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Abstract

Variational models lie at the core of formulating and understanding problems in modern

mathematical image processing. Suitable mathematical models that accurately describes

the given problem often have undesirable properties, in particular non-convexity. This

thesis is built around a functional lifting strategy which embeds non-convex problems into a

larger space, so that the lifted problem is convex and that global minimizers of the lifted

problem can be mapped to global minimizers of the original problem. The contributions of

this thesis are threefold.

We give a thorough introduction to the calibration-based lifting approach. In the literature, this

approach is described in a𝑊1,1 setting. A őrst contribution of this thesis is the compilation

of measure theoretic results in order to extend the approach and related theory to the BV

setting. In addition, we also discuss possible discretization and optimization approaches

found in the literature.

Calibration-based lifting is then used in order to extend the use case of inverse scale

space iterations. These iterations are related to non-linear spectral representation and őltering

techniques, which have proven to give impressive results in different imaging applications.

While existing theory is built around the convex deconvolution or denoising problem, our

goal is to generalize the results to variational problems with arbitrary, possibly non-convex

data term and total variation regularizer.

Finally, we propose a neural őelds based stochastic optimization approach for solving varia-

tional problems with non-convex data term and total variation regularizer. By combining

calibration-based lifting with the powerful neural őelds computational framework, we

aim to present a novel stochastic optimization strategy for this difficult class of variational

problems.





Zusammenfassung

Variationsprobleme spielen eine zentrale Rolle in der Formulierung und dem Verständnis

von Problemen in der modernen mathematischen Bildverarbeitung. Mathematische Modelle,

die eine gegebene Problemstellung präzise beschreiben, haben oftmals unerwünschte

Eigenschaften, so wie beispielsweise Nichtkonvexität. In ihrem Kern beschäftigt sich diese

Arbeit mit einem funktionalen Liftingverfahren, welches nicht-konvexe Probleme in einen

anderen Raum einbettet, sodass die geliftete Formulierung des Problems konvex ist und

globale Minimierer des gelifteten Problems mit globalen Minimierern des ursprünglichen

Problems in Zusammenhang stehen. Der Beitrag dieser Arbeit lässt sich in drei Teile

strukturieren.

Zunächst wird eine ausführliche Einführung in ein kalibrierungsbasiertes Liftingverfahren

gegeben. In der Literatur ist dieser Ansatz für Variationsprobleme mit𝑊1,1 Lösungsraum

beschrieben. Der erste Beitrag dieser Arbeit besteht in der Erweiterung des kalibrierungs-

basierten Liftingverfahrens auf Variationsprobleme mit BV Lösungsraum. Zusätzlich

werden verschiedene Diskretisierungs- und Optimierungsansätze aus der Literatur erörtert

und verglichen.

Das kalibrierungsbasierte Liftingverfahren wird anschließend verwendet, um Iterationen

über den inversen Skalenraum für neue Problemklassen zu deőnieren. Diese Iterationen

sind eng verwandt mit nichtlinearer spektraler Repräsentation und Filteransätzen, die bere-

its eindrucksvolle Ergebnisse in Bildgebungsanwendungen erzielt haben. Während sich

die Theorie bisher ausschließlich mit konvexen Entfaltungs- und Entrauschungsprob-

leme beschäftigt hat, wird der Anwendungsfall in dieser Arbeit auf TV-regularisierte

Variationsprobleme mit möglicherweise nichtkonvexem Datenterm erweitert.

Abschließend wird ein stochastischer Optimierungsansatz basierend auf neuronalen Feldern

für TV-regularisierte Variationsprobleme mit möglicherweise nichtkonvexem Datenterm

vorgeschlagen. Die Kombination des kalibrierungsbasierten Liftingverfahrens mit rech-

nerisch leistungsstarken neuronalen Feldern hat das Potenzial für einen effizienten Opti-

mierungsansatz für diese schwierige Klasse an Variationsproblemen.
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Notation and Abbreviations

Abbreviations

ANN Artiőcial Neural Nets

BI Bregman Iteration

BV Functions of Bounded Variation

CBL Calibration-based lifting

EmNeF Neural Fields for Embedded Variational Problems

GAN Generative Adversarial Network

GD Gradient Descent

ISS Inverse Scale Space (ŕow)

LBI Lifted Bregman Iteration

LSTM Long Short-Term Memory

NeRF Neural Radiance Fields

NF Neural Field

PDHG Primal-Dual Hybrid Gradient

PINN Physic Informed Neural Networks

RFF Random Fourier Features

ROF Rudin-Osher-Fatemi (𝐿2-𝐿1) Model for Image Restoration

SBV Special Functions of Bounded Variation

SGD Stochastic Gradient Descent

SS Scale Space (ŕow)

TV Total Variation (seminorm or regularizer)

Sets

B𝑟(𝑥) Ball centred around 𝑥 ∈ ℝ𝑛 with radius 𝑟 > 0, i.e., {𝑦 ∈ ℝ𝑛 | ∥𝑥 − 𝑦∥ ≤ 𝑟}
BV(ℝ𝑛 ;ℝ𝑑) ℝ𝑑-valued functions of bounded variation

𝐶(𝑆) Continuous selections of a set-valued mapping 𝑆

𝐶(ℝ𝑛 ;ℝ𝑑) Same as 𝐶1(ℝ𝑛 ;ℝ𝑑)
𝐶𝑘(ℝ𝑛 ;ℝ𝑑) 𝑘-times continuously differentiable functions from ℝ𝑛 to ℝ𝑑



𝐶𝑘𝑐 (ℝ𝑛 ;ℝ𝑑) 𝐶𝑘(ℝ𝑛 ;ℝ𝑑) functions with compact support

𝐶𝑘0 (ℝ𝑛 ;ℝ𝑑) Closure of 𝐶𝑘𝑐 (ℝ𝑛 ;ℝ𝑑)wit respect to the ∥ · ∥∞-norm

conv𝐴 Convex hull of a set 𝐴

𝜕∗𝐸 Measure theoretic (also essential) boundary of a set 𝐸

𝐸𝑡 Points of a set 𝐸 with density 𝑡. Especially, 𝐸0 and 𝐸1 denote the measure

theoretic exterior and interior of 𝐸

FE Reduced boundary of a set 𝐸

𝐽𝑢 Set of approximate jump points of a function 𝑢 ∈ 𝐿1
loc

𝐿𝑝(Ω;ℝ) 𝐿𝑝-integrable functions, i.e.
{
𝑓 : Ω→ ℝ :

∫
Ω
| 𝑓 (𝑥)|𝑝 d𝑥 < ∞

}
𝐿
𝑝

loc
(Ω;ℝ) Locally 𝐿𝑝-integrable functions, i.e.{

𝑓 : Ω→ ℝ :
∫
𝐴
| 𝑓 (𝑥)|𝑝 d𝑥 < ∞,∀𝐴 ⊂ Ω compact

}
M+(ℝ𝑛) Positive Radon measure on ℝ𝑛

Mloc(ℝ𝑛 ;ℝ𝑚) ℝ𝑚-valued Radon measure on ℝ𝑛

M(ℝ𝑛 ;ℝ𝑚) Finite ℝ𝑚-valued Radon measure on ℝ𝑛

N(𝑥) Neighbourhood of 𝑥

𝜈𝐸 Generalized inner normal of a set 𝐸

𝑃(𝐸;Ω) Perimeter of the set 𝐸 in Ω

ℝ Extended real line ℝ ∪ {−∞,+∞}
ℝ𝑛 𝑛-dimensional Euclidean space

S𝑟(𝑥) ℝ𝑛−1-dimensional sphere centred around 𝑥 ∈ ℝ𝑛 with radius 𝑟 > 0, i.e.

S𝑟(𝑥) := {𝑦 ∈ ℝ𝑛 | ∥𝑥 − 𝑦∥ = 𝑟}
SBV(ℝ𝑛 ;ℝ𝑑) ℝ𝑑-valued special functions of bounded variation

𝑆𝑢 Approximate discontinuity set of a function 𝑢 ∈ 𝐿1
loc

𝑉(𝑢,Ω) Variation of a function 𝑢 in Ω

Operators and Functions

1𝑢(𝑥, 𝑡) Indicator of the subgraph of 𝑢: 1𝑢(𝑥, 𝑡) = 1, if 𝑢(𝑥) > 𝑡, else 0.

1{𝑣>𝑠}(𝑥, 𝑡) Characteristic function: 1{𝑣>𝑠}(𝑥, 𝑡) = 1 if 𝑣(𝑥, 𝑡) > 𝑠, else 0.

con 𝑓 convex hull of a function 𝑓 , see Sec. 2.1

dom 𝑓 effective domain of a function: {𝑥 : 𝑓 (𝑥) < +∞}
𝜕 𝑓 Subdifferential of convex function 𝑓 : ℝ𝑛 → ℝ

𝛿𝐶(𝑥) Indicator function of a set: 𝛿𝐶(𝑥) = 0, if 𝑥 ∈ 𝐶, else +∞
𝐷𝑢 Distributional derivative of a function 𝑢



𝑓 ∗(𝑥) Fenchel conjugate of 𝑓 , see Def. 2.1.1

𝑓 (𝑥,𝜆) Perspective function of 𝑓 , see Def. 2.1.2

𝑓∞(𝑥) Recession function of 𝑓 , see Def. 2.1.3

Γ𝑢 measure theoretic boundary of the subgraph of a function 𝑢

graph 𝑢 Complete graph of a function 𝑢

hyp Subgraph of 𝑢

−
∫
Ω
𝑓 d𝜇 Mean value of 𝑓 in Ω, i.e. 1

𝜇(Ω)
∫
Ω
𝑓 d𝜇

lev>𝑠 𝑢 Superlevel sets of a function 𝑢

𝜈𝑢 Generalized inner unit normal of the subgraph of a function 𝑢

𝜎𝐶(𝑥) Support function of set 𝐶, i.e. 𝜎𝐶(𝑥) = sup𝑦∈𝐶 ⟨𝑦, 𝑥⟩
supp 𝑓 Support of f: Closure of {𝑥 : 𝑓 (𝑥) ≠ 0}

Measures and Distributions

𝐴⌞𝐵 Restriction of a set 𝐴 to 𝐵

dH𝑛 𝑛-dimensional Hausdorff measure

L𝑛 𝑛-dimensional Lebesgue measure

N(𝜇, 𝜎2) Normal distribution with mean 𝜇 and variance 𝜎2
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Mathematical imaging is a fascinating őeld which not only őnds

application in diverse areas of life and science [AK06] (see Fig. 1.1)

but also brings together various mathematical őelds of studies such

as measure theory, analysis and numerical optimization [BL11].

The imaging pipeline typically consists of multiple steps: Acquir-

ing (discrete) measurements of the data, modelling the real-life

problem as a PDE or a variational problem, discussing the ex-

istence and uniqueness of minimizers, designing discretization

schemes, and developing numerical optimization strategies or

learning frameworks in order to őnd solutions.

The results presented in this work are concerned with different

aspects of the imaging pipeline starting with a variational problem

(re-)formulation, an iterative optimization strategy which also

allows to analyse the solution’s decomposition into scales, and a

contemporary learning framework. As such, we will use notations

and results from measure theory [AFP00; ABM14], convex and

variational analysis [ET99; Roc70; RW09], numerical optimization

[NW99] and learning [BN06].

The combining element in this work is the calibration-based lifting

strategy (CBL) [ABD03; Poc+10; MC17]. It is a lifting (also embed-

ding) strategy, which allows to reformulate non-convex variational

problems in a łhigher-dimensionalž space, such that the lifted

formulation is convex and global minimizers of the embedded,

convex energy can be mapped to global minimizers of the original,

non-convex energy. CBL is a very powerful technique, as convexity

greatly simpliőes the numerical optimization and, therefore, ex-

tents the practical applicability of certain non-convex variational

problems.

The őrst goal of this thesis is to give a holistic overview and

introduction to the calibration-based lifting approach. We recall

and discuss the derivation of the CBL method, theoretical results,

as well as discretization and optimization aspects found in the

literature of the imaging community. We furthermore extend

certain results and proofs concerning the CBL approach to a

broader class of variational problems by relying on a compilation

of measure theoretic results. This lays the groundwork for the next

two goals:

▶ Inverse scale space iterations and related nonlinear spectral

representation or őltering techniques have proven to be very

successful for different imaging tasks such as image fusion

and manipulation [HG18]. Yet, to the best of our knowledge,
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all results in the literature are build around the convex

deconvolution/ denoising problem. We use the calibration-

based lifting strategy in order to extend the use case of

these iterations to a broader class of possibly non-convex

variational problems. To the best of our knowledge, we were

the őrst to propose such a uniőed extension in [BL21; BL22].

▶ Non-convex imaging problems pose a great numerical chal-

lenge. We propose a neural őelds based learning approach

for solving variational problems with non-convex data term

and total variation regularizer. By combining the theory of

the calibration-based lifting strategy with a computation-

ally powerful learning approach, we aim to present a novel

and general optimization strategy for this difficult class of

variational problems. Our so-called EmNeF approach őrst

presented in [BL23] can be understood as an alternative

to classical optimization of CBL lifted problems with the

primal-dual hybrid gradient algorithm or as a method which

allows to incorporate more physical knowledge into learning

frameworks.

The remainder of this chapter establishes the general setting and

notation, explains the concept of functional lifting and, lastly,

gives an introduction to the main őelds of our interest in order to

motivate our őndings.

1.1 Problem Setting

Imaging generally starts with measurements of some visual data

obtained through imaging devices ś such as cellphone cameras,

polaroid pictures, MRI scans, microscopic or satellite images. Re-

covering the unknown image from measurements is an often

ill-posed inverse problem, which requires to incorporate prior

knowledge concerning the solution. A particularly common ap-

proach ś which naturally occurs when formulating the problem

in a statistical sense and deriving a maximum-a-posteriori (MAP)

estimator ś is the formulation of a (continuous) variational problem

consisting of a data term and a regularizer [BL11].

In this work, we consider variational minimization problems of

the form

inf
𝑢∈𝑈

𝐹(𝑢), (1.1)

where𝑈 is a suitable feasible set with elements 𝑢 : Ω→ Γ which

map from the open and bounded image domain Ω ⊂ ℝ𝑛 to the

image range1 Γ ⊂ ℝ𝑑. The objective functional 𝐹 is often of integral1: Due to historical reasons, we refer

to the discretized image range Γℎ as

the label space.

form and may depend on (possibly distributional) derivatives of 𝑢,
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(a) Reference 𝑅 (b) Template 𝑇 and map 𝜑 (c) Difference 𝑅 − 𝑇 ◦ 𝜑

(d) 1st input image 𝐼1 (e) 2nd input image 𝐼2 (f) Depth map

Figure 1.1: Mathematical imaging őnds application in a variety of őelds and for many different tasks. Here are just two
examples. The top row shows an example from medical image registration, where a transformation 𝜑 is sought which
maps a template image 𝑇 onto a reference image 𝑅 such that 𝑇(𝜑(𝑥)) ∼ 𝑅(𝑥). Input images from [Ami94]. The bottom

row depicts a stereo matching example, where a depth map 𝑢 is sought given two pre-aligned images 𝐼1 , 𝐼2 of the same
scene. The images are assumed to be pre-aligned such that the epipolar lines align and 𝐼1(𝑥1 , 𝑥2) ≈ 𝐼2(𝑥1 , 𝑥2 − 𝑢(𝑥1 , 𝑦2)).
Input images łBackpackž from [Sch+14].

as in the generic and often-used model

𝐹(𝑢) :=

∫
Ω

𝑓 (𝑥, 𝑢(𝑥),∇𝑢(𝑥))d𝑥. (1.2)

We also consider the special case where the energy is separable

into a data term 𝐷, which is small whenever the candidate 𝑢 is

compatible with the measurement or input data, and a regularizer 𝐽,

which allows to incorporate prior knowledge about the solution,

such as desired smoothness. In this case we write:

𝐹(𝑢) =
∫
Ω

𝜌(𝑥, 𝑢(𝑥))d𝑥︸              ︷︷              ︸
𝐷(𝑢)

+
∫
Ω

𝜂(𝑥,∇𝑢(𝑥))d𝑥︸                ︷︷                ︸
𝐽(𝑢)

. (1.3)

Total Variation. A typical regularizer, which we will also mainly

be concerned with in this thesis, is the total variation

TV(𝑢) :=

∫
Ω

𝑑 |𝐷𝑢 |, (1.4)

Here, 𝐷𝑢 denotes the distributional derivative of 𝑢. The total vari-

ation is well-deőned for piece-wise smooth functions with jump

discontinuities and, in the special case of smooth functions, reduces
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to 𝑇𝑉(𝑢) =
∫
Ω
∥∇𝑢(𝑥)∥ d𝑥. The typically associated feasible set

consists of functions of bounded variation

BV(Ω;ℝ) := {𝑢 ∈ 𝐿1(Ω;ℝ)| TV(𝑢) < ∞}. (1.5)

The BV space is especially suitable when working with images,

as it permits jump discontinuities, which allows to model objects

with sharp edges.

Why is the total variation of special interest to our goals and

contributions?

▶ The total variation regularizer is convex, 1-homogeneous

and lower-semicontinuous in BV(Ω;ℝ) [AFP00, Prop. 3.6].

Additionally, it fulőls the coarea formula [AFP00, Thm. 3.40].

All these properties allow to prove a tightness result in the

calibration-based lifting approach: it holds inf𝑣∈CF(𝑣) =
inf𝑢∈U 𝐹(𝑢), where Fdenotes the lifted energy and C the

lifted feasible set. This tightness result is central for the

argument made in Chpt. 3 that minimizing the lifted convex

energy is equivalent to minimizing the original energy.

▶ As the total variation is convex and 1-homogeneous, it natu-

rally fulőlls the assumptions typically required in the theory

of nonlinear spectral representation and őltering [Bur+16]

which will be of interest in Chpt. 4.

Let us now consider two concrete examples of variational problems

with TV regularizer and explain their relevance to this work.

Denoising. Assume a given image 𝑓 ∈ 𝐿2(Ω,ℝ𝑘) is corrupted

by (possibly normally distributed) noise, and the true, noise-free

image 𝑢̃ is to be found. An established method for estimating

a solution 𝑢∗ ≈ 𝑢̃ is the Rudin-Osher-Fatemi (ROF) denoising

model [ROF92]

inf
𝑢∈BV(Ω;ℝ𝑘 )

{
1

2

∫
Ω

∥𝑢(𝑥) − 𝑓 (𝑥)∥22 d𝑥 + 𝜆TV(𝑢)
}
. (1.6)

By controlling the variation of the solution with the TV regularizer,

small-scale features in the original image 𝑓 can be suppressed in

the solution 𝑢∗. Another interpretation is that the solution 𝑢∗ is

a nonlinear interpolate between the original 𝐿2 image 𝑓 and its

median 𝑓 (a BV function), with weighting set by the regularization

parameter 𝜆 ∈ ℝ.

Depending on the choice of the regularization parameter 𝜆, dif-

ferent features of 𝑓 are moved into the noise component 𝑢∗ − 𝑓 .
Therefore, the regularizer introduces a mathematical notion of

coherent information and scale to image data. This notion allows to
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deőne nonlinear scale space representation and őltering techniques

for images [Gil13; Gil14; Bur+16].

In the literature, nonlinear scale space methods evolve around

the convex denoising (or similar deconvolution) problem (1.6).

These methods give great results in image manipulation [HG18].

In Chpt. 4, we use the calibration-based lifting approach in order to

transfer the idea of a nonlinear spectral representation and őltering

to the solution of a broader class of variational problems ś more

precisely, problems with total variation regularizer and arbitrary,

possibly non-convex data term. This allows us to make a őrst

step towards extending the spectral theory to objects associated

with images, such as depth or segmentation maps. In case of the

denoising problem we can show that our extended method is in

fact equivalent to the original one.

Stereo Matching. In stereo matching, the goal is to estimate the

depth of a scene from two or multiple input images. These images

are taken from slightly different viewpoints. The depth can be

estimated by calculating how much a pixel or area of interest shifts

its position between the different images. A large shift indicates

closeness, a small shift indicates larger distance to the camera. See

Fig. 1.1 for an example.

In order to simplify the problem, preprocessing steps can be applied

in order to ensure that the shift only involves one axis; the input

images are rectiőed, such that the epipolar lines align [Sch+14]. Thus,

the displacement of points between the two images is restricted

to, e.g., the 𝑥2śaxis and can be modelled as a scalar function

𝑢 : ℝ2 → ℝ. Given two input images 𝐼1 and 𝐼2, and denoting the

measurement (interpolation) of 𝐼2 on the shifted domain (grid) by

𝐼2(𝑥) := 𝐼2(𝑥1 , 𝑥2 − 𝑢(𝑥)), the data term for this problem can be

formulated as

𝜌(𝑥, 𝑢(𝑥)) :=

∫
𝑊(𝑥)

∑
𝑗=1,2

max
{
𝑑 𝑗(𝐼1(𝑦), 𝐼2(𝑦)), 𝜏

}
d𝑦. (1.7)

Here,𝑊(𝑥) denotes a patch around 𝑥, 𝜏 is a scalar threshold and

𝑑 𝑗 is the absolute gradient difference deőned as

𝑑 𝑗(𝐼1(𝑦), 𝐼2(𝑦)) := |𝜕𝑥 𝑗 𝐼1(𝑦1 , 𝑦2) − 𝜕𝑥 𝑗 𝐼2(𝑦1 , 𝑦2 − 𝑢(𝑦))|. (1.8)

This problem is non-convex and nonlinear in 𝑢, which makes

optimization rather difficult, as classical gradient-descent based

optimization algorithms are likely to converge to local minima. This

is where functional lifting strategies become relevant, as they allow
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to reformulate a given variational problem in a higher-dimensional

space, such that the higher-dimensional problem is convex.

In this work, we use stereo matching as a representative example for

non-convex problems. In Chpt. 4 we use it in order to demonstrate

that our newly introduced generalized nonlinear inverse scale space

iterations indeed generalize the notion of nonlinear inverse scale

spaces. In Chpt. 5 we also come back to this example in order to

compare the performance of our newly introduced neural őelds

based solving strategy for non-convex problems with the one of the

sate-of-the-art gradient-descent based optimization algorithm.

Having established our general problem setting whilst considering

relevant examples, we now proceed with motivating the three

main topics of this work.

1.2 Background and Motivation

1.2.1 Functional Lifting

During optimization, convexity of the variational model plays a

vital role. There are very effective optimization algorithms for solv-

ing convex problems [NW99; BV04]. Non-convex problems pose

greater difficulties ś for example, the choice of a good initialization

may not only affect computational time but also convergence to

a global instead of a local minimizer [BV04]. Not all variational

models in imaging are convex, since non-convex problems might

model the image acquisition process or the given task at hand

more precisely.

A particular strategy for dealing with non-convexity, which we will

also be concerned with in this thesis, is to reformulate an originally

non-convex problem

inf
𝑢∈𝑈

𝐹(𝑢) (1.9)

as a higher-dimensional2

2: The term łhigher-dimensionalž

stems from the discrete setting and

is here, in the continuous setting,

slightly abused. To be more pre-

cise, we should say that the orig-

inally non-convex energy 𝐹 is re-

placed by a convex energy F, which

is deőned over a feasible set which

contains functions with a łhigher-

dimensionalž domain. As an exam-

ple, the feasible set 𝑈 of functions

𝑢 : Ω → Γ might be replaced

by the feasible set C of functions

𝑣 : Ω × Γ→ ℝ.

, convex problem

inf
𝑣∈C

F(𝑣). (1.10)

In the imaging community, such reformulations are called functional

lifting. A related topic is the linear programming relaxation in the

discrete combinatorics community as well as the term embedding,

which is typically used in the analysis community. The general

concept of this functional lifting strategy is visualized in Fig. 1.2.
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Γ

Ω

𝑢(𝑥)

Γ

Ω

1𝑢(𝑥, 𝑡) = 0

1𝑢(𝑥, 𝑡) = 1

Γ

Ω

𝑣(𝑥, 𝑡) = 0

𝑣(𝑥, 𝑡) = 1

inf𝑢∈𝑈 𝐹(𝑢)

inf1𝑢 ,𝑢∈𝑈 F(1𝑢)
inf𝒖∈𝑼 𝑭(𝒖)

inf𝑣∈CF(𝑣)
inf𝒗∈𝑪 𝑭(𝒗)

embedding

convexiőcation

threshold

solution

project

solution

down

continuous domain Ω, discretized range Γ

Figure 1.2: Calibration-Based Lifting. The idea of functional lifting is to reformulate non-convex variational problems
over a new solution space, such that the new formulation is convex and that global minimizers of the latter can be
projected onto global minimizers of the former. Even though functional lifting increases the dimensionality of the
discrete problem, optimization is greatly simpliőed as convergence of gradient-descent based optimization algorithms to
suboptimal local minimizers is ruled out.

In the calibration-based lifting (CBL) approach, the original problem inf𝑢∈𝑈 𝐹(𝑢) (top), is reformulated as a
minimization problem of the convex energy Fover the non-convex set of characteristic functions of subgraphs (middle).
By formally replacing the non-convex feasible set with a convex superset C one reaches the fully convex problem
inf𝑣∈CF(𝑣) (bottom). In the continuous setting, any global minimizer 𝑣∗ ∈ Cof Fcan be mapped to 1∗𝑢 via a pointwise
thresholding formula. 1∗𝑢 then can uniquely be mapped to to a global minimizer 𝑢∗ ∈ 𝑈 of 𝐹. The ŕowchart on the right
shows the pipeline in the continuous (black) and discrete (gray) setting.

Desirable properties of functional lifting approaches are:

1. The lifted functional F : C→ ℝ is a lower semicontinuous

and coercive function. Under certain assumptions on C, this

guarantees the existence of a minimizer, see for example

[Sch13, Thm. 13.3].

2. The lifted formulation is tight, which means that it holds

inf
𝑣∈C

F(𝑣) = inf
𝑢∈𝑈

𝐹(𝑢). (1.11)

No new artiőcial minima are introduced.

3. There is a łprojectionž that maps global minimizers

𝑣∗ ∈ arg min𝑣∈CF(𝑣) of the lifted problem to global mini-

mizers 𝑢∗ ∈ arg min𝑢∈𝑈 𝐹(𝑢) of the original problem.

If these properties are fulőlled, solving the convex problem (1.10)

helps őnding global minimizers of the original, non-convex prob-

lem (1.9).
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Lifting strategies are very powerful, as they allow to solve originally

non-convex variational problems numerically with the help of

gradient-descent based optimization algorithms and without the

risk of converging to non-global local minima. Over the years,

many different strategies have been proposed ś we give a short

overview in the following subsection.

Related Work. The őrst lifting/relaxation strategies in the imag-

ing community were concerned with fully discrete problems, that

is (multi-)labelling problems on a discrete grid. The idea was to

formulate the problems as Markov Random Fields (MRFs), that is

as conditional probability models consisting of certain undirected

graphs. Minimum energy conőgurations of certain MRFs can be

computed in terms of a minimum cut problem [Ish03]. Some of the

őelds of application were segmentation [IG98b], image restoration

[IG99], and stereo matching [IG98a]. See [Lel+13a] for a more

comprehensive study and overview of related work in the fully

discrete setting.

Subsequent research was concerned with (multi-) labelling prob-

lems on a continuous grid. These problems can be described as

őnding a function 𝑢 : Ω → Γ that assigns each point 𝑥 in a

continuous domain Ω a label 𝑢(𝑥) from a discrete range Γ while

minimizing some functional 𝐹.

In their famous work [CSV00], Chan and Vese reformulate the

minimal partition problem in terms of minimizing over charac-

teristic functions of sets of őnite perimeter. Later, in [CEN06],

connecting minimal partitions and (binary) image denoising and

using a thresholding theorem, the authors argued that the (non-

convex) solution space of characteristic functions of sets with őnite

perimeter can be extended to a convex solution space, resulting in

a convex formulation for the minimal partition problem.

