
Preservation of Image Content in Stain-to-stain
Translation for Digital Pathology

Boqiang Huang1, Wissem Benjeddou2, Nadine S. Schaadt3, Johannes Lotz4,
Friedrich Feuerhake3,5, Dorit Merhof1,6

1Institute of Image Analysis and Computer Vision, University of Regensburg, Regensburg
2Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen

3Institute for Pathology, Hannover Medical School, Hannover
4Fraunhofer Institute for Digital Medicine MEVIS, Lübeck

5Institute for Neuropathology, University Clinic Freiburg, Freiburg
6Fraunhofer Institute for Digital Medicine MEVIS, Bremen

Dorit.Merhof@ur.de

Abstract. In digital pathology, unsupervised domain adaptation of differently
stained whole-slide images (WSIs) through image-to-image translation has be-
come increasingly important for various applications such as stain augmentation
or for the stain-independent application of deep learning models. In previous
work, different variants of generative adversarial networks (GANs) were pro-
posed to translate a real WSI obtained in the staining domain A into a fake WSI
in the target staining domain B. However, GANs perform unpaired image-to-
image translation and do not enforce consistency with respect to image content,
which limits their applicability in digital pathology settings. In this paper, we first
investigate the tissue inconsistency problem in such a stain-to-stain translation
scenario using a quantitative evaluation of the distortion between real and fake
images in different domains. Then, we investigate two possible solutions, namely
(1) stain colorization inspired by natural image colorization, and (2) a modified
Cycle-GAN, where an intensity invariant loss is proposed to balance the tissue
consistency across staining domains. Our results highlight the superiority of these
methods compared to conventional unpaired stain translation solutions for typical
staining protocols in digital pathology.

1 Introduction

The extensive digitalization of histology glass slides using slide scanners, resulting in
digital whole-slide images (WSIs), along with advancements in software and hardware,
collectively referred to as digital pathology, has opened new opportunities for automated,
highly precise, and reproducible quantification in pathology. To observe tissue samples
comprehensively from multiple perspectives, it is common practice to stain consecutive
tissue slides with different staining protocols, each sensitive to various tissue components
(Fig. 1).

In recent research, neural network based approaches were developed to translate a
given real WSI in staining domain A (e.g., PAS) into a fake WSI in the target staining
domain B (e.g., H&E), or vice versa (Fig. 3) [1]. Typical applications of those stain trans-
lation approaches in digital pathology are stain augmentation [1, 2], image segmentation
[3], and cancer classification [4].
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Various approaches were so far investigated to realize unpaired stain translation
of WSIs and other images, that mainly rely on the concept of generative adversarial
networks (GANs). Initially, image colorization [5, 6] and image translation [7, 8] ap-
proaches were proposed. Later, Cho et al. [9] constructed a “de-stain” and “re-stain”
network based on style transfer learning. Lin et al. [10] adapted this concept for unpaired
multi-domain stain transfer, eliminating the necessity to train multiple models for differ-
ent pairs of staining protocols. Similar to the Star-GAN and its modification [11], only
one generator is trained for all possible many-to-many stain translations. Other GAN-
based approaches address the stain variance problem by developing stain normalization
methods to translate the raw WSIs into stain normalized images [12].

Actually, both image colorization [5, 6] and image translation [8] do have their
own weaknesses in stain translation problems. For example, the former has to face
non-unique colorization difficulties [2] while the latter can only guarantee the cycle
consistency between staining domains [1, 2]. Despite extensive exploration of various
network variants and losses, e.g., deformation invariant [13], structure- and/or edge-
preserving [4, 14], segmentation consistency [3], multi-scale consistency [15], and
contrastive learning-based similarity loss [16], there is no straightforward solution yet
to the above-mentioned difficulties. Thus, these methods cannot guarantee that the
translated image in the target domain retains the same tissue texture and structural
information as the image in the original domain.

