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ABSTRACT
3D visualisation and modelling of anatomical structures of the human body play a significant role in diagnosis, 
computer-aided surgery, surgical planning, and patient follow-up. However, 2D X-ray images are often used in 
clinical routine. We propose and validate a method for reconstructing 3D shapes from 2D X-ray scans. This 
method comprises automatic segmentation and labelling, automated construction of 3D statistical shape 
models (SSM), and automatic fitting of the SSM to standard 2D X-ray images. This workflow is applied to finger 
bone shape reconstruction and validated for each finger bone using a set of five synthetic reference config
urations and 34 CT/X-ray data pairs. We reached submillimetre accuracy for 91.59% of the synthetic data, while 
79.65% of the clinical cases show surface errors below 2 mm. Thus, applying the proposed method can add 
valuable 3D information where 3D imaging is not indicated. Moreover, 3D imaging can be avoided if the 2D-3D 
reconstruction accuracy is sufficient.
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1. Introduction

Three-dimensional (3D) imaging has reached high importance in 
today’s clinical routine. There are plenty applications of 3D ima
ging such as the diagnosis of diseases, computer-aided surgery, 
surgical planning, patient follow-up, or the design of patient- 
specific implants. Unfortunately, current waiting times for 3D 
medical imaging such as magnetic resonance imaging (MRI) or 
computed tomography (CT) reach up to 90 days (OECD 2020). 
This leads to delays in the diagnosis and treatment of patients 
with adverse effects for the patient. Moreover, the organ radia
tion doses resulting from CT scans are typically 100 times larger 
than those resulting from conventional X-ray scans (Nickoloff 
and Alderson 2001; Hall and Brenner 2008). Thus, before request
ing 3D imaging, usually 2D X-ray scans of the diseased body part 
are taken to decide on the necessity of 3D imaging.

Overcoming the mentioned drawbacks of state-of-the-art 3D 
imaging, we propose a method for reconstructing 3D surface 
geometries from 2D X-ray scans using SSMs. Additionally, the 
positions of the X-ray scans relative to the 3D shape are inferred. 
The method is applied to finger bone shape reconstruction. To our 
knowledge, there is no publication applying 2D-3D reconstruction 
algorithms to finger bones. In contrast to other bones that have 
been investigated (like the rib cage, vertebra, or hip joint), finger 
bones show less prominent landmarks. Thus, reconstructing their 
correct shape and position with high accuracy may be more 
challenging. Especially in the use case of planning finger implants, 
high accuracy is crucial. Finger implants have to be designed and 

positioned with high precision since the implant will be exposed to 
high loads during daily tasks.

Reconstructing 3D shapes from 2D x-ray images adds useful 
information (e.g. motion simulation or 3D axis computation of 
anatomical structures) when additional 3D imaging is clinically 
not indicated. Further, using standard 2D X-ray instead of 3D CT 
images reduces waiting time for the patient, costs, and radiation 
dose. Challenges are the need for high accuracy while reducing 
user interaction.

Facing these challenges, we propose and validate the fol
lowing pipeline for a contour-based reconstruction of 3D finger 
bone shapes from 2D X-ray data:

(1) Automated construction of a SSM for each finger bone 
(including automatic segmentation and labelling of fin
ger bones in 3D CT images).

(2) Automatic segmentation and labelling of finger bones in 
2D X-ray images.

(3) Automatic reconstruction of the 3D finger bone shape 
and position relative to the 2D images through optimi
sation of the SSM modes and SSM transformation.

We provide excessive validation of our approach through a set of 
five synthetic reference solutions for each finger bone. For 
further validation, we apply the proposed algorithm to 34 sets 
of X-ray images taken from patients who also underwent a CT 
scan. Using X-ray images taken from two different point of views, 
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we reached submillimetre accuracy for 91.59% of the synthetic 
data and for 23.31% of the real data, while surface errors of 
79.65% of all real data cases still show surface errors below 2 mm.

Related work Several approaches for inferring different 3D 
anatomical shapes from 2D images have been proposed in the 
literature. For the combined reconstruction of the shape and pose 
of the rib cages, different silhouette-based distance measures 
were proposed in (Dworzak et al. 2009). An as-rigid-as-possible 
deformation approach based on a moving least-squares optimisa
tion method was proposed in (Cresson et al. 2010). The proposed 
algorithm has been evaluated using CT scans of six anatomical 
femur bones. A statistical shape model (SSM)-based method for 
pose estimation and shape reconstruction from calibrated X-ray 
images using a 3D distance-based objective function was pro
posed by (Baka et al. 2011). An articulated statistical shape and 
intensity model was used in (Ehlke 2020) to fully automatically 
derive the patient-specific 3D shape and pose of the hip joint from 
a single or a few clinical 2D radiographs.

A deep-learning model trained to map projection radiographs 
of a patient to the corresponding 3D anatomy was proposed in 
(Shen et al. 2019). The feasibility of the approach was demon
strated with upper-abdomen, lung, and head-and-neck CT scans 
from three patients. In (Shiode et al. 2021), a 2D-3D reconstruc
tion-cycle based on digitally reconstructed radiography images, 
inferred by a generative adversarial network, and a convolutional 
neural network was proposed. The method was applied to X-ray 
images of the radius and ulnA. An approach based on neural 
implicit shape representations for learning continuous shape 
priors from anisotropically sampled volumetric example shapes 
was proposed in (Amiranashvili et al. 2022). The feasibility was 
demonstrated for vertebra and the distal femur. A shape model
ling approach that relies on a hierarchy of continuous deforma
tion flows, which are parametrised by a neural network, is 
presented in (Lüdke et al. 2022). The approach provides 
a shape prior for distal femur and liver that can generate 3D 
reconstructions from partial datA.