Similar ideas were subsequently employed for multi-label prob-

lems [Poc+08; LS11; ZK12; CCP12] and vector-valued multi-label

problems [SGC11; SCC12]. It was shown that the continuous nature

of the lifting approaches reduces metrication errors, also known

as grid bias, [Poc+08] and improve isotropy, see [Lel+13a] for an

overview.

The most recent approaches focus on lifting fully continuous

problems, where a function 𝑢 : Ω→ Γ is sought, which assigns

each point 𝑥 in a continuous domain Ω a value 𝑢(𝑥) from a

continuous range Γ while minimizing some functional 𝐹. The

lifted, convex problem can be formulated in terms of complete

graphs [Poc+10], measures [Vog20; Vog+20] or currents [MC19b;

Möl20]. Discretizing these continuously formulated lifted energies

can lead to very high-dimensional discrete problems, which can
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be numerically challenging. Custom sublabel-accurate discretization

schemes were introduced in order to contain this problem [MC17;

Ye+22; Ye+23].

Many of the above-mentioned approches are designed explicitly

for the őrst-order total variation regularizer. In [Lel+13b], the

special case of manifold-valued total variation problems is consid-

ered. There are also functional lifting approaches for second-order

regularizers [LL16; VL19; Vog20].

Contribution. In this work, we employ the calibration-based

lifting approach [ABD03; Poc+10; MC17]. It is a fully continuous

lifting approach for scalar problems which fulőls all the desirable

properties listed on p. 6. In particular, the approach is tight, which

means that it holds

inf
𝑢∈𝑈

𝐹(𝑢) = inf
𝑣∈C

F(𝑣), (1.12)

and (global) minimizers 𝑢∗ = arg min𝑢∈𝑈 𝐹(𝑢) can be mapped to

(global) minimizers 𝑣∗ = arg min𝑣∈CF(𝑣).

We extend central results and proofs in [Poc+10] from variational

problems deőned over 𝑊1,1 functions to variational problems

deőned over BV functions by using a collocation of measure

theoretic results. As subsequent contributions in this thesis heavily

rely on the calibration-based lifting approach and its properties, we

provide a self-contained derivation of the approach, a summary of

its properties as well as a short discussion of numerical aspects.

1.2.2 Scale Spaces

Scale-space theory is concerned with multiscale representation

of a signal or an image. The multiscale representation allows to

construct őlters based on scale, which are useful for a variety of

tasks: noise removal, edge detection, feature extraction or feature

enhancement [HG18]. There are many different ways of deőning

scale spaces [Koe84; SG01; Bur+16]ś the scale space does not exist.

In the following, we will introduce the classical Gaussian scale

space and a more recent nonlinear scale space that will be the basis

for part of this thesis.

Gaussian Scale Space. One of the early scale spaces for images

ś namely the Gaussian scale space ś was introduced in [Koe84].

Starting with an input image 𝑓 : Ω → ℝ,Ω ⊂ ℝ𝑛 , the idea is
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Figure 1.3: Gaussian Scale Space. Scale-space theory is concerned with multiscale representation of a signal or an image.
One of the earliest scale spaces for images is the Gaussian scale space: It is obtained by convoluting a given image with a

Gaussian kernel. In this example, the convolution of an image 𝑓 with a Gaussian kernel with variance 𝜎2 = 0.1, 2.1...20.1
(left to right) is shown. With growing variance, details in the image are progressively smoothed ś which also effects
edges in the image. With the help of convex, absolutely 1-homogeneous regularizers (such as total variation), scale spaces
that preserve sharp edges can be deőned ś see Fig.1.4.

Input image by Freepik https://www.freepik.com/free-photo/_13105039.htm

to őnd a one-parameter family of images deőned by some linear

operator 𝐿𝑡 , i.e., 𝑓 : Ω ×ℝ+ → ℝ,

𝑓 (𝑥, 𝑡) = (𝐿𝑡 𝑓 )(𝑥), (1.13)

which fulől constraints such as causality (features at coarse levels

can be explained by features at őne levels), as well as homogeneity

and isotropy (this can be understood as translation and rotational

invariance in the spatial dimensions). The classical construction

is to deőne such a one-parameter family 𝑓 : Ω × ℝ+ → ℝ as

the solution of the heat equation, starting at the original image

𝑓 : Ω→ ℝ:

𝜕

𝜕𝑡
𝑓 (𝑥, 𝑡) = Δ 𝑓 (𝑥, 𝑡), 𝑓 (𝑥, 0) = 𝑓 (𝑥). (1.14)

Here Δ denotes the spatial domain Laplacian. The solution of this

PDE is explicitly given as [Eva22, p. 46]

𝑓 (𝑥, 𝑡) = ( 𝑓 ∗ 𝑔𝑡)(𝑥), (1.15)

where the Gaussian kernel 𝑔𝑡 : Ω→ ℝ is deőned as

𝑔𝑡(𝑥) =
1(√

4𝜋𝑡
)𝑛 exp

(
−∥𝑥∥22

4𝑡

)
. (1.16)

https://www.freepik.com/free-photo/_13105039.htm
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Figure 1.4: TV-Based Inverse Scale Space. Convex, absolutely 1-homogeneous regularizers such as the total variation can
be used to deőne an inverse scale space. The most prominent difference to the Gaussian scale space ś apart from the
inverse behaviour ś is that sharp edges are well preserved. This makes the TV-based inverse scale space interesting for
image manipulation tasks such as scale-based feature enhancement or reducement; see also Fig. 1.5.

Input image by Freepik https://www.freepik.com/free-photo/_13105039.htm

In this context, the scale 𝑡 is equivalent to the variance 𝜎2 typically

associated with the Gaussian kernel. For small 𝑡, 𝑓 is approximately

the original input image. Due to the convolution with the Gaussian

kernel, details are smoothed out with increasing 𝑡; see Fig. 1.3 for

an example. Assume that we are interested in enhancing or őltering

certain objects in the image, such as the black kiwi seeds. Although

the seeds disappear in the Gaussian scale space for 𝑡 large enough,

the approach does not appear to be well suited for the task: Scales

with large 𝑡 are blurry and contain no sharp edges.

Let us recall the ROF denoising example (1.6). The TV regularizer

allows sharp discontinuities in the solution. While the TV regular-

izer introduces a notion of coherent information, the regularization

parameter introduces a notion of size. This motivates the follow-

ing introduction of a scale space which evolves around convex,

1-homogeneous regularizers.

Scale Spaces from Convex, 1-Homogeneous Regularizers. The

existing theory of scale spaces for images from 1-homogeneous,

convex regularizers is closely linked to variational problems

inf
𝑢∈𝑈

𝐹(𝑢), 𝐹(𝑢) = 1

2
∥ 𝑓 − 𝑢∥22 + 𝜆𝐽(𝑢), (1.17)

where 𝑓 : Ω→ ℝ is some input image, 𝜆 > 0 is a regularization

parameter, and 𝐽 is a convex, absolutely 1-homogeneous regularizer;

i.e., 𝐽(𝜆𝑢) = |𝜆|𝐽(𝑢). The data term 1
2 ∥ 𝑓 − 𝑢∥22 őts the solution to a

https://www.freepik.com/free-photo/_13105039.htm
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given input 𝑓 and the regularizer typically enforces smoothness

and regularity.

The most intuitive way of generating a scale-space iteration is to

iteratively solve (1.17) for increasing larger 𝜆𝑘 :

𝑢𝑘 ∈ arg min
𝑢∈𝑈

1

2
∥ 𝑓 − 𝑢∥22 + 𝜆𝑘 𝐽(𝑢). (1.18)

Interpreting 𝜆𝑘 as time steps and passing informally to the contin-

uous limit, this gives the following scale space ŕow for 𝑡 ∈ [0, 𝑇)

𝑢̃𝑉𝑀(𝑡) ∈ arg min
𝑢∈𝑈

1

2
∥ 𝑓 − 𝑢∥22 + 𝑡𝐽(𝑢). (1.19)

Similar to the Gaussian scale space it holds 𝑢̃𝑉𝑀(0) = 𝑓 under the

assumption that 𝑓 ∈ 𝑈 . For őnite 𝑡 < 𝑇, the ŕow converges to the

projection of 𝑓 onto the null space of the regularizer [Bur+16]. In

the literature, this method is referred to as a variational method (VM)

for generating a scale space ŕow.

Another approach of generating inverse scale-space iterations is to

iteratively solve the minimization problem (1.17) for őxed 𝜆 while

replacing 𝑓 with the previous solution: For 𝑢0 := 𝑓 ,

𝑢𝑘 ∈ arg min
𝑢∈𝑈

1

2
∥𝑢𝑘−1 − 𝑢∥22 + 𝜆𝐽(𝑢). (1.20)

Passing informally to the continuous limit, this iteration leads to

the gradient ŕow (GF) [Gil13]. Omitting the dependency on 𝑥 ∈ Ω
and assuming that 𝑢̃𝐺𝐹 is sufficiently smooth, the associated PDE

reads

𝜕

𝜕𝑡
𝑢̃𝐺𝐹(𝑡) = −𝑝𝐺𝐹(𝑡), 𝑝𝐺𝐹(𝑡) ∈ 𝜕𝐽(𝑢̃𝐺𝐹(𝑡)), 𝑢̃𝐺𝐹(0) = 𝑓 , (1.21)

where 𝜕𝐽 denotes the subdifferential of 𝐽. Similar to the (VM)

setting, the ŕow converges to the projection of 𝑓 onto the null

space of the regularizer for őnite 𝑡 < 𝑇 [Bur+16].

While we started with the above examples as they are the easiest

to understand conceptually, we now shift the focus to an inverse

scale space iteration/ŕow. An inverse scale space iteration can be

achieved by solving the Bregman iteration [Osh+05; Bur+16]: Setting

𝑝0 ≡ 0, the Bregman iteration is deőned as

For 𝑘 = 1, 2, ... (1.22)

𝑢𝑘 = arg min
𝑢∈𝑈

𝜆

2
∥ 𝑓 − 𝑢∥22 + 𝐽(𝑢) − ⟨𝑝𝑘−1 , 𝑢⟩ , (1.23)

𝑝𝑘 ∈ 𝜕𝐽(𝑢𝑘). (1.24)
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(a) Original image (b) Band-stop őltered (c) Band-pass őltered

Figure 1.5: Nonlinear Spectral Decompositions. With the help of the inverse scale space ŕow a nonlinear spectral
decomposition (1.27) is deőned for images which then allows to deőne őlters (1.28). The őlters manipulate the nonlinear
eigenfunctions of the regularizer which are contained in the input image according to their eigenvalue (scale). We here
show the result of a total variation based band-stop (b) and band-pass (c) őlter applied to the input image (a). As indicator
functions of certain convex sets are eigenfunctions of the 2D total variation regularizer [BCN02, Thm. 4] edges are well
preserved by the őlter.

Input image by Freepik https://www.freepik.com/free-photo/_13105039.htm

In case of the total variation regularizer, (1.24) can be replaced with

the explicit form 𝑝𝑘 = 𝑝𝑘−1 + 𝜆( 𝑓 − 𝑢𝑘) ∈ 𝜕𝐽(𝑢𝑘). Passing again

informally to the continuous limit, omitting the dependency on

𝑥 ∈ Ω and assuming that 𝑝𝐼𝑆 is sufficiently smooth gives the inverse

scale space ŕow (ISS) [Bur+16]:

𝜕

𝜕𝑠
𝑝𝐼𝑆(𝑠) = 𝑓 − 𝑢̃𝐼𝑆(𝑠), 𝑝𝐼𝑆(𝑠) ∈ 𝜕𝐽(𝑢̃𝐼𝑆(𝑠)), 𝑝(0) = 0. (1.25)

In contrast to the scale space ŕows introduced above, now 𝑢̃𝐼𝑆(0) is
the projection of 𝑓 onto the null space of the regularizer [Bur+16]

ś this łinversež behavior explains the naming. An example with

the total variation regularizer is shown in Fig. 1.4. Compared

to the results of the Gaussian scale space in Fig. 1.3, the most

prominent difference apart from the inverse behavior is that details

in the different scales are less blurry and that edges appear to be

sharper throughout the iteration ś details appear in the ŕow based

on their spatial size. Therefore, it can be argued that this scale

space representation is inherently better suited for enhancing or

extracting features of natural images.

Nonlinear Spectral Representation and Filters. If 𝑓 is a nonlinear

eigenfunction of 𝐽 for the eigenvalue 𝜆 (i.e., 𝜆 𝑓 ∈ 𝜕𝐽( 𝑓 ), ∥ 𝑓 ∥ = 1)

with zero mean, it holds [Bur+16]

𝑢̃𝐼𝑆(𝑠) =



0, if 𝑠 ≤ 𝜆,

𝑓 , else.
(1.26)

We see that 𝑓 appears precisely at 𝑠 = 𝜆 in the inverse scale

space ŕow 𝑢̃𝐼𝑆. This observation encouraged the deőnition of the

https://www.freepik.com/free-photo/_13105039.htm
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following nonlinear spectral decomposition of an arbitrary input

image 𝑓 [Bur+16]:

𝑓 =

∫ ∞

0

𝜕

𝜕𝑠
𝑢̃𝐼𝑆(𝑠)d𝑠. (1.27)

Here, 𝜕
𝜕𝑠
𝑢̃𝐼𝑆(𝑠) =: 𝜇

𝑓

𝐽
(𝑠) is a data-dependent vector-valued distribu-

tion called weak spectral representation. In analogy to the spectral

decomposition of a bounded linear operator on a Hilbert space,

one can think of 𝜇
𝑓

𝐽
as a decomposition of 𝑓 into nonlinear eigen-

functions of 𝐽 ś but only those nonlinear eigenfunctions that are

łcontainedž in the input image 𝑓 . For a more thorough introduction,

we refer to Sec. 2.3.

Features in the input image can be enhanced, reduced, or even

removed by constructing a non-linear őlter 𝑤̃ from a bounded,

measurable map 𝑤 : ℝ+0 → ℝ via

𝑤̃( 𝑓 ) :=

∫ ∞

0

𝑤(𝑠) 𝜕
𝜕𝑠
𝑢̃𝐼𝑆(𝑠)d𝑠. (1.28)

An example is shown in Fig.1.5.

Why Nonlinear Spectral Representation? Non-linear eigenfunc-

tions are especially well studied for the TV regularizer. In [BCN02,

Thm. 4] it is shown that indicator functions of certain bounded,

convex sets 𝐶 ⊂ ℝ2 with őnite perimeter are nonlinear eigenfunc-

tions of the TV regularizer. This explains why the őlter (1.28) can

preserve edges well. Due to the deőnition of the weak spectral

representation 𝜇
𝑓

𝐽
(𝑠), the őlter can furthermore be considered to

be łdata-drivenž, as 𝜇
𝑓

𝐽
(𝑠) holds the information which nonlinear

eigenfunctions of 𝐽 are contained in the input image 𝑓 . Nonlinear

spectral representation and the associated őlters lead to visually

compelling results [GMB16; HG18].

Related Work and Contribution. Nonlinear spectral represen-

tation and related edge-preserving őlters are not only of interest

for images but also for related objects. Let us consider the example

of image segmentation and the scale space of the segmentation

maps.

The goal of (binary) image segmentation is to separate the domain

Ω ⊂ ℝ𝑛 of an image 𝑓 : Ω→ Γ into non-overlapping regions Ω1

and Ω2 divided by a contour 𝐶 such that, e.g., the following energy
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is minimized:

arg min
𝐶⊂Ω,
𝑐1 ,𝑐2∈Γ

∫
Ω1

( 𝑓 (𝑥) − 𝑐1)2 d𝑥 +
∫
Ω2

( 𝑓 (𝑥) − 𝑐2)2 d𝑥

+ 𝜆H𝑛−1(𝐶). (1.29)

The contour 𝐶 can implicitly be represented by the zero level

set of a Lipschitz function [CV01]. Representing the regions by a

characteristic function 𝑢, one equivalently obtains

arg min
𝑢:Ω→{0,1}
𝑐1 ,𝑐2∈Γ

∫
Ω

( 𝑓 (𝑥) − 𝑐1)2 (1 − 𝑢(𝑥))

+ ( 𝑓 (𝑥) − 𝑐2)2 𝑢(𝑥)d𝑥 + 𝜆TV(𝑢). (1.30)

In [Zeu+17], the authors extend this binary segmentation prob-

lem to a łmultiscalež segmentation approach. With the help of

the Bregman iteration, they generate an inverse scale space of

segmentation maps in which objects are segmented according to

their size and color. Using the notion of the weak spectral repre-

sentation and related őlters, they can then generate segmentation

maps for different objects. In our kiwi example, this could mean

a segmentation map for the kiwi slices, a separate segmentation

map for black-colored kiwi seeds, and another segmentation map

for light-colored kiwi seeds.

Considering the available literature, [Zeu+17] is the only publica-

tion that we are aware of that considers a setting other than the

classical 𝐿2 data term in the context of nonlinear spectral repre-

sentation. To the best of our knowledge, the theory of nonlinear

inverse scale spaces, weak spectral representation and related őlters

has also only been considered for images and the convex denois-

ing/deconvolution problem. An interesting question is, whether

the theory can be generalized to other image-related mathematical

objects, such as the solution of variational problems

inf
𝑢∈𝑈
{𝜆𝐻(𝑢) + 𝐽(𝑢)} (1.31)

with convex, absolutely 1-homogeneous regularizer 𝐽 and non-

quadratic, possibly even non-convex data term 𝐻. What is an

inverse scale space of solutions of such problems? Can we deőne

a nonlinear spectral decomposition of these solutions, e.g., of the

depth map minimizing a stereo matching problem? In Chpt. 4

we make a contribution towards answering these questions by

introducing generalized inverse scale space iterations or ś for short ś

the lifted Bregman iteration (LBI).
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Figure 1.6: Neural Network. A neu-
ral network 𝑭Θ : ℝ𝑛 → ℝ𝑑 maps
from a given input 𝑥 ∈ ℝ𝑛 to an

output 𝑦 ∈ ℝ𝑑 . The hidden layers
(gray) introduce non-linearities. All
layers are connected by linear func-
tions parametrized through learn-
able weights Θ = (𝜃1 , ...𝜃𝑝). Since
all nodes of subsequent layers are
connected, this network is called
fully connected.

𝑥1

𝑥2

𝑥3

𝑦1

𝑦2

Reformulating (1.31) as

inf
𝑣∈C
{𝜆H(𝑣) +J(𝑣)} (1.32)

using the theory of calibration-based lifting, we obtain a convex

problem which we then apply the Bregman iteration to:

For 𝑘 = 1, 2, ... (1.33)

𝑣𝑘 = arg min
𝑣∈C

𝜆H(𝑣) +J(𝑣) − ⟨𝜌𝑘−1 , 𝑣⟩ , (1.34)

𝜌𝑘 ∈ 𝜕J(𝑣𝑘). (1.35)

By investigating and comparing the subdifferential of the original

and lifted total variation and linking elements of the former to

the latter, we prove that the iterates 𝑣𝑘 obtained from the lifted

Bregman iteration are in a certain sense equivalent to the ones from

the original Bregman iteration in case of the convex ROF denoising

problem. We also demonstrate the application of the lifted Bregman

iteration to a non-convex problem and show experimentally that

basic inverse scale space properties carry over to the non-convex

setting.

1.2.3 Neural Fields and Learning

Over the past decades, learning frameworks have drastically risen

in popularity. They have proven to perform extremely well on dif-

ferent imaging tasks such as image reconstruction, image restora-

tion, image registration, image segmentation or object detection

[LL19; Suz17; Zha+19]. Early learning approaches were mainly

data-driven, which is also reŕected in the availability of many huge

databases, such as MNIST [LeC98], ImageNet [Den+09], COCO

[Lin+14], CIFAR-10 and CIFAR-100 [KH+09] ś each of them contain-

ing tens- to several hundred thousand images. This requirement

for large amounts of training data becomes an issue, for example

when the imaging process is expensive [RPK19], when privacy is an

issue, or when data can only be measured sparsely due to technical
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issues [Cai+21]. In recent years, hybrid data- and model-driven

learning approaches, which incorporate physical knowledge of the

problem in the loss function, have become increasingly popular. A

prominent example is the recent development of physics-informed

neural networks (PINNs) [Kar+21; Lu+21; Cuo+22] and neural őelds

(NFs) [Xie+22]. But what distinguishes PINNs and NFs from other

learning approaches?

Neural Networks. A general neural network (see Fig. 1.6) can be

viewed as a family of functions 𝑭Θ : ℝ𝑛 → ℝ𝑑 parameterized by a

weight vector Θ and typically formed by a concatenation of layers.

Each layer is an (often non-linear) function 𝑓𝑖 : ℝ𝑚 → ℝ,

𝑓𝑖(𝑥;𝜃𝑖) = 𝜎𝑖

(
𝑚∑
𝑗=1

𝑎𝑖 , 𝑗𝑥 𝑗 − 𝑏𝑖

)
, (1.36)

where 𝜎𝑖 is called activation function and 𝜃𝑖 = (𝑎𝑖 ,1 , ..., 𝑎𝑖 ,𝑚 , 𝑏𝑖)
are the trainable weights. Concatenating all layers and writing

Θ = (𝜃1 , ..., 𝜃𝑝), a network can be represented by

𝑭Θ(𝑥) := 𝑭(𝑥;Θ) := 𝑓𝑝(... 𝑓2( 𝑓1(𝑥;𝜃1);𝜃2); ...𝜃𝑝). (1.37)

The goal is to őnd the most suitable parameters for a given task

by optimizing the parameters with respect to a suitable loss func-

tion.

A well-known problem in the context of neural networks is image

classiőcation: One is given a set of labelled images depicting

instances of different classes (e.g., dog, cat, etc.) and the goal is

to design and train a neural network which accepts a previously

unknown image 𝑥 and outputs a scalar 𝑭Θ(𝑥) according to the

class of the image. During the training process, batches of images

are sampled from the data set, they are then passed through the

network and the parameters of the network are updated according

to a loss function such as the mean squared error between the

respective expected and predicted classes.

Input and output spaces as well as loss functions are as diverse

as the applications of neural networks. In this work we focus on

coordinate-based neural networks.

Coordinate-Based Neural Networks. These networks accept low-

dimensional coordinates, e.g., 𝑥 ∈ Ω ⊂ ℝ2, as input and predict

some physical value for the given coordinates.

Physics-informed neural networks (PINNs), for example, are used to

őnd the solution to a partial differential equation (PDE). They accept
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coordinates in the domain of the solution as input and are trained

with the goal to output the value of the solution at these coordinates.

The loss function is governed by the PDE, and in their simplest

form the networks are trained for one speciőc problem instance and

do not generalize to different initial or boundary values. There is a

close connection to classical optimization: The neural networks can

be understood as a nonlinear approximation/parameterization

of the solution of the PDE, and the training process amounts

to ś usually stochastic ś optimization of the parameters of this

approximation.

In the imaging community, coordinate-based neural networks are

typically referred to as neural őelds (NFs). For illustration, consider

the simple variational problem

inf
𝑢∈𝑈

𝐹(𝑢), 𝐹(𝑢) =
∫
Ω

𝑓 (𝑥, 𝑢(𝑥))d𝑥. (1.38)

Instead of computing a minimizer 𝑢∗ using a classical optimization

algorithm, we could design and train a neural network to learn

an implicit, coordinate-free representation of the solution 𝑢∗(𝑥) ≈
𝑭(𝑥;Θ∗). This could be achieved by the following iterative training

procedure:

1. Randomly select a batch 𝑏𝑘 = {𝑥1 , ..., 𝑥𝑙 | 𝑥𝑖 ∈ Ω} of 𝑙 coordi-

nates from the image domain.

2. Calculate the current loss value ś in our example:

𝐿(Θ𝑘−1; 𝑏𝑘) =
1

𝑙

𝑙∑
𝑖=1

𝑓 (𝑥𝑖 , 𝑭(𝑥𝑖 ;Θ𝑘−1)). (1.39)

3. Update the parameters, using for example the gradient descent

algorithm

Θ
𝑘
= Θ

𝑘−1 − 𝛼∇Θ𝐿(Θ𝑘−1; 𝑏𝑘), (1.40)

where 𝛼 > 0 is the step size.

In effect, coordinate-based learning approaches constitute a way

of ś non-linearly! ś parameterizing the function space of possible

solutions and learning the parameters in a (stochastic) optimization

process in order to őnd the minimizer of the objective function

within this set. In addition to the nonlinear parameterization, these

approaches typically rely on stochastic optimization as outlined

above. Usually, the batch size 𝑙 is chosen rather small during

training in order to speed up the second and third step in each

iteration. After the training is completed, one can then choose an

arbitrary őne grid on which the network is evaluated ś if a grid

representation is required.
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Vanilla coordinate-based learning approaches do not generalize to a

new problem; if the loss function depends on some input data, the

network needs to be retrained in case of new input data. In this

sense they can also be viewed as classic (stochastic) optimization.

The learning and automatic differentiation frameworks open more

possibilities, such as introducing latent variables that allow to learn

the shape of the solution space also depending on the input image

and other properties.

Neural őelds currently celebrate a huge success in imaging. They

are particularly popular in the form of neural radiance őelds

(NeRFs) [Mil+21], which allow to synthesize novel views of 3D

scenes by learning their so-called radiance őeld, which predicts the

light emission for every point in space and emission direction.

Among the model-driven, coordinate-based learning frameworks,

we are aware of two examples that include embedding strategies in

the formulation of the loss function [MC19a; Pal+22]. This helped

to inspire our approach, which we detail below.

Motivation and Contribution. We consider variational problems

of the form (1.3), which are separable into a (possibly non-convex)

data term and TV regularizer (1.4), and employ the calibration-

based lifting approach in order to reach a primal-dual problem of

the form

inf
𝑣∈C

sup
𝜑∈K

{∫
Ω×Γ
⟨𝜑, d𝐷𝑣⟩

}
, (1.41)

where 𝐷𝑣 denotes the distributional derivative of 𝑣, and where 𝑣

and 𝜑 are deőned over Ω × Γ. Typically, a minimizer is computed

with the primal-dual gradient descent algorithm (PDHG) [Poc+09;

Poc+10] using a so-called sublabel-accurate discretization scheme

[Möl+15; MC17].

As neural őelds have already proven to be quite successful in

solving various imaging problems such as novel view synthesis

[Mil+21] and shape reconstruction [Pal+22] (see also [Xie+22] for

a comprehensive overview), we propose a neural őelds based

learning framework for solving the embedded primal-dual prob-

lem (1.41). The approach amounts to training (stochastically opti-

mizing) multiple neural őelds representing the primal and dual

variable and results in a nonlinear approximation of the solutions

𝑣∗ and 𝜑∗ over the continuous domain Ω × Γ.
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1.3 Outline

In chapter 2 we cover the required mathematical preliminaries. In

particular, we recall notions and results concerning convex analysis,

as well as the total variation regularizer and associated space of

functions of bounded variation, which play a major role throughout

the following chapters. Furthermore, we present an overview of

spectral theory for convex 1-homogeneous functionals.

In chapter 3 the calibration-based lifting approach for scalar vari-

ational problems is established. We aim to present a self-contained

derivation of the approach and summary of some important prop-

erties while extending certain results found in the literature to a

broader class of problems. While the derivation of the lifted for-

mulation roots in the őeld of variational analysis, we also discuss

discretization and optimization schemes for the lifted problem.

In chapter 4 the calibration-based lifting approach is then used as

a means to deőne a nonlinear inverse scale space iteration for scalar,

possibly non-convex problems with total variation regularizer. We

show that our approach directly relates to the existing approach in

case of the convex denoising problem and, furthermore, expands

the area of application to non-convex problems.