In this work, we propose a novel unsupervised stain-to-stain translation based on a
pixel-level tissue consistency constraint. Section 2 presents the mathematical represen-
tation of both image colorization and image translation problems. Section 3 introduces
our clinically meaningful intensity invariant loss compared to the conventional iden-
tity loss, together with two incisive distortion measures from both deterministic and
statistical points of view. In section 4, experiments based on two independent kidney
and breast WSI datasets highlight the outstanding performance of the proposed loss in
unsupervised stain translation.

Fig. 1. Consecutive whole slide images of a kidney tissue sample stained in PAS and H&E (left),
compared with a real image patch in PAS and its fake version in H&E (right) after applying the
proposed stain translation method.
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2 Background: stain colorization & stain translation

2.1 Color representations

A stained WSI, mathematically defined as a matrix 𝐼 ∈ R𝐻×𝑊×3, can be represented
either in RGB space or CIE LAB space (Fig. 2). Let the nonlinear mapping relationship
between these two spaces beMRGB↔Lab, both forward and inverse transforms will be

𝐼Lab =MRGB→Lab [
𝐼RGB]

(1)

𝐼RGB =MRGB←Lab [
𝐼Lab] (2)

2.2 Supervised stain colorization

Given a staining protocol A, the colorization network CA is trained for a nonlinear
mapping relationship. The intensity 𝐼L

T ∈ R
𝐻×𝑊 from the ground truth 𝐼T ∈ R𝐻×𝑊×3 is

the input while the colorized fake image 𝐼RGB
F ∈ R𝐻×𝑊×3 is the output

𝐼RGB
F ≔ CA

[
𝐼L
T
]

(3)

Since
(
𝐼a, 𝐼b) and 𝐼L are paired, the training of a stain colorization network is supervised.

Moreover, the colorization can be further separated into two steps: the color estima-
tion (from real intensity 𝐼L

T to fake color pair
(
𝐼a
F, 𝐼

b
F
)

and an inverse transform (from the
fake CIE LAB

(
𝐼L
T , 𝐼

a
F, 𝐼

b
F
)

to the fake RGB 𝐼RGB
F )(

𝐼a
F, 𝐼

b
F

)
= CLab

A
[
𝐼L
T
]

(4)

𝐼RGB
F ≔MRGB←Lab

[(
𝐼L
T 𝐼

a
F, 𝐼

b
F

)]
(5)

It should be noted that CLab
A : 𝐼L →

(
𝐼a, 𝐼b) cannot be a perfect one-to-one mapping

relationship, since it is not possible to correctly estimate the color of a pixel only based
on its optical intensity [5, 6]. Further, since CA is trained with the knowledge in A, it
would wrongly colorize a pixel from an unknown domain B with high probability, which
would be uncontrollable and risky for any stain-to-stain translation.

Fig. 2. WSI image 𝐼 ∈ R𝐻×𝑊×3 represented as 𝐼RGB or 𝐼Lab in RGB or a CIE LAB color space.
Here, 𝐼R, 𝐼G, and 𝐼B represent the red, green, and blue channels, while 𝐼L, 𝐼a, and 𝐼b represent
the optical intensity, green-to-red, and blue-to-yellow channels.
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2.3 Unsupervised stain translation

Given two staining protocols A and B, the stain translation network TA↔B is trained
between unpaired WSI patches 𝐼TA, 𝐼TB ∈ R𝐻×𝑊×3 in terms of unsupervised learning.
The directional translations can be written as

𝐼FB ≔ TA→B [𝐼TA] (6)
𝐼FA ≔ TA←B [𝐼TB] (7)

where 𝐼FB and 𝐼FA denote the fake images of 𝐼TA and 𝐼TB in domain B and A, respectively.
The so-called cycle-translation can then be written as