A comparative study of the state-of-the-art approaches in 3D 
reconstruction from 2D medical images is given in (Maken and 
Gupta 2022). A system that emerged from the mentioned devel
opments in reconstructing 3D shapes from 2D images, and is 
already used in clinical practice, is the EOS imaging system 
(Wybier and Bossard 2013). The EOS imaging system allows for 
fast full body 3D imaging using two orthogonal X-ray images.

One shortcoming of the existing methods is the often low 
number of validation data sets. Moreover, some of the sum
marised methods require manual interaction, which hinders auto
mation. In contrast to, e.g. the EOS imaging system, and many of 
the above mentioned methods that require special imaging 
equipment for orthogonal imaging, we propose a 3D reconstruc
tion method based on X-ray images taken with any device from 
arbitrary points of view.

2. Material and methods

2.1. Data acquisition and segmentation

From University Hospital Jena, 81 3D CT scans and pairs of 2D 
X-ray images from 200 hands were collected. From University 
Hospital Hamburg Eppendorf, 126 3D CT scans were collected. 

40 of those patients also have corresponding 2D X-ray images. 
Patient consent, ethical review and approval were waived for 
this study. A subset of all 2D and 3D images was manually 
annotated and serves as reference segmentations for auto
matic segmentations. The nnU-Net proposed in (Isensee et al.  
2021) was trained for automatic segmentation of finger bones 
in 2D and 3D images. The segmentation results proposed by 
the nnU-Net were all reviewed and corrected (if necessary) by 
a radiology technician. Surface meshes were created from the 
segmentation masks using the marching cubes algorithm.

2.2. Statistical shape modelling

In order to compute SSMs, it is essential that all shape data is 
described in terms of corresponding shape mappings and para
meterised in a common reference space. To obtain these shape 
mappings, we use a deformable image-based registration 
approach consisting of several steps.

2.2.1. Preregistration
Since the individual finger bones, particularly the intermediate 
and distal phalanges, are orientated differently in space when 
the fingers are flexed and extended, initial alignment is required. 
First, a reference hand that includes all finger bones and has 
a low bending of the fingers is determined. Since the CT images 
are not standardised in terms of finger orientation and bending, 
the next step is an initial orientation of the individual bones. For 
this purpose, a local coordinate system is calculated for each 
bone using the principal component analysis (PCA) and the 
centre of gravity of each bone. To achieve consistent axis align
ment, the relationship between the bones of a single finger is 
analysed. A right-handed orthonormal local coordinate system is 
heuristically derived from the longitudinal axis of the finger 
(directed distally) and the rotation axis of the finger joint. The 
third axis is determined with the help of the cross product. 
Subsequently, all bones are transformed into the local coordi
nate system of the respective reference bone.

2.2.2. Parametric and nonparametric registration
Following the preregistration, a rigid registration based on the 
segmentation masks follows. If Rmask and Smask denote the 
reference and template masks, the registration can be formu
lated as an optimisation problem finding a rigid transformation 
yθ with parameters θ 2 R 6 such that the distance between the 
reference mask Rmask and the deformed template mask 
SmaskðyθÞ becomes minimal: 

We choose the sum of squared distances (SSD) as the distance 
measure for comparing the two masks.

After the rigid alignment, a deformable registration is 
needed in order to align the different shapes of the bones. 
The deformable registration is formulated as an optimisation 
problem with a regularisation term, similar to the variational 
approach presented in (Rühaak et al. 2013). To enhance the 
registration, the distance between the segmentation masks is 
included as an additional term in the objective function. 
Furthermore, the distance of the reference mesh to the surface 
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of the template mask is added. Thus, the full objective function 
reads 

Here, P ¼ p1; :::; pnð Þ denotes the nodes of the reference mesh, D 
the euclidean distance map of the surface of the template mask 
and α1; . . . ; α4 the weighting parameters of the different parts. For 
the CT images we use the normalised gradient field distance 
measure DNGF (Haber and Modersitzki 2006) and as a regulariser 
we choose the diffusive regularisation 

of the deformation y : Ω � R 3 ! R 3 and the displacement vec
tor field u :¼ y � Id with identity Id (Fischer and Modersitzki  
2002).

The found deformation field is then used to transform the 
mesh of the reference bone to the template bone.

2.2.3. Fluid registration
Achieving perfect shape correspondence after applying the 
two previous steps is unlikely. To better adapt the propagated 
mesh to the surface of the template, we will perform an addi
tional deformable registration. For the euclidean distance map 
D of the surface of the template mask, the nodes 
P ¼ p1; :::; pnð Þ of the propagated reference mesh and 
a weighting parameter α5, the registration is represented by 
the optimisation problem 

2.2.4. Shape model generation
The registration pipeline yields a deformed reference 
mesh, so all individual segmentations of the same bone 
now have (approximate) corresponding surface meshes. 
Now that the correspondence problem has been solved, 
SSMs for each structure can be calculated using the famil
iar steps of procrustes analysis and PCA (Heimann and 
Meinzer 2009). This results in a linear model that can be 
represented by a matrix A 2 R n�nM and the mean shape 
vector b 2 R n and describes the shape dependent on the 
nM SSM modes M 2 R nM . That means for given modes M 
a shape P ¼ ðp1; . . . ; pnÞ is computed via 

Two SSMs were build for each finger bone. The first SSM, 
called SSM75, represents 75% of the shape variance, which 
results in about 18 modes. The second SSM, called SSM95, 
represents 95% of the shape variance, which results in about 
83 modes. We measure the SSM modes in units of standard 
deviations (STDs). Figure 1 gives an intuition about the maximal 
euclidean point-to-point (P2P) surface distance introduced 
through a variation of 1 STD in the respective mode of SSM75.