Related own publications:

▶ D. Bednarski and J. Lellmann. ‘Inverse Scale Space Iterations

for Non-convex Variational Problems Using Functional Lift-

ing’. In: Scale Space and Variational Methods in Computer Vision.

Ed. by A. Elmoataz, J. Fadili, Y. Quéau, J. Rabin, and L. Simon.

Cham: Springer International Publishing, 2021, pp. 229ś241.

https://doi.org/10.1007/978-3-030-75549-2_19

Winner of best student paper award at SSVM 2021.

Attribution: The author of this thesis developed the the-

ory, performed the computations and wrote the manuscript

under supervision of J.L.

▶ D. Bednarski and J. Lellmann. ‘Inverse Scale Space Iterations

for Non-Convex Variational Problems: The Continuous and

Discrete Case’. Journal of Mathematical Imaging and Vision 65,

2022, 124ś139.

https://doi.org/10.1007/s10851-022-01125-8

Attribution: The author of this thesis developed the the-

ory, performed the computations and wrote the manuscript

under supervision of J.L.

https://doi.org/10.1007/978-3-030-75549-2_19
https://doi.org/10.1007/s10851-022-01125-8
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In chapter 5 we propose a learning strategy for solving scalar

variational problems with TV regularizer: First, a given energy

is lifted with the help of the calibration-based lifting. Then, mul-

tiple neural őelds are stochastically optimized in order to reach

a non-linear parametric approximation of the primal and dual

minimizers. The proposed framework can easily be adjusted for

different possibly non-convex data terms.

Related own publications:

▶ D. Bednarski and J. Lellmann. ‘EmNeF: Neural Fields for

Embedded Variational Problems in Imaging’. In: Scale Space

and Variational Methods in Computer Vision. Ed. by L. Calatroni,

M. Donatelli, S. Morigi, M. Prato, and M. Santacesaria. Cham:

Springer International Publishing, 2023, pp. 137ś148.

https://doi.org/10.1007/978-3-031-31975-4_11

Attribution: The author of this thesis developed the the-

ory, performed the computations and wrote the manuscript

under supervision of J.L.

Addendum The following preprint was written during the PhD

period but is not part of this thesis:

▶ T. Vogt, R. Haase, D. Bednarski, and J. Lellmann. ‘On the

Connection between Dynamical Optimal Transport and Func-

tional Lifting’. In: arXiv preprint arXiv:2007.02587 (2020)

https://arxiv.org/abs/2007.02587

Attribution: T.V. developed the theory and implemented

the approach. R.H. extended the theory and performed fur-

ther computations. T.V., R.H., and the author of this thesis

wrote the őnal manuscript. The project was carried out under

supervision of J.L.

https://doi.org/10.1007/978-3-031-31975-4_11
https://arxiv.org/abs/2007.02587
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In this chapter, we recall various deőnitions and results from the

őelds of convex analysis and measure theory. These concepts are

vital to understanding the continuous and discrete version of the

calibration-based lifting approach and we, therefore, give them

space in the main part of this work. Furthermore, we provide a short

introduction to spectral theory as this motivates the generalized

inverse scale space iteration which we propose later.

2.1 Convex Analysis

0.2 0.4 0.6 0.8 1

−0.2

0.2

0.4

0.6

0.8

𝑓 (𝑥)

𝑓 ∗∗(𝑥)

− 𝑓 ∗(0.1)

− 𝑓 ∗(0.5)
Figure 2.1: Fenchel Conjugate. The
non-convex function 𝑓 : ℝ → ℝ

(red line) is approximated from
below by affine functions 𝑦𝑖 =

⟨𝑚𝑖 , 𝑥⟩ + 𝑡𝑖 with slopes 𝑚𝑖 ∈ ℝ and
intercepts 𝑡𝑖 ∈ ℝ (orange lines). The
largest intercept 𝑡𝑖 for which the
affine function with slope 𝑚𝑖 lies
completely below 𝑓 is the negative
conjugate − 𝑓 ∗(𝑚𝑖) (orange dots).
The supremum over all such affine
functions is the biconjugate 𝑓 ∗∗(𝑥) =
sup𝑚𝑖∈ℝ ⟨𝑚𝑖 , 𝑥⟩ − 𝑓

∗(𝑚𝑖) (blue dot-

ted line).

In the following, we consider functions 𝑓 : ℝ𝑛 → ℝ. Here, ℝ :=

ℝ∪{−∞,+∞} denotes the extended real line. We denote by dom 𝑓

the effective domain of a function, i.e., the set {𝑥 ∈ ℝ𝑛 : 𝑓 (𝑥) < +∞}
[RW09, p. 5]. A function 𝑓 is called proper, if 𝑓 (𝑥) < ∞ for at least

one 𝑥 ∈ ℝ𝑛 and 𝑓 (𝑥) > −∞ for all 𝑥 ∈ ℝ𝑛 [RW09, p. 5]. The convex

hull con 𝑓 of a function 𝑓 is the largest convex function majorized

by 𝑓 , i.e., con 𝑓 (𝑥) ≤ 𝑓 (𝑥) for all 𝑥 ∈ ℝ𝑛 [RW09, Prop. 2.31]. A

function 𝑓 is called lower semi-continuous if for all 𝑥 ∈ ℝ𝑛 it holds

𝑓 (𝑥) ≤ lim inf𝑦→𝑥 𝑓 (𝑦) [Roc70, p. 51]. The lower semi-continuous

hull of a function 𝑓 is the largest lower semi-continuous function

majorized by 𝑓 [Roc70, p. 52].

Duality Result. In the following, we introduce special functions

from the theory of convex analysis, leading up to a duality re-

sult which will play a vital role in the calibration-based lifting

approach.

Deőnition 2.1.1 (Fenchel Conjugate [RW09, Chpt. 11.A]) For a

function 𝑓 : ℝ𝑛 → ℝ, the (Fenchel) conjugate 𝑓 ∗ : ℝ𝑛 → ℝ is

deőned as

𝑓 ∗(𝑚) := sup
𝑥∈ℝ𝑛

{⟨𝑥, 𝑚⟩ − 𝑓 (𝑥)}. (2.1)

The conjugate 𝑓 ∗∗ of 𝑓 ∗ is called the biconjugate; see Fig. 2.1 for

a 1D example. For the biconjugate it always holds 𝑓 ∗∗ ≤ 𝑓 . In

fact, if the convex hull con 𝑓 is proper, then 𝑓 ∗∗ is the closure of

con 𝑓 [RW09, Thm. 11.1]. Many further interesting properties of the

Fenchel conjugate can be found in [RW09, Chpt. 11.A.].
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Figure 2.2: Perspective Function.

The function 𝑓 (𝑥) = 𝑥2 (red) and its

perspective function 𝑓 (𝑥,𝜆) = 𝑥2

𝜆
(blue).
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Later, we will be interested in sets {(𝑚, 𝑡)|𝑡 ≤ 𝑓 ∗(𝑚)} ⊂ ℝ𝑛+1, or

more precisely in the support functions of such sets. For some

set 𝐶 ⊂ ℝ𝑛 , the support function 𝜎𝐶 : ℝ𝑛 → ℝ is deőned as

𝜎𝐶(𝑥) := sup𝑦∈𝐶 ⟨𝑥, 𝑦⟩.

Let us recall the deőnition of the perspective and recession func-

tions.

Deőnition 2.1.2 (Perspective Function [HL96, p. 160]) For a proper

function 𝑓 : ℝ𝑛 → ℝ, the perspective function 𝑓 : ℝ𝑛 ×ℝ→ ℝ

is deőned as

𝑓 (𝑥,𝜆) :=



𝜆 𝑓 ( 𝑥𝜆 ), if 𝜆 > 0,

+∞, otherwise.
(2.2)

Fig. 2.2 depicts the perspective function in a simple 1D setting. The

perspective of a convex function in ℝ𝑛 is convex in ℝ𝑛+1 [HL96,

Prop. 2.2.1].

Deőnition 2.1.3 (Recession Function) For a proper function

𝑓 : ℝ𝑛 → ℝ, the recession function 𝑓∞ : ℝ𝑛 → ℝ is deőned as

𝑓∞(𝑥) := lim
𝜆→+∞

1

𝜆
𝑓 (𝜆𝑥). (2.3)

If 𝑓 is proper, convex, and lower semi-continuous, then 𝑓∞ is

also proper, convex, lower semi-continuous, and, furthermore,

positively 1-homogeneous [Roc70, Thm. 8.5, Cor. 8.5.2, p. 35, p. 52].

Furthermore, the lower semi-continuous hull ℎ : ℝ𝑛 ×ℝ→ ℝ of

the perspective function of 𝑓 is given by [Roc70, p. 67, p. 52]

ℎ(𝑥,𝜆) =




𝜆 𝑓
(
𝑥
𝜆

)
, if 𝜆 > 0,

lim𝜇→+∞ 1
𝜇 𝑓 (𝜇𝑥), if 𝜆 = 0,

+∞, if 𝜆 > 0.

(2.4)
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Corollary 2.1.4 ([Roc70, Cor. 13.5.1]) Let 𝑓 : ℝ𝑛 → ℝ be a

proper, convex, and lower semi-continuous function. The lower semi-

continuous hull of the perspective function of 𝑓 is the support function

of the set

𝐾 := {(𝑚, 𝑡) | 𝑡 ≤ − 𝑓 ∗(𝑚)} ⊂ ℝ
𝑛+1. (2.5)

Speciőcally, with ℎ : ℝ𝑛+1 → ℝ deőned as in (2.4), it holds

ℎ(𝑥,𝜆) = 𝜎𝐾((𝑥,𝜆)) = sup
(𝑚,𝑡)∈𝐾

〈(
𝑥

𝜆

)
,

(
𝑚

𝑡

)〉
. (2.6)

This duality result will be of central interest in the calibration-

based lifting approach. There, after careful considerations involv-

ing set-valued mappings and continuous selections, the (őnite-

dimensional) duality result is used to reformulate a primal varia-

tional problem in terms of a primal-dual variational problem.

Convex, 1-Homogeneous Functionals. One of the most impor-

tant function classes considered in this work is the one of convex,

1-homogeneous regularizers, such as the total variation.

Let 𝑉 denote a locally convex vector space and 𝑉∗ its topological

dual. From now on, we consider 𝐹 : 𝑉 → ℝ. 𝐹 is called absolutely

1-homogeneous if

𝐹(𝜆𝑢) = |𝜆|𝐹(𝑢) for all 𝜆 ∈ ℝ, (2.7)

and positively 1-homogeneous if

𝐹(𝜆𝑢) = 𝜆𝐹(𝑢) for all 𝜆 > 0. (2.8)

Note that we do not require 𝐹 to be continuous. Therefore, we use

a more general deőnition of differentiability:

Deőnition 2.1.5 (Subdifferential [ET99, Def. 5.1]) A function

𝐹 : 𝑉 → ℝ is said to be subdifferentiable at 𝑢 ∈ 𝑉 if it has a

continuous affine minorant which is exact at 𝑢. The slope 𝑝 ∈ 𝑉∗
of such a minorant is called subgradient of 𝐹 at 𝑢 and the set of

subgradients at 𝑢 is called the subdifferential at 𝑢. To summarize, if

𝐹 is őnite at 𝑢, the subdifferential is given by

𝜕𝐹(𝑢) = {𝑝 ∈ 𝑉∗ : 𝐹(𝑢) + ⟨𝑣 − 𝑢, 𝑝⟩ ≤ 𝐹(𝑣) ∀𝑣 ∈ 𝑉} . (2.9)
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We now pass to functionals 𝐽 which are deőned on some Banach

space U. The subdifferential gives rise to the following deőnition

of non-linear eigenfunctions of some convex functional:

Deőnition 2.1.6 (Non-linear eigenfunction) Let U denote some

Banach space and let 𝐽 : U→ ℝ be a convex functional. We call 𝑢 a

non-linear eigenfunction of 𝐽 with eigenvalue 𝜆 if

𝜆𝑢 ∈ 𝜕𝐽(𝑢). (2.10)

In Chpt. 4 we are interested in a spectral representation of image

related objects that heavily relies on the non-linear eigenfunctions

of some convex, 1-homogeneous regularizer.

2.2 Functions of Bounded Variation

This section summarizes important properties of the total variation

and the space of functions of (special) bounded variation. Results

related to measure theory will play a vital role in the calibration

based lifting approach presented in chapter 3, where the main

idea is to reformulate variational problems over some function

space as variational problems over the subgraphs of functions in

the original solution space.

General Setting and Notation. Let (𝑋,A) denote a measure

space. We call 𝜇 : A → ℝ𝑚 a (vector-valued) measure if 𝜇(∅) =
0 and 𝜇 is 𝜎-additive, i.e., for any sequence (𝐴𝑘) of pairwise

disjoint elements in A it holds 𝜇
(⋃∞

𝑘=0
𝐴𝑘

)
=

∑∞
𝑘=0

𝜇(𝐴𝑘) [AFP00,

Def. 1.4a)].

Deőnition 2.2.1 (Total Variation (I) [AFP00, Def. 1.4b]) Let (𝑋,A)
denote a measure space and 𝜇 : A→ ℝ𝑚 a vector-valued measure.

The total variation of 𝜇 is deőned as

|𝜇|(𝐴) := sup
(𝐴𝑘)𝑘∈ℕ∈K

{
∞∑
𝑘=0




𝜇 (
𝐴𝑘

)



}
, (2.11)

K :=

{(
𝐴𝑘

)
𝑘∈ℕ

�����𝐴𝑘 ∈ Apairwise disjoint, 𝐴 =

∞⋃
𝑘=0

𝐴𝑘

}
,

for every 𝐴 ∈ A.

There is some ambiguity in the choice of the inner norm ∥ · ∥ on

ℝ𝑚 ; we will usually use ∥ · ∥ = ∥ · ∥2 unless speciőed otherwise.
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For a locally compact, separable metric space𝑋 we denote by B(𝑋)
its Borel 𝜎-algebra, i.e., the smallest 𝜎-algebra in 𝑋 that contains

all open subsets of 𝑋. Furthermore, we denote by (𝑋,B(𝑋)) the

associated measure space. Following [AFP00, Def.1.40], a positive

measure on (𝑋,B(𝑋)) is called Borel measure. If such a measure is

őnite on compact sets, it is called positive Radon measure M+(𝑋).
By vector-valued Radon measure Mloc(𝑋;ℝ𝑚), we refer to functions

deőned on the relatively compact Borel subsets of 𝑋 which are

measures on (𝐾,B(𝐾)) for every compact 𝐾 ⊆ 𝑋. If the function

is a measure on (𝑋,B(𝑋)), we call it a őnite vector-valued Radon

measure M(𝑋;ℝ𝑚).

Let 𝑋,𝑌 denote metric spaces. A function 𝑓 : 𝑋 → 𝑌 is called a

Borel function, if 𝑓 −1(𝑍) ∈ B(𝑋) for every open set 𝑍 ⊂ 𝑌 [AFP00,

Def. 1.42].

Let Ω ⊆ ℝ𝑛 be open. We denote by 𝐶𝑐(Ω;ℝ𝑚) the space of ℝ𝑚-

valued continuous functions with compact support in Ω and by

𝐶0(Ω;ℝ𝑚) the completion with respect to the norm

∥ 𝑓 ∥∞ := inf
𝐶∈[0,∞]

{∥ 𝑓 (𝑥)∥ ≤ 𝐶 for 𝜇 − a.e. 𝑥 ∈ Ω} ; (2.12)

see also [AFP00, p. 9, p. 25]. According to Riesz’s Theorem [AFP00,

Thm. 1.54 and Remark 1.57], the dual space of 𝐶0(Ω;ℝ𝑚) is

M(𝑋;ℝ𝑚)with the dual pairing

⟨ 𝑓 , 𝜇⟩ :=
𝑚∑
ℎ=1

∫
Ω

𝑓ℎ d𝜇ℎ . (2.13)

A Lebesgue-measurable function 𝑓 : Ω → ℝ𝑚 is called locally

integrable, if for every compact set𝐾 ⊂ Ω it holds
∫
𝐾
∥ 𝑓 (𝑥)∥ d𝑥 < ∞.

We write 𝑓 ∈ 𝐿1
loc
(Ω;ℝ𝑚).

Functions of Bounded Variation. In mathematical image pro-

cessing, a common approach is to think of images as piecewise

smooth functions with sharp discontinuities, as the latter are es-

sential for modelling objects with sharp edges. A popular function

space in this context is the space of functions of bounded variation.
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Deőnition 2.2.2 (Space of Functions of Bounded Variation ś

inspired by [AFP00, Def. 3.1]) We deőne the space of functions

of bounded variation 𝐵𝑉(Ω;ℝ𝑚) as the set of all functions 𝑢 ∈
𝐿1(Ω;ℝ𝑚) whose distributional Jacobian is representable as a őnite

vector-valued Radon measure 𝐷𝑢 ∈ M(Ω;ℝ𝑚,𝑛), i.e., for all 𝜑 =

(𝜑1 , . . . , 𝜑𝑚)⊤ ∈ 𝐶𝑐(Ω;ℝ𝑚,𝑛) it holds

𝑚∑
𝑖=1

∫
Ω

𝑢𝑖 div 𝜑𝑖 d𝑥 = −
𝑚∑
𝑖=1

𝑛∑
𝑗=1

∫
Ω

𝜑𝑖 , 𝑗 d𝐷𝑗𝑢𝑖 . (2.14)

Next, we will deőne the total variation TV for vector-valued 𝐿1
loc

functions. A function 𝑢 ∈ 𝐿1(Ω;ℝ𝑚) is of bounded variation, if and

only if its total variation TV(𝑢) is őnite; we write 𝑢 ∈ BV(Ω;ℝ𝑚)
[AFP00, Prop. 3.6]. Similarly, a function 𝑢 ∈ 𝐿1

loc
(Ω;ℝ𝑚) is called

locally of bounded variation, if its total variation is őnite for all open

sets 𝐴 ⊊ Ω with compact closure 𝐴̄ ⊂ Ω; in this case we write

𝑢 ∈ BVloc(Ω;ℝ𝑚) [EG15, p. 167].

Deőnition 2.2.3 (Total Variation (II) [AFP00, Def. 3.4]) The total

variation of a function 𝑢 ∈ 𝐿1
loc
(Ω;ℝ𝑚) is deőned as

TV(𝑢) := sup
𝜑∈K

{
−

𝑚∑
𝑖=1

∫
Ω

𝑢𝑖(𝑥)div 𝜑𝑖(𝑥) d𝑥
}
, (2.15)

K := {𝜑 ∈ 𝐶𝑐(Ω;ℝ𝑚,𝑛) | ∥𝜑(𝑥)∥𝐹 ≤ 1, ∀𝑥 ∈ Ω} . (2.16)

The total variation is convex, positively 1-homogeneous, and lower

semi-continuous in BV(Ω;ℝ) with respect to the 𝐿1
loc

-topology

[AFP00, Prop. 3.6]. The space
(
BV(Ω;ℝ𝑚), ∥ · ∥BV(Ω;ℝ𝑚)

)
, with

∥𝑢∥BV(Ω;ℝ𝑚) := ∥𝑢∥𝐿1(Ω;ℝ𝑚) + 𝑇𝑉(𝑢), (2.17)

is a Banach space [ABM14, Thm. 10.1.1].

The total variation of a function 𝑢 ∈ BV(Ω;ℝ𝑚) can also be ex-

pressed in terms of the total variation of its distributional Jacobian

𝐷𝑢 ∈M(Ω;ℝ𝑚,𝑛) [AFP00, Prop. 3.6]:

𝑇𝑉(𝑢) = |𝐷𝑢 |(Ω) =
∫
Ω

d|𝐷𝑢 |. (2.18)
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Compactness Results. The topology induced by the ∥ · ∥BV norm

is often too strong and may not allow the existence of minimizing

sequences. Therefore, one typically uses the following deőnition

of weak*-convergence:

Deőnition 2.2.4 (Weak∗-Convergence [AFP00, Def. 3.11,

Prop. 3.13]) We say that a sequence (𝑢𝑘)𝑘∈ℕ with 𝑢𝑘 ∈ BV(Ω;ℝ𝑚)
weak∗-converges to a function 𝑢 ∈ BV(Ω;ℝ𝑚) iff 𝑢𝑘 → 𝑢 in

𝐿1(Ω;ℝ𝑚) and either of these conditions is fulőlled:

a) 𝐷𝑢𝑘 weakly∗ converges to 𝐷𝑢 in Ω, i.e.,

lim
𝑘→∞

∫
Ω

𝜑 d𝐷𝑢𝑘 =

∫
Ω

𝜑 d𝐷𝑢, ∀𝜑 ∈ 𝐶0(Ω,ℝ𝑚,𝑛), (2.19)

b) (𝑢𝑘)𝑘∈ℕ is bounded in BV(Ω;ℝ𝑚), i.e.,

sup
𝑘∈ℕ

{
∥𝑢𝑘 ∥BV

}
< ∞. (2.20)

This deőnition allows the following compactness result:

Theorem 2.2.5 (Compactness [AFP00, Thm. 3.23, Prop. 3.21])

▶ Let Ω be open. Every sequence (𝑢ℎ)ℎ∈ℕ , 𝑢ℎ ∈ BVloc(Ω;ℝ𝑚)
for which

sup
ℎ∈ℕ

{∫
𝐴

∥𝑢ℎ ∥ d𝑥 + |𝐷𝑢ℎ |(𝐴)
}
< ∞, (2.21)

for all open sets 𝐴 ⊊ Ω with compact closure 𝐴̄ ⊂ Ω

admits a subsequence which converges in 𝐿1
loc
(Ω;ℝ𝑚) to

𝑢 ∈ BVloc(Ω;ℝ𝑚).
▶ Let Ω be open with compact Lipschitz boundary. Every sequence

(𝑢ℎ)ℎ∈ℕ , 𝑢ℎ ∈ BV(Ω;ℝ𝑚), that is bounded in BV(Ω;ℝ𝑚)
admits a subsequence that weakly∗-converges to some 𝑢 ∈
BV(Ω;ℝ𝑚).

Decomposition Results and Space of SBV. The measure 𝐷𝑢 can

uniquely be decomposed into three parts. Before looking at this

decomposition, we deőne the approximate discontinuity and jump

sets associated with functions in 𝐿1
loc

, which are needed later on

for the decomposition.

In the following deőnition we denote by B𝑟(𝑥) a ball of radius 𝑟

centered around 𝑥 and by −
∫
𝐶
𝑢(𝑥)d𝑥 the mean value of 𝑢 on 𝐶.
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Figure 2.3: Jump Points. In this ex-
ample, 𝑢 : (0, 1) → ℝ has one ap-
proximate jump point 𝐽𝑢 = {0.25}.
The function jumps from 𝑢− = 0.25
to 𝑢+ = 0.75. Furthermore, the func-
tion has no approximate limit at this
point, i.e., also 𝑆𝑢 = {0.25}.

Deőnition 2.2.6 (Approximate Discontinuity, Jump Set and

Differential [AFP00, Def. 3.63, Def. 3.67, Def. 3.70]) Let 𝑢 ∈
𝐿1

loc
(Ω;ℝ𝑚).

1. We say that 𝑢 has an approximate limit at 𝑥 ∈ Ω, if there

exists an 𝑎 ∈ ℝ𝑚 such that

lim
𝑟↘0
−
∫
B𝑟 (𝑥)
|𝑢(𝑦) − 𝑎 |𝑑𝑦 = 0. (2.22)

The approximate discontinuity set 𝑆𝑢 is the set of points that

do not have this property.

2. We say that 𝑢 has an approximate jump point at 𝑥 ∈ Ω, if there

exist 𝑢+ , 𝑢− ∈ ℝ𝑚 , 𝑢+ > 𝑢−, and 𝜈𝑢 ∈ S𝑛−1 such that

lim
𝑟↘0
−
∫
B+𝑟 (𝑥,𝜈𝑢)

|𝑢(𝑦) − 𝑢+ |𝑑𝑦 = 0, (2.23)

lim
𝑟↘0
−
∫
B−𝑟 (𝑥,𝜈𝑢)

|𝑢(𝑦) − 𝑢− |𝑑𝑦 = 0, (2.24)

where

B+𝑟 (𝑥, 𝜈𝑢) := {𝑦 ∈ B𝑟(𝑥)| ⟨𝑦 − 𝑥, 𝜈𝑢⟩ > 0} , (2.25)

B−𝑟 (𝑥, 𝜈𝑢) := {𝑦 ∈ B𝑟(𝑥)| ⟨𝑦 − 𝑥, 𝜈𝑢⟩ < 0} . (2.26)

The set of approximate jump points is denoted by 𝐽𝑢 .

3. We say 𝑢 is approximately differentiable at 𝑥 ∈ Ω\𝑆𝑢 if

there exists an 𝑚 × 𝑁 matrix 𝐿 such that

lim
𝑟↘0
−
∫
B𝑟 (𝑥)

|𝑢(𝑦) − 𝑢̃(𝑥) − 𝐿(𝑦 − 𝑥)|
𝑟

d𝑦 = 0, (2.27)

where 𝑢̃(𝑥) denotes the approximate limit. The matrix 𝐿 is called

approximate differential of 𝑢 at 𝑥.

Fig. 2.3 shows a simple example. It can be shown that 𝑆𝑢 is an

L𝑛-negligible Borel set and 𝑢 |Ω\𝑆𝑢 is a Borel function [AFP00,

Prop. 3.64].
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Theorem 2.2.7 (Radon-Nikodým Decomposition of 𝐷𝑢 [AFP00,

Def. 1.24, Thm. 1.28, Thm. 3.83]) The Radon-Nikodým decomposition

of the distributional derivative 𝐷𝑢 ∈ M(Ω;ℝ𝑚,𝑛) of a function

𝑢 ∈ 𝐿1(Ω;ℝ𝑚) with respect to L𝑛 is given by

𝐷𝑢 = 𝐷𝑎𝑢 + 𝐷𝑠𝑢, (2.28)

where 𝐷𝑎𝑢, 𝐷𝑠𝑢 are ℝ𝑚,𝑛-valued measures. Furthermore, 𝐷𝑎𝑢 is

absolutely continuous with respect to L𝑛 (write 𝐷𝑎𝑢 ≪ L𝑛) and

𝐷𝑠𝑢 and L𝑛 are mutually singular (write 𝐷𝑠𝑢 ⊥ L𝑛). The density

of the absolutely continuous part of 𝐷𝑎𝑢 with respect to L𝑛 is the

approximate differential ∇𝑢, i.e.,

𝐷𝑎𝑢 = ∇𝑢L𝑛
⌞Ω. (2.29)

By this decomposition and the deőnition of BV, any 𝑢 ∈ BV(Ω;ℝ𝑚)
with 𝐷𝑠 𝑢 = 0 is also in 𝑊1,1(Ω;ℝ𝑚). One can, furthermore,

show that the Sobolev space𝑊1,1(Ω;ℝ𝑚) is in fact a subspace of

BV(Ω;ℝ𝑚): Denoting by 𝐺𝑢 the (weak) Jacobian of 𝑢 one can use

𝐺𝑢L𝑛 =: 𝐷𝑢 as distributional Jacobian of 𝑢. 𝐷𝑢 is of bounded

variation, as 𝐺𝑢 ∈ 𝐿1(Ω;ℝ𝑚) by deőnition.

Now we can use the above introduced sets 𝑆𝑢 and 𝐽𝑢 to further

decompose the singular part into 𝐷𝑠𝑢 = 𝐷 𝑗𝑢 +𝐷𝑐𝑢, with [AFP00,

Def. 3.91]

𝐷 𝑗𝑢 := 𝐷𝑠𝑢⌞𝐽𝑢 and 𝐷𝑐𝑢 := 𝐷𝑠𝑢⌞(Ω\𝑆𝑢). (2.30)

The jump part𝐷 𝑗𝑢 is concentrated on the approximate jump points

of 𝑢. Using the notation from Def. 2.2.6, it can be expressed as

[AFP00, Thm. 3.77, p. 184]

𝐷 𝑗𝑢 = (𝑢+ − 𝑢−) ⊗ 𝜈𝑢H
𝑛−1
⌞𝐽𝑢 . (2.31)

Deőnition 2.2.8 (Space of Special Functions of Bounded Variation

[AFP00, p. 212]) We say a function 𝑢 ∈ BV(Ω;ℝ𝑚) is a special

function of bounded variation and write 𝑢 ∈ SBV(Ω;ℝ𝑚) if the

Cantor part of its derivative 𝐷𝑐𝑢 is zero.