𝐼RA ≔ TA←B [𝐼FB] = TA←B [TA→B [𝐼TA]] (8)
𝐼RB ≔ TA→B [𝐼FA] = TA→B [TA←B [𝐼TB]] (9)

where 𝐼RA and 𝐼RB denote the reconstructed image of 𝐼TA and 𝐼TB in domain A and B,
respectively. Since the reconstructed images should be the same as their corresponding
inputs, the cycle-consistency loss is derived as follows (Fig. 3, top)

Lcyc (TA↔B) ≔ E𝐼∼𝑝data {∥𝐼TA − 𝐼RA∥1} + E𝐼∼𝑝data {∥𝐼TB − 𝐼RB∥1} (10)

Here, the ℓ1 norm is applied as in Cycle-GANs [1, 3, 8].
Now, by combining the standard adversarial loss functions in domain A and B

LadvA ≔ E𝐼∼𝑝data {log (1 − DA (𝐼FA))} + E𝐼∼𝑝data {log (DA (𝐼TA))} (11)
LadvB ≔ E𝐼∼𝑝data {log (1 − DB (𝐼FB))} + E𝐼∼𝑝data {log (DB (𝐼TB))} (12)

with the cycle-consistency loss in Eq. (10), the optimization problem of a Cycle-GAN
is

T ∗A↔B = arg min
TA↔B

max
DA ,DB

L (TA↔B,DA,DB) (13)

L (TA↔B,DA,DB) = LadvA + LadvB + 𝜆cyc · Lcyc (TA↔B) (14)

where DA and DB represent the discriminator in domain A and B, respectively.

3 Method: intensity invariant stain translation

3.1 Distortion measures

In order to quantitatively evaluate structural distortions between real and fake images,
the peak signal-to-noise ratio (PSNR) and the similarity index measure (SSIM) are
considered. Let 𝐼t and 𝐼f represent the target image and reference image with the same
dimension, the PSNR is defined as

𝑑PSNR (𝐼t, 𝐼f) ≔ 10 log10

(
1

1
#𝐼 ∥𝐼t − 𝐼f∥22

)
(15)
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where #𝐼 denotes the cardinality of the image.
Different from the Euclidean metric, the SSIM is designed based on a perception

model that considers image degradation as perceived change in structural information

𝑑SSIM (𝐼t, 𝐼f) ≔
(2𝜇t𝜇f + 𝑐1) (2𝜎tf + 𝑐2)(

𝜇2
t + 𝜇2

f + 𝑐1
) (
𝜎2

t + 𝜎2
f + 𝑐2

) (16)

where 𝜇 and 𝜎 represent the pixel sample mean and standard deviation, 𝑐1 and 𝑐2 rep-
resent two controllable constants that can stabilize the division with weak denominator.

3.2 Identity loss

Recall that the cycle-consistency is actually a very loose constraint for image translation
problems. Thus, the authors in [1, 3, 8] found that it is helpful to introduce an additional
loss to Eq. (14) such that the mappings TA↔B are encouraged to preserve the color
composition between the input and output

Lidt (TA↔B) ≔ E𝐼∼𝑝data {∥𝐼TA − TA←B [𝐼TA] ∥1} + E𝐼∼𝑝data {∥𝐼TB − TA→B [𝐼TB] ∥1} (17)

Since the input image is taken from the target domain, the presented loss is more similar
to an identity loss (Fig. 3 Bottom Left). This loss is considered in comparison to our
novel intensity invariant loss proposed in Section 3.3.