We observe maximal euclidean P2P surface distances 
below 1:07 mm and 50% of all error values are below 
0:22 mm. Most prominent is the exponentially decaying 
influence of the modes on the surface error with increasing 
mode number. We will thus introduce weighted mode 
error metrics in Section 3.2 that weight the absolute error 
in each mode with the inverse of the mode’s number.

Figure 1. Maximal euclidean P2P surface distance introduced through a variation of 1 STD in the respective mode of SSM75 for each finger bone.
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2.3. Reconstruction of 3D surface geometries

The description of 3D shapes through their SSM modes M was 
explained in Section 2.2. For describing the position and orienta
tion of the 3D shapes in space, we introduce a common orthogo
nal coordinate system that is placed in the centre of the SSM’s 
mean shape. Now, three translational components T 2 R 3 that 
describe the translations of the shape in x-, y-, and z-direction with 
respect to the common coordinate system are introduced. We 
describe the rotation of a 3D shape in space using unit quaternions 
q ¼ ðqx; qy; qz; qwÞwith jjqjj ¼ 1. The three independent rotation 
components qx; qy , and qz are summarised in Q. Thus, the position 
and shape of a 3D bone is fully described by its SSM modes M, 
translation T , and rotation Q. If several input 2D X-ray images taken 
from different points of view are given, one set of transformation 
parameters ðT;QÞi describes the position of the 3D shape with 
respect to the ith input image. Note that the modes M, however, 
are the same for each projection direction. The proposed 3D shape 
reconstruction algorithm varies these parameters in each iteration 
and evaluates an objective function to estimate the quality of the 
selected parameters.

2.3.1. Objective function
Given a set of parameters ðT;Q;MÞ, we calculate the correspond
ing 3D shape using the SSM and modes M. The transformed 
shape is then projected onto a projection plane using ortho
graphic projection. We call the nodes forming the outline of 
projected SSM mesh nodes pp and the set of all such nodes Pp.

A distance map D is created from 2D reference bone outline 
images (synthetic data or contour segmentation of 2D X-rays). 
Given any spatial point on the 2D plane, the distance map 
returns the euclidean distance of that point to the reference 
contour of the depicted bone. We denote the set of all points 
po 2 R 2 fulfilling DðpoÞ ¼ 0 by Po.

There are two notions of distance, and thus two objective 
functions, implemented and compared in the present work. 
The objective function 

evaluates the distance map at the points pp 2 Pp and weighs it 
by the cardinality jPpj of Pp. The objective function 

calculates the distance of each point po to the closest projected 
point pp and weighs it by jPoj.

If several input 2D X-ray images taken from different points of 
view are given, the corresponding transformation is applied to the 
3D SSM geometry and the objective function is calculated for each 
input image. Finally, the objective function values for all input 
images are summed up. An additional regularisation term WðMÞ, 
which implements prior knowledge of the behaviour of the 
modes, can be added. The objective function then reads 

for a parameter αF 2 ½0; 1� balancing the influence of the two 
distance measures and a regularisation parameter αW > 0. Four 
choices of regularisation terms have been analysed within this 
work:

● W1ðMÞ :¼ jjMjj1 preferring small or few large modes,
● W2ðMÞ :¼ jjMjj2 preferring small modes, especially modes 

smaller 1,
● W1ðMÞ :¼ jjMjj1 punishing extreme values of the modes 

that are supposed to describe degenerated bones and 
should thus be rare,

● WSTDðMÞ :¼
jjMjj22
jMj mimicking the behaviour of the under

lying statistical model (compare to the computation of 
the STD).

2.3.2. Optimisation algorithm and parameters
The 2D-3D reconstruction minimising the objective function (7) 
is implemented using Matlab (MATLAB 2022). We use 
a bounded version of the Nelder-Mead simplex (direct search) 
method implemented in fminsearchbnd (D’Errico 2022). The 
maximum number of function evaluations was set to 500nM 

and the accuracy to 10� 5. Optimisation of the transformation 
parameters and modes is done in three steps:

(1) Find T̂ ¼ arg min
T2�T

FðT ;Q ¼ 0;M¼ 0Þ with admissible 

set �T :¼ ½� 200; � 200�3.
(2) Find ð~T; ~QÞ ¼ arg min

ðT;QÞ2�TQ

FðT ;Q;M¼ 0Þ with admissible   

set �TQ :¼ ð½T̂ � 10; T̂ þ 10� \ ½� 200; 200�3Þ � ½� 1; 1�3.
(3) Find ðT�;Q�;M�Þ ¼ arg min

ðT;Q;MÞ2�TQM

FðT ;Q;MÞ with admis

sible set �TQ :¼ ð ~T � 10; ~T þ 10 \� ½ � 200; 200�3
h �

�

ð ~Q � 0:5; ~Qþ 0:5 \� ½ � 1; 1�3
h �

� ½� 3; 3�nM

We choose the starting values to be zeros for all parameters 
due to zero being the average value for each mode and due to 
the SSM coordinate system being centred in the origin. Free 
parameters are the parameters αF and αW introduced in 
Section 2.3.1, the choice of the regularisation term and the 
number of 2D images included in the optimisation process.