Following (2.18) and the above decomposition, the total variation

can be rewritten as

𝑇𝑉(𝑢) = |𝐷𝑢 | = |𝐷𝑎𝑢 | + |𝐷 𝑗𝑢 | + |𝐷𝑐𝑢 |. (2.32)
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Let us close this paragraph by recalling the Besicovitch derivation

theorem. The latter is closely related to the Radon-Nikodým decom-

position and gives a concrete representation for the density of a

vector-valued Radon measure with respect to a positive Radon

measure. Later, we will use the Besicovitch derivation theorem in

order to formulate the density of 𝐷𝑢 with respect to |𝐷𝑢 |.

Theorem 2.2.9 (Besicovitch Derivation Theorem [AFP00,

Thm. 2.22]) Let Ω ⊂ ℝ𝑛 be open and 𝜇 ∈ M+(Ω;ℝ), 𝜈 ∈
Mloc(Ω;ℝ𝑛) be Radon measures. Then for 𝜇−a.e. 𝑥 ∈ supp 𝜇 the

limit

𝜈𝑢(𝑥) := lim
𝜌↘0

𝜈(B𝜌(𝑥))
𝜇(B𝜌(𝑥))

(2.33)

exists in ℝ𝑛 . Furthermore, the Radon-Nikodým decomposition of 𝜈 is

given by 𝜈 = 𝜈𝑢𝜇 + 𝜈𝑠 with 𝜈𝑠 := 𝜈⌞𝐸, where the set

𝐸 := (Ω\supp 𝜇) ∪
{
𝑥 ∈ supp 𝜇 : lim

𝜌→0

|𝜈 |(B𝜌(𝑥))
𝜇(B𝜌(𝑥))

= ∞
}

(2.34)

is 𝜇−negligible.

Sets of Finite Perimeter. Characteristic functions of sets of őnite

perimeter are a special type of BV functions. Since they are heavily

used in the calibration based lifting approach, let us summarize

some related results.

Deőnition 2.2.10 (Sets of Finite Perimeter [AFP00, Def. 3.35]) Let

𝐸 ⊆ ℝ𝑛 be L𝑛−measurable. For any open set Ω ⊆ ℝ𝑛 the perimeter

of 𝐸 in Ω is deőned as

𝑃(𝐸;Ω) := sup
𝜑∈K

{∫
𝐸

div 𝜑 d𝑥

}
, (2.35)

K :=
{
𝜑 ∈ 𝐶1

𝑐 (Ω;ℝ𝑛), ∥𝜑∥∞ ≤ 1
}
. (2.36)

This means that the perimeter of 𝐸 in Ω is the variation of the charac-

teristic function 1𝐸 in Ω.

If 𝑃(𝐸;Ω) < ∞, we say that𝐸 is of őnite perimeter. If 𝑃(𝐸,Ω′) < ∞
for all open subsets Ω′ with compact closure Ω̄′ ⊂ Ω, we say that 𝐸 is

of locally őnite perimeter.

In fact, all sets 𝐸with 𝐶1 boundary (see e.g. [Eva22, Chpt. C.1]) inΩ

and H𝑛−1− negligible set Ω ∩ 𝜕𝐸 are sets of őnite perimeter. This

can easily be shown using the divergence theorem: The integral in
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(2.35) can be reformulated as∫
𝐸

div 𝜑 d𝑥 = −
∫
𝜕𝐸∩Ω

⟨𝜈𝐸 , 𝜑⟩ dH𝑛−1 (2.37)

if both integrals exist. Here, 𝜈𝐸 denotes the inner unit normal

of 𝐸. For these sets it holds in particular 𝑃(𝐸;Ω) = H𝑛−1(Ω ∩ 𝜕𝐸)
[AFP00, Prop. 3.62]; Intuitively, one has to őnd a sequence of 𝜑𝑛
such that 𝜑(𝑥) = 𝜈𝐸(𝑥) for almost all 𝑥 ∈ 𝜕𝐸 ∩Ω.

For a set 𝐸 with őnite perimeter in Ω it holds that 1𝐸 ∈ BVloc(Ω;ℝ)
[AFP00, p. 143]. This helps proving the following proposition:

Theorem 2.2.11 (Properties [AFP00, Prop. 3.36]) For a set 𝐸 ⊆ ℝ𝑛

with őnite perimeter in Ω ⊆ ℝ𝑛 , the distributional derivative 𝐷1𝐸

is an ℝ𝑛−valued őnite Radon measure in Ω, i.e., 𝐷1𝐸 ∈M(Ω;ℝ𝑛).
Furthermore, the perimeter of𝐸 inΩ is the variation of the distributional

derivative of 1𝐸 in Ω, i.e., 𝑃(𝐸,Ω) = |𝐷1𝐸 |(Ω). The following

generalized divergence theorem holds

∫
𝐸

div 𝜑 d𝑥 = −
∫
Ω

⟨𝜈𝐸 , 𝜑⟩ d|𝐷1𝐸 |, ∀𝜑 ∈ 𝐶1
𝑐 (Ω;ℝ𝑛), (2.38)

where 𝐷1𝐸 = 𝜈𝐸 |𝐷1𝐸 | is the polar decomposition of 𝐷1𝐸.

We can now recall the coarea formula in BV, which will also be of

central interest in the calibration-based lifting approach.

Theorem 2.2.12 (Coarea Formula in BV [AFP00, Thm. 3.40]) For

any open set Ω ⊆ ℝ𝑛 and 𝑢 ∈ 𝐿1
loc
(Ω;ℝ) it holds

𝑉(𝑢,Ω) =
∫ +∞

−∞
𝑃({𝑥 ∈ Ω : 𝑢(𝑥) > 𝑡},Ω) d𝑡. (2.39)

If, furthermore, 𝐵 ⊆ Ω is a Borel set and 𝑢 ∈ BV(Ω;ℝ), then {𝑢 > 𝑡}
has őnite perimeter in Ω for a.e. 𝑡 ∈ ℝ and it holds

𝐷𝑢(𝐵) =
∫ +∞

−∞
𝐷1𝑢>𝑡(𝐵) d𝑡 , (2.40)

|𝐷𝑢 |(𝐵) =
∫ +∞

−∞
|𝐷1𝑢>𝑡 |(𝐵) d𝑡. (2.41)

One of the intermediate steps in calibration-based lifting con-

sists in integrating an objective function over the measure-theoretic

boundary of subgraphs. Let us, therefore, introduce the following

deőnitions:
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Deőnition 2.2.13 (Measure-theoretic interior, exterior and bound-

ary of a set [AFP00][Def. 3.60]) Let 𝐸 ⊆ ℝ𝑛 be an L𝑛-measurable

set. The points of density 𝑡 are described by the sets 𝐸𝑡 ⊆ ℝ𝑛 , where

𝐸𝑡 :=

{
𝑥 ∈ ℝ𝑛 : lim

𝜌↘0

|𝐸 ∩B𝜌(𝑥)|
|B𝜌(𝑥)|

= 𝑡

}
. (2.42)

The sets 𝐸1 and 𝐸0 can be considered the measure-theoretic interior

and exterior of the set 𝐸. This motivates the following deőnition of the

measure-theoretic or essential boundary 𝜕∗𝐸 ⊆ ℝ𝑛 :

𝜕∗𝐸 := ℝ
𝑛\(𝐸0 ∪ 𝐸1). (2.43)

−1 −0.5 0.5 1

−1

−0.5

0.5

1

Figure 2.4: Boundary. The topolog-
ical boundary of the set 𝐸 is given
by 𝜕𝐸 = S1(0) ∪ 𝐹, where 𝑆 is
drawn in red and 𝐹 in orange. The
measure-theoretic boundary, how-
ever, is given by 𝜕∗𝐸 = S1(0), i.e., the
red circle.

The measure-theoretic boundary may differ from the topologi-

cal boundary. Consider for example the set 𝐸 ⊂ ℝ2 in Fig. 2.4,

𝐸 := B1(0)\𝐹,𝐹 :=
{
(𝑥, 0) ∈ ℝ2 : 0 ≤ 𝑥 ≤ 1

}
. The measure-theoretic

boundary is given by the sphere 𝜕∗𝐸 = S1(0), the topological bound-

ary by 𝜕𝐸 = S1(0) ∪ 𝐹.

Consider an L𝑛-measurable set 𝐸 ⊆ ℝ𝑛 and the characterstic

function 𝑢 = 1𝐸. Then the following connection holds between the

concepts introduced in Def. 2.2.6 and Def. 2.2.13 [AFP00, Ex. 3.68]:

The approximate discontinuity set 𝑆𝑢 is the measure-theoretic

boundary 𝜕∗𝐸 and the jump set 𝐽𝑢 is a subset of 𝐸1/2, i.e., the points

of density 0.5.

As the őnal ingredient for the calibration-based lifting approach,

we need to deőne the inner unit normal of sets of őnite perimeter,

which is typically deőned over the reduced boundary 𝐹𝐸:

Deőnition 2.2.14 (Reduced boundary and inner unit normal

[AFP00][Def. 3.54]) Let 𝐸 ⊆ ℝ𝑛 be an 𝐿𝑛-measurable set and

Ω ⊆ ℝ𝑛 the largest open set such that 𝐸 is locally of őnite perimeter

in Ω. The reduced boundary is deőned as

FE := {𝑥 ∈ supp |𝐷1𝐸 | ∩Ω : |𝜈𝐸 | = 1} (2.44)

where 𝜈𝐸 : FE→ S𝑛−1 is the generalized inner normal to 𝐸 deőned

as

𝜈𝐸 := lim
𝜌→0

𝐷1𝐸(B𝜌(𝑥))
|𝐷1𝐸 |(B𝜌(𝑥))

. (2.45)

An important result of Federer [AFP00, Thm. 3.61] shows that the

reduced boundary FEand the measure-theoretic boundary 𝜕∗𝐸
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coincide up to a H𝑛−1-negligible set. This later allows us to use

the deőnition of the inner unit normal when integrating over the

approximate jump points 𝐽𝑢 against H𝑛−1, even though the inner

unit normal might not exist on the H𝑛−1-negligible set 𝜕∗𝐸\FE.

2.3 Spectral Theory

In this section we recall deőnitions and results from the spectral

theory for square matrices and bounded, self-adjoint operators on

separable Hilbert spaces. This serves the purpose of motivating a

less well-known spectral theory in the context of images. The latter

allows to enhance/remove features in a given image with respect

to a notion of scale introduced by some convex, 1-homogeneous

functional (regularizer); The considered features are non-linear

eigenfunctions of the regularizer and their scale is given by the

eigenvalue of the non-linear eigenfunction. For the here admissible

2D total variation regularizer it has been shown that indicator

functions of certain bounded, convex sets with őnite perimiter are

non-linear eigenfunctions of TV [BCN02, Thm. 4]. As the spectral

theory for images evolves around these eigenfunctions it allows

the deőnition of őlters which handle sharp edges well.

In practice, the spectral theory for images is closely linked to the

Bregman iteration on variational problems with a convex 𝐿2 data

term. In Chpt. 4 we propose an extension of the Bregman iteration

to a broader class of variational problems, with the overall goal

being an extension of the related spectral theory for images. While

Chpt. 4 focuses on the deőnition and analysis of an extended

Bregman iteration and does not explicitly provide an extension of

the spectral theory, the following mathematical preliminaries are

crucial for motivating our new approach.

2.3.1 Square Matrices

Spectral theory is well-known in the context of matrices. We say that

a square matrix 𝐴 ∈ ℝ𝑛×𝑛 has an eigenvector 𝑣 to the eigenvalue 𝜆,

if

𝐴𝑣 = 𝜆𝑣. (2.46)

In case of a diagonalizable, quadratic matrix 𝐴 ∈ ℝ𝑛,𝑛 with 𝑛

distinct eigenvalues, we can write the matrix as a factorization in

terms of its eigenvalues and -vectors:

𝐴 = 𝑉𝐷𝑉⊤. (2.47)
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Here, 𝑉 = (𝑣1 |...|𝑣𝑛) holds the eigenvectors 𝑣𝑖 of 𝐴 in its columns

and 𝐷 = diag(𝜆1 , ...,𝜆𝑛) is a diagonal matrix that holds the eigen-

values 𝜆𝑖 of 𝐴. Alternatively, we can write

𝐴 =

𝑛∑
𝑖=1

𝜆𝑖𝑣𝑖𝑣
⊤
𝑖 . (2.48)

Note that𝑃𝑖 := 𝑣𝑖𝑣
⊤
𝑖

are orthogonal projections onto the eigenspaces.

In this section we want to recall the extension of the spectral theory

to bounded, self-adjoint operators on Hilbert spaces. This later

motivates the deőnition of a weak data-dependent spectral frequency

representation, which allows the decomposition of images 𝑓 in some

Banach space 𝐵 with respect to a notion of scale induced by a

convex, absolute 1-homogeneous regularizer 𝐽.

2.3.2 Bounded, Self-Adjoint Operators

In the following, let 𝐻 denote a separable Hilbert space and 𝐵(𝐻)
denote the Banach space of bounded operators on 𝐻 with respect

to the operator norm ∥𝐴∥ := sup𝑥∈𝐻\{0}
∥𝐴𝑥∥
∥𝑥∥ . An operator is called

self-adjoint if ⟨𝐴𝑢, 𝑣⟩ = ⟨𝑢, 𝐴𝑣⟩.

Deőnition 2.3.1 (Resolvent and Spectrum [Hal13, Def. 7.4]) For

𝐴 ∈ 𝐵(𝐻), the resolvent set of 𝐴, denoted 𝜌(𝐴), is the set of all 𝜆 ∈ ℂ
such that the operator (𝐴 − 𝜆𝐼) has a bounded inverse. If 𝜆 ∈ 𝜌(𝐴),
the operator (𝐴 −𝜆𝐼)−1 is called resolvent of 𝐴 at 𝜆. The complement

of 𝜌(𝐴) in ℂ is called the spectrum of 𝐴, denoted by 𝜎(𝐴).

For self-adjoint operators, the spectrum of 𝐴 can be explained

more precisely with the following proposition.

Proposition 2.3.2 (Spectrum ś based on [Hal13, Prop. 7.5,

Prop. 7.7]) For self-adjoint 𝐴 ∈ 𝐵(𝐻), it holds:

▶ The spectrum of A is a closed, bounded, and non-empty subset

of ℝ.

▶ A real number 𝜆 ∈ ℝ is in the spectrum of 𝐴 if and only if there

is a sequence of non-zero vectors (𝑢𝑛) ∈ 𝐻 such that

lim
𝑛→∞

∥𝐴𝑢𝑛 − 𝜆𝑢𝑛 ∥
∥𝑢𝑛 ∥

= 0. (2.49)

The second condition means that 𝜆 ∈ ℝ is in the spectrum of 𝐴 if

and only if there is a sequence 𝑢𝑛 so that the equality 𝐴𝑢𝑛 = 𝜆𝑢𝑛
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that characterizes classical eigenvalues is asymptotically fulőlled.

We will illustrate this in a small example.

An Example. [Hal13, Chpt. 6.1, Example 7.9] Positive, self-adjoint

operators 𝐴 on Hilbert space might not have eigenvectors in the

őnite-dimensional sense. Consider, e.g., the multiplication 𝐴 on

𝐿2([0, 1]):
(𝐴𝑢)(𝑥) := 𝑥𝑢(𝑥). (2.50)

This operator is clearly self-adjoint: For every 𝑢, 𝑣 ∈ 𝐿2([0, 1]), it

holds

⟨𝐴𝑢, 𝑣⟩ =
∫ 1

0

𝑥𝑢(𝑥)𝑣(𝑥)d𝑥 = ⟨𝑢, 𝐴𝑣⟩ . (2.51)

An eigenvector 𝑤 to the eigenvalue 𝜆 ∈ ℝ would have to satisfy

𝜆𝑤(𝑥) = (𝐴𝑤)(𝑥) = 𝑥𝑤(𝑥). This directly implies that a possible

eigenvector 𝑤 can only be supported on 𝑥 = 𝜆, which is a set of

zero measure. Therefore, we cannot őnd an eigenvector in 𝐿2([0, 1]).
However, extending the set of possible eigenvectors to the set of

distributions, we őnd that for the shifted delta-distribution 𝛿 it

holds (
𝐴𝛿(· − 𝜆)

)
(𝑥) = 𝑥𝛿(𝑥 − 𝜆) = 𝜆𝛿(· − 𝜆)(𝑥). (2.52)

Therefore, the distributions 𝑤 = 𝛿(· − 𝜆) can be thought of as

generalized eigenvectors of the positive, self-adjoint operator 𝐴.

Recalling Prop. 2.3.2, let us now determine the spectrum of 𝐴.

Leaning on the generalized eigenvector, we deőne the sequence

(𝑢𝑛) as

𝑢𝑛(𝑥) :=




1, if 𝑥 ∈ [𝜆 − 1
𝑛 ,𝜆 + 1

𝑛 ] ⊂ [0, 1],
0, else.

(2.53)

The elements of the sequence (𝑢𝑛) are contained in 𝐿2([0, 1]):

∫ 1

0

|𝑢𝑛(𝑥)|2 d𝑥 ≤
∫ 𝜆+ 1

𝑛

𝜆− 1
𝑛

1 d𝑥 =
2

𝑛
, (2.54)

where 2
𝑛 < ∞ for all 𝑛 ∈ ℕ. Plugging the sequence into (2.49)

and assuming for simplicity that 𝑛 is large enough such that

[𝜆 − 1
𝑛 ,𝜆 + 1

𝑛 ] ⊂ [0, 1], we get, for any 𝜆 ∈ (0, 1),

∥𝐴𝑢𝑛 − 𝜆𝑢𝑛 ∥
∥𝑢𝑛 ∥

=

√∫ 𝜆+ 1
𝑛

𝜆− 1
𝑛

(𝑥 − 𝜆)2 d𝑥√
2
𝑛

=

√
2
3

(
1
𝑛

)3

√
2
𝑛

=

√
1

3𝑛2

𝑛→∞−→ 0.
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With slightly different deőnitions of 𝑢𝑛 , one can equally show that

the extremal value 0 and 1 are also in the spectrum of 𝐴.

2.3.2.1 Spectral Decomposition

Similar to the eigendecomposition (2.48), a more general spectral

decomposition can be deőned in the context of self-adjoint, bounded

operators. For this, we őrst need to introduce orthogonal projections

and projection-valued measures.

Proposition 2.3.3 (Orthogonal Projection [Hal13, Prop A.57]) For

any closed subspace 𝑉 ⊂ 𝐻 there exists a unique bounded operator 𝑃,

called the orthogonal projection onto 𝑉 , such that 𝑃 = 𝐼 on 𝑉 , and

𝑃 = 0 on the orthogonal complement 𝑉⊥.

Deőnition 2.3.4 (Projection-valued measure [Hal13, Def. 7.10])

Let 𝑋 be a set and let Ω be a 𝜎-algebra in 𝑋 . A map 𝜇 : Ω→ 𝐵(𝐻) is
called a projection-valued measure if the following properties are

satisőed.

1. For each 𝐸 ⊂ Ω, 𝜇(𝐸) is an orthogonal projection.

2. 𝜇(∅) = 0 and 𝜇(𝑋) = 𝐼.

3. If 𝐸𝑖 ⊂ Ω, 𝑖 = 1, 2, 3..., are disjoint, then for all 𝑣 ∈ 𝐻, we

have

𝜇

(
∞⋃
𝑖=1

𝐸𝑖

)
𝑣 =

∞∑
𝑖=1

𝜇(𝐸𝑖)𝑣, (2.55)

where the convergence of the sum is in the norm topology on 𝐻.

4. For all 𝐸1 , 𝐸2 ∈ Ω, we have 𝜇(𝐸1 ∩ 𝐸2) = 𝜇(𝐸1)𝜇(𝐸2).

In the matrix setting, 𝑋 is the set of eigenvalues {𝜆1 , ...,𝜆𝑛} of a

matrix 𝐴 ∈ ℝ𝑛,𝑛 , and the projection-valued measure orthogonally

projects on the subspace spanned by the eigenvectors for the

eigenvalues in 𝐸: For example, for 𝐸 =
{
𝜆𝑖 ,𝜆 𝑗

}
the map would be

given by 𝜇(𝐸) = 𝑣𝑖𝑣
⊤
𝑖
+ 𝑣 𝑗𝑣⊤𝑗 , where 𝑣𝑖 and 𝑣 𝑗 are the respective

eigenvectors.

This leads us to the following spectral theorem, which is the inőnite-

dimensional extension of the spectral matrix decomposition (2.48):
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Theorem 2.3.5 (Spectral Theorem [Hal13, Thm. 7.12]) Let 𝐴 ∈
𝐵(𝐻) denote a self-adjoint operator. Then there exists a unique

projection-valued measure 𝜇𝐴 on the Borel 𝜎-algebra in 𝜎(𝐴) with

values in projections on 𝐻, such that

𝐴 =

∫
𝜎(𝐴)

𝜆𝑑𝜇𝐴(𝜆). (2.56)

Eq. (2.56) is referred to as the spectral decomposition of 𝐴. Applying

the operator 𝐴 to some 𝑢 ∈ 𝐻 thus can be written as

𝐴𝑢 =

∫
𝜎(𝐴)

𝜆𝑑𝜇𝐴(𝜆) · 𝑢 (2.57)

The data-dependent spectral measure 𝜇𝐴(𝜆) · 𝑢 is of special interest.

Recall the example given on p. 37: For an łalmostž eigenvector 𝑢

of 𝐴 with łalmostž eigenvalue 𝜆 it holds

𝜇𝐴(·) · 𝑢 = 𝑢𝛿(· − 𝜆). (2.58)

Let us deőne, for some bounded, measurable map 𝑤 : 𝜎(𝐴) → ℝ,

a new operator 𝑤̃ [Hal13, Def. 7.13] as

𝑤̃(𝐴) :=

∫
𝜎(𝐴)

𝑤(𝜆)𝑑𝜇𝐴(𝜆). (2.59)

Applying this new operator 𝑤̃(𝐴) to some 𝑢 ∈ 𝐻, i.e.,

𝑤̃(𝐴)𝑢 =

∫
𝜎(𝐴)

𝑤(𝜆)𝑑𝜇𝐴(𝜆) · 𝑢, (2.60)

allows to enhance or reduce components of the data-dependent

spectral measure according to the associated 𝜆.

2.3.3 Convex, 1-Homogeneous Functionals

In [Bur+16], the authors extend the notion of a data-dependent

spectral decomposition of an operator 𝐴 to the non-linear setting.

Their goal is to decompose images 𝑓 ∈ 𝐿2(Ω;ℝ𝑘) with respect to a

notion of scale induced by some convex, absolutely 1-homogeneous

regularizer 𝐽.

In the following, let 𝐽 be a convex, lower semi-continuous, abso-

lutely 1-homogeneous regularizer. The following deőnition is of

special interest, as it introduces a new notion of scales:
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Deőnition 2.3.6 (Non-linear eigenfunctions) We call 𝑢 a non-

linear eigenfunction of 𝐽 to the eigenvalue 𝜆 ∈ ℝ, if ∥𝑢∥ = 1 and

𝜆𝑢 ∈ 𝜕𝐽(𝑢).

In analogy to the data-dependent spectral measure 𝜇𝐴(𝜆) · 𝑢 in

(2.57), the following weak data-dependent spectral representation can

be deőned:

Deőnition 2.3.7 (Weak spectral representation [Bur+16, Def. 1.4])

Let 𝐵 be a Banach space. A map from 𝑓 ∈ 𝐵 to a data-dependent

vector-valued distribution 𝜇
𝑓

𝐽
(𝑠) on 𝐵 is called a weak spectral

representation with respect to the convex functional 𝐽 if the following

properties are satisőed:

1. For a nonlinear eigenfunction 𝑓 of 𝐽 with eigenvalue 𝜆,

a) the weak spectral (frequency) representation is given

by

𝜇
𝑓

𝐽
(𝑠) = 𝑓 𝛿(𝑠 − 𝜆). (2.61)

b) the weak spectral (wavelength) representation is given

by

𝜇̃
𝑓

𝐽
(𝑠) = 𝑓 𝛿(𝑠 − 1

𝜆
). (2.62)

2. Any input data 𝑓 ∈ 𝑈 can be reconstructed by

𝑓 =

∫ ∞

0

𝜇
𝑓

𝐽
(𝑠) d𝑠 =

∫ ∞

0

𝜇̃
𝑓

𝐽
(𝑡) d𝑡. (2.63)

Informally, 𝜇
𝑓

𝐽
(𝜆) describes a projection onto non-linear eigenfunc-

tions of 𝐽 with eigenvalue 𝜆. Similar to the deőnition in (2.59),

we can turn a bounded, measurable map 𝑤 : ℝ+ → ℝ into a

non-linear őlter 𝑤̃ via

𝑤̃( 𝑓 ) :=

∫ ∞

0

𝑤(𝑠)𝜇 𝑓
𝐽
(𝑠)d𝑠. (2.64)

Using this deőnition, features in 𝑓 can be enhanced, reduced or

even removed according to their scale. Here, a feature is a nonlinear

eigenfunction of 𝐽 and its scale is given by the eigenvalue 𝜆. How

such a data-dependent weak spectral frequency representation can

be deőned is topic of Chpt. 4.
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Solving imaging problems numerically is especially challenging

when the underlying mathematical problem is non-convex. In case

of certain non-convex problem classes, it can thus be beneőcial to

reformulate a given problem in order to arrive at a formulation

that is easier to handle numerically. Ignoring the exact function

spaces for now, our strategy will be as follows: A non-convex

problem inf𝑢:Ω→Γ 𝐹(𝑢) is replaced by an (after discretization) nu-

merically less challenging convex formulation inf𝑣:Ω×Γ→ℝ F(𝑣).
In the imaging community, these approaches are referred to as

functional lifting. In reference to the higher-dimensional domain

Ω×Γ of the functions in the solution space, the second formulation

is referred to as the higher-dimensional or lifted problem.

Many different functional lifting strategies can be found in the litera-

ture. In order to better understand the context of the calibration-based

lifting (CBL) approach that we will focus on, let us discuss some of

the conceptual differences between the different approaches: Early

approaches such as [Ish03] considered lifting/relaxation of dis-

crete problems, i.e., (multi-)labelling problems on a discrete grid

inf𝑢ℎ :Ωℎ→Γℎ 𝐹
ℎ(𝑢ℎ). Later approaches such as [Möl+15; Lau+16]

considered a semi-discrete setting, i.e., (multi-)labelling problems

on a continuous domain inf𝑢:Ω→Γℎ 𝐹(𝑢). Some of the latest ap-

proaches such as [MC19a; Vog20] consider lifting of the fully

continuous problem inf𝑢:Ω→Γ 𝐹(𝑢). Some lifting approaches are

only applicable to scalar problems Γ ⊂ ℝ [Poc+10; Möl+15], while

others are designed for vectorial Γ ⊂ ℝ𝑚 [Lau+16; Vog20; MC19b]

or manifold-valued [Lel+13b] problems. Calibration-based lifting

is a fully continuous lifting approach for scalar problems with

őrst-order terms𝐷𝑢. In particular, it is well suited for variational

problems with total variation regularizer, which play a vital role

in imaging.

