIR 1669.71 596.5 2158.08 673.2 1118.81 806.6

FAIR-MEX 726.64 259.6 877.77 273.8 414.02 298.5

C++ 138.17 49.4 164.16 51.2 70.66 50.9

OMP 38.66 13.8 46.71 14.6 22.74 16.4

CUDA-Obj 20.01 7.2 31.62 9.9 13.76 9.9

CUDA 2.80 1.0 3.21 1.0 1.39 1.0
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4.3.3 Affine Linear Registration with Multilevel

The multilevel routine was tested similar to the routine without multilevel. Experiments

were run with the HNSP, HANDS and CELLS images and as a safeguard a maximum

of 10 iterations per optimization level was set. If these were reached at all, it was on

the coarse levels. Computations on the finest level usually just required one correction

step to satisfy the stopping criteria. Thus, the main part of the work is done on the

coarse levels which are computationally less intensive than the fine levels. To minimize

outliers, the timings are averaged over 10 runs. An overview of the runtimes for all

implementations can be found in Table 17.

Analog to the former test case, the performance of the CUDA code improves with the

image size. Starting with a speedup of 6.5 of the CUDA implementation compared to

the OpenMP implementation for small images, a speedup of over 11 is reached for the

largest images.

Due to the generation and transfer of the multilevel data the influence of memory trans-

fers is a lot higher than in the routine without multilevel. Additionally, the kernels have

little work to do on the coarser levels, which is something GPU programmers usually

try to avoid. Therefore, the ratio of computation and memory transfers is nearly even,

as indicated in Table 16. For images of size 512× 512 pixels, the kernels to compute the

function value and derivatives have little workload and other factors, such as increased

memory transfers, come into play, as illustrated in Figure 17. Most of the work is done

on a coarse level resulting in a decreased averaged multiprocessor activity of 45.8 % for

the evaluation of the objective function, leaving multiprocessors idle.

Further, only 35 % of the overall runtime is spent in these kernels, while 20 % are

needed for other computations of the Gauss-Newton optimization. These kernels are

not as optimized as the kernels to evaluate the objective function and have a generally

low workload. Examples are the computation of the norm of the gradient ‖∇DSSD‖ or

descent direction vdescent = ∇D · dw, where ∇D ∈ R
1×6 and dw ∈ R

6. These operations

do not fully utilize the capabilities of the GPU.

Another 29.5 % of the time is needed for copying data on the device. These copies are

mostly in the scope of a few kilobytes and the average throughput is only 413 MB/s.

This is far from the practical peak performance and throughput could be increased by

Table 16: Ratio of calculations and memory transfers for the multilevel registration of

the HNSP images using the SSD distance measure.

Image size in pixel Computation Memory transfers

512× 512 55.7 % 44.3 %

4096× 4096 61.4 % 38.6 %
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joining several small copies into one single larger copy. The texture cache throughput

decreased to an average of 18.5 GB/s compared to the single level registration. Again,

this is not close to the theoretical peak performance of 175.8 GB/s and is a result of the

low workload on the coarse levels.

For images of size 4096 × 4096 pixels the computational workload is higher, as seen in

Figure 18. Here, roughly 59 % of the time are used for computing the function value and

derivatives. The fact that additional work is done on higher optimization levels raises the

average multiprocessor activity to 57.6 %. Also, the influence of the little device-device

memory transfers diminishes as another 35 % of the runtime are needed to transfer the

reference and template image to the GPU. This transfer achieves a bandwidth of 5.811

GB/s, which is close to the practical peak bandwidth. The texture cache throughput

increased to an average of 33.7 GB/ due computations on higher levels. We already

discussed the improvement of the kernels that evaluate the objective function and since

the host-device transfer bandwidth is nearly optimal, only the remaining 5 % of the

code’s runtime can be further accelerated.