2.3.3. Generation of validation data sets
We use two data sets for validation. The first data set is a set of 
synthetic 2D bone contours. A random vector of modes Mref being 
uniformly distributed in ½� 1; 1� is constructed. These modes are 
applied to the shape model of each finger. Additionally, known 
reference transformations are applied to the 3D bone shapes. Five 
reference transformations were adjusted: 

VS0: no rotation, no translation
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VS1: 30° rotation around the x-axis, ð5; 13; 29Þmm translation in 
ðx; y; zÞ-direction
VS2: 30° rotation around the y-axis, ð5; 13; 29Þmm translation in 
ðx; y; zÞ-direction
VS3: 30° rotation around the z-axis, ð5; 13; 29Þmm translation in 
ðx; y; zÞ-direction
VS4: 30° rotation around the all 3 axes, ð5; 13; 29Þ mm transla
tion in ðx; y; zÞ-direction

For generating synthetic 2D shapes, the computed 3D shape 
is projected to the xy-, xz- and yz-plane using orthographic 
projection. An image of the outline of the projected shape is 
then saved, representing the synthetic outline of a bone seg
mented in a 2D X-ray image. In the following, we will refer to 
these data as synthetic data. Note that we can include the knowl
edge about the orthogonality of the projection planes. Doing so 
reduces the number of free transformation parameters to the six 
parameters describing the orientation and position of the bone 
with respect to the known SSM coordinate system.

The second validation data set is generated from CT scans of 35 
patients, where additional X-ray images of the fingers were taken. 
For each finger bone, the corresponding SSM was fitted to the 3D 
voxel mask obtained from the segmented CT images (3D-3D- 
fitting). The resulting SSM modes were saved as reference solution. 
Further, the fitted SSM and the original CT geometry were saved 
for P2P error estimation. 2D shapes of the finger bones were 
generated from the segmented X-ray images and served as input 
for the 2D-3D reconstruction described in Section 3.3

3. Results

3.1. SSM accuracy

A leave-one-out cross-validation (LOOCV) is performed on the 
shape model data for evaluating the SSM accuracy. Therefore, an 
SSM is build from all but one shapes. The resulting SSM is fitted to 

the remaining shape and the accuracy is measured. This process is 
repeated until each shape was fitted once. We perform the LOOCV 
on SSM75 and SSM95 for each bone. Figures 2 and 3 show box 
plots of the computed mean surface distances for both SSMs.

We see that both SSM variants show similar behaviour. 
However, the results for SSM95 show a slightly lower average 
error and a more prominent outlier value for the thumb metacar
pal phalanx. Most errors and outliers are visible for the metacarpal 
bones. Averaged across all bones, the average mean distance 
between shape model reconstruction and segmentation mask is 
� 0:1 mm for SSM95 and � 0:2 mm for SSM75. The average 
maximum distance between shape model reconstruction and 
segmentation mask is � 0:4 mm (� 0:5 mm for metacarpal 
bones) for SSM95 and � 0:5 mm (� 0:6 mm for metacarpal 
bones) for SSM75. Summarising, both SSMs show high accuracy 
in representing unknown shapes. Going from SSM75 to SSM95, 
the gain in terms of accuracy is small while the number of modes 
and thus free optimisation parameters is more than quadrupled. 
With regard to the optimisation process, using SSM75 is clearly 
preferable since it balances performance and accuracy.

3.2. Proof of concept

We ran several parameter studies on the synthetic data described 
in Section 2.3.3 for calibration of the free optimisation parameters. 
These are the distance metric weighting parameter αF , the reg
ularisation parameter αW , the regularisation term W , and the 
number of input X-ray images/projection directions. The para
meter study was conducted for all five reference configurations 
VS0-VS4 for each finger bone (metacarpal, proximal, intermediate 
and distal phalanx of little, ring, middle, and index finger and 
metacarpal, proximal, and distal phalanx of the thumb) using 
two orthogonal projection directions.

We introduce the following error norms for evaluation of the 
results:

Figure 2. Average surface distance of fitted SSM to original 3D mask accounting for 75% of the shape variance.
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● The euclidean distance jj � jj2, e.g. for comparison of trans
lations in 3D.

● The mean and maximum euclidean P2P error 
jjP� � Pref jj2;� and jjP� � Prefjj2;1 measuring the mean 
and maximum euclidean distance between correspond
ing computed and reference points P� and Pref .

● The Haussdorf surface distance 

● The mean and maximum weighted absolute modes error 

We define spatial differences below 1 mm and rotational differ
ences below 5° to be acceptable for clinical applications.

3.2.1. Balancing the distance metrics
The parameter αF balances the two distance metrics introduced in 
Equations (5) and (6). We vary αF 2 0; 0:1; 0:3; 0:5; 0:7; 0:9; 1f g

and set the regularisation parameter αW ¼ 0. Figure 4 summarises 
the statistics of the different error metrics for the parameter study 
for investigating the influence of the parameter αF . Note that 
semi-logarithmic plots were used to emphasize the behaviour of 
the majority of data points in contrast to the few outliers. To better 
visualise outlier distributions and values, the upper 5% of all values 
are plotted individually.

Most prominently, the mean and median values are clearly 
separated due to the few but large outlier values. Looking at 
the majority of the error values, 75% of all values are below 4° 
for the rotational error and below 0.2 mm for the translational 

error. This results in less then 0.4 mm mean euclidean P2P 
difference and less then 0.9 mm maximum euclidean P2P dif
ference (0.8 mm Hausdorff distance). The exact numerical 
values can be found in Table A1 in the Appendix. Here, also 
the statistical values for the mode errors and Hausdorff surface 
distances are included. The modes error norms are, however, 
similar for each value of αF and will be investigated in detail 
when regularisation is incorporated.

The number of outlier values not fulfilling the criterion defined 
in Section 3.2 for the respective error metrics are summarised in 
Table 1.

Most outliers and the highest statistical values, see Figure 4, are 
observable for αF ¼ 0. The statistical values for 
αF 2 f0:1; 0:3; 0:5; 0:7; 0:9; 1g show only smaller variations. 
However, for αF ¼ 0:1 the rotation error is below 7.5° for 95% of 
all computed examples, while the other rotation error 95th per
centile values are in the range between 10° and 20°. Consequently, 
the geometric error metrics (mean and max P2P error, Hausdorff 
surface distance) are also lowest for αF ¼ 0:1. Contrarily, the mean 
and maximum weighted modes error are lowest for αF ¼ 0:9.