3.3 Intensity invariant loss

Assuming that the tissue sample is not damaged in the staining, it is reasonable to require
the invariant intensity of both the input real WSI patch in the source domain and the
output fake WSI patch in the target domain (Fig. 3 Bottom Right). Accordingly, we
propose a novel loss function as follows

Lint (TA↔B) ≔ E𝐼∼𝑝data

{
∥𝐼L

TA − 𝐼L
FB∥1

}
+ E𝐼∼𝑝data

{
∥𝐼L

TB − 𝐼L
FA∥1

}
(18)

Fig. 3. Stain translation is achieved using a naive Cycle-GAN with cycle-consistency constraints
(top), identity loss (bottom left), and intensity-invariant loss (bottom right).
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4 Experiments and results

4.1 Datasets

Dataset D1 consists of human kidney samples stained in PAS and H&E protocols. There
are five renal transplant samples stained in H&E. Another eight renal specimens were
stained in PAS. The WSI image patch was tiled with 512 × 512 pixels. There were
3000 patches randomly selected for training (1500 PAS + 1500 H&E), and 500 patches
randomly selected from the rest for testing (250 PAS + 250 H&E).

Dataset D2 consists of both healthy and cancerous breast samples which are stained
in CK5/14 and H&E protocols. There are eight samples stained in H&E and fifteen
samples stained in CK5/14. Each WSI image patch is tiled at 512× 512 pixels, and then
down-sampled to 256 × 256 pixels to reduce the computational load. There are 16000
images randomly selected for training (8000 CK5/14 + 8000 H&E), and 4000 images
randomly selected for testing (2000 CK5/14 + 2000 H&E).

All WSI images were scanned with a 40X objective lens (ca. 0.25 microns per pixel
(mpp)) using Aperio scanners from Leica1.

4.2 Stain colorization results

Four stain colorization networks have been trained based on both datasets D1 and D2,
which are marked by CPAS, CHE-1, CCK, and CHE-2. Here, HE-1 and HE-2 are two different

(a) PAS 𝐼TA. (b) Intensity 𝐼𝐿TA. (c) PAS CA
[
𝐼LTA

]
. (d) HE CB

[
𝐼LTA

]
.

(e) CK 𝐼TA. (f) Intensity 𝐼𝐿TA. (g) CK CA
[
𝐼LTA

]
. (h) HE CB

[
𝐼LTA

]
.

Fig. 4. Stain colorization and colorization-based stain translation. (a) and (e) are real images in
PAS and CK5/14 domains, respectively. (b) and (f) are intensity images. (c) and (g) are colorized
fake images. (d) and (h) are colorization-based translation results in the target H&E domain (no
ground truth for comparison).

1www.leicabiosystems.com

www.leicabiosystems.com
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datasets from D1 and D2, respectively. Network settings are the same as the ones in [8].
Visual results are shown in Fig. 4.

Tab. 1 illustrates that the colorization networks can learn the nonlinear relationship
between the intensity and the color very well. Moreover, when the provided dataset is
large enough, such as in D2, the immunohistochemical staining method can be learned
with high accuracy.

4.3 Stain translation results

Based on the Cycle-GAN loss in Eq. (14), the identity loss in Eq. (17), and the intensity
invariant loss in Eq. (18), three experiments were designed to investigate the contribution
of these constrains in stain translation.

• Scenario 1: Cycle-GAN with neither identity loss nor intensity invariance loss
Since the cycle-consistency loss Eq. (10) is the only constraint for the translation,
the generator can certain a good reconstruction but cannot maintain a qualified
translation in the target domain [8]. As shown in Fig. 5b and 5f, many unreasonable
tissue components are generated in the target domain, which results in inconsistent
tissue details between the original domain and the target domain. Such phenomenon
can be observed in Tab. 2 as well, in which 𝑑1

PSNR is the smallest one and 𝑑1
SSIM

values are all negative.
• Scenario 2: Cycle-GAN with identity loss but without intensity invariant loss

In this case, the total loss function is updated as

L (TA↔B,DA,DB) = LadvA + LadvB + 𝜆cyc · Lcyc + 𝜆idt · Lidt (19)

(a) CK 𝐼TA. (b) HE,T 1
A→B [𝐼TA]. (c) HE, T 2

A→B [𝐼TA]. (d) HE,T 3
A→B [𝐼TA].