Another interesting aspect is the runtime of the multilevel registration for images of size

512 × 512 pixels. The registration for the HNSP images was done in 18 ms while the

other two registration problems took only a few milliseconds longer. These very fast

execution times open the possibility to use this code in live settings where 15 or more

images need to be processed within a second, e.g. image guided surgery [45] or live

tracking [24].
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evaluate objective function

transfer data on device

transfer data to device

compute function value

transfer data to host

generate multilevel data

other computations

Figure 17: Runtime breakdown of the multilevel registration of the HNSP images using

SSD and image size 512 × 512. Evaluate objective function is the time

spent in the evalObjSSD-kernels and compute function value is the time

spent in a kernel that solely computes the function value for the Armijo line-

search.
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35,80%
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transfer data on device
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Figure 18: Runtime breakdown of the multilevel registration of the HNSP images using

SSD and image size 4096× 4096. Evaluate objective function is the time

spent in the evalObjSSD-kernels and compute function value is the time

spent in a kernel that solely computes the function value for the Armijo line-

search.
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Table 17: Runtimes and speedup factors for the multilevel registration of different

monomodal scenarios as shown in the first three rows of Figure 16 using affine

transformations and SSD. The timings are averaged over 10 runs. The columns

CUDA speedup display runtimemethod/runtimeCUDA.

SSD: Affine Linear Image Registration with Multilevel

Image size Version Runtime CUDA Runtime CUDA Runtime CUDA

in Pixel in s speedup in s speedup in s speedup

HNSP HANDS CELLS

512× 512

FAIR 0.845 46.2 0.962 37.9 0.962 46.8

FAIR-MEX 0.459 25.1 0.558 22.0 0.506 24.6

C++ 0.168 9.2 0.187 7.4 0.181 8.8

OMP 0.147 8.0 0.165 6.5 0.150 7.3

CUDA-Obj 0.172 9.4 0.188 7.4 0.196 9.5

CUDA 0.018 1.0 0.025 1.0 0.021 1.0

1024× 1024

FAIR 3.378 121.7 4.108 120.9 4.151 113.7

FAIR-MEX 1.509 54.4 1.886 55.5 1.793 49.1

C++ 0.383 13.8 0.424 12.5 0.391 10.7

OMP 0.231 8.3 0.310 9.1 0.230 6.3

CUDA-Obj 0.255 9.2 0.313 9.2 0.269 7.4

CUDA 0.028 1.0 0.034 1.0 0.037 1.0

2048× 2048

FAIR 13.728 239.0 15.948 236.8 17.195 277.2

FAIR-MEX 6.025 104.9 7.058 104.8 6.799 109.6

C++ 1.220 21.2 1.372 20.4 1.267 20.4

OMP 0.537 9.3 0.800 11.9 0.561 9.0

CUDA-Obj 0.494 8.6 0.563 8.4 0.513 8.3

CUDA 0.057 1.0 0.067 1.0 0.062 1.0

4096× 4096

FAIR 56.359 302.5 64.609 335.0 66.087 356.0

FAIR-MEX 23.389 125.5 25.673 133.1 25.335 136.5

C++ 4.667 25.1 5.287 27.4 4.595 24.8

OMP 1.660 8.9 2.190 11.4 1.656 8.9

CUDA-Obj 1.395 7.5 1.627 8.4 1.449 7.8

CUDA 0.186 1.0 0.193 1.0 0.186 1.0
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4.4 Image Registration using NGF

Similar to the preceding section, in this section, the test results of the evaluation of the

objective function and the affine linear registration routine with and without multilevel

data, all using the NGF distance measure, are presented and discussed. The tests were

performed with all images of Figure 16 and different image sizes in order to evaluate

the behavior of the routines thoroughly. In general, the results and conclusions for the

different experiments using the NGF distance measure are analog to the results and

conclusions for the SSD distance measure. Hence, the following analysis is similar to the

preceding.

4.4.1 Objective Function Evaluation

Again, the implementations of the different methods to evaluate the objective function

and calculate the function value D, the gradient ∇D and the approximation to the

Hessian H using the NGF distance measure will be analyzed initially. The CUDA im-

plementation will be referenced as evalObjNGF -kernels. An overview of the runtime for

all implementations with different image resolutions is given in Table 18. The timings

between the complete routine including MATLAB and memory transfer overhead (col-

umn With overhead) and the sole execution time of the C++, OpenMP and CUDA

functions (column Without overhead) are differentiated.