We fix αF ¼ 0:1 and further fine-tune the influence and 
fitting of the modes by analysing the influence of the regular
isation parameter and term.

3.2.2. Choosing the regularisation parameter
For this parameter study, we use the objective function 
F ¼ 0:1F1 þ 0:9F2 þ αWW with regularisation term 
W 2 fW1;W2;W1;WSTDg and regularisation parameter 
αW 2 f0:01; 0:05; 0:1; 0:5; 1; 5g. Figure 5 summarises the statis
tics of that parameter study, highlighting the influence of the 
regularisation parameter.

Most prominently, regularisation seams to increase the 
modes and P2P error measures. Translational and rotational 
components are barely influenced by the modes regularisation 
and plots are thus neglected here. Further, the modes error 

Figure 3. Average surface distance of fitted SSM to original 3D mask accounting for 95% of the shape variance.
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metrics increase with increasing regularisation parameter αW . 
Recall that the presented error plots also accumulate the errors 
for all proposed regularisation terms. We conclude that choos
ing small regularisation parameters seams to be most appro
priate, fix αW ¼ 0:01, and further investigate the influence of 
regularisation in the following.

3.2.3. Choosing the regularisation term
For F ¼ 0:1F1 þ 0:9F2 þ 0:01W we investigate the influence of 
the regularisation term W 2 fW1;W2;W1;WSTDg compared to 
the non-regularisation setting W ¼ none. The results are shown 
in Figure 6.

As before, we see increase in error metrics using regularisation 
except for regularisation terms W2 and W1. The median and mean 
values are, however, similar and, more prominent, a slight decrease 
in the 95th percentiles for all error metrics is visible. This decrease 
of the 95th percentile also influences the number of outliers as 
defined in Section 3.2, see Table 2.

While 1-norm regularisation clearly impairs the number of 
outliers, all other regularisation terms decrease the number of 
outliers. Lowest total number of outliers is achieved using W1. 
More precisely, outliers are observed for reference configura
tion VS0 for index finger distal (VS0-IFD), VS1 for index finger 
metacarpal (VS1-IFM), VS2 for thumb metacarpal (VS2-TM), VS3 
for little and ring finger metacarpal (VS3-LFM, -RFM), VS4 for 

Figure 4. Statistics summarising different error metrics of all bones and reference configurations VS0-VS4 for αF 2 f0; 0:1; 0:3; 0:5; 0:7; 0:9; 1g and αW ¼ 0.

Table 1. Number of outlier error values larger than 5° for rotation errors and 1  
mm for translation and surface error metrics among 2D-3D reconstructions of all 
bones and reference configurations VS0-VS4 for αF 2 f0; 0:1; 0:3; 0:5; 0:7; 0:9; 1g
and αW ¼ 0.

αF 0 0.1 0.3 0.5 0.7 0.9 1

# rotation error > 5 20 10 13 13 15 10 11
# jjT� � T ref jj2 > 1 mm 3 2 2 1 3 2 2
# jjP� � Pref jj2;� > 1 mm 8 4 4 6 7 5 7
# jjP� � Pref jj2;1 > 1 mm 17 11 13 12 11 10 11
# dHðP�; PrefÞ> 1 mm 16 10 13 11 11 10 10
total number of outliers 64 37 45 43 47 37 41
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ring finger proximal (VS4-RFP) and middle finger, index finger, 
and thumb metacarpal (VS4-MFM, -IFM, -TM). Hence, seven out 
of nine outliers are caused by metacarpal bones. While one of 
the outliers produces an optically good fit (see Figure 7a), the 
optical fit of most outliers looks only good in the two used 
projection directions and show differences in the third projec
tion direction, see Figure 7b for an example. Two of the outliers 
even produce clearly visible mismatches in the first two projec
tion directions, see Figure 7c for an example. We investigate the 
potential of improving the matching results for these outliers 
by using an additional third projection direction in the follow
ing section.

3.2.4. Choosing the number of projection directions
For investigating the influence of the number of projection 
directions, we do the 2D-3D reconstruction for all five reference 
configurations and all finger bones comparing one projection 

direction vs two (perpendicular) projection directions vs three 
(perpendicular) projection directions. We use the projection in 
x-direction in the one projection case, projections in x- and y- 
directions in the two projections case and projections in x-, y-, 
and z-directions in the three projections case. Figure 8 sum
marises the different error metrics for the parameter study 
using the objective function F ¼ 0:1F1 þ 0:9F2 þ 0:01W1.

Using only one projection direction, the distance between 
projection and projected object (using orthographic projec
tion) is not well defined. We thus see high translational and 
P2P errors. Hence, rotation and SSM mode detection is less 
accurate. Including a second projection direction helps locating 
the SSM in space and thus improves translational and P2P error 
as well as rotation and modes error significantly. Contrarily, 
including a third projection direction only leads to minor 
improvements in mean and median error metrics, while outlier 
values and 95th percentile often become worse. The overall 

Figure 5. Statistics summarising different error metrics of all bones and reference configurations VS0-VS4 for distance measure F ¼ 0:1F1 þ 0:9F2 þ αWW with 
αW 2 f0; 0:01; 0:05; 0:1; 0:5; 1; 5g, W 2 fW1;W2;W1;WSTDg.
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computation time and number of outliers, as defined in 
Section 3.2, for one, two, and three projection directions 
shown in Table 3 underline this behaviour.

We see that the number of outliers is nearly unchanged 
when introducing a third projection direction, while the 
overall computation times increases linearly with the num
ber of projection directions used. Nevertheless, looking at 
the outliers produced by using only two projection 

directions, Table 4 shows great improvement including 
a third projection direction for seven out of nine cases.