(e) HE 𝐼TB. (f) CK, T 1
A←B [𝐼TB]. (g) CK,T 2

A←B [𝐼TB]. (h) CK, T 3
A←B [𝐼TB].

Fig. 5. Stain translation in different cases. (a) and (e) are real images in CK5/14 and H&E domains
respectively. (b) and (f) are translated images in Case-1. (c) and (g) are translated images in Case-
2. (d) and (h) are translated images in Case-3.
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Tab. 1. Stain colorization performance.

𝑑 ( ·) (𝐼T, 𝐼F) CPAS CHE-1 CCK CHE-2
𝐼F ≔ C( ·) [𝐼T] Train Test Train Test Train Test Train Test
𝑑PSNR 33.31 33.17 30.99 30.83 38.43 38.24 36.23 36.08
𝑑SSIM 0.97 0.97 0.96 0.96 0.97 0.97 0.98 0.98

Tab. 2. Stain translation performance.

𝑑 ( ·) (𝐼LT , 𝐼
L
F ) TPAS→HE TPAS←HE TCK→HE TCK←HE

𝐼F ≔ T( ·) [𝐼T] Train Test Train Test Train Test Train Test
𝑑1

PSNR 10.58 10.53 11.33 11.30 12.58 12.54 13.06 13.22
𝑑1

SSIM −0.30 −0.30 −0.33 −0.34 −0.30 −0.30 −0.30 −0.29
𝑑2

PSNR 19.45 19.53 17.29 17.37 18.25 18.22 18.09 18.20
𝑑2

SSIM 0.80 0.80 0.77 0.78 0.81 0.81 0.82 0.82
𝑑3

PSNR 22.80 22.38 21.85 21.50 24.79 26.38 23.63 24.05
𝑑3

SSIM 0.89 0.88 0.89 0.89 0.91 0.92 0.87 0.88

Similar to the setting in [1, 3, 8], the weighting coefficients 𝜆cyc and 𝜆idt are set to 1
(i.e., equal contribution of all loss terms).
Tab. 2 shows that the identity loss can preserve the content and therefore constraint
the behavior of the generator. Comparing to the Case-1, all distortion measures had
been improved significantly.

• Scenario 3: Cycle-GAN with both identity loss and intensity invariant loss
Now, all the proposed loss terms are integrated into

L (TA↔B,DA,DB) = LadvA + LadvB + 𝜆cyc · Lcyc + 𝜆idt · Lidt + 𝜆int · Lint (20)

In practice, the weighting coefficients 𝜆cyc, 𝜆idt, and 𝜆int are set to 1 as well.

Fig. 5 shows that there is no substantial structural difference in the intensity image
among the real image, the translated image in Case-2, and the translated image in Case-3.
Tab. 2 quantitatively shows that Case-3 achieves the smallest distortion or the largest
similarity 𝑑3

PSNR and 𝑑3
SSIM among all three cases. However, Fig. 5g and 5h still exhibits

the color nonuniqueness problem, which cannot be quantitatively compared as there is
no ground truth in the target domain.

5 Conclusion

In this study, we reviewed the color representation in histopathological stain translation,
including stain colorization and stain translation. We highlight the advantages and dis-
advantages of both stain colorization and stain translation in practical applications. In
detail, colorization worked more accurately if the staining domain is unchanged. Other-
wise, the multi-domain stain translation should be considered in order to alleviate the
color non-uniqueness problem, where more constraints are introduced into unsupervised
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deep learning solutions, e.g., by introducing identity loss and the proposed intensity in-
variant loss into the Cycle-GAN. Since we seriously consider the tissue texture distortion
at the pixel level in terms of PSNR and SSIM, we avoid higher distortions between the
images from the source and the target staining domains, as observed for methods based
on geometry- / topology- / morphology- / statistics-induced loss functions.
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01IS21067A-C, FKZ 01ZX1608A), and the DFG (Project No. 445703531). The au-
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