The CUDA code outperforms every other code and a speedup of 3 to 3.8 is achieved for

the complete routine, while the sole computation is over 5 times faster than the com-

peting OpenMP code. The influence of the overhead is lower than for the SSD distance

measure since the NGF distance measure is computationally more demanding and more

time is spent to compute the values. While the memory transfers and CUDA initial-

izations as well as MATLAB administrations account for roughly 40 % of the CUDA

runtime, only less than 10 % of the OpenMP runtime come from the overhead.

Similar to the SSD kernels, the evalObjNGF-kernels achieved an average branch effi-

ciency of 100 %, shared memory efficiency of 100 %, multiprocessor activity of 99.9 %

and texture cache hit rate of 89.6 %. The texture cache throughput for images of size

512× 512 was 133.5 GB/s and increased to 153.8 GB/s for images of size 4096× 4096,

which is relatively close to the theoretical peak bandwidth of 175.8 GB/s. The increase

compared to SSD can be explained by additional texture fetches for the NGF computa-

tion.
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Table 18: Runtimes and speedup factors for the evaluation of the objective function using

affine transformations and NGF. The timings are averaged over 10 runs. The

columns CUDA speedup display runtimemethod/runtimeCUDA. The columns

With overhead include the MATLAB and memory transfer overhead in their

timings, whereas the columns Without overhead show the sole computation

times of the C++, OMP and CUDA implementations.

NGF: Objective Function Evaluation

Image size Version Runtime CUDA Runtime CUDA

in Pixel in s speedup in s speedup

With overhead Without overhead

512× 512

FAIR 0.232675 49.0 - -

FAIR-MEX 0.113178 23.8 - -

C++ 0.043095 9.1 0.041887 16.1

OMP 0.014229 3.0 0.013123 5.1

CUDA 0.004749 1.0 0.002597 1.0

1024× 1024

FAIR 1.033982 75.6 - -

FAIR-MEX 0.414318 30.3 - -

C++ 0.168096 12.3 0.165727 19.9

OMP 0.046569 3.4 0.044127 5.3

CUDA 0.013681 1.0 0.008333 1.0

2048× 2048

FAIR 4.782144 105.6 - -

FAIR-MEX 1.899915 42.0 - -

C++ 0.677042 15.0 0.668580 22.8

OMP 0.170617 3.8 0.161458 5.5

CUDA 0.045287 1.0 0.029280 1.0

4096× 4096

FAIR 19.096109 105.9 - -

FAIR-MEX 7.427478 41.2 - -

C++ 2.774101 15.4 2.733711 23.9

OMP 0.673741 3.7 0.631621 5.5

CUDA 0.180401 1.0 0.114210 1.0
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4.4.2 Affine Linear Registration without Multilevel

The results of affine linear registration without multilevel for all test scenarios, as shown

in Figure 16, are summarized in Table 20 for the monomodal and in Table 21 for the mul-

timodal images. Since the runtimes were very high, especially for the MATLAB code,

the algorithm was terminated after 50 iterations. To minimize outliers, the timings are

averaged over ten test runs.

Once more, the CUDA implementation is better than the competing OpenMP code. For

the small images, a speedup of the CUDA implementation compared to the OpenMP

implementation of at least 7 was achieved which increases to ≈ 11 for the larger images.

Analog to the SSD distance measure, the computational workload is desired to be high

in order to fully utilize the capabilities of the GPU. Therefore, the speedup grows larger

for the larger images.

The speedup of the CUDA-Obj version compared to the OpenMP code ranges from 2

to 3 and is only slightly lower than the speedup measured for the evalObjNGF-kernels.

The difference can be explained by additional memory transfers. This leads to the same

conclusions as for the SSD registration. The overhead of data transfer in every iteration

is too large and host-device communication should be minimized. This was effectively

done by implementing the whole registration algorithm using CUDA.

Even though computationally less demanding operations are performed using the GPU

and many kernels do not achieve such efficiency as the evalObjNGF-kernels, the algo-

rithm greatly benefits from the very high memory bandwidth on the device. Table 19

shows the ratio of computation and memory transfers for the registration of the HNSP

images. In the case of the 4096 × 4096 pixels image, 98.6 % of the execution time are

spent for evaluating the objective function. Again, the time spent executing kernels is

dominating, thus optimizations of the memory handling will not have a big impact on

the overall runtime.