Summarising the above findings and weighting compu
tation time and accuracy, we find that using two projection 
directions is sufficient in most cases in terms of 2D-3D 
reconstruction accuracy. The error metrics are summarized 
in Table A2 in the appendix. In terms of obvious discre
pancies between X-ray and projected contour, including 

Figure 6. Statistics summarising different error metrics of all bones and all five reference configurations VS0-VS4 for distance measure F ¼ 0:1F1 þ 0:9F2 þ 0:01W
with W 2 fnone;W1;W2;W1;WSTDg.
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a third projection direction is likely to improve the results. 
Outlier handling is further discussed in Section 4.

3.2.5. Summary of optimisation parameters
Summarising the above findings, we have 
F ¼ 0:1F1 þ 0:9F2 þ 0:01W1 using two projection directions as 
the best parameter combination for 3D shape reconstruction on 
the synthetic datA. The statistical error values for this configuration 
are summarised in Table 2. We reach high accuracy for 95% of all 
data points: rotational error < 5:75° (7.5° without regularisation), 
maximal euclidean P2P surface error and Hausdorff surface dis
tance < 1:37 mm (1.88 mm without regularisation). Moreover, 
only 8.42% of the data points do not fulfill our restrictive quality 
constraints on the rotation and maximum P2P error.

3.3. Application to real data

We apply the 2D-3D reconstruction using the objective 
function F ¼ 0:1F1 þ 0:9F2 þ 0:01W1 to the real data 
described in Section 2.3.3. Note that the true positioning 
and orientation of the X-ray images with respect to the CT 
data is unknown. Thus, the evaluation of these experiments 
will not contain error measurements concerning the transla
tional and rotational components. Further, the X-ray images 
are no longer orthogonal. Therefore, three rotational and 
three translational parameters need to be computed for 
each X-ray image. Moreover, we emphasize that a single 
ground truth does not exist when segmenting medical 
image data, since segmentations show high inter- and intra- 
observer variability (Menze et al. 2015; Joskowicz et al.  
2018). For evaluating the quality of the 2D-3D reconstruc
tion, we introduce the following error measures:

● Hausdorff distance dHðPref; PCTÞ between 3D-3D-fitted 
SSM and original CT (SSM 3D-3D fitting accuracy + CT 
segmentation error)

● Hausdorff distance dHðP�; PCTÞ between 2D-3D-fitted SSM 
and original CT

● mean and maximum P2P error between 2D-3D-fitted SSM 
and original CT

● Hausdorff distance dHðP�; PrefÞ between 2D-3D-fitted and 
3D-3D-fitted SSM (SSM 2D-3D fitting accuracy + X-ray seg
mentation error)

Table 2. Number of outlier error values larger than 5° for rotation errors and 1  
mm for translation and surface error metrics among 2D-3D reconstructions of all 
bones and reference configurations VS0-VS4 for distance measure 
F ¼ 0:1F1 þ 0:9F2 þ 0:01W with W 2 fnone;W1;W2;W1;WSTDg.

W none W1 W2 W1 WSTD

# angle error > 5° 10 15 8 8 10
# jjT� � T ref jj2 > 1 mm 2 2 2 2 2
# jjP� � Pref jj2;� > 1 mm 4 6 3 2 4
# jjP� � Pref jj2;1 > 1 mm 11 15 9 8 9
# dHðP�; PrefÞ> 1 mm 10 14 9 7 9
total number of outliers 37 52 31 27 34

Figure 7. Black: reference synthetic X-ray/SSM mesh, orange: projection of fitted SSM.
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● mean and maximum P2P error between 2D-3D-fitted and 
3D-3D-fitted SSM

● mean and maximum weighted modes error 
dM;� ðM�;MrefÞ and dM;1ðM�;MrefÞ

Figure 9a summarises the introduced error metrics for all 34 
patients and finger bones. The numerical data are shown in 
Table A3 in the appendix.

Generally, the surface distance errors are approximately 
twice as high as for the synthetic data set. While the 

Figure 8. Statistics summarising different error metrics of all bones and all five reference configurations VS0-VS4 for distance measure F ¼ 0:1F1 þ 0:9F2 þ 0:01W1
using one, two and three projection directions.

Table 3. Computation time accumulated for all 2D-3D reconstructions and number 
of outlier error values larger than 5° for rotation errors and 1 mm for translation 
and surface error metrics among 2D-3D reconstructions of all bones and reference 
configurations VS0-VS4 for distance measure F ¼ 0:1F1 þ 0:9F2 þ 0:01W1 using 
one, two and three projection directions.

# projection directions 1 2 3

computation time [h] 3:34 7:28 9:34
# angle error > 5° 41 8 8
# jjT� � T ref jj2 > 1 mm 95 2 1
# jjP� � Pref jj2;� > 1 mm 95 2 2
# jjP� � Pref jj2;1 > 1 mm 95 8 9
# dHðP�; PrefÞ> 1 mm 95 7 8
total number of outliers 421 27 28

Table 4. Comparison of different error metrics of outliers using two vs. three 
projection directions (PD) for distance measure F ¼ 0:1F1 þ 0:9F2 þ 0:01W1.