Formulating a suitable lifting strategy can be challenging, as the

lifted problem has to meet several requirements. First, it has to be

theoretically sound and ideally tight in the sense that no new global

minima are introduced in the lifted formulation. Second, the lifted

formulation must be computationally tractable. Third, minimizers

of the lifted problem have to be mappable to their counterpart in the

original solution space; If this is not the case, the approach can only

be used to verify and not to őnd a minimizer of the original problem.

Calibration-based lifting is tight and minimizers of the lifted

problem can be mapped to minimizers of the original problem

via a thresholding theorem. It is, furthermore, supported by
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research concerning suitable discretization schemes [Möl+15;

MC17] and optimization strategies [Poc+09].

In this chapter we are concerned with the calibration-based lifting

strategy. We show a detailed derivation of the lifted problem

formulation and related results concerning its tightness. We extend

proofs and arguments shown in [Poc+10] from 𝑢 ∈𝑊1,1(Ω;Γ) to
𝑢 ∈ BV(Ω;Γ). While this chapter is rather theoretic, the main results

will prove to be an important tool in the following application-

oriented chapters: In Chpt. 4 we will use CBL in order to extend

the notion of a non-linear scale space iteration to a broader class of

variational problems, and in Chpt. 5 we will use CBL in the context

of a neural őeld-based optimization strategy. The aim of this chapter

is to present a coherent, self-contained and multi-layered view on

this topic as a basis for the following chapters.

3.1 Preliminaries

As already mentioned, calibration-based lifting is applicable to

scalar problems with őrst-order terms𝐷𝑢. Throughout this chapter,

we therefore consider problems of the form 11: Here and in the following we

slightly abuse the notation. The pre-

cise formulation of the problem

heavily relies on the notation intro-

duced in Def. 2.2.6:

𝐹(𝑢) =
∫
Ω

𝑓 (𝑥, 𝑢,∇𝑢)d𝑥+∫
Ω\𝐽𝑢

𝑓∞
(
𝑥, 𝑢+ ,

d𝐷𝑐𝑢

d|𝐷𝑐𝑢 |

)
d|𝐷𝑐𝑢 |+

∫
𝐽𝑢

∫ 𝑢+(𝑥)

𝑢−(𝑥)

𝑓∞
(
𝑥, 𝑡, d𝐷𝑢

d|𝐷𝑢 |

)
𝑢+(𝑥) − 𝑢−(𝑥) d𝑡 d|𝐷𝑢 |,

where

𝑓∞(𝑥, 𝑡, 𝑝) := lim
𝑠→+∞

1

𝑠
𝑓 (𝑥, 𝑡, 𝑠𝑝).

See also [Mas79, p. 390].

inf
𝑢∈BV(Ω;Γ)

𝐹(𝑢), 𝐹(𝑢) :=

∫
Ω

𝑓 (𝑥, 𝑢, d𝐷𝑢), (3.1)

where Ω ⊂ ℝ𝑛 is open and bounded, Γ = [Γmin , Γmax] ⊂ ℝ and

𝐷𝑢 denotes the distributional derivative of 𝑢. Furthermore, we

impose the following requirements on 𝑓 : Ω ×ℝ ×ℝ𝑛 → ℝ:

(A1) 𝑓 is convex in the last argument, i.e., 𝑝 ↦→ 𝑓 (𝑥, 𝑡, 𝑝) is convex

in ℝ𝑛 for all (𝑥, 𝑡) ∈ Ω ×ℝ.

(A2) There exists a Borel set 𝐵 ⊂ Ω×ℝ,H𝑛((Ω×ℝ)\𝐵) = 0 such

that 𝑓 is lower semicontinuous at every point of 𝐵 ×ℝ𝑛 .

(A3) 𝑓 is locally bounded in the őrst two arguments, i.e., for

any (𝑥0 , 𝑡0) ∈ Ω ×ℝ there is a neighbourhood 𝐴 and some

constant 𝑐 > 0 such that | 𝑓 (𝑥, 𝑡, 0)| ≤ 𝑐 for all (𝑥, 𝑡) ∈ 𝐴.

(A4) 𝑓 is coercive in the last argument, in the sense that ∃𝑐 > 0,

𝑑 ≥ 0 for which 𝑐∥𝑝∥ − 𝑑 ≤ 𝑓 (𝑥, 𝑡, 𝑝) for all (𝑥, 𝑡) ∈ Ω ×ℝ.

Note that the calibration-based lifting approach in fact only requires

the assumptions (A1)-(A3). If, however, the requirements (A1)-

(A4) are fulőlled, then it can be shown that 𝑢 ↦→ 𝐹(𝑢) is lower

semicontinuous on BVloc(Ω;Γ) for the 𝐿1
loc
(Ω;Γ)-topology [Mas79,

Thm. 3.1]. Together with the compactness in BV [AFP00, Thm. 3.23]

this is an important ingredient for proving existence of minimizers

of (3.1).



3.1 Preliminaries 43

Special Case: Separable Data Term and Regularizer. Let us

consider a short example in order to illustrate that the require-

ments are reasonable for many applications. In imaging, the third

argument of 𝑓 ś the őrst-order distributional derivative 𝐷𝑢 ś is

often part of the regularizer and might not appear in the data term.

Let us assume that the data term and regularizer are separable in

the sense that there exist 𝜌 : Ω × ℝ → ℝ and 𝜂 : ℝ𝑑 → ℝ such

that

𝑓 (𝑥, 𝑡, 𝑝) = 𝜌(𝑥, 𝑡) + 𝜂(𝑝). (3.2)

Together, (A3) and (A4) imply that the data term is proper and

locally bounded; thus the regularizer is convex and coercive by

(A1) and (A4). Properness and locally boundedness of the data

term are in general reasonable assumptions and, for example, the

popular total variation regularizer is both convex and coercive.

Historically, the calibration-based lifting approach traces back to

the calibration method. The latter is a well-established minimality

criterion for the minimal surface problem2 [Mor16, Chpt. 6], but 2: The minimality criterion states,

that if a differential form exists

which fulőls certain assumptions

and which interacts with a given sur-

face in a special way then the given

surface is area-minimizing among

all surfaces with the same boundary.

The differential form is called the

calibration and one says that the dif-

ferential form calibrates the surface.

was also used, in the context of the Mumford-Shah functional and

(vector-valued) free-discontinuity problems [ABD03; Mor02]. In

[Cha01], the existence of calibrations for certain scalar variational

problems is shown. Thanks to this existence result, the authors

argue that the calibration method can also be employed in order to

reformulate non-convex problems as convex problems in a higher-

dimensional space as a means to compute (previously unknown)

minimizers. In [Poc+10], the calibration-based lifting is introduced

to the imaging community and discretization schemes are analyzed

in [Möl+15; MC17].

The Idea of the calibration-based lifting approach is to reformu-

late the general energy (3.1) by considering indicator functions of

the subgraph of possible solutions:

U := {1𝑢 , 𝑢 ∈ 𝑈} , 1𝑢(𝑥, 𝑡) :=




1, 𝑢(𝑥) ≥ 𝑡 ,
0, 𝑢(𝑥) < 𝑡.

(3.3)

The integrand 𝑓 in (3.1) is replaced by an interfacial energy ℎ,

which is integrated over the measure theoretic-boundary of the

subgraph of 𝑢. This leads to the lifted (primal) energy F𝑝 for which

the following connection to the original energy 𝐹 holds:

F𝑝(1𝑢) = 𝐹(𝑢), 𝑢 ∈ 𝑈. (3.4)

As the lifted solution space U is non-convex, the second step

consists of relaxing the solution space to a convex superset C ⊃ U.
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Under the assumption (A1) one can show that this relaxation is

tight, which means that it holds

inf
𝑣∈C

F𝑝(𝑣) = inf
𝑢∈U

F𝑝(𝑢) = inf
𝑢∈𝑈

𝐹(𝑢), (3.5)

and that non-integral solutions ś solutions 𝑣∗ ∈ arg min𝑣∈CF𝑝(𝑣)
for which 𝑣∗ ∈ C \ U ś can be mapped to integral solutions

𝑢∗ ∈ arg min𝑢∈CF𝑝(𝑣) for which 𝑢∗ ∈ U ⊂ C. These integral

solutions then point to solutions 𝑢∗ ∈ arg min𝑢∈𝑈 𝐹(𝑢). In a last

step, duality is employed in order to reach a lifted primal-dual

energy Ffor which

F(𝑣) = F𝑝(𝑣), for 𝑣 ∈ C. (3.6)

holds. This primal-dual energy can be approximately minimized

numerically using the PDHG algorithm. A summary of the com-

plete line of argument of the CBL lifting approach can be found in

Fig. 3.2.

The remainder of the chapter is organised as followed: In Sec-

tion 3.2 we derive the embedded primal-dual energy and state

some central properties. Selected proofs are presented for the sake

of cohesiveness. In Section 3.3 we recall discretization schemes for

the lifted problem. In Section 3.4 we recall the PDHG algorithm,

which can be used for solving the discretized problem.

3.2 Continuous Derivation

In the following, we will use various deőnitions and results con-

cerned with functions of bounded variation and sets of őnite

perimeter. An introduction to the topic and to our notation can be

found in Sec. 2.2.

In order to arrive at a lifted formulation of the problem, the

original domain Ω and range Γ are combined and used as the

new domain Ω × Γ for functions in the solution space. Functions

𝑢 ∈ BV(Ω;Γ) are identiőed with the following objects, which are

also visualized in Fig. 3.1:

1. The subgraph of 𝑢 is deőned as

hyp 𝑢 := {(𝑥, 𝑡) ∈ Ω ×ℝ : 𝑢(𝑥) ≥ 𝑡} . (3.7)

For 𝑢 ∈ 𝐿1(Ω), the subgraph is locally of őnite perimeter

in Ω ×ℝ, if and only if 𝑢 ∈ BV(Ω;ℝ), see [Mir64, Thm. 1.10]

or [AMP04, Prop. 4.2].
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Figure 3.1: Calibration-Based Lift-

ing. The idea of lifting approaches
is to reformulate a given non-convex
problem of the form (3.1) so that the
new, lifted formulation is convex
and global minimizers of the lifted
formulation can be mapped to
global minimizers of the original
formulation.

In calibration-based lifting,
instead of minimizing over func-
tions 𝑢 ∈ BV(Ω;Γ) (black dotted

line), the problem is reformulated
in terms of the subgraph of 𝑢
(gray area), its measure-theoretic
boundary Γ𝑢 (red line) and the
associated generalized inner unit
normal 𝜈𝑢 (green arrows), as well
as the indicator function of the
subgraph 1𝑢 .

Furthermore, if L𝑛(Ω) < +∞ it holds [AMP04, Prop. 4.2]

|𝐷𝑢 |(Ω) ≤ 𝑃(hyp 𝑢;Ω ×ℝ) ≤ |𝐷𝑢 |(Ω) +L𝑛(Ω). (3.8)

2. The indicator function of the subgraph 1𝑢 : Ω ×ℝ→ {0, 1} is

deőned as

1𝑢(𝑥, 𝑡) :=




1, if 𝑢(𝑥) ≥ 𝑡 ,
0, else.

(3.9)

If hyp 𝑢 is L𝑛+1-measurable, its perimeter inΩ×ℝ is deőned

as the total variation of the indicator function of the subgraph

of 𝑢: 𝑃(hyp 𝑢;Ω×ℝ) = 𝑇𝑉(1𝑢) [AFP00, Def. 3.35]. Together

with [AMP04, Prop. 4.2], this means that if L𝑛(Ω) < ∞ then

𝑢 ∈ BV(Ω;Γ) if and only if 1𝑢 ∈ BV(Ω ×ℝ; {0, 1}).
3. The measure-theoretic boundaryΓ𝑢 of the subgraph is the subset

Γ𝑢 ⊂ Ω × Γ deőned as [AFP00, Def. 3.60]

Γ𝑢 :=

{
(𝑥, 𝑡) ∈ Ω × Γ : lim

𝜌→0

|B𝜌(𝑥, 𝑡) ∩ hyp 𝑢 |
|B𝜌(𝑥, 𝑡)|

> 0,

}
{

lim
𝜌→0

|B𝜌(𝑥, 𝑡)\hyp 𝑢 |
|B𝜌(𝑥, 𝑡)|

> 0

}
. (3.10)

The measure-theoretic boundary of a set is described by the

approximate discontinuity set of the indicator function of

the set [AFP00, Ex. 3.68].

If the set is of őnite perimeter one can argue using Federers’

theorem [AFP00, Thm. 3.61] that (in our setting) H𝑛-a.e.

points of the measure theoretic boundary are in fact described

by the jump set of the indicator function 1𝑢 . In case of a

continuous function 𝑢 with subgraph of őnite perimeter, the
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measure-theoretic boundary Γ𝑢 can thus be thought of as

the complete graph

graph 𝑢 := {(𝑥, 𝑡) ∈ Ω ×ℝ : 𝑢(𝑥) = 𝑡} . (3.11)

If the function 𝑢 has a discontinuity at some point 𝑥̄, the

measure-theoretic boundary additionally comprises the con-

necting set

graph 𝑢 ∪
{
(𝑥̄ , 𝑡) : 𝑢−(𝑥̄) ≤ 𝑡 ≤ 𝑢+(𝑥̄)

}
. (3.12)

4. The generalized inner unit normal 𝜈𝑢 : Γ𝑢 → S𝑛 of the subgraph

of 𝑢 is deőned as

𝜈Γ𝑢 (𝑥, 𝑡) := lim
𝜌→0

𝐷1𝑢(B𝜌(𝑥, 𝑡))
|𝐷1𝑢(B𝜌(𝑥, 𝑡))|

. (3.13)

The generalized inner unit normal exists on H𝑛-a.e. point of

the measure-theoretic boundary Γ𝑢 ; see [AFP00, Def. 3.54,

Thm. 3.61].

An important result which brings the above introduced concepts

together is the following representation of the distributional deriva-

tive of the indicator function of a subgraph: If the subgraph is of

őnite perimeter in Ω ×ℝ, it holds

𝐷1𝑢 = 𝜈Γ𝑢 dH𝑛
⌞ Γ𝑢 . (3.14)

This can be deduced from the following results stated in Sec. 2.2:

If 1𝑢 ∈ BV(Ω × Γ; {0, 1}), the Radon-Nikodým decomposition of

𝐷1𝑢 with respect to L𝑛+1 is given by

𝐷1𝑢 = 𝐷𝑎1𝑢 + 𝐷 𝑗1𝑢 + 𝐷𝑐1𝑢 . (3.15)

The indicator of the subgraph is a constant function with the

exception of the singularities captured at the approximate dis-

continuity set 𝑆1𝑢 . Therefore, the absolutely continuous part

𝐷𝑎1𝑢 = 𝐷1𝑢⌞(Ω\𝑆1𝑢 ) = 0 and the Cantor part𝐷𝑐 = 𝐷𝑠1𝑢⌞(Ω\𝑆1𝑢 )
vanish. According to Federer’s Theorem [AFP00, Thm. 3.61], the

measure theoretic boundary Γ𝑢 , the set of approximate jump

points 𝐽1𝑢 and the reduced boundary FE are the same up to an

H𝑛-negligible set as the subgraph is of őnite perimeter by as-

sumption; see also [AFP00, Example 3.68]. For any (𝑥, 𝑡) ∈ 𝐽1𝑢 it

holds 1−𝑢 (𝑥, 𝑡) = 0 and 1+𝑢 (𝑥, 𝑡) = 1. The generalized inner unit

normal, which is deőned on the reduced boundary, exists for

H𝑛-a.e. (𝑥, 𝑡) ∈ Γ𝑢 . The exact form of 𝐷1𝑢 in (3.14) then follows

with (2.31)

𝐷1𝑢 = 𝐷 𝑗1𝑢
(2.31)
= (1+𝑢 − 1−𝑢 ) ⊗ 𝜈𝑢 dH𝑛

⌞𝐽𝑢 = 𝜈Γ𝑢 dH𝑛
⌞ Γ𝑢 . (3.16)
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The distributional derivative𝐷1𝑢 is an (𝑛+1)-dimensional measure

concentrated on Γ𝑢 .

Primal Formulation. In this paragraph, we construct a convex

energy F𝑝 for which F𝑝(1𝑢)
!
= 𝐹(𝑢) holds for any 𝑢 ∈ BV(Ω;Γ).

As argued above, elements 𝑢 ∈ BV(Ω;Γ) have a one-to-one rep-

resentation in terms of 1𝑢 ∈ BV(Ω × ℝ; {0, 1}). The set U :=

{1𝑢 : 𝑢 ∈ BV(Ω;Γ)} is, however, non-convex. Therefore, we fur-

thermore introduce a convex set C ⊃ U and prove that global

minimizers 𝑣∗ ∈ arg min𝑣∈CF𝑝(𝑣) can be mapped to global mini-

mizers 𝑢∗ ∈ arg min𝑢∈BV(Ω;Γ) 𝐹(𝑢).

Deőnition 3.2.1 (Primal Lifted Energy) Let Ω ⊂ ℝ𝑛 be open. For

a Borel function 𝑓 : Ω ×ℝ ×ℝ𝑛 → ℝ+ which fulőls (A1), we deőne

the perspective function ℎ : Ω ×ℝ ×ℝ𝑛+1 → ℝ as

ℎ(𝑥, 𝑡, 𝑝) :=




|𝑝𝑡 | 𝑓
(
𝑥, 𝑡,

𝑝𝑥

|𝑝𝑡 |

)
, if 𝑝𝑡 < 0,

lim𝜆→+∞ 1
𝜆 𝑓 (𝑥, 𝑡,𝜆𝑝𝑥), if 𝑝𝑡 = 0,

+∞, if 𝑝𝑡 > 0,

(3.17)

where the notation 𝑝 = (𝑝𝑥 , 𝑝𝑡) ∈ ℝ𝑛 ×ℝ is used. Furthermore, we

deőne the primal lifted energy F𝑝 : BV(Ω ×ℝ;ℝ) as

F𝑝(𝑣) :=

∫
Ω×ℝ

ℎ

(
𝑥, 𝑡,

d𝐷𝑣

d|𝐷𝑣 | (𝑥, 𝑡)
)

d|𝐷𝑣 |(𝑥, 𝑡). (3.18)

It holds that 𝑝 ↦→ ℎ(𝑥, 𝑡, 𝑝) is positively 1-homogeneous (which

follows directly from the deőnition of ℎ) and convex (which can be

seen by considering the epigraph, see [HL96, Prop. 2.2.1, p. 160]).

Under the assumptions (A1)-(A3) ℎ is, furthermore, lower semicon-

tinuous at each point (𝑥, 𝑡, 𝑝) ∈ 𝐵×ℝ𝑛+1 where 𝐵 ⊂ Ω×ℝ denotes

a Borel set such that H𝑛((Ω ×ℝ)\𝐵) = 0. Let us shortly recall the

arguments given in [Mas79, Proof of Thm. 3.1] to demonstrate

where and why the assumptions (A1)-(A3) are necessary:

Proof that ℎ is lower semicontinuous. Lower semicontinuity follows

for 𝑝𝑡 < 0 directly from (A2). Consider thus (𝑥0 , 𝑡0 , 𝑝0) ⊂ 𝐵×ℝ𝑛+1

such that 𝑝𝑡0 = 0. Let 𝜖 > 0; by the deőnition of ℎ there exists

𝛿 ∈]0, 𝜖[ such that for all 𝑝𝑡 ∈ [−𝛿, 0] it holds

ℎ(𝑥0 , 𝑡0 , (𝑝𝑥0 , 0)) − 𝜖 < ℎ(𝑥0 , 𝑡0 , (𝑝𝑥0 , 𝑝𝑡)). (3.19)

Since ℎ is lower semicontinuous at (𝑥0 , 𝑡0 , (𝑝𝑥0 ,−𝛿)), there exists a
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neighbourhood𝑈 such that for any (𝑥, 𝑡, (𝑝𝑥 ,−𝛿)) ∈ 𝑈 it holds

ℎ(𝑥0 , 𝑡0 , (𝑝𝑥0 ,−𝛿)) − 𝜖 < ℎ(𝑥, 𝑡, (𝑝𝑥 ,−𝛿)). (3.20)

For 𝑝𝑡 ∈]−𝛿, 0[ and especially |𝑝𝑡 |/|𝛿 | ∈ [0, 1]we rewrite ℎ(𝑥, 𝑡, (𝑝𝑥 ,−𝛿))
as

ℎ(𝑥, 𝑡, (𝑝𝑥 ,−𝛿)) = |𝛿 | 𝑓
(
𝑥, 𝑡,

𝑝𝑥

|𝛿 |

)
(3.21)

= |𝛿 | 𝑓
(
𝑥, 𝑡,
|𝑝𝑡 |
|𝛿 |

𝑝𝑥

|𝑝𝑡 | +
(
1 − |𝑝

𝑡 |
|𝛿 |

)
0

)
(3.22)

and with (A1) we furthermore get

ℎ(𝑥, 𝑡, (𝑝𝑥 ,−𝛿))
(𝐴1)
≤ |𝑝𝑡 | 𝑓

(
𝑥, 𝑡,

𝑝𝑥

|𝑝𝑡 |

)
+ (|𝛿 | − |𝑝𝑡 |) 𝑓 (𝑥, 𝑡, 0)

≤ ℎ(𝑥, 𝑡, (𝑝𝑥 , 𝑝𝑡)) + 𝜖 𝑓 (𝑥, 𝑡, 0). (3.23)

Together with (3.19)ś(3.20) it holds for 𝑝𝑡 ∈] − 𝛿, 0], 𝛿 ∈]0, 𝜖[,
(𝑥, 𝑡, 𝑝𝑥) in the neighborhood of (𝑥0 , 𝑡0 , 𝑝

𝑥
0 ) that

ℎ(𝑥0 , 𝑡0 , (𝑝𝑥0 , 0)) − 2𝜖 − 𝜖 𝑓 (𝑥, 𝑡, 0) < ℎ(𝑥, 𝑡, (𝑝𝑥 , 𝑝𝑡)) (3.24)

Due to (A3) ś the local boundedness of 𝑓 in the őrst two arguments

ś it follows that ℎ is lower semicontinuous at (𝑥0 , 𝑡0 , (𝑝𝑥0 , 0)).

In the special case of an indicator function of a subgraph with

őnite perimeter equation (3.14) furthermore infers that the lifted

primal energy (3.18) is an interfacial energy, which is deőned over

the measure theoretic boundary Γ𝑢 of the subgraph:

F𝑝(1𝑢) =
∫
Γ𝑢

ℎ (𝑥, 𝑡, 𝜈Γ𝑢 (𝑥, 𝑡)) dH𝑛(𝑥, 𝑡). (3.25)

The following lemma is crucial as it links the original and lifted

energy:

Lemma 3.2.2 ([Mas79, Lemma 2.2]) Let Ω ⊂ ℝ𝑛 be open and

bounded and let 𝑓 : Ω × ℝ × ℝ𝑛 → ℝ+ be a Borel function which

fulőls (A1). Let 𝐹 be deőned as in (3.1) and F𝑝 as in Def. 3.2.1. For

any 𝑢 ∈ BV(Ω;Γ) it holds

𝐹(𝑢) = F𝑝(1𝑢). (3.26)
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By Lemma 3.2.2, the global minimizers of

inf
𝑣∈U

F𝑝(𝑣), U := {1𝑢 : 𝑢 ∈ BV(Ω;Γ)} , (3.27)

are exactly the indicator functions of subgraphs of global minimiz-

ers of (3.1). While F𝑝 is convex due to the convexity of ℎwith respect

to its third parameter and linearity of 𝑣 ↦→ 𝐷𝑣, problem (3.27) is

still non-convex due to the non-convexity of U. Thus, we consider

the following relaxation of the solution space:

Deőnition 3.2.3 (Relaxation) Given a feasible set 𝑈 = BV(Ω;Γ)
with Γ = [Γmin , Γmax] ⊂ ℝ, the relaxed, lifted solution space is deőned

as

C := {𝑣 ∈ BV(Ω ×ℝ; [0, 1]) : (3.28)

𝑣(𝑥, 𝑡) = 1, a.e. (𝑥, 𝑡) ∈ Ω ×ℝ where 𝑡 ≤ Γmin , (3.29)

𝑣(𝑥, 𝑡) = 0, a.e. (𝑥, 𝑡) ∈ Ω ×ℝ where 𝑡 > Γmax}. (3.30)

For any 𝑢 ∈ BV(Ω;Γ) where L𝑛(Ω) < +∞, it holds that

1𝑢 ∈ BV(Ω × ℝ; {0, 1}) and thus 1𝑢 ∈ C. Furthermore, as C is

convex, the problem

inf
𝑣∈C

F𝑝(𝑣) (3.31)

with Cas in Def. 3.2.3 and F𝑝 as in Def. 3.2.1 is fully convex.

After the relaxation of the solution space, two questions come to

mind:

1. Is the relaxation tight, i.e., does inf𝑣∈UF𝑝(𝑣) = inf𝑣∈CF𝑝(𝑣)
hold or are new artiőcial global minima introduced?

2. Can non-integral global minimizers 𝑣∗ ∈ arg min𝑣∈CF𝑝(𝑣)
such that 𝑣∗ ∈ C\U be mapped to global minimizers

𝑢 ∈ arg min𝑢∈𝑈 𝐹(𝑢)?

Both questions are addressed in the following theorem.

Theorem 3.2.4 (Thresholding) Let 𝑓 be a Borel function fulőlling

assumption (A1). Let 𝑣∗ ∈ C be a global minimizer of

inf
𝑣∈C

F𝑝(𝑣), (3.32)

with C as in Def. 3.2.3 and F𝑝 as in Def. 3.2.1. Then for

L1-a.e. 𝑠 ∈ [0, 1] the characteristic function3

3: Similar to the indicator function

of the subgraph we deőne

1{𝑣∗>𝑠}(𝑥, 𝑡) :=




1, 𝑣∗(𝑥, 𝑡) > 𝑠,

0, else.

As a reminder, recall

1𝑢(𝑥, 𝑡) :=




1, 𝑢(𝑥) ≥ 𝑡 ,
0, else.

1{𝑣∗>𝑠} ∈ C is also

a global minimizer of (3.32). Furthermore, there is a 𝑢 ∈ 𝑈 such that

it holds 1{𝑣∗>𝑠} = 1𝑢 .

A proof will be provided below.
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Let us remark that this theorem not only states that the relaxation is

tight under assumption (A1), but also that any (even a non-integral)

global minimizer of (3.31) can be mapped to a global minimizer of

the original, non-convex problem (3.1): If there is a 𝑢 ∈ 𝑈 such that

1{𝑣∗>𝑠} = 1𝑢 , then it follows from Lemma 3.2.2 that 𝑢 is a global

minimizer of (3.1).

In [Poc+10, Thm. 3.1], the thresholding result is already shown

for inf𝑢∈𝑊1,1 𝐹(𝑢). We here extend the theorem and proof to

inf𝑢∈BV(Ω;Γ) 𝐹(𝑢).

Proof. Let 𝑣∗ ∈ Cbe a global minimizer of (3.31).