Table 19: Ratio of calculations and memory transfers for the registration of the HNSP

images without multilevel using the NGF distance measure.

Image size in pixel Computation Memory transfers

512× 512 84.8 % 15.2 %

4096× 4096 98.6 % 1.4 %
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Table 20: Runtimes and speedup factors for the registration of different monomodal sce-

narios as shown in the first three rows of Figure 16 using affine transformations

and NGF without multilevel. For timing reasons, all registrations were termi-

nated after 50 iterations. The timings are averaged over 10 runs. The columns

CUDA speedup display runtimemethod/runtimeCUDA.

NGF: Affine Linear Registration without Multilevel

Monomodal Images

Image size Version Runtime CUDA Runtime CUDA Runtime CUDA

in Pixel in s speedup in s speedup in s speedup

HNSP HANDS CELLS

512× 512

FAIR 15.05 99.7 13.86 170.8 17.92 143.9

FAIR-MEX 5.67 37.5 5.38 66.3 6.49 52.1

C++ 4.29 28.4 4.24 52.2 4.19 33.6

OMP 1.06 7.0 1.02 12.6 1.00 8.1

CUDA-Obj 0.53 3.5 0.53 6.6 0.51 4.1

CUDA 0.15 1.0 0.08 1.0 0.12 1.0

1024× 1024

FAIR 61.41 175.7 69.30 199.4 81.03 230.5

FAIR-MEX 24.84 71.1 27.19 78.3 28.90 82.2

C++ 16.33 46.7 16.38 47.2 16.31 46.4

OMP 3.58 10.2 3.60 10.4 3.67 10.4

CUDA-Obj 1.45 4.2 1.40 4.0 1.39 4.0

CUDA 0.35 1.0 0.35 1.0 0.35 1.0

2048× 2048

FAIR 306.55 238.4 302.17 233.9 391.26 305.9

FAIR-MEX 106.16 82.5 108.53 84.0 123.89 96.9

C++ 65.07 50.6 65.01 50.3 67.71 53.0

OMP 13.83 10.8 14.14 10.9 14.15 11.1

CUDA-Obj 4.63 3.6 4.71 3.6 4.57 3.6

CUDA 1.29 1.0 1.29 1.0 1.28 1.0

4096× 4096

FAIR 1187.34 234.8 1230.63 244.2 1506.79 300.4

FAIR-MEX 416.44 82.4 428.96 85.1 490.85 97.9

C++ 259.92 51.4 257.50 51.1 283.27 56.4

OMP 54.67 10.8 55.02 10.9 58.02 11.6

CUDA-Obj 18.14 3.6 18.22 3.6 17.99 3.6

CUDA 5.06 1.0 5.04 1.0 5.02 1.0
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Table 21: Runtimes and speedup factors for the registration of different multimodal sce-

narios as shown in the last two rows of Figure 16 using affine transformations

and NGF without multilevel. For timing reasons, all registrations were termi-

nated after 50 iterations. The timings are averaged over 10 runs. The columns

CUDA speedup display runtimemethod/runtimeCUDA.

NGF: Affine Linear Registration without Multilevel

Multimodal Images

Image size Version Runtime CUDA Runtime CUDA

in Pixel in s speedup in s speedup

SQUARES MRI

512× 512

FAIR 16.10 118.0 15.31 133.2

FAIR-MEX 7.45 54.6 6.04 52.6

C++ 6.03 44.2 4.23 36.8

OMP 2.00 14.7 1.02 8.9

CUDA-Obj 0.67 4.9 0.53 4.6

CUDA 0.14 1.0 0.11 1.0

1024× 1024

FAIR 80.62 187.3 64.59 184.9

FAIR-MEX 31.28 72.7 26.60 76.1

C++ 24.26 56.4 16.61 47.5

OMP 6.40 14.9 3.78 10.8

CUDA-Obj 1.85 4.3 1.41 4.0

CUDA 0.43 1.0 0.35 1.0

2048× 2048

FAIR 340.31 213.2 301.84 234.8

FAIR-MEX 131.90 82.6 112.18 87.3

C++ 93.41 58.5 65.08 50.6

OMP 24.13 15.1 13.76 10.7

CUDA-Obj 5.40 3.4 4.60 3.6

CUDA 1.60 1.0 1.29 1.0

4096× 4096

FAIR 1377.50 220.6 1221.16 242.8

FAIR-MEX 538.16 86.2 433.14 86.1

C++ 320.52 51.3 256.84 51.1

OMP 87.56 14.0 54.80 10.9

CUDA-Obj 20.06 3.2 17.96 3.6

CUDA 6.24 1.0 5.03 1.0
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4.4.3 Affine Linear Registration with Multilevel