rotation error [°] jjT� � T ref jj2 [mm] jjP� � Pref jj2;1 [mm]

outlier 2 PD 3 PD 2 PD 3 PD 2 PD 3 PD

VS0-IFD 5.41 0.60 0.07 0.01 0.59 0.25
VS1-IFM 5.08 0.75 0.18 0.15 1.37 0.46
VS2-TM 7.85 4.92 0.32 0.27 1.82 1.19
VS3-LFM 7.59 3.30 0.37 0.14 1.32 0.75
VS3-RFM 8.70 9.54 0.19 0.24 1.52 2.31
VS4-RFP 5.36 1.24 0.20 0.09 1.38 0.54
VS4-MFM 3.32 1.90 0.07 0.06 1.04 0.53
VS4-IFM 36.73 43.67 1.45 1.17 7.51 8.19
VS4-TM 33.13 0.40 1.31 0.09 6.41 0.30
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Hausdorff and the maximum euclidean P2P surface distances 
are below 1 mm for 75% of all synthetic data, the Hausdorff 
and the maximum euclidean P2P surface distances between 
the 2D-3D-fitted SSM and the original CT are only below 2  
mm for 75% of all real datA. The maximum euclidean P2P 
surface distances between the 2D-3D-fitted SSM and the 
original CT are below 3.32 mm for 95% of all real data with 
a maximum difference of 6.86 mm. The mean and median 
values of these distance measures are about 1.5 mm. The 3D- 
3D-reconstruction error that is zero for the synthetic data set 
is below 1 mm for 82.11% of all cases and below 2 mm for 
99.55% of all cases. We emphasize that during 2D-3D recon
struction, 2D segmentation error, 2D-3D reconstruction error, 
SSM accuracy, and 3D segmentation error accumulate. 
However, adding the Hausdorff surface distance between 
2D-3D-fitted SSM and 3D-3D-fitted SSM to the Hausdorff 
surface distance between 3D-3D-fitted SSM and original CT 
yields a strict upper bound for the Hausdorff surface distance 
between 2D-3D-fitted SSM and original CT, i.e. the accumu
lated error is lower than the sum of its components.

Figure 9b shows the Hausdorff surface distance between 
2D-3D-fitted SSM and original CT summarised for each bone. 
For each finger, the Hausdorff surface distance decreases from 
proximal to distal, similar to the SSM accuracy results in 
Section 3.1.

4. Discussion

We introduced and validated a method for reconstructing 3D 
finger bone shapes from 2D X-ray scans of those bones with the 
help of SSMs. The information that can be added to 2D imaging 
by 2D-3D reconstruction is manifold. Examples are 3D motion 
modelling and the 3D axis computation of anatomical 

structures. The additional 3D information has high potential 
to improve diagnosis and therapy. Furthermore, the advan
tages of using (few) X-ray images compared to one CT or MRI 
scan are numerous. Compared to a full CT scan, there is the 
reduction of radiation dose for patients and clinicians. 
Moreover, X-ray imaging modalities are available more fre
quently. Thus, using X-ray scans instead of CT or MRI helps 
accelerating the process from first contact to a physician to 
diagnosis and treatment. Further, costs are reduced for patients 
and insurances.

Evaluating the proposed method on the synthetic data set, 
91.58% of all patients could benefit from our method, assuming 
that the defined accuracy of 1 mm is sufficient. Applying the 
method to real data, the X-ray projection directions are no 
longer orthogonal. Worse, in most patients, they only differ 
slightly such that the amount of additional information con
tained in the second scan can be assumed to be relatively small. 
A comparison of the results for synthetic and real data indicates 
that using more orthogonal projection directions might 
improve the reconstruction results. However, segmentation is 
difficult for human and AI in X-ray images taken in sagittal 
direction due to the bones shadowing each other. 
Nevertheless, high-quality segmentations are essential for per
forming accurate 2D-3D reconstruction. In the presented real 
data, segmentations of metacarpal bones are the most error 
prone since they are most frequently affected by shadowing 
either from neighbouring metacarpal or wrist bones. Moreover, 
segmentation errors in both, 2D and 3D images, influence the 
SSM quality and fitting ability. Figure 9b shows that errors in 
reconstructing the metacarpal bones are significantly higher 
than for other bones, which supports our theory.

The achieved 2D-3D reconstruction errors are within the 
same range as those published for reconstruction of 

Figure 9. 2D-3D reconstruction with distance measure F ¼ 0:1F1 þ 0:9F2 þ 0:01W1 for real data.
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different bones: For the reconstruction of the rib cage from 
two orthogonal x-ray images (Dworzak et al. 2009), reached 
reconstruction errors in the range of 2.2 to 4.7 mm for the 
average mean 3D surface distance. In (Baka et al. 2011) root 
mean squared point-to-surface distances between 0.68 mm 
and 1.68 mm were achieved reconstructing the 3D shape of 
the distal femur from biplane fluoroscopic images. The 3D 
shape of the radius and ulna could be reconstructed with 
accuracies of 1:34 � 0:39 mm and 1:64 � 0:39 mm in 
(Shiode et al. 2021).

For application in clinical routine, outliers and uncertainties 
will have to be quantified. One possibility for outlier detection 
is to display the objective function value either in numbers or 
converted to a green (most likely acceptable accuracy) to red 
(most likely not sufficiently accurate) colour scale. Additionally, 
the projections of the reconstructed shape into the x-ray 
images can be displayed to the clinician and evaluated manu
ally. Visualising the intersection of the two x-ray images may 
also yield a simple sanity check. In addition, including another 
X-ray image from a third projection direction into the 2D-3D 
reconstruction procedure can be recommended when uncer
tainties are below a defined threshold. A third projection direc
tion can reduce the errors in many cases, as seen in 
Section 3.2.4.

Applicability of the algorithm to other structures, e.g. the pelvis 
or knee, and more advanced use cases, e.g. dealing with fractures/ 
missing information, has to be investigated in future work.

5. Conclusion

We introduced a method for fitting 3D shapes from two 2D 
X-ray images, adding precious 3D information to 2D imaging 
and eliminating the need for expensive 3D imaging in other 
cases. The influence of the method parameters on the 2D-3D 
reconstruction of finger bones was extensively validated on 
a synthetic data set. 2D-3D reconstruction results of that para
meter study showed the high reconstruction ability of the 
proposed method. Further validation was done on 34 patient 
data sets of corresponding X-ray and CT images. In contrast to 
other approaches, the two X-ray projection directions are not 
perpendicular for those patients.