First, we show that F𝑝 as in Def. 3.2.1 satisőes a generalized coarea

formula:

F𝑝(𝑣) =
∫ +∞

−∞
F𝑝(1{𝑣>𝑠})d𝑠. (3.33)

In the following, we denote by 𝜈𝑣 the Besicovitch derivative4 of4: The deőnition of the Besicovitch

derivative is given in Thm. 2.2.9. 𝐷𝑣 with respect to |𝐷𝑣 |. From Thm. 2.2.9 we directly get the

existence of the Besicovitch derivative as well as the following

Radon-Nikodým decomposition:

𝐷𝑣 = 𝜈𝑣 |𝐷𝑣 | + 𝐷𝑣⌞𝐸, (3.34)

where

𝜈𝑣(𝑥, 𝑡) = lim
𝜌↘0

𝐷𝑣(B𝜌(𝑥, 𝑡))
|𝐷𝑣 |(B𝜌(𝑥, 𝑡))

, (3.35)

𝐸 =

{
(𝑥, 𝑡) ∈ supp |𝐷𝑣 | : lim

𝜌→0

|𝐷𝑣 |(B𝜌(𝑥, 𝑡))
|𝐷𝑣 |(B𝜌(𝑥, 𝑡))

= ∞
}

∪ (Ω ×ℝ\supp |𝐷𝑣 |). (3.36)

It here holds that 𝐷𝑣⌞𝐸 = 0. Therefore, it follows

F𝑝(𝑣) =
∫
Ω×ℝ

ℎ

(
𝑥, 𝑡,

d𝐷𝑣

d|𝐷𝑣 | (𝑥, 𝑡)
)

d|𝐷𝑣 |(𝑥, 𝑡) (3.37)

=

∫
Ω×ℝ

ℎ(𝑥, 𝑡, 𝜈𝑣(𝑥, 𝑡))d|𝐷𝑣 |(𝑥, 𝑡). (3.38)

As 𝑣 is a minimizer of (3.31), it holds 𝑣 ∈ BV(Ω ×ℝ; [0, 1]). Thus

we can use the coarea formula in BV [FR60, Thm. 1][AFP00,

Thm. 3.40]: As 𝑣 ∈ BV(Ω × ℝ; [0, 1]), it follows that {𝑣 > 𝑠}
has őnite perimeter in Ω × ℝ for L1-almost all 𝑠 ∈ ℝ and

|𝐷𝑣 |(𝐵) =
∫ +∞
−∞ |𝐷1{𝑣>𝑠} |(𝐵)d𝑠 for any Borel set 𝐵 ⊆ Ω ×ℝ. Con-

sequently,

F𝑝(𝑣) =
∫ +∞

−∞

∫
Ω×ℝ

ℎ(𝑥, 𝑡, 𝜈𝑣(𝑥, 𝑡))d|𝐷1{𝑣>𝑠} |(𝑥, 𝑡)d𝑠. (3.39)
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Finally, by arguing that for H𝑛-a.e. point on the boundary of

{𝑣 > 𝑠} it holds that 𝜈𝑣(𝑥, 𝑡) =
𝐷1{𝑣>𝑠}
|𝐷1{𝑣>𝑠} | , we get

F𝑝(𝑣) =
∫ ∞

−∞

∫
Ω×ℝ

ℎ

(
𝑥, 𝑡,

𝐷1{𝑣>𝑠}
|𝐷1{𝑣>𝑠} |

)
d|𝐷1{𝑣>𝑠} |(𝑥, 𝑡)d𝑠 (3.40)

=

∫ ∞

−∞
F𝑝(1{𝑣>𝑠})d𝑠. (3.41)

This allows us to use the generalized coarea formula in order to

show that 1{𝑣∗>𝑠} is also a global minimizer of (3.31) for almost

every 𝑠 ∈ [0, 1]: For some minimizer 𝑣∗, we recall that the general-

ized coarea formula reads

F𝑝(𝑣∗) =
∫ 1

0

F𝑝(1{𝑣∗>𝑠})d𝑠. (3.42)

As 𝑣∗ is a global minimizer of (3.31) and for every 𝑠 ∈ [0, 1]
it holds 1{𝑣∗>𝑠} ∈ C, the inequality F𝑝(𝑣∗) ≤ F𝑝(1{𝑣∗>𝑠}) holds

for any 𝑠 ∈ [0, 1]. We show that in fact F𝑝(𝑣∗) = F𝑝(1{𝑣∗>𝑠}) for

L1-a.e. 𝑠 ∈ [0, 1] by contradiction: Assume there is 𝜖 > 0 and a

subset 𝑆 ⊂ [0, 1] that is not L1-negligible such that

F𝑝(𝑣∗) + 𝜖 ≤ F𝑝(1{𝑣∗>𝑠′}) (3.43)

for all 𝑠′ ∈ 𝑆. Then

F𝑝(𝑣∗)
(3.42)
=

∫ 1

0

F𝑝(1{𝑣∗>𝑠})d𝑠 ≥ F𝑝(𝑣∗) + 𝜖L1(𝑆). (3.44)

This is a contradiction; Therefore, 1{𝑣∗>𝑠} is a minimizer of (3.31)

for L1-a.e. 𝑠 ∈ [0, 1].

If 𝑣∗ ∈ arg min𝑣∈CF𝑝(𝑣) and F𝑝(𝑣∗) < +∞ then it must hold that 𝑣∗

is non-increasing with respect to the Γ-axis, i.e., 𝐷𝑡𝑣
∗(𝐵) ≤ 0 for

all Borel sets 𝐵 ⊆ Ω × ℝ, due to the deőnition of ℎ in (3.17).

Consequently, there exists 𝑢 : Ω→ Γ such that 1{𝑣∗>𝑠} = 1𝑢 .

It remains to show that𝑢 is of bounded variation inΩ. Following the

coarea formula in BV [AFP00, Thm. 3.40], |1{𝑣∗>𝑠} |(Ω ×ℝ) < +∞
for L1-a.e. 𝑠 ∈ [0, 1]. As the subgraph hyp 𝑢 is a set of őnite

perimeter in Ω ×ℝ, we can apply [AMP04, Prop. 4.2] and deduce

that 𝑢 is of bounded variation in Ω.

Dual Formulation. A useful transformation is to employ duality

in order to reformulate the problem (3.31) as a maximum ŕux of

(dual) vector őelds through the measure-theoretic boundary of the

primal variable. The resulting primal-dual formulation is linear
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and solving it numerically with the PDHG algorithm only involves

projections onto convex sets.

Deőnition 3.2.5 (Dual formulation) Let Ω ⊂ ℝ𝑛 be open and

𝑓 : Ω ×ℝ ×ℝ𝑛 → ℝ+ be a Borel function which fulőls (A1)-(A3).

The lifted dual problem is deőned as

inf
𝑣∈C

F(𝑣), (3.45)

with C as in Def. 3.2.3 and

F(𝑣) := sup
𝜑∈K

{∫
Ω×ℝ
⟨𝜑, d𝐷𝑣⟩

}
, (3.46)

K := {(𝜑𝑥 , 𝜑𝑡) ∈ 𝐶0(Ω ×ℝ;ℝ𝑛+1) :

𝜑𝑡(𝑥, 𝑡) ≥ 𝑓 ∗(𝑥, 𝑡, 𝜑𝑥(𝑥, 𝑡)), ∀(𝑥, 𝑡) ∈ Ω ×ℝ}. (3.47)

The conjugate in (3.47) is to be understood w.r.t. the last variable.

The following duality result shows that the primal lifted energy F𝑝

and the dual lifted energy Fagree on the relaxed solution space C

given in Def. 3.2.3:

Theorem 3.2.6 (Duality [Vog19, Thm. 6.5]) Let Ω ⊂ ℝ𝑛 be open

and 𝑓 : Ω×ℝ×ℝ𝑛 → ℝ+ be a Borel function which fulőls (A1)-(A3).

Then, for every 𝑣 ∈ Cdeőned as in Def. 3.2.3, it holds

F𝑝(𝑣) = F(𝑣), (3.48)

with F𝑝 as in Def. 3.2.1 and Fas in Def. 3.2.5.

In [Poc+10, Thm. 3.2] it is shown that F(1𝑢) = F𝑝(1𝑢) for

𝑢 ∈𝑊1,1(Ω;Γ) and the conjecture is made that the equality should

also hold for 𝑢 ∈ BV(Ω;Γ). In [Vog20, Thm. 6.5] the duality result

is proven. As the proof is interesting and illuminates the necessity

of the assumptions, we here sketch the main line of argument,

which relies among others on central results from [Mic56; Per18].

Proof. We deőne the set-valued mapping 𝑆 : Ω ×ℝ⇒ ℝ𝑛+1 as

𝑆(𝑥, 𝑡) :=
{
(𝜓𝑥 ,𝜓𝑡) ∈ ℝ𝑛+1

��𝜓𝑡 ≥ 𝑓 ∗(𝑥, 𝑡,𝜓𝑥)
}
. (3.49)

By 𝐶(𝑆)we denote the associated set of continuous selections:

𝐶(𝑆) := {(𝜑𝑥 , 𝜑𝑡) ∈ 𝐶0(Ω ×ℝ;ℝ𝑛+1) : (3.50)

(𝜑𝑥 , 𝜑𝑡)(𝑥, 𝑡) ∈ 𝑆(𝑥, 𝑡), ∀(𝑥, 𝑡) ∈ Ω ×ℝ}. (3.51)
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The proof then consists of four steps.

First, we show that 𝑆 is

1. non-empty, i.e., 𝑆(𝑥, 𝑡) ≠ ∅ for each (𝑥, 𝑡) ∈ Ω ×ℝ,

2. closed, i.e., 𝑆(𝑥, 𝑡) is closed for each (𝑥, 𝑡) ∈ Ω ×ℝ,

3. convex-valued, i.e., 𝑆(𝑥, 𝑡) is convex for each (𝑥, 𝑡) ∈ Ω ×ℝ,

4. inner semicontinuous, i.e., the preimage 𝑆−1(𝑍) ⊂ Ω × ℝ is

open for each open set 𝑍 ⊂ ℝ𝑛+1, where

𝑆−1(𝑍) := {(𝑥, 𝑡) ∈ Ω ×ℝ : 𝑆(𝑥, 𝑡) ∩ 𝑍 ≠ ∅} . (3.52)

Using the deőnition of the Fenchel conjugate, we rewrite the set 𝑆

as

𝑆(𝑥, 𝑡) = {(𝜓𝑥 ,𝜓𝑡) ∈ ℝ𝑛+1 : (3.53)

𝑓 (𝑥, 𝑡, 𝑝) ≥ ⟨𝜓𝑥 , 𝑝⟩ − 𝜓𝑡 , ∀𝑝 ∈ ℝ𝑛}. (3.54)

In this alternative formulation, we see that 𝑆 is closed. According

to (A4) there exist 𝑐 > 0 and 𝑑 ≥ 0 such that 𝑐∥𝑝∥ − 𝑑 ≤ 𝑓 (𝑥, 𝑡, 𝑝)
for all (𝑥, 𝑡) ∈ Ω × ℝ. It follows directly that 𝑆 is non-empty as

(0, 𝑑) ∈ 𝑆(𝑥, 𝑡) for each (𝑥, 𝑡) ∈ Ω × ℝ. Note that even without

assumption (A4) it is possible to argue that 𝑆 is non-empty using

(A1) and (A3).

For any (𝜓′𝑥 ,𝜓′𝑡), (𝜓′′𝑥 ,𝜓′′𝑡 ) ∈ 𝑆(𝑥, 𝑡), any 𝑝 ∈ ℝ𝑛 , and any𝜆 ∈ [0, 1],
we have

⟨𝜆𝜓′𝑥 + (1 − 𝜆)𝜓′′𝑥 , 𝑝⟩ − 𝜆𝜓′𝑡 − (1 − 𝜆)𝜓′′𝑡 (3.55)

= 𝜆 ⟨𝜓′𝑥 , 𝑝⟩ − 𝜆𝜓′𝑡 + (1 − 𝜆) ⟨𝜓′′𝑥 , 𝑝⟩ − (1 − 𝜆)𝜓′′𝑡 (3.56)

≤ 𝜆 𝑓 (𝑥, 𝑡, 𝑝) + (1 − 𝜆) 𝑓 (𝑥, 𝑡, 𝑝) (3.57)

= 𝑓 (𝑥, 𝑡, 𝑝). (3.58)

Consequently, 𝑆 is also convex-valued.

Inner semicontinuity follows from the assumptions (A1)-(A3) and

the following proposition:

Proposition 3.2.7 [Vog19, Prop. 6.11] Let Ω × ℝ ⊂ ℝ𝑛+1 be non-

empty and assume that 𝑓 : Ω ×ℝ ×ℝ𝑛 is convex in the last variable

as in (A1) and locally bounded in the őrst two variables as in (A3).

Then 𝑆 deőned as in (3.49) is inner semicontinuous if and only if 𝑓 is

lower semicontinuous in all variables as in (A2).
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Second, we argue that 𝐶(𝑆) ≠ ∅. This can be shown with Michael’s

selection theorem:

Theorem 3.2.8 (Michael’s Selection Theorem [Mic56, Thm. 3.2ž])

Let 𝑆 : 𝑋 ⇒ 𝑌 be a set-valued mapping for a paracompact 𝑇1-space

𝑋 and Banach space 𝑌. If 𝑆 is non-empty, closed, convex-valued and

inner semicontinuous, then 𝐶(𝑆) ≠ ∅.

Here, it holds 𝑋 = Ω × ℝ and 𝑌 = ℝ𝑛+1. The latter is a Banach

space and the former is a metric space and as such paracompact

and𝑇1 [Sto48, Cor. 1, Thm. 2]. As 𝑆 as in (3.49) is non-empty, closed,

convex-valued, and inner semicontinuous it follows that the set of

continuous selections is non-empty.

Third, we show an integral representation for the support function

𝜎𝐶(𝑆)(𝐷𝑣) := sup
𝜑∈𝐶(𝑆)

{∫
Ω×ℝ
⟨𝜑, d𝐷𝑣⟩

}
. (3.59)

This can be done using the following theorem:

Theorem 3.2.9 (Integral Representation [Per18, Thm. 1]) Let

𝑋 be a second-countable, locally compact Hausdorff space and let

𝑆 : 𝑋 ⇒ ℝ𝑛+1 denote a closed, convex-valued mapping such that

𝐶(𝑆) ≠ ∅. Then the support function of 𝐶(𝑆) on M(𝑋,ℝ𝑛+1) has the

following integral representation

𝜎𝐶(𝑆)(𝑦) =
∫
𝑋

𝜎𝑆(𝑥)

(
d𝜃

d|𝜃 | (𝑥)
)

d|𝜃 |(𝑥) (3.60)

if and only if 𝑆 is inner semicontinuous.

In our setting, we have 𝑋 = Ω ×ℝ. As Ω ×ℝ is a subset of ℝ𝑛+1,

it is a second-countable [Wil04, Def. 16.1], locally compact [Wil04,

Def. 18.1] Hausdorff (𝑇2) space [Wil04, Def. 13.5]. We have already

established that 𝑆 as in (3.49) is closed and convex-valued and

𝐶(𝑆) is non-empty. Thus, we can use the integral representation

theorem and express (3.59) as

𝜎𝐶(𝑆)(𝐷𝑣) =
∫
Ω×ℝ

𝜎𝑆(𝑥,𝑡)

(
d𝐷𝑣

d|𝐷𝑣 | (𝑥, 𝑡)
)

d|𝐷𝑣 |(𝑥, 𝑡). (3.61)

This means that the support function of a set of functions (3.59)

has an integral representation as a point-wise support function of

a set of ℝ𝑛+1 vectors.
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Fourth, formally negating the last component of 𝜑 ∈ 𝑆(𝑥, 𝑡) and

𝐷𝑣, we can directly apply the őnite-dimensional result in Cor. 2.1.4

which gives

𝜎𝑆(𝑥,𝑡)

(
d𝐷𝑣

d|𝐷𝑣 | (𝑥, 𝑡)
)
= ℎ

(
𝑥, 𝑡,

d𝐷𝑣

d|𝐷𝑣 | (𝑥, 𝑡)
)

(3.62)

and thus it follows F(𝑣) = F𝑝(𝑣).

Let us now consider important properties of the lifted dual prob-

lem.

Lemma 3.2.10 (Properties of F) Let Ω ⊂ ℝ𝑛 be open and bounded.

Let 𝑓 : Ω ×ℝ ×ℝ𝑛 → ℝ+ be a Borel function fulőlling (A1)-(A3)

and let Fbe deőned as in Def. 3.2.5. Then it holds that 𝑣 ↦→ F(𝑣) is
convex and lower semicontinuous on BV(Ω ×ℝ; [0, 1]) with respect

to weak∗-convergence.

Proof. Recall that the space of őnite Radon measures, which we

denote by M(Ω ×ℝ;ℝ𝑛+1), is the dual space of 𝐶0(Ω ×ℝ;ℝ𝑛+1)
[AFP00, Thm. 1.54, Remark 1.57]. Since K ⊂ 𝐶0(Ω × ℝ;ℝ𝑛+1), it

follows that the functional F̃ : M(Ω ×ℝ;ℝ𝑛+1) → ℝ deőned as

F̃(𝐷𝑣) = sup
𝜑∈K

∫
Ω×ℝ
⟨𝜑, d𝐷𝑣⟩ (3.63)

is the pointwise supremum over linear, weakly∗ continuous func-

tions. This implies that F̃ is convex and lower semicontinuous in

M(Ω × ℝ;ℝ𝑛+1) with respect to weak∗-convergence in measure.

Since 𝑣 ↦→ 𝐷𝑣 is linear it follows that 𝑣 ↦→ F(𝑣) is convex.

Assume a sequence (𝑣𝑛)𝑛∈ℕ ⊂ BV(Ω × ℝ; [0, 1]) is given that

weakly∗ converges to 𝑣 in BV, i.e., it holds that [AFP00, Def. 3.11]

▶ 𝑣𝑛 converges to 𝑣 in 𝐿1(Ω ×ℝ)
▶ 𝐷𝑣𝑛 weakly∗ converges to 𝐷𝑣 in measure.

From the lower semicontinuity of F̃ in M(Ω × ℝ;ℝ𝑛+1) with

respect to weak∗-convergence in measure it directly follows that

F is lower semicontinuous on BV(Ω × ℝ; [0, 1]) with respect to

weak∗ convergence in BV:

lim
𝑛→∞

F(𝑣𝑛) = lim
𝑛→∞

F̄(𝐷𝑣𝑛) ≥ F̄(𝐷𝑣) = F(𝑣). (3.64)
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inf𝑢∈𝑈 𝐹(𝑢)

Lemma 3.2.2 [Mas79, Lemma 2.2]:
𝐹(𝑢) = F𝑝(1𝑢), ∀𝑢 ∈ 𝑈

𝑢∗ ∈ arg min𝑢∈𝑈 𝐹(𝑢)
⇔

1𝑢∗ ∈ arg min𝑣∈UF𝑝(𝑣)

(A1)

[Mas79, Thm. 3.1]:
𝑢 ↦→ 𝐹(𝑢) lsc. on BVloc for 𝐿1

loc
-topology

Thm. 3.2.4:
𝑣∗ ∈ arg min𝑣∈CF𝑝(𝑣)

⇒
1𝑣∗>𝑠 ∈ arg min𝑣∈UF𝑝(𝑣), L1 − a.e. 𝑠 ∈ [0, 1]

+

For L1-a.e. 𝑠 ∈ [0, 1] it holds
𝑢∗ ∈ arg min𝑢∈𝑈 𝐹(𝑢),

where 𝑢∗ given by 1𝑢∗ = 1𝑣∗>𝑠
with 𝑣∗ ∈ arg min𝑣∈CF𝑝(𝑣).

(A1)-(A4)

Thm. 3.2.6 [VL19, Thm. 6.5]:
F𝑝(𝑣) = F(𝑣), ∀𝑣 ∈ C

+

𝑣∗ ∈ inf𝑣∈CF(𝑣)
⇒

For L1-a.e. 𝑠 ∈ [0, 1] it holds
𝑢∗ ∈ arg min𝑢∈𝑈 𝐹(𝑢),

where 𝑢∗ is given by 1𝑢∗ = 1𝑣∗>𝑠 .

(A1)-(A3)

Figure 3.2: Overview of the Theoretical Results. This ŕowchart visualizes the line of argument and also highlights which
assumptions are needed for which results. In red (top middle), we have the lower semicontinuity of the original problem
on 𝐵𝑉loc with respect to the 𝐿1

loc
-topology. Together with the compactness result in BV this is an important ingredient

for proving existence of minimizers. In gray (left), it is shown that the equivalence between the original and (primal)
lifted problem over the non-convex solution space Uhas the mildest assumptions, namely (A1). In gray (middle), the
most exciting result and line of argument is shown, which also only requires assumption (A1): the tightness of the primal
lifted problem over the convex solution space Cas well as the existence of the thresholding formula. In green (right),
it is shown that the equivalence between the primal and dual lifted problem over the convex solution space Cholds
under assumptions (A1)-(A3). Together, with the tightness and thresholding results for the primal lifted problem this
implies that solving the high-dimensional fully convex dual problem allows to őnd (global) minimizers of the originally
non-convex problem.

Summary. We have shown that any variational problems of

the form (3.1) fulőlling (A1)-(A4) can be lifted into a higher-

dimensional, convex problem as in Def. 3.2.5. According to

Thm. 3.2.6 and Thm. 3.2.4, the lifted energy is tight and any

global minimizer 𝑣∗ ∈ arg min𝑣∈CF(𝑣) of the lifted problem can

be mapped to a global minimizer of the original problem. In

Fig. 3.2 we give a short overview over the theoretical results, line

of argument and needed assumptions.

A Note on the TV Regularizer. Assume that the integrand

𝑓 : Ω× Γ×ℝ𝑑 → ℝ can be split into a data term and a regularizer

as follows

𝑓 (𝑥, 𝑡, 𝑝) = 𝜌(𝑥, 𝑡) + 𝜂(𝑝). (3.65)

For a positive, 1-homogeneous, convex regularizer ś such as TV

ś the combined constraint set (3.47) can then be split into two

separate constraint sets: First we note that the constraint in (3.47),

which involves calculating the Fenchel conjugate with respect to
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the third variable, can be rewritten as

𝜑𝑡(𝑥, 𝑡) ≥ −𝜌(𝑥, 𝑡) + 𝜂∗(𝜑𝑥(𝑥, 𝑡)). (3.66)

This can be seen by applying the deőnition of the Fenchel conjugate

pointwise:

𝑓 ∗(𝑥, 𝑡, 𝑝) = sup
𝑞
{⟨𝑝, 𝑞⟩ − 𝑓 (𝑥, 𝑡, 𝑞)} (3.67)

= sup
𝑞
{⟨𝑝, 𝑞⟩ − 𝜌(𝑥, 𝑡) − 𝜂(𝑞)} (3.68)

= −𝜌(𝑥, 𝑡) + sup
𝑞
{⟨𝑝, 𝑞⟩ − 𝜂(𝑞)} (3.69)

(3.70)

As 𝜂 is assumed to be convex and 1-homogeneous, it follows that

𝜂∗ is an indicator function with range {0,+∞} [RW09, Exm. 11.4].

Therefore, the dual formulation (3.46)ś(3.47) can equivalently be

written as

F(𝑣) := sup
𝜑𝑥∈K𝑥

𝜑𝑡∈K𝑡

{∫
Ω×ℝ

〈
(𝜑𝑥 , 𝜑𝑡)⊤ , d𝐷𝑣

〉}
, (3.71)

K𝑥 := {𝜑𝑥 ∈ 𝐶0(Ω ×ℝ;ℝ𝑛) : 𝜑𝑥(𝑥, 𝑡) ∈ dom𝜂∗ , ∀(𝑥, 𝑡)}, (3.72)

K𝑡 := {𝜑𝑡 ∈ 𝐶0(Ω ×ℝ;ℝ) : −𝜑𝑡(𝑥, 𝑡) ≤ 𝜌(𝑥, 𝑡), ∀(𝑥, 𝑡)}. (3.73)

As we will discuss in Sec. 3.4, this problem can be solved using the

PDHG algorithm which involves projections onto the constraint

sets (3.72)ś(3.73).

3.3 Discretization

Practical implementations of the calibration-based lifted problem

in Def. 3.2.5 come with one challenge in particular: during lifting,

the originally continuous rangeΓ becomes part of the domainΩ×ℝ,

which can greatly affect the dimensionality of the discretized prob-

lem. In this section we discuss numerical solutions, concentrating

on the special case where the integrand 𝑓 : Ω× Γ×ℝ𝑑 → ℝ of the

original problem can be split into

𝑓 (𝑥, 𝑡, 𝑝) = 𝜌(𝑥, 𝑡) + 𝜂(𝑝), (3.74)

such that 𝜌 : Ω × Γ → ℝ denotes the integrand of a possibly

non-convex data term and 𝜂 : ℝ𝑛 → ℝ the integrand of a positive,

1-homogeneous, convex regularizer. In this case, the calibration-

based lifted problem is of the form (3.71)ś(3.73); note that the
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information of the original data term is completely and exclusively

included in the constraint set K𝑡 (3.73). The goal of this section

is to explain the numerical problem which arises from making

the range Γ part of the domain Ω × ℝ and to discuss several

discretization schemes. This section does not contain own theoreti-

cal contributions but summarizes and discusses results found in

[Poc+09; Poc+10; Möl+15; MC17].

3.3.1 Finite Differences with Pointwise Constraints

Let us őrst consider a simple őnite-differences approach in both

Ω and Γ. We start by introducing a regular grid Ωℎ × Γℎ of size

𝑚1×..×𝑚𝑛×𝑙, discretizing bothΩ and Γ in the same way, and using

a őnite-differences approximation for the differential operatur 𝐷

in (3.71). Enforcing the constraint set (3.73) on each point of the

grid results in

Kℎ
𝑡 := {𝜑ℎ

𝑡 ∈ ℝ𝑁𝑥 ,𝑙 : −
(
𝜑ℎ
𝑡

)
𝑖 , 𝑗
≤ 𝜌(𝑥𝑖 , 𝛾𝑗),

∀(𝑥𝑖 , 𝛾𝑗) ∈ Ωℎ × Γℎ}. (3.75)

The key observation using this approach is that enforcing the

constraints only on the grid discards the values of the data term

on all non-grid points, i.e., on all points not in the chosen set of

labels Γℎ . This effectively turns the problem, which is originally

formulated on a continuous range, into a labeling problem with a

őnite set of labels. A visualization can be found in Fig. 3.5a.

Such a őnite difference approach is used in [Poc+09; Poc+10]. Im-

plementing and solving the lifted problem with this discretization

is straightforward and involves only simple projections that can

be efficiently computed and will further be speciőed in (3.124)ś

(3.125). However, the results suffer from a comparatively strong

label-bias[MC17]: solutions are drawn towards the discrete set Γℎ

due to the loss of information on the data term in between the

chosen labels; see Fig. 3.3 for an example of the resulting visual

effect. In order to achieve numerically and visually pleasing results,

the number of labels needs to be quite large, which, however,

increases memory usage and runtime.
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Figure 3.3: Discretization Artifacts.

In order to illustrate some potential
pitfalls encountered during the nu-
merical optimization of the lifted
energy, we consider an 𝐿2 − TV de-
noising problem. The energy is lifted
with the CBL approach and dis-
cretized using a őnite differences ap-
proach with 2, 7, and 100 labels (top

right to bottom right). A solution
for the input image (top left) and
regularization parameter 𝜆 = 0.4 is
then computed with the PDHG al-
gorithm. Especially the solution for
2 labels shows the strong label bias
of this discretization scheme and the
resulting cartoonish artifacts.

3.3.2 Approximation of Label-Continuous Formulation

In [MC17] the authors consider őnite-element approximations of

𝑣, 𝜑𝑥 and 𝜑𝑡 with respect to the Γ-axis and discuss the impact of

the choice of the used basis functions. In terms of the őnite-element

coefficients, they reach multi-label approximations of the label-

continuous calibration-based lifted energy and demonstrate that

these approximations are related to other known semi-discrete

(continuous domain Ω, discrete range Γ) relaxation approaches.

We here highlight certain results shown in [MC17]. This serves the

purpose of motivating the choice of the sublabel-accurate discretiza-

tion approach which we use in experiments in later chapters. As the

overview is kept rather short and does not focus on mathematical

details, we refer the interested reader to [MC17].