The results of the multilevel affine linear registration using the NGF distance measure

for all images illustrated in Figure 16 are presented and discussed. As a safeguard, the

maximum number of iterations per optimization level was set to ten. These were gen-

erally only reached on the coarser levels. On the finer levels, only one correction step

was needed, thus minimizing the execution time. The only exception are the CELLS

images. For unknown reasons, the behavior was the other way around. On the coarser

levels, the registration was done after a few iterations while on the finer levels, the iter-

ation maximum was reached, thereby increasing the runtime. A summary of all results

and speedups are found in Table 23 for the monomodal images and in Table 24 for the

multimodal images.

Here, too, the timings show the superiority of the CUDA code compared to all other

implementations. A speedup of the CUDA version compared to the optimized OpenMP

version of at least 7 was measured, while a maximum speedup of 18.8 for the SQUARES

images of size 2048×2048 pixels was achieved. For the CELLS images a speedup of 21.1

was measured. Since most of the work is done on the finest levels, the overhead for data

transfer diminishes and the kernels work with high multiprocessor activity most of the

time.

Similar to the multilevel registration using the SSD distance measure, the influence of

memory transfer on the device is a lot higher compared to the registration working only

on one level. The ratio of calculations and memory transfer for the multilevel registra-

tion of the HNSP images is shown in Table 22. Compared to the single level registration,

the portion of memory transfers is a lot higher but not as high as for the SSD distance

measure, since the evaluation of the objective function using NGF is computationally

more demanding than using SSD.

A more detailed breakdown of the runtime is found in Figure 19 for HNSP images of

size 512× 512 pixels. Most of the time is spent in the evalObjNGF-kernels, but they do

not work as efficiently any more. The low workload on the coarser levels decrease the

multiprocessor activity to a minimum of 11 % on the coarsest level and to an average of

47.6 % for complete registration. Figure 19 also states that 20 % of the time is needed

for other kernel calculations. These kernels are not as optimized as the evalObjNGF-

Table 22: Ratio of calculations and memory transfers for the multilevel registration of

the HNSP images using the NGF distance measure.

Image size in pixel Computation Memory transfers

512× 512 65.3 % 34.7 %

4096× 4096 75.9 % 24.1 %
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kernels and have a generally low workload, further negatively impacting the runtime of

the multilevel registration. Additionally, almost 25 % of the time is required for device-

device memory transfers. Like in the SSD case, many of these transfers are only a few

kilobytes yet the average throughput is even lower with only 263 MB/s. The throughput

could also be increased if several of the small transfers are joined into one large trans-

fer. The texture cache throughput decreased to 36.7 GB/s compared to the single level

registration. Compared to the multilevel registration using SSD the rate doubled. This

can be explained by additional texture fetches for computing the NGF function value

and derivatives.

For images of size 4096 × 4096 pixels the runtime distribution is more suiting for GPU

computation, as seen in Figure 20. Here, nearly two thirds of the whole runtime are

spent in the evalObjNGF-kernels. Combined with the time to compute the function

value for the Armijo line-search, almost three quarters of the time is spent in optimized

kernels. Also, the average multiprocessor activity is increased slightly by 7 % to a total

of 54.4 %. Since more work is done on higher levels, the kernels are executed more

often with a high workload. Copying the images and other data to the device requires

22 % of the time. This transfer achieves a bandwidth of 5.835 GB/s, which is close to

the practical peak bandwidth. The average texture cache throughput increased to 47.3

GB/s. This leaves only 4 % of the runtime which can be improved by fine tuning of the

other kernels and better memory management.

Generally, like the multilevel registration using SSD, this code can benefit of a joint

CPU-GPU computation. One idea is to run the code for the coarser levels on the host

while copying data for the finer levels to the device. Once the data is on the device, the

transformation parameters of the first optimization level can be transfered to the GPU

and the remaining optimization is finished using the CUDA code.