For synthetic data, 91.58% of all cases show surface errors 
below 1 mm. For real data, 79.65% of all cases show surface 
errors below 2 mm, while 23.31% are below 1 mm. For applica
tion of the method in clinical routine, uncertainties have to be 
quantified, displayed and performing additional X-ray or CT/ 
MRI scans should be recommended in case of high uncertainty.

Apart from finger bone shape reconstruction, the proposed 
method can be applied to any structure, e.g. the femur, pelvis, 
or teeth. Further extensions to fractured bone or otherwise 
missing shape information can easily be included. Concluding, 
the proposed method opens the opportunity to do 3D surgery 
planning, construction of individual implants, or physiological 
motion modelling without acquiring cost, time (and radiation) 
expensive 3D images.
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Appendix

A. Statistical data

Table A1. Error statistics of all bones and reference configurations VS0-VS4 for αF 2 f0; 0:1; 0:3; 0:5; 0:7; 0:9; 1g and αW ¼ 0.

αF 0 0.1 0.3 0.5 0.7 0.9 1

rotational error [°] mean 4.48 2.97 3.17 3.14 3.62 3.13 3.21
median 1.99 1.50 1.42 1.49 1.68 1.59 1.52
75th percentile 3.76 3.02 3.56 3.11 3.20 2.90 3.16
95th percentile 18.56 7.50 9.22 12.71 13.86 14.42 13.85
maximum 53.54 46.38 34.94 34.77 35.20 35.59 33.82

jjT� � T ref jj2 [mm] mean 0.16 0.12 0.12 0.11 0.13 0.12 0.13
median 0.08 0.07 0.07 0.06 0.06 0.07 0.06
75th percentile 0.14 0.13 0.13 0.12 0.12 0.13 0.11
95th percentile 0.47 0.27 0.31 0.41 0.43 0.27 0.32
maximum 1.71 1.64 1.44 1.27 1.39 1.49 1.31

dM;1ðM;�MrefÞ [STD] mean 0.25 0.21 0.20 0.19 0.20 0.18 0.18
median 0.18 0.19 0.18 0.16 0.16 0.14 0.14
75th percentile 0.30 0.26 0.25 0.21 0.25 0.22 0.21
95th percentile 0.53 0.49 0.47 0.42 0.55 0.39 0.43
maximum 1.66 0.62 0.93 1.05 1.20 1.01 1.05

jjP� � Pref jj2;� [mm] mean 0.48 0.36 0.36 0.34 0.39 0.34 0.35
median 0.24 0.19 0.19 0.19 0.21 0.18 0.20
75th percentile 0.36 0.31 0.31 0.31 0.30 0.29 0.31
95th percentile 1.20 0.79 0.91 1.06 1.39 0.96 1.39
maximum 4.78 4.95 3.84 3.67 4.32 3.77 3.62

jjP� � Pref jj2;1 [mm] mean 0.97 0.75 0.74 0.69 0.79 0.72 0.73
median 0.52 0.43 0.43 0.44 0.44 0.40 0.42
75th percentile 0.81 0.71 0.68 0.69 0.65 0.62 0.71
95th percentile 2.65 1.88 1.85 2.03 2.89 2.09 2.93
maximum 8.73 9.66 7.80 7.20 7.62 7.51 7.28

dHðP�; PrefÞ [mm] mean 0.75 0.65 0.62 0.59 0.63 0.59 0.60
median 0.52 0.43 0.43 0.44 0.44 0.40 0.42
75th percentile 0.79 0.69 0.68 0.69 0.65 0.62 0.71
95th percentile 1.88 1.56 1.45 1.59 1.82 1.48 1.68
maximum 4.18 5.72 4.35 3.85 4.44 4.19 3.51

Table A2. Error statistics of all bones and reference configurations VS0-VS4 for F ¼ 0:1F1 þ 0:9F2 þ 0:01W1 using two projection directions.

mean median 75th percentile 95th percentile maximum

rotation error [°] 2.69 1.37 3.17 5.75 36.73 

jjT� � T ref jj2 [mm] 0.12 0.07 0.12 0.21 1.45
dM;� ðM�;MrefÞ [STD] 0.05 0.05 0.06 0.07 0.12
dM;1ðM�;MrefÞ [STD] 0.23 0.22 0.29 0.40 0.63
jjP� � Pref jj2;� [mm] 0.33 0.21 0.31 0.63 4.00

jjP� � Pref jj2;1 [mm] 0.68 0.47 0.65 1.37 7.51

dHðP�; PrefÞ [mm] 0.60 0.47 0.65 1.27 4.63

Table A3. Error statistics for real data 2D-3D reconstruction.

mean median 75th percentile 95th percentile maximum

dHðPref ; PCTÞ [mm] 0.79 0.72 0.92 1.29 3.05
dHðP�; PCTÞ [mm] 1.58 1.33 1.85 3.16 6.43
jjP� � PCTjj2;� [mm] 0.61 0.55 0.71 1.13 2.74

jjP� � PCTjj2;1 [mm] 1.64 1.39 1.92 3.32 6.86

dHðP�; PrefÞ [mm] 1.32 1.09 1.53 2.86 5.64
jjP� � Pref jj2;� [mm] 0.53 0.46 0.64 1.01 1.65

jjP� � Pref jj2;1 [mm] 1.34 1.09 1.54 3.05 5.65

dM;� ðM�;MrefÞ [STD] 0.17 0.15 0.21 0.31 0.50
dM;1ðM�;MrefÞ [STD] 0.91 0.76 1.19 1.97 3.48
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