Grid and Basis Functions. We follow [MC17] and introduce both

a nodal and a cell-centered grid for the Γ axis: For the nodal grid,

the Γ = [𝛾1 , 𝛾𝑙] axis is split into 𝑙−1 non-overlapping, equally-sized

intervals {Γ𝑖}𝑖=1,...,𝑙−1, where Γ𝑖 = [𝛾𝑖 , 𝛾𝑖+1]. The grid spacing is

denoted by ℎ = 𝛾𝑖+1 − 𝛾𝑖 . Furthermore, the grid is padded with

𝛾0 := 𝛾1 − ℎ and 𝛾𝑙+1 := 𝛾𝑙 + ℎ. The associated cell-centered grid

is denoted by {𝛾∗
𝑖
}𝑖=0,...,𝑙 , where 𝛾∗

𝑖
=

𝛾𝑖+𝛾𝑖+1

2 .

In [MC17] the following constant and linear basis functions are

introduced (see also Fig. 3.4 for a visualization): Constant basis

functions centered around the cell-centered grid points

𝚽
0
𝑖 (𝑡) :=




1, if 𝑡 ∈ [𝛾𝑖 , 𝛾𝑖+1],
0, else,

(3.76)



60 3 Calibration-Based Lifting

Figure 3.4: Finite-element approxi-

mation. Practical implementations
of the calibration-based lifted prob-
lem in Def. 3.2.5 involve a discretiza-
tion of the continuous range Γ. We
here illustrate basis functions used
for a őnite-element approximation
of 𝑣, 𝜑𝑥 , and 𝜑𝑡 with respect to the
Γ-axis. Depending on each choice of
basis function, inserting the őnite-
element approximations of 𝑣, 𝜑𝑥 ,
and 𝜑𝑡 into the original CBL energy
preserves more or less information
of the data term (see Fig. 3.5).

𝛾1 𝛾∗
1

𝛾2 𝛾∗
2

𝛾3 𝛾∗
3

𝛾4

1
Φ

0
1

Φ
0
2

Φ
0
3

Γ1 Γ2 Γ3

Γmin Γmax

Γ

(a) Piecewise constant basis functions on the cell-centered grid, see also deőnition
of 𝚽0

𝒊
in (3.76).

𝛾1 𝛾∗
1

𝛾2 𝛾∗
2

𝛾3 𝛾∗
3

𝛾4

1
Ψ

0
2

Ψ
0
3Γmin Γmax

Γ∗
1

Γ∗
2

Γ∗
3

Γ∗
4

Γ

(b) Piecewise constant basis functions on the nodal grid, see also deőnition of
𝚿

0

𝒊
in (3.77).

𝛾1 𝛾∗
1

𝛾2 𝛾∗
2

𝛾3 𝛾∗
3

𝛾4

1
Ψ1

2
Ψ2

3Γmin Γmax

Γ1 Γ2 Γ3

Γ

(c) Piecewise linear basis functions on the nodal grid, see also deőnition of 𝚿1

𝒊
in

(3.78).

constant basis functions centered around the nodal grid points

𝚿
0
𝑖 (𝑡) :=




1, if 𝑡 ∈ [𝛾∗
𝑖
, 𝛾∗

𝑖+1
],

0, else,
(3.77)

as well as linear basis functions centered around the nodal grid

points

𝚿
1
𝑖 (𝑡) :=




1
ℎ (𝑡 − 𝛾𝑖−1), if 𝑡 ∈ [𝛾𝑖−1 , 𝛾𝑖],
1
ℎ (𝛾𝑖+1 − 𝑡), if 𝑡 ∈ [𝛾𝑖 , 𝛾𝑖+1],
0, else.

(3.78)
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𝛾1 𝛾2 𝛾3 𝛾4

1 • •

•
•

Γmin Γmax

(a) Finite Differences. Using őnite differences for discretizing the calibration-
based lifted problem (3.71)ś(3.73) results in a loss of information contained in
the data term. Considering for őxed 𝑥 ∈ Ω the data term 𝜌(𝑥, ·) (black), the only

information included in the discretized constraint Kℎ
𝑡 consists in the values of

the data term at the chosen discretization points (labels) 𝛾1 , ..., 𝛾𝑙 ∈ Γ (orange

dots). In between the chosen labels the data term is approximated piecewise

linearly. The coarser the discrete grid Γℎ , the more information is lost.

𝛾1 𝛾∗
1

𝛾2 𝛾∗
2

𝛾3 𝛾∗
3

𝛾4

1

• •

• •

(b) Min-Pool Discretization. Consider a őnite-element approximation of 𝜑𝑡
using the basis function Ψ

0
𝑖
. Plugging this approximation into the constraint set

K𝑡 (3.73), we see that for őxed 𝑥 ∈ Ω only the minimal value of the data term
𝜌(𝑥, ·) on each interval [𝛾∗

𝑖−1
, 𝛾∗
𝑖
] is known after this discretization (orange dots).

A further őnite-element approximation of 𝑣 and 𝜑𝑥 using the basis functions
Φ

0
𝑖

and discretization of the energy (3.71)ś(3.72) shows that the data term is
approximated piecewise linearly in between the chosen labels 𝛾𝑖 .

𝛾1 𝛾∗
1

𝛾2 𝛾∗
2

𝛾3 𝛾∗
3

𝛾4

1 • •

•
•

(c) Sublabel-Accurate Discretization. While the primal and dual variables 𝑣, 𝜑𝑥
are approximated in a piecewise constant way using the basis functions Φ0

𝑖
, the

dual variable 𝜑𝑡 is approximated using the basis functionsΨ1
𝑖
. This discretization

corresponds to a piecewise convex approximation of the continuous data term in
between the nodal grid points. Compared to the other discretization approaches,
more information of the data term is preserved. This also has a positive impact
on the numerical results: fewer labels are required in order to achieve acccurate
results. The numerical solutions do not exhibit the substantial label bias artifacts
that are encountered in the őnite-differences setting (see Fig. 3.3).

Figure 3.5: Discretization. Three
possible discretization schemes for
the calibration-based lifted energy
(3.71)ś(3.73). Numerically solving
the problem requires a discretiza-
tion of the range Γ. Since we are typ-
ically interested in solutions with
continuous range Γ it is of special
interest how much information of
the original data term (which is for-
mulated for continuous Γ) is pre-
served using different discretization
schemes.



62 3 Calibration-Based Lifting

Variables 𝑣 and 𝜑𝑥 . In the following, the primal variable 𝑣

and the dual variable 𝜑𝑥 are approximated using the Φ
0
𝑖

basis

functions:

𝑣(𝑥, 𝑡) ≈
𝑙∑
𝑖=1

𝑣̂(𝑥, 𝑖)Φ0
𝑖 (𝑡), (3.79)

𝜑𝑥(𝑥, 𝑡) ≈
𝑙∑
𝑖=1

𝜑̂𝑥(𝑥, 𝑖)Φ0
𝑖 (𝑡), (3.80)

where 𝑣̂ : Ω × {1, ..., 𝑙} → ℝ and 𝜑̂𝑥 : Ω × {1, ..., 𝑙} → ℝ𝑛 denote

some coefficient functions.

Min-Pool Discretization. Let 𝜑𝑡 be approximated using the Ψ
0
𝑖

basis functions:

𝜑𝑡(𝑥, 𝑡) ≈
𝑙∑
𝑖=1

𝜑̂𝑡(𝑥, 𝑖)Ψ0
𝑖 (𝑡), (3.81)

where 𝜑̂𝑡 : Ω × {1, ..., 𝑙} → ℝ denotes the coefficient function.

Consider again the constraint set K𝑡 . In order for

𝑙∑
𝑖=1

𝜑̂𝑡(𝑥, 𝑖)Ψ0
𝑖 (𝑡) ≈ −𝜑𝑡(𝑥, 𝑡) ≤ 𝜌(𝑥, 𝑡) (3.82)

to be fulőlled for all (𝑥, 𝑡) ∈ Ω × Γ, the coefficient function must

fulőll

𝜑̂𝑡(𝑥, 𝑖) ≤ min
𝛾∈[𝛾∗

𝑖−1
,𝛾∗
𝑖
]
𝜌(𝑥, 𝛾) (3.83)

for all (𝑥, 𝑖) ∈ Ω × {2, ..., 𝑙 − 1} and, similarly,

𝜑̂𝑡(𝑥, 1) ≤ min
𝛾∈[𝛾1 ,𝛾

∗
1
]
𝜌(𝑥, 𝛾), (3.84)

𝜑̂𝑡(𝑥, 𝑙) ≤ min
𝛾∈[𝛾∗

𝑙−1
,𝛾𝑙]

𝜌(𝑥, 𝛾). (3.85)

Consequently, the only information included in the discretized

constraint set K𝑡 is the minimal value of the data term 𝜌(𝑥, ·) on

each interval [𝛾∗
𝑖−1
, 𝛾∗

𝑖
]. Combined with the őnite-element approxi-

mation of 𝑣 and 𝜑𝑥 , this leads to a piecewise linear approximation

of the data term 𝜌(𝑥, ·) in between the chosen labels ś for details

we refer the reader to [MC17, Prop. 2, Fig. 4]. The approximation

of the data term is visualized in Fig. 3.5b.
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Sublabel-Accurate Discretization. Let 𝜑𝑡 be approximated using

the Ψ1
𝑖

basis functions:

𝜑𝑡(𝑥, 𝑡) ≈
𝑙∑
𝑖=1

𝜑̂𝑡(𝑥, 𝑖)Ψ1
𝑖 (𝑡), (3.86)

where 𝜑̂𝑡 : Ω×{1, ..., 𝑙} → ℝdenotes again the coefficient function.

Consider again the constraint set K𝑡 . In order for

−
𝑙∑
𝑖=1

𝜑̂𝑡(𝑥, 𝑖)Ψ1
𝑖 (𝑡) ≈ −𝜑𝑡(𝑥, 𝑡) ≤ 𝜌(𝑥, 𝑡) (3.87)

to be fulőlled for all (𝑥, 𝑡) ∈ Ω × Γ, the coefficient function must

fulőll

𝜑̂𝑡(𝑥, 𝑖)𝛾𝑖+1 − 𝜑̂𝑡(𝑥, 𝑖 + 1)𝛾𝑖
ℎ

≥ 𝜌∗𝑖

(
𝜑̂𝑡(𝑥, 𝑖) − 𝜑̂𝑡(𝑥, 𝑖 + 1)

ℎ

)
(3.88)

for any (𝑥, 𝑖) ∈ Ω × {1, ..., 𝑙}, where

𝜌𝑖(𝑥, 𝑡) := 𝜌(𝑥, 𝑡) + 𝛿Γ𝑖 (𝑡), 𝛿Γ𝑖 (𝑡) :=




0, if 𝑡 ∈ Γ,
+∞, else.

(3.89)

Derivation of (3.88). We consider the constraint on each interval

Γ𝑖 separately and insert the őnite element approximation. This

gives

inf
𝑡∈Γ𝑖

{
𝑖+1∑
𝑗=𝑖

𝜑̂𝑡(𝑥, 𝑗)Ψ1
𝑗 (𝑡) + 𝜌(𝑥, 𝑡)

}
≥ 0 ⇔ (3.90)

inf
𝑡∈Γ𝑖

{
𝜑̂𝑡(𝑥, 𝑖)

𝛾𝑖+1 − 𝑡
ℎ

+ 𝜑̂𝑡(𝑥, 𝑖 + 1) 𝑡 − 𝛾𝑖
ℎ
+ 𝜌(𝑥, 𝑡)

}
≥ 0. (3.91)

Introducing the notation

𝑎(𝑖) :=
𝜑̂𝑡(𝑥, 𝑖)𝛾𝑖+1 − 𝜑̂𝑡(𝑥, 𝑖 + 1)𝛾𝑖

ℎ
, (3.92)

𝑟(𝑖) :=
(𝜑̂𝑡(𝑥, 𝑖) − 𝜑̂𝑡(𝑥, 𝑖 + 1))

ℎ
, (3.93)

we can bring (3.91) into the form of a Fenchel conjugate:

inf
𝑡∈Γ𝑖
{𝑎(𝑖) − ⟨𝑟(𝑖), 𝑡⟩ + 𝜌(𝑥, 𝑡)} ≥ 0 (3.94)

⇔ 𝑎(𝑖) − sup
𝑡∈ℝ
{⟨𝑟(𝑖), 𝑡⟩ − 𝜌𝑖(𝑥, 𝑡)} ≥ 0 (3.95)

⇔ 𝑎(𝑖) − 𝜌∗𝑖 (𝑟(𝑖)) ≥ 0. (3.96)
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Combined with the őnite-element approximation of 𝑣 and 𝜑𝑥 , this

leads effectively to a piecewise convex approximation of the data

term 𝜌(𝑥, ·) in between the chosen labels, see Fig. 3.5c. The resulting

łsublabel-accuratež semi-discrete energy was őrst proposed as a

lifting strategy in a semi-discrete setting (continuous Ω, discrete Γ)

[Möl+15]; As the derivation in [Möl+15] makes the piecewise

convex approximation of the data term better understandable

and we rely on the related results and notations in Chpt. 4, we

present a summary in Sec. 3.3.3. The equivalence to the above-

discussed őnite-element approximation of the fully continuous

calibration-based lifted energy is shown in [MC17, Prop. 4].

Due to the sublabel-accurate approximation of the data term, the

sublabel-accurate discretization scheme is generally superior to

the other two discussed discretization schemes: Fewer labels are

needed in order to achieve numerically and visually pleasing re-

sults. In [Möl+15], the authors demonstrate that sublabel-accurate

results achieved with 𝑙 = 32 labels are on par with őnite-difference

results achieved with 𝑙 = 270 labels. Therefore, the memory require-

ment and overall runtime is lower compared to other approaches.

However, as demonstrated in [Möl+15, Sec. 4], the implementa-

tion is more involved: During optimization, projections onto the

epigraph of the piecewise5 Fenchel conjugate of the data term5: in between the labels

are required ś an operation which is not always easy to compute.

Besides this practical hurdle, there is also a theoretical pitfall:

While global minimizers of the original problem can be mapped

to global minimizers of the lifted problem, there are non-integral

global minimizers in the lifted setting which cannot be mapped to

global minimizers in the original setting.

3.3.3 Sublabel-Accurate Lifting

For reference, we provide a short summary of the lifting approach

with sublabel-accurate lifting for a TV regularized problem as pre-

sented in [Möl+15]. The derivation of the sublabel-accurate lifting

approach neither directly builds on the calibration-based lifting

formulation in Sec. 3.2 nor the discretization and approximation

described in Sec. 3.3, but offers intuition on why the data term is

effectively approximated in a piecewise convex way as shown in

Fig. 3.5c.

Even though the line of argument differs from the one given in the

previous subsections, the őnal semi-discrete problem is equivalent

to the one which is obtained using calibration-based lifting in

combination with a őnite-element approximation of the variables

𝑣, 𝜑𝑥 and 𝜑𝑡 as described on p. 63, see [MC17, Prop. 4]. The notation

is borrowed from [Möl+15] and will later be used in Chpt. 4.
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In the following, we again assume that the energy 𝐹 can be split

into a data term 𝐻 and total variation regularizer TV such that

𝐹(𝑢) :=

∫
Ω

𝜌(𝑥, 𝑢(𝑥))d𝑥︸              ︷︷              ︸
𝐻(𝑢)

+
∫
Ω

d|𝐷𝑢 |︸     ︷︷     ︸
TV(𝑢)

(3.97)

and consider the problem

inf
𝑢:Ω→Γ

𝐹(𝑢). (3.98)

In the previous section, we used calibration-based lifting in order to

őnd a convex representation of this continuous(-domain) problem.

In this section, the őrst step is to discretize the range Γ using 𝑙

discretization points, also called labels, and using the discrete,

nodal grid Γℎ as introduced on p. 59. The second step is to identify

scalar functions 𝑢 : Ω→ Γ with vectorial functions 𝒖 : Ω→ ℝ𝑙−1

using a pointwise argument. Subsequently, (3.98) is reformulated

as

inf
𝒖:Ω→ℝ𝑙−1

𝑭(𝒖); (3.99)

in this form the problem is then convexiőed. The following argu-

ments are formal and pointwise in terms of the integrands 𝜌 and 𝜂

for őxed 𝑥 ∈ Ω, dropping the dependency on 𝑥 and disregarding

any regularity requirements.

From here on, bold symbols typically denote the semi-discretized

lifted setting.

Lifting the Solution Space [Möl+15, Chpt. 3]. Using the nodal

grid Γℎ introduced in Sec. 3.3, any scalar value in 𝛾𝛼
𝑖
∈ Γ can be

written as a linear combination

𝛾𝛼
𝑖 = 𝛾𝑖 + 𝛼(𝛾𝑖+1 − 𝛾𝑖), (3.100)

where 𝑖 ∈ {1, 2, ..., 𝑙 − 1} such that 𝛾𝑖 ≤ 𝛾𝛼
𝑖
≤ 𝛾𝑖+1 and 𝛼 ∈ [0, 1].

This motivates the following lifted (vectorial) representation 1𝛼
𝑖

of

an originally scalar value 𝛾𝛼
𝑖
∈ Γ:

1𝛼𝑖 := 𝛼1𝑖 + (1 − 𝛼)1𝑖−1 ∈ ℝ𝑙−1. (3.101)

Here, 1𝑖 ∈ ℝ𝑙−1 is the vector of 𝑖 ones followed by zeroes6

6: Consequently, the lifted vectors

are of the form

1𝛼𝑖 =

©­­­­­­­­­­­­­
«

1

...

1

𝛼

0

...

0

ª®®®®®®®®®®®®®
¬

← 𝑖𝑡ℎ row

.

The non-convex lifted label space is deőned as the set

𝚪 := {1𝛼𝑖 ∈ ℝ
𝑙−1 |𝑖 ∈ {1, 2, ..., 𝑙}, 𝛼 ∈ [0, 1]}. (3.102)

Functions 𝑢 : Ω → Γ can thus be linked to vectorial functions



66 3 Calibration-Based Lifting

𝒖 : Ω → [0, 1]𝑙−1. These vectorial functions are called (sublabel-)

integral, if 𝒖(𝑥) = 1𝛼
𝑖
∈ 𝚪 for (almost) every 𝑥. These sublabel-

integral functions can be mapped to scalar-valued functions 𝑢 :

Ω→ Γ by using the (pointwise) transformation

𝑢(𝑥) = 𝛾1 +
𝑙−1∑
𝑖=1

𝒖 𝑖(𝑥)(𝛾𝑖+1 − 𝛾𝑖). (3.103)

Having introduced a lifted representation for the solution space, the

energy needs to be reformulated as well. The reformulation can be

constructed separately for the data term and for the regularizer.

Lifting of the Data Term [Möl+15, Chpt. 3.1]. For the ś possi-

bly non-convex ś data term, the lifted representation is deőned

pointwise for őxed 𝑥 as 𝝆(𝑥, ·) : ℝ𝑙−1 ↦→ ℝ,

𝝆(𝑥, 𝒖(𝑥)) := inf
𝑖∈{1,...,𝑙−1},

𝛼∈[0,1]

{
𝜌(𝑥, 𝛾𝛼

𝑖 ) + 𝛿1𝛼
𝑖
(𝒖(𝑥))

}
. (3.104)

With this deőnition, 𝝆(𝑥, 1𝛼
𝑖
) = 𝜌(𝑥, 𝛾𝛼

𝑖
), see also Fig. 3.6aśb. Note

that this is still a non-convex term, as 𝝆 only assumes őnite values

on the non-convex set 𝚪 and is inőnite everywhere else. In order

to arrive at a convex expression, the deőnition of the Fenchel

conjugate is applied twice (under the integral) with respect to the

second variable. This gives a relaxed and convex integrand which

is used to deőne the following convex data term:

𝑯(𝒖) =
∫
Ω

𝝆
∗∗(𝑥, 𝒖(𝑥))𝑑𝑥. (3.105)

This results in a convex expression in the lifted setting, see Fig. 3.6d,

and in a piecewise convex approximation of the original data term

in between the chosen labels, see Fig. 3.6c as well as Fig. 3.5c. An

explicit expression for 𝝆∗∗ is given in [Möl+15, Prop. 1].

Lifting of the Total Variation Regularizer [Möl+15, Chpt. 3.2].

Lastly, one can establish a lifted representation of the (isotropic)

total variation regularizer, which builds on the theory devel-

oped in the context of lifting methods for multiclass labeling

approaches [LS11; CCP12]. The lifted ś and non-convex ś integrand

𝜼 : ℝ(𝑙−1)×𝑛 ↦→ ℝ is deőned as

𝜼(𝒈) := inf
1≤𝑖≤ 𝑗≤𝑙−1,
𝛼,𝛽∈[0,1]
𝑣∈ℝ𝑛

{
|𝛾𝛼
𝑖 − 𝛾

𝛽

𝑗
| · ∥𝑣∥2 + 𝛿 (

1𝛼
𝑖
−1

𝛽
𝑗

)
𝑣⊤
(𝒈)

}
. (3.106)
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(a) Original data term 𝜌(𝑥, ·) (b) Lifted data term 𝝆(𝑥, ·)

(c) Approximation of data term 𝜌(𝑥, ·) (d) Lifted data term 𝝆∗∗(𝑥, ·)

Figure 3.6: We consider the inte-
grand of a non-convex data term
𝜌(𝑥, ·) for őxed, arbitrary 𝑥 ∈ Ω,
dropping the 𝑥 for simplicity.

In Fig. (a), the original inte-
grand of the data term 𝜌 : Γ → ℝ

is shown in blue. Discretizing the
range Γ (x-axis) by introducing
the three labels indicated by the
vertical gray lines leads to the the
high-dimensional, yet non-convex,
integrand 𝝆 : ℝ2 → ℝ marked blue
in Fig. (b).

By calculating the biconjugate 𝝆 of
the lifted data term, we obtain the
convex, lifted representation of the
integrand 𝝆∗∗ : ℝ2 → ℝ shown in
blue in Fig. (d). Looking at the Γ1

and Γ2 axis, it is apparent that the
original integrand is approximated
in a piecewise convex way in
between the chosen labels, see also
the blue line in Fig. (c) and orange
dashed line in Fig. 3.5c

Applying the Legendre-Fenchel conjugate twice results in a relaxed

ś and convex ś regularization term:

𝑻𝑽 (𝒖) :=

∫
Ω

𝜼
∗∗(𝐷𝒖), (3.107)

where 𝐷𝒖 is the distributional derivative in the form of a Radon

measure. For the isotropic 𝐿2-TV, it can be shown that, for

𝒈 ∈ ℝ(𝑙−1)×𝑛 with rows 𝒈 𝑖 , 𝑖 = 1, ..., 𝑙 − 1,

𝜼
∗∗(𝒈) = sup

𝒒∈𝑲iso

{⟨𝒒 , 𝒈⟩} , (3.108)

𝑲iso =

{
𝒒 ∈ ℝ(𝑙−1)×𝑛

���∥𝒒 𝑖 ∥2 ≤ 𝛾𝑖+1 − 𝛾𝑖 ,∀𝑖 = 1, ..., 𝑙 − 1
}
.

(3.109)

For more details we refer to [Möl+15, Prop. 4] and [CCP12].

While the authors of [Möl+15] only consider the isotropic 𝐿2-TV,

we here want to additionally consider the anisotropic 𝐿1-TV, which

is deőned as TVan(𝑢) :=
∫
Ω
∥𝐷𝑢∥1. We deőne the lifted anisotropic

𝐿1-TV as:

𝜼
∗∗(𝒈) = sup

𝒒∈𝑲an

{⟨𝒒 , 𝒈⟩} , (3.110)

𝑲an =
⋂

𝑗=1,...,𝑛

{
𝒒
��� ∥𝒒 𝑖 , 𝑗 ∥2 ≤ 𝛾𝑖+1 − 𝛾𝑖 ,∀𝑖 = 1, ..., 𝑙 − 1

}
. (3.111)
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The anisotropic 𝐿1-TV will be of special interest in Chpt. 4.

Motivation for the deőnition of 𝑲an. With the same strategy as in the

isotropic case (3.109), using the fact that ∥ · ∥∞ is the dual norm of

∥ · ∥1, one obtains

𝑲an =

{
𝒒 ∈ ℝ(𝑙−1)×𝑛

��� ∥𝒒 𝑖 ∥∞ ≤ 𝛾𝑖+1 − 𝛾𝑖 ,∀𝑖 = 1, ..., 𝑙 − 1
}
.

(3.112)

For arbitrary, őxed 𝒒 ∈ ℝ(𝑙−1)×𝑛 , it holds for any 1 = 1, ..., 𝑙 − 1 that

∥𝒒 𝑖 ∥∞ ≤ 𝛾𝑖+1 − 𝛾𝑖 , (3.113)

⇔ max
𝑗=1,...,𝑑

|𝒒 𝑖 , 𝑗 | ≤ 𝛾𝑖+1 − 𝛾𝑖 , (3.114)

⇔ ∥𝒒 𝑖 , 𝑗 ∥2 ≤ 𝛾𝑖+1 − 𝛾𝑖 , ∀𝑗 = 1, ..., 𝑛. (3.115)

This motivates the deőnition of 𝑲an in (3.111)

Lifted Problem. Putting everything together, the sublabel-accurate

lifted formulation of (3.98) is

inf
𝒖:Ω→ℝ𝑙−1

{∫
Ω

𝝆
∗∗(𝑥, 𝒖(𝑥))𝑑𝑥 +

∫
Ω

𝜼
∗∗(𝐷𝒖)

}
. (3.116)

In [MC17, Prop. 4], it is shown that this formulation is equal to

the one obtained by applying the sublabel-accurate discretization

approach on the calibration-based lifted energy as described on

p. 63.

3.4 Optimization

Typically, the lifted problem (3.71)-(3.73) is solved using the primal-

dual hybrid gradient (PDHG) algorithm [Poc+09; Poc+10; Möl+15].

The PDHG algorithm is applicable to a broad class of variational

problems of the following form:

min
𝑣∈𝐶

max
𝜑∈𝐾
{⟨𝐴𝑣, 𝜑⟩ + 𝐺(𝑣) − 𝐹∗(𝜑)}, (3.117)

where 𝐺 and 𝐹∗ are convex functions mapping to the extended

real line, 𝐴 denotes some linear operator, and 𝐶 and 𝐾 are closed,

convex sets.

Backward gradient step. Recall that a classical gradient descent step for

a differentiable function 𝑓 : ℝ𝑛 → ℝ is deőned as

𝑥𝑘+1
= 𝑥𝑘 − 𝛼∇ 𝑓 (𝑥𝑘), (3.118)
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where 𝛼 > 0 is the step size. This can informally be thought of as a

forward-Euler discretization of the łgradient ŕowž PDE

𝜕

𝜕𝑡
𝑥 = −∇ 𝑓 (𝑥). (3.119)

For a convex, non-smooth function 𝑓 , the PDE formally generalizes

to
𝜕

𝜕𝑡
𝑥 ∈ 𝜕 𝑓 (𝑥). (3.120)

Using a backward Euler discretization, the PDE leads to the fol-

lowing update rule, which is called a backward gradient step:

𝑥𝑘+1 ∈ (𝐼 + 𝛼𝜕 𝑓 )−1(𝑥𝑘), (3.121)

where (𝐼+𝛼𝜕 𝑓 )−1 denotes the preimage of the set-valued mapping

𝐼 + 𝛼𝜕 𝑓 , see also (3.52). If 𝑓 is proper, lower semicontinuous, and

convex, the backward gradient step is single-valued and can be

computed as the solution to the proximal step:

prox𝛼 𝑓 (𝑥𝑘) = arg min
𝑥∈ℝ𝑛

{
1

2
∥𝑥 − 𝑥𝑘 ∥22 + 𝛼 𝑓 (𝑥)

}
. (3.122)

See also [Eck89, Chpt. 3.2.3].