The runtime of 28 ms for the multilevel registration of the HNSP images makes the

CUDA implementation also an interesting option for real-time applications, where im-

ages need to be processed within 60 ms in order to be visually fluent.
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transfer data to device

transfer data to host

generate multilevel data
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Figure 19: Runtime breakdown of the multilevel registration of the HNSP images using

NGF and image size 512 × 512. Evaluate objective function is the time

spent in the evalObjSSD-kernels and compute function value is the time

spent in a kernel that solely computes the function value for the Armijo line-

search.
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Figure 20: Runtime breakdown of the multilevel registration of the HNSP images using

NGF and image size 4096 × 4096. Evaluate objective function is the

time spent in the evalObjSSD-kernels and compute function value is the

time spent in a kernel that solely computes the function value for the Armijo

line-search.
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Table 23: Runtimes and speedup factors for the multilevel registration of different

monomodal scenarios as shown in the first three rows of Figure 16 using affine

transformations and NGF. As a safeguard a maximum of 10 iterations per

optimization level was allowed. The timings are averaged over 10 runs. The

columns CUDA speedup display runtimemethod/runtimeCUDA.

NGF: Affine Linear Registration with Multilevel

Monomodal Images

Image size Version Runtime CUDA Runtime CUDA Runtime CUDA

in Pixel in s speedup in s speedup in s speedup

HNSP HANDS CELLS

512× 512

FAIR 1.365 48.0 1.583 42.7 6.359 113.7

FAIR-MEX 0.639 22.5 0.792 21.4 2.764 49.4

C++ 0.448 15.7 0.533 14.4 1.456 26.0

OMP 0.224 7.9 0.280 7.6 0.529 9.5

CUDA-Obj 0.256 9.0 0.371 10.0 0.327 5.9

CUDA 0.028 1.0 0.037 1.0 0.056 1.0

1024× 1024

FAIR 5.089 111.1 5.715 119.1 26.465 397.6

FAIR-MEX 1.784 38.9 1.968 41.0 10.683 160.5

C++ 1.337 29.2 1.662 34.7 5.337 80.2

OMP 0.439 9.6 0.575 12.0 1.340 20.1

CUDA-Obj 0.372 8.1 0.491 10.2 0.512 7.7

CUDA 0.046 1.0 0.048 1.0 0.067 1.0

2048× 2048

FAIR 22.666 234.9 24.154 250.0 114.227 522.0

FAIR-MEX 6.655 69.0 7.386 76.4 44.368 202.7

C++ 4.968 51.5 5.061 52.4 23.609 107.9

OMP 1.270 13.2 1.338 13.8 4.626 21.1

CUDA-Obj 0.673 7.0 0.737 7.6 2.331 10.7

CUDA 0.096 1.0 0.097 1.0 0.219 1.0

4096× 4096

FAIR 90.376 308.5 98.052 328.4 451.757 480.9

FAIR-MEX 25.095 85.7 28.429 95.2 171.169 182.2

C++ 19.473 66.5 19.887 66.6 72.084 76.7

OMP 4.528 15.5 4.797 16.1 12.691 13.5

CUDA-Obj 1.973 6.7 2.051 6.9 3.503 3.7

CUDA 0.293 1.0 0.299 1.0 0.939 1.0
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Table 24: Runtimes and speedup factors for the multilevel registration of different mul-

timodal scenarios as shown in the last two rows of Figure 16 using affine

transformations and NGF. As a safeguard a maximum of 10 iterations per

optimization level was allowed. The timings are averaged over 10 runs. The

columns CUDA speedup display runtimemethod/runtimeCUDA.

NGF: Affine Linear Registration with Multilevel

Multimodal Images

Image size Version Runtime CUDA Runtime CUDA

in Pixel in s speedup in s speedup

SQUARES MRI

512× 512

FAIR 2.623 76.9 1.542 45.4

FAIR-MEX 1.497 43.9 0.664 19.5

C++ 0.820 24.0 0.485 14.3

OMP 0.339 9.9 0.241 7.1

CUDA-Obj 0.343 10.1 0.278 8.2

CUDA 0.034 1.0 0.034 1.0

1024× 1024

FAIR 7.932 110.6 5.466 143.6

FAIR-MEX 4.176 58.2 1.796 47.2

C++ 2.391 33.3 1.335 35.1

OMP 0.871 12.1 0.420 11.0

CUDA-Obj 0.466 6.5 0.308 8.1

CUDA 0.072 1.0 0.038 1.0

2048× 2048

FAIR 33.087 305.2 23.891 262.8

FAIR-MEX 16.665 153.7 7.448 81.9

C++ 6.704 61.8 5.045 55.5

OMP 2.042 18.8 1.265 13.9

CUDA-Obj 0.943 8.7 0.661 7.3

CUDA 0.108 1.0 0.091 1.0

4096× 4096

FAIR 117.161 321.7 96.137 330.9

FAIR-MEX 59.286 162.8 27.092 93.2

C++ 28.456 78.1 19.533 67.2

OMP 6.740 18.5 4.767 16.4

CUDA-Obj 2.979 8.2 2.003 6.9

CUDA 0.364 1.0 0.291 1.0
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4.5 Accuracy

The use of single precision floating point data did not have any significant impact on

the computation of a solution to the registration problems. While the approximation

to the Hessian is ill-conditioned and had a condition number greater than 100 for all

the conducted experiments, the influence of the single precision was not great enough to

alter the solution of the Quasi-Newton system in a way, that the registration algorithm

wrongly terminated.

Compared to the FAIR version of the code, which runs with double precision, the relative

error of the evalObjSSD-kernels compared to the FAIR code was in the range of 10−7

for the function value, 10−4 for the norm of the gradient and 10−5 for the norm of the

approximation to the Hessian. Since additional arithmetic operations for the gradient

and even more for the approximation to the Hessian computation were needed, the error

of these norms is higher than for the function value.

Similar behavior was measured for the evalObjNGF-kernels. Here, the error of the func-

tion value is in the range of 10−6, 10−2 for the norm of the gradient and 10−3 for the

norm of the approximation to the Hessian. Compared to the SSD, the errors are worse

since more sums have to be computed.

A statement about the absolute final error of the single and multilevel registration is

difficult to make, because the true transformation is generally unknown. The use of a

robust Gauss-Newton optimization minimized the influences of these errors and no differ-

ences in the final transformed template images of the FAIR and CUDA registration were

visible to the human eye. If NVIDIA introduces double precision for texture memory,

the code can easily be altered to use double precision in order to increase accuracy.
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Over the past decade, parallel programming gained more and more importance for writ-

ing new code that effectively uses the capabilities of state-of-the-art computers. While

CPUs consist of multiple cores, GPUs provide several thousands of threads that can

work in parallel. This requires programmers to often rethink their approach on how

to solve problems, so that all these possible work units are used. The introduction of

CUDA and general-purpose computing on GPUs made it possible to write GPU code

without great effort. Yet, in order to unleash the full potential of GPGPU, algorithms

need to be restructured and all the hardware features must be utilized.

This work presented a CUDA implementation of an affine linear multilevel registration

algorithm using the SSD and NGF distance measures in order to reduce the computation

time. To our knowledge, the CUDA implementation of a registration algorithm using

the Normalized Gradient Fields distance measure is a novelty.

We identified the computationally most demanding operations and optimized them to

be calculated on a GPU. The by far most expensive operation is the computation of the

distance measure function value and its derivatives. Following the approach of Rühaak

et al. [49], we extensively analyzed the mathematical foundation of the distance measure

computation. A straight-forward matrix-based approach, as used in FAIR, is not opti-

mized for parallel execution. A complete reconstruction of the calculation was needed.

Hence, the internal structure of the matrices was exposed and exploited. Since these ma-

trices are only sparsely filled, the interdependencies of the single entries were dissected

and pixelwise independent, explicit calculation rules were derived.

This enabled the computation of the function value and derivatives for both distance

measures on the fly without storing any temporal data. Secondly, other operations, e.g.

the multilevel generation or a solver for the Quasi-Newton system, were restructured as

well in order to be executed in parallel on the GPU. Without these preliminary consid-

erations it would not have been possible to effectively parallelize the algorithm.