PDHG Algorithm. The idea of the PDHG algorithm is to alter-

natingly perform a backward gradient step on the primal and dual

variables whilst projecting onto the set of feasible points. In its

simplest form, the algorithm is described in Alg. 1:

Algorithm 1: PDHG Algorithm

1 Initialize:

2 𝜏, 𝜎 > 0, 𝜃 ∈ [0, 1], (𝑣0 , 𝜑0) ∈ 𝐶 × 𝐾, 𝑣̄0 ← 𝑣0.

3 For 𝑛 ≥ 0

4 𝜑𝑛+1 ← (𝐼 + 𝜎𝜕𝐹∗)−1(𝜑𝑛 + 𝜎𝐴𝑣̄𝑛)
5 𝑣𝑛+1 ← (𝐼 + 𝜏𝜕𝐺)−1(𝑣𝑛 − 𝜏𝐴∗𝜑𝑛+1)
6 𝑣̄𝑛+1 ← 𝑣𝑛+1 + 𝜃(𝑣𝑛+1 − 𝑣𝑛)

In many imaging applications, the resolvent operator (𝐼 + 𝜎𝜕𝐹)−1 has

a closed form representation (see examples in [CP11]). This is also

the case for the CBL problem. In the following we will exemplarily

work with the őnite-difference discretization approach.

Consider the discretized version of the CBL problem in Def. 3.2.5:

inf
𝑣∈𝐶ℎ

sup
𝜑∈𝐾ℎ

∑
𝑖 , 𝑗

𝜑(𝑥𝑖 , 𝑡 𝑗)⊤𝐷ℎ𝑣(𝑥𝑖 , 𝑡 𝑗), (3.123)
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where 𝐶ℎ , 𝐾ℎ denote the discretized version of the constraint sets

C,K, and 𝐷ℎ denotes the discretized version of the distributional

derivative. Furthermore, we denote the adjoint of 𝐷ℎ by 𝐷∗
ℎ

and

the projection onto a closed, convex set 𝐶 by Proj𝐶 . As 𝐹∗ ≡ 𝛿𝐶ℎ ,

𝐺 ≡ 𝛿𝐾ℎ , and 𝐴 = 𝐷ℎ , the PDHG algorithm boils down to Alg. 2:

Algorithm 2: PDHG Algorithm for CBL

1 Initialize:

2 𝜏, 𝜎 > 0, 𝜃 ∈ [0, 1], (𝑣0 , 𝜑0) ∈ 𝐶ℎ × 𝐾ℎ , 𝑣̄0 ← 𝑣0.

3 For 𝑛 ≥ 0

4 𝜑𝑛+1 ← Proj𝐾ℎ (𝜑
𝑛 + 𝜎𝐷ℎ 𝑣̄

𝑛)
5 𝑣𝑛+1 ← Proj𝐶ℎ (𝑣

𝑛 − 𝜏𝐷∗
ℎ
𝜑𝑛+1)

6 𝑣̄𝑛+1 ← 𝑣𝑛+1 + 𝜃(𝑣𝑛+1 − 𝑣𝑛)

In case of the őnite-difference discretization approach, computing

the projections onto 𝐶ℎ and 𝐾ℎ is straightforward and has an

explicit form: The projection onto 𝐶ℎ is achieved by pointwise

clamping

Proj𝐶ℎ (𝑣) = min{1,max{0, 𝑣}}. (3.124)

For the TV regularizer, the projection onto 𝐾ℎ can, furthermore,

be written as

Proj𝐾ℎ ((𝜑𝑥 , 𝜑𝑡)) =
(

𝜑𝑥

max{1, ∥𝜑𝑥 ∥}
,max{−𝜌, 𝜑𝑡}

)
. (3.125)

Together with Alg. 2, these projections allow to construct a practical

algorithm for numerically minimizing the lifted dual problem in

Def. 3.2.5. In this work, we use the implementation from [LM15].

Related Methods and Results. Theory concerning the PDHG

algorithm is only of minor importance in this work. Therefore, we

only mention some papers for the interested reader: The PDHG

algorithm as we use it was őrst introduced by [CP11]. Preliminary

primal-dual methods for the 𝐿2 − TV denoising and Mumford-

Shah problem can be found in [ZC08; Poc+09]. Connections to

other algorithms such as ADDMM, Douglas-Rachford or Split Inexact

Uzawa are established in [EZC10; CP11]. Convergence results for

the vanilla PDHG algorithm can be found in [CP11], however faster

convergence is possible using preconditioning [PC11], adaptive step

sizes [Gol+13], and a good choice of proximal parameters [FB18].

Also worth mentioning is the stochastic primal-dual hybrid gradient

(SPDHG) algorithm, in which the dual variable is only partially

updated in each step [Cha+18; GDE21; AFC22], and an extension

to nonlinear operators 𝐴 [Val14].
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3.5 Conclusion and Outlook

In this chapter, we have introduced the calibration-based lifting

approach building on the general line of argument in [Poc+10]. By

carefully considering the subgraph of 𝐵𝑉(Ω;Γ)-functions as well

as related measure-theoretic objects and by recalling central results

from [Mas79] and [Vog20], we extended the lifting and duality

result in [Poc+10, Thm. 3.2] from the 𝑊1,1(Ω;Γ) to the 𝐵𝑉(Ω;Γ)
setting. Furthermore, we proved that the important thresholding

theorem [Poc+10, Thm. 3.1] also carries over to the 𝐵𝑉(Ω;Γ) set-

ting. Additionally, we have discussed possible discretization and

optimization approaches.

These results are the foundation and inspiration for the following

two contributions in this work: Firstly, in Chpt. 4, we will use the

lifted dual formulation (Def. 3.2.5) in order to extend the notion

of inverse scale space iterations. The resulting generalized inverse

scale space iterations are studied in a continuous and sublabel-

accurate discretized (Sec. 3.3.3) setting. Secondly, in Chpt. 5, we

introduce a neural őelds-based learning approach as an alternative

to the classical optimization approach using the PDHG algorithm

as discussed in Sec. 3.4.
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In this chapter, we propose generalized inverse scale space iterations,

shortly referred to as lifted Bregman iterations (LBI), for variational

problems of the form (see also sidenote on p.42)

inf
𝑢∈BV(Ω;Γ)

𝐹(𝑢), 𝐹(𝑢) :=

∫
Ω

𝑓 (𝑥, 𝑢(𝑥), d𝐷𝑢). (4.1)

We assume that Ω ⊂ ℝ𝑛 is open and bounded, Γ ⊂ ℝ is scalar and

compact with Γ = [Γmin , Γmax], 𝑓 fulőlls the assumptions (A1)-(A4)

introduced on p. 42 and is in addition

(B1) separable in the sense that 𝑓 : Ω×ℝ×ℝ𝑛 can be written with

the help of 𝜌 : Ω ×ℝ→ ℝ and 𝜂 : ℝ𝑛 → ℝ as

𝑓 (𝑥, 𝑡, 𝑝) = 𝜌(𝑥, 𝑡) + 𝜂(𝑝), (4.2)

(B2) positively 1-homogeneous in the last argument, i.e.,

𝜂(𝜆𝑝) = 𝜆𝜂(𝑝) ∀𝑝 ∈ ℝ𝑛 , 𝜆 > 0. (4.3)

Assumption (B2) is necessary, as the existing theory of non-linear

inverse scale spaces and weak spectral representation [Bur+15;

Bur+16] is formulated in the context of such regularizers and our

approach will build on this existing theory. In combination with

assumption (B1), we can employ a special form of the calibration-

based lifting (see p. 56).

While assumptions (A1)-(A4) and (B1)-(B2) limit the choice of

admissible regularizers, they allow the use of the total variation

regularizer, which plays a prominent role in mathematical imaging.

In the following, we denote by 𝐻 : BV(Ω;𝐺𝑎𝑚𝑚𝑎) → ℝ the data

term

𝐻(𝑢) =
∫
Ω

𝜌(𝑥, 𝑢(𝑥))d𝑥, (4.4)

and use throughout our explanations and experiments the total

variation regularizer TV : BV(Ω) → ℝ, i.e.,

TV(𝑢) =
∫
Ω

𝜂(𝐷𝑢) =
∫
Ω

d|𝐷𝑢 |. (4.5)

4.1 Motivation and Outline

In mathematical image computing, some of the most common tasks

evolve around analyzing, manipulating, enhancing, or reducing
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features of a certain scale. In such approaches, a fundamental

building block is to decompose a given image into components of

different scale.

Our work builds on the recent idea of weak data-dependent spectral

frequency representation [Bur+16, Def. 1.4], where an image 𝑓 ∈ 𝐵,

with 𝐵 denoting some Banach space, is decomposed into a set of

non-linear eigenfunctions of a convex, absolutely 1-homogeneous

regularizer 𝐽. It is based on a generalization of the spectral theorem

for linear operators [Hal13, Thm. 7.12]. For a general introduction

to the topic we refer the reader to Sec. 2.3; here we only recall the

central motivation and equations.

The weak data-dependent spectral frequency representation is a

vector-valued distribution 𝜇
𝑓

𝐽
on 𝐵, such that in the special case

where 𝑓 is a nonlinear eigenfunction of 𝐽 with eigenvalue 𝜆, i.e.,

𝜆 𝑓 ∈ 𝜕𝐽( 𝑓 )with ∥ 𝑓 ∥ = 1, it holds

𝜇
𝑓

𝐽
(𝑠) = 𝑓 𝛿(𝑠 − 𝜆), 𝑠 ∈ ℝ+0 . (4.6)

In the general case 𝑓 ∈ 𝐵 it holds

𝑓 =

∫ ∞

0

𝜇
𝑓

𝐽
(𝑠)d𝑠. (4.7)

Features in the input image 𝑓 can be enhanced, reduced or even

removed by constructing a non-linear őlter 𝑤̃ from a bounded,

measurable map 𝑤 : ℝ+ → ℝ to the image 𝑓 via the deőnition

𝑤̃( 𝑓 ) =
∫ ∞

0

𝑤(𝑠)𝜇 𝑓
𝐽
(𝑠)d𝑠. (4.8)

In this context, details are eigenfunctions of the regularizer 𝐽 and

the notion of size correlates with the eigenvalues.

The analysis of non-linear eigenfunctions of the here considered

class of convex, absolutely 1-homogeneous regularizers has mainly

focused on the TV regularizer. In the 2D scenario, the authors

of [BCN02, Thm. 4] have shown that the indicator function of a

bounded set 𝐶 ⊂ ℝ2 with őnite perimeter is a nonlinear eigenfunc-

tion of the TV regularizer if and only if considered set 𝐶 is convex,

its boundary 𝜕𝐶 is of the class 𝐶1,1 and the essential supremum of

the curvature 𝜅 is bounded by the ratio of the perimeter 𝑃 and area

𝐴 of the set:

ess sup
𝑞∈𝜕𝐶
≤ 𝑃(𝐶)
𝐴(𝐶) . (4.9)

Due to this, the őlter (4.16) has the potential to gracefully cope

with sharp edges, in contrast to ś for example ś classical őltering

by Fourier coefficients.
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There are multiple, in certain cases equivalent, methods of deriv-

ing such a representation 𝜇
𝑓

𝐽
: The variational method (VM), the

gradient ŕow (GF) and the inverse scale space (ISS) ŕow discussed

in 1.2.2. In the remainder of the chapter, we discuss the ISS method

[Bur+06; Bur+15; Bur+16; GMB16].

Inverse Scale Space Flow and Weak Data-Dependent Spectral

Frequency Representation. We denote by 𝑓 ∈ 𝐿2(Ω;ℝ𝑘) an

image and by 𝐽 : 𝑈 → ℝ a convex, 1-homogeneous functional,

where 𝑈 is a suitable Banach space embedded into 𝐿2(Ω;ℝ𝑘).
Recall that the inverse scale space ŕow (ISS) is deőned as

𝜕

𝜕𝑠
𝑝(𝑠) = 𝑓 − 𝑢̃(𝑠), (4.10)

𝑝(𝑠) ∈ 𝜕𝐽(𝑢̃(𝑠)), (4.11)

𝑝(0) = 0, (4.12)

where 𝑢̃ , 𝑝 : ℝ+0 → 𝑈 , 𝑝 is differentiable, and 𝜕𝐽 is the subdifferen-

tial of 𝐽. For nonlinear eigenfunctions 𝑓 with eigenvalue 𝜆 of 𝐽, it

holds [Bur+16, p. 1388]

𝑢̃(𝑠) =



0, if 𝑠 ≤ 𝜆,

𝑓 , else.
(4.13)

Consequently, nonlinear eigenfunctions 𝑓 of 𝐽 appear as (Dirac)

delta peaks in the distributional derivative 𝜕
𝜕𝑠
𝑢̃(·, 𝑠) = 𝑓 (·)𝛿𝜆(𝑠).

This motivates

𝜇
𝑓

𝐽
(𝑠) :=

𝜕

𝜕𝑠
𝑢̃(·, 𝑠) (4.14)

as a deőnition of the weak data-dependent spectral frequency

representation. In [Bur+16], the authors show that any image

𝑓 ∈ 𝐿2(Ω;ℝ𝑘) is perfectly reconstructed by

𝑓 =

∫ ∞

0

𝜇
𝑓

𝐽
(𝑠)d𝑠 (4.15)

Furthermore, features of a certain scale can be enhanced or removed

by applying some bounded, measurable őlter function𝑤 : ℝ+ → ℝ

via

𝑤( 𝑓 ) =
∫ ∞

0

𝑤(𝑠)𝜇 𝑓
𝐽
(𝑠)d𝑠. (4.16)

Bregman Iteration. The inverse scale space ŕow is closely linked

to the Bregman iteration which was originally introduced as an

iterative regularization method [Osh+05] for variational problems
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of the form

min
𝑢∈𝑈
{𝐻(𝑢; 𝑓 ) + 𝐽(𝑢)} . (4.17)

Here,𝑈 is an appropriate solution space, 𝑓 some input data, and

both 𝐻 and 𝐽 are assumed to be non-negative and convex with

respect to 𝑢. The Bregman iteration is deőned as:

Algorithm 3: Bregman Iteration (BI)

1 Initialize 𝑝0 = 0

2 Repeat for 𝑘 = 1, 2, ...

3 𝑢𝑘 ∈ arg min𝑢∈𝑈 {𝐻(𝑢; 𝑓 ) + 𝐽(𝑢) − ⟨𝑝𝑘−1 , 𝑢⟩}
4 𝑝𝑘 ∈ 𝜕𝐽(𝑢𝑘)

Let us now consider the special case of the ROF denoising problem

[ROF92], i.e., 𝑓 ∈ 𝐿2(Ω;Γ), 𝑈 = BV(Ω;Γ), 𝐻(𝑢; 𝑓 ) = 𝜆
2 ∥ 𝑓 − 𝑢∥2𝐿2

and 𝐽(𝑢) = TV(𝑢). While the choice 𝑝𝑘 ∈ 𝜕𝐽(𝑢𝑘) is not necessarily

unique as the total variation is a non-smooth functional, the Breg-

man iteration can be made deterministic by the observation that

the choice 𝑝𝑘 = 𝑝𝑘−1 + 𝜆( 𝑓 − 𝑢𝑘) ∈ 𝜕𝐽(𝑢𝑘) is possible [Osh+05].

This leads to the following modiőed iteration:

Algorithm 4: Bregman Iteration ś ROF

1 Initialize 𝑝0 = 0

2 Repeat for 𝑘 = 1, 2, ...

3 𝑢𝑘 ∈ arg min𝑢∈BV(Ω;Γ)
{
𝜆
2 ∥ 𝑓 − 𝑢∥2𝐿2 + TV(𝑢) − ⟨𝑝𝑘−1 , 𝑢⟩

}
4 𝑝𝑘 = 𝑝𝑘−1 + 𝜆( 𝑓 − 𝑢𝑘)

The optimality condition for the third line is

0 ∈ −𝜆( 𝑓 − 𝑢𝑘) + 𝜕TV(𝑢𝑘) − 𝑝𝑘−1. (4.18)

With the special subgradient 𝑝𝑘 := 𝑝𝑘−1 + 𝜆( 𝑓 − 𝑢𝑘) ∈ 𝜕TV(𝑢𝑘), it

holds

0 = −𝜆( 𝑓 − 𝑢𝑘) + 𝑝𝑘 − 𝑝𝑘−1. (4.19)

This can be rewritten to

𝑓 − 𝑢𝑘 =
1

𝜆
(𝑝𝑘 − 𝑝𝑘−1) (4.20)

Interpreting𝜆 small enough as the łtimež passed between iteration

𝑘 − 1 and 𝑘, the right-hand-side resembles a őnite backward

difference. Informally replacing the discrete steps of the Bregman

iteration with a continuous time variable 𝑠 ∈ [0, 𝑇), we arrive at

𝑓 − 𝑢(𝑠) = 𝜕

𝜕𝑠
𝑝(𝑠), 𝑝(𝑠) ∈ 𝜕𝐽(𝑢(𝑠)), 𝑝(0) = 0, (4.21)

which is simply the inverse scale space ŕow equation [Bur+16].
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Summary. To summarize, for the ROF problem, the Bregman

iteration with speciőc choice of subgradient leads in the continuous

limit to the inverse scale space ŕow. Due to (4.13), the latter allows

to deőne a weak spectral representation (4.14) of the input image.

This weak spectral representation is built around nonlinear eigen-

functions of the convex, absolutely 1-homogeneous regularizer.

Notably, for the 2D total variation regularizer, indicator functions

of certain bounded, convex sets with őnite perimeter are in fact

eigenfunctions [BCN02, Thm. 4]. Consequently, the application of

őlter functions as in (4.16) handles edges well.

Open Questions. So far, attempts at constructing inverse scale

space ŕows, weak spectral representations, and related őlters have

been limited to 𝐿2 data terms. However, many interesting varia-

tional problems in image analysis, such as depth estimation, have

inherently non-convex data terms. It is therefore an interesting

challenge to extend these tools to more general problems by ap-

plying a version of the Bregman iteration to problems (4.1) with

arbitrary, possibly non-convex data term:

▶ Does the Bregman iteration generate an inverse scale space

iteration of solutions for arbitrary, possibly non-convex data

terms?

▶ Can we deőne a non-linear spectral decomposition of these

solutions, e.g., a spectral decomposition of the depth map

minimizing a stereo matching problem?

Lifted Bregman Iteration. In this chapter, we take a step to-

wards answering these questions. The core idea is to combine

the calibration-based lifting approach with the Bregman iteration,

which results in a lifted Bregman iteration that can be used for

variational problems with non-convex data term.

Accordingly, we őrst embed the original problem

inf
𝑢∈𝑈

𝐹(𝑢), 𝐹(𝑢) := 𝐻(𝑢) + 𝐽(𝑢) (4.22)

using the theory of calibration-based lifting (Chpt. 3). Later, we

will consider the continuous as well as the discrete setting; For

now we write the new, convex problem as

inf
𝑣∈C

F(𝑣), F(𝑣) := H(𝑣) +J(𝑣). (4.23)

While conceptually the energy 𝐹 is lifted, the convexity and positive

1-homogeneity of the regularizer allow to consider the lifted data

term Hand lifted regularizer Jseparately (see also (3.71) ś (3.73)).

The lifted Bregman iteration is then deőned as
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Algorithm 5: Lifted Bregman Iteration (LBI)

1 Initialize 𝑝̃0 = 0

2 Repeat for 𝑘 = 1, 2, ...

3 𝑣𝑘 ∈ arg min𝑣∈C {H(𝑣) +J(𝑣) − ⟨𝑝̃𝑘−1 , 𝑣⟩}
4 𝑝̃𝑘 ∈ 𝜕J(𝑣𝑘)

Importantly, each step of the lifted Bregman iteration relies on the

choice of a subgradient of the lifted regularizer J.

While the iteration is straightforward to deőne, it is not clear if

the iterates have similar scale-space properties as in the original

iteration, and if there is a relation to the iterates of the original,

unlifted Bregman iteration (Alg. 3) in the convex ROF case.

The main theoretical contribution in this chapter is to answer the

question if and under which circumstances the original and lifted

Bregman iteration produce łequivalentž results. This requires a

discussion of the subdifferential of the original and lifted total

variation. Equivalence when applied to the ROF denoising problem

can be understood as a plausibility check for the new method.

Equivalence. The exact deőnition of łequivalencež is not trivial,

since there is potential ambiguity in choosing the subgradient in

the lifted setting. We say that Alg. 4 and Alg. 5 are equivalent for

the ROF problem, if we can őnd a suitable subgradient 𝑝̃𝑘−1 in

the lifted setting that relates to a subgradient 𝑝𝑘−1 in the original

setting such that some 𝑢𝑘 solves the original Bregman iteration

and the indicator of its subgraph 1𝑢𝑘 solves the lifted Bregman

iteration. This means that under a speciőc choice of subgradients,

both iterations produce the same sequence of images, one in the

original, and one in the lifted representation.

Contribution and Outline. In the following three sections, we

discuss the equivalence of the original (Alg. 4) and lifted Breg-

man iteration (Alg. 5) for the ROF denoising problem in a fully

continuous setting Ω × Γ (Sec. 4.2) and with sublabel-accurate dis-

cretization (Sec. 4.3śSec. 4.4). We formulate a sufficient condition

on the subgradients used in Alg. 4 and Alg. 5 such that the latter are

equivalent according to our deőnition. In Sec. 4.5, we verify these

őndings numerically by showing that Alg. 4 and Alg. 5 produce the

same iterates when applied to the convex ROF denoising problem.

In addition, we show numerical results of Alg. 5 for a non-convex

stereo matching problem, which suggest that the inverse scale

space behavior of the Bregman iteration might carry over to the

non-convex settings.
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Lifted Variational Problem

inf
𝜈∈𝐶

F(𝜈), F(𝜈) := H(𝜈) +J(𝜈).

This is a convex problem. Mini-
mizers of this higher-dimensional

problem relate to minimiz-
ers of the original problem.

Variational Problem

inf
𝑢∈𝑈

𝐹(𝑢), 𝐹(𝑢) := 𝐻(𝑢) + 𝐽(𝑢),

Depending on the data term, the
problem might be non-convex. The

regularizer is non-negative, pos-
itively 1-homogeneous, convex.

Lifted Bregman Iteration

Set 𝑝̃0 = 0 and repeat for 𝑘 = 1, ...

𝜈𝑘 ∈ arg min
𝜈
{H(𝜈) +J(𝜈) − ⟨𝑝̃𝑘−1 , 𝜈⟩},

𝑝̃𝑘 ∈ 𝜕J(𝜈𝑘).

Subgradients 𝑝̃𝑘 are chosen in the sub-
differential of the lifted regularizer.

Bregman Iteration

Set 𝑝̃0 = 0 and repeat for 𝑘 = 1, ...

𝑢𝑘 ∈ arg min
𝑢
{𝐻(𝑢) + 𝐽(𝑢) − ⟨𝑝𝑘−1 , 𝑢⟩},

𝑝𝑘 ∈ 𝜕𝐽(𝑢𝑘).

Subgradients 𝑝𝑘 are chosen in the
subdifferential of the regularizer.

Projected Solution

Project solutions onto original space.

Trick for proving sufficient condition: For con-
vex problems we can take subgradients from
BI and use them in LBI instead of choosing
subgradients in the lifted setting. We call the
so-deőned iteration LBI∗.

Bregman iteration for convex problems. Lifted Bregman iteration extends to non-convex data terms.

Embedding

Equivalent!

Choose 𝑝𝑘−1 . Use
lifted version as 𝑝̃𝑘−1

Backproject 𝜈𝑘

Equivalent!

Equivalent?

Bregman iteration for possibly non-convex problem

Undo embedding

Bregman iteration for convex problem

Figure 4.1: Overview. In this chapter we will discuss three different variations of the Bregman iteration. In our terminology,
the classical Bregman Iteration (BI) is applied to the original variational problem. The proposed Lifted Bregman Iteration
(LBI) is applied to the calibration-based lifted problem. In particular, single steps of the LBI rely on subgradients of
the lifted regularizer. For certain results we, furthermore, deőne a third variation of the Bregman iteration: We perform
the calibration-based lifting on single steps of the BI for a given subgradient of the original regularizer. We call the later
approach Bregman Iteration, Lifted (LBI∗).
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4.2 Equivalence in the Continuous Setting

In this section, we consider the ROF denoising problem and the

calibration-based lifting approach in the function space with con-

tinuous range Γ.

As the Bregman iteration crucially depends on subgradients of

the regularizer, we őrst discuss the subdifferential 𝜕TV of the

total variation and the exact deőnition of the calibration-based

lifted total variation TV. Before moving on, we introduce a second

variation on the Bregman iteration ś the LBI∗, which relies on

(lifted) subgradients of the original regularizer. With the help

of the LBI∗ we introduce and prove a sufficient condition on the

subgradients 𝑝𝑘 and 𝑝̃𝑘−1 under which algorithms Alg. 4 and Alg. 5

are equivalent. We furthermore prove the existence of subgradients

𝑝𝑘 ∈ 𝜕TV(𝑢𝑘) and 𝑝̃𝑘−1 ∈ 𝜕TV(1𝑢𝑘 ) which fulől this sufficient

condition.

4.2.1 Subdifferential of the Total Variation

The Bregman iteration crucially requires elements from the subdif-

ferential 𝜕𝐽 of the regularizer. Unfortunately, for the choice 𝐽 = TV,

this requires to study elements from the dual space BV∗ which is

not yet fully understood [AFP00, Remark 3.12] [Anz83; BH16]. In

this section, we follow the approach of [BH16] and argue under a

restriction to 𝐿𝑝 functions with 𝑝 > 1.

We deőne the following simplifying assumption:

(C1) We restrict ourselves to the case 𝑢 ∈ 𝑊1,1 and Ω ⊆ ℝ2,

which allows to embed 𝑊1,1 ↩→ 𝐿2 by the Sobolev embed-

ding theorem [Alt92, Thm. 10.9]; consequently we can view

the total variation as an operator 𝑇𝑉 : 𝐿2(Ω) → ℝ. From

this narrow viewpoint, the subgradients of TV are also 𝐿2

functions, which ś in general ś is not true.

The assumptions allow us to formulate the major arguments in a

function space setting in an intuitive way that also transfers to the

discretized problem. At this point we do not know how to fully

generalize the argument due to the difficulties associated with

characterizing the dual space of BV and subdifferential of TV.

The total variation can be viewed ś and is often deőned ś as a

support function [AFP00, Def. 3.4]:

TV(𝑢) = 𝜎Ψ(𝑢), (4.24)

Ψ := {−div𝜓 |𝜓 ∈ 𝐶𝑐(Ω; ℝ𝑛), ∥𝜓∥∞ ≤ 1} . (4.25)
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Using the relation 𝜎∗
𝐶
= 𝛿cl 𝐶 for convex sets𝐶, its Fenchel conjugate

is [ET99, Def. I.4.1, Example I.4.3]

TV∗(𝑝) = 𝜎∗
Ψ
(𝑝) = 𝛿clΨ(𝑝). (4.26)

According to [ET99, Prop. I.5.1], 𝑝 ∈ 𝜕TV(𝑢) if and only if

TV(𝑢) = ⟨𝑢, 𝑝⟩ − 𝛿clΨ(𝑝). (4.27)

The exact deőnition of clΨ requires to deőne the topology with

respect to which the closure is to be understood. Under assump-

tion (C1), the closure of Ψ with respect to the 𝐿2 norm is [BH16,

proof of Prop. 7]

clΨ =
{
−div𝜓 |𝜓 ∈𝑊2

0 (div;Ω), ∥𝜓∥∞ ≤ 1
}
, (4.28)

where

𝑊2(div;Ω) :=
{
𝜓 ∈ 𝐿2(Ω,ℝ𝑛) | div𝜓 ∈ 𝐿2(Ω)

}
, (4.29)

∥𝜓∥𝑊2(div) := ∥𝜓∥2
𝐿2 + ∥ div𝜓∥2

𝐿2 , (4.30)

𝑊2
0 (div;Ω) := 𝐶∞𝑐 (Ω;