After the algorithm was parallelized, it was implemented using NVIDIAs CUDA frame-

work. CUDA enables the use of high and low level features of the GPU and only by

combining the use of these features, high performing code was gained. We started by

analyzing the kernel invocation with different setups. Kernels can be launched with

a user-defined grid and thread block layout and general statements on what layout is

best can not be made [63]. For the kernels which compute the function value D, the

gradient ∇D and the approximation to the Hessian H of the distance measures, now

called evalObj-kernels, the best setup consisted of two kernels that separately computed

one half of the solution. This is contrary to common practice, as kernel calls induce

an overhead, which programmers usually avoid [5]. Through the rearrangement of the

kernels, the time to evaluate the objective function was decreased by up to 14 %.
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Storing different data in different memory spaces was another important step in writing

the code. The GPU offers various memory spaces of different size and with different ac-

cess times. Hence, we stored the template and reference images in the texture memory

space and used shared memory to compute sums by parallel reduction. Shared memory

can be accessed very fast but it is only visible to threads within a block and limited

to 48 kB. It is not possible to write very large arrays completely into the shared mem-

ory space and kernels were called recursively to compute sums efficiently. The texture

memory is optimized for 2D/3D spatial read-out patterns and features the use of linear

hardware interpolation and boundary handling. All three features came in handy, since

the registration algorithm works with 2D images, linear interpolation and zero Dirichlet

and Neumann boundary conditions.

Besides using different memory types, the memory transfers between the GPU and the

CPU should be kept at a minimum. By implementing the whole algorithm via CUDA,

instead of just the distance measure computation, we ensured minimal data transfer as

only the images and transformation parameters need to be copied to the device once.

Though we reduced the host-device communication to a minimum, the device-device

data transfers leave room for optimizations. A lot of the transfers are in the scope of

a few kilobytes or even bytes and the bandwidth is far from close to the practical peak

bandwidth.

Using NVIDIAs Visual Profiler [8] we analyzed the characteristics of the evalObj-kernels.

They achieve very high branch and shared memory efficiency as well as multiprocessor

activity. The texture cache hit rate is at least 79.4 % and the throughput comes close to

the theoretical peak bandwidth when performing a single level image registration using

NGF. Both could be improved by further specializing the 2D read-out patterns. Other

kernels used in the Gauss-Newton optimization are underperforming since they have low

workload and are not as optimized as the evalObj-kernels.

To test our CUDA implementation, we ran experiments with several image pairs, three

monomodal and two multimodal. These experiments showed, that our CUDA code of

the affine linear multilevel registration using SSD and NGF outperforms even optimized

and parallelized C++ code. A speedup of the CUDA code compared to OpenMP code

of up to 18.8 was gained when performing a multilevel registration using NGF.

In general, the performance of the CUDA implementation was best when images of size

4096×4096 pixels were used. Large images ensured high kernel workload and minimized

the percentage of memory transfers compared to computations.

The multilevel registration of two 512 × 512 pixel images was completed in only 18 ms

for the SSD and 28 ms for the NGF distance measure. These very fast execution times

enable the use of this code in real-time settings, where images need to be processed

in a fixed amount of time. One possible field of use could be image registration based

ultrasound tracking as proposed by König et al. [24].
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As part of future work, we will further optimize the algorithm. As a first idea, we

will use the idle CPU for computations on coarse levels. The time is takes to transfer

the reference and template images to the GPU can be used to begin the multilevel reg-

istration process on the coarsest level using the CPU. Once the image transfer is done,

the current transformation parameters can be transfered as well and the algorithm can

start with a finer level on the device. We will also extend the CUDA code to work

with 3D images enabling the use of this code in more sophisticated applications. High

performance is expected since 3D images are typical large enough, e.g. 3D CT or MRI

images in the scope of 512 × 512 × 200 pixels, to guarantee high workload of the GPU

computations.

Accelerating an established image registration algorithm by implementing GPU code

with the aid of CUDA generated very promising results. However, only by thoroughly

analyzing the mathematical foundation, reconstructing the registration algorithm for

massively parallel execution and fully utilizing the high and low-level features of the

GPU, fast code was gained that even outperformed parallelized CPU code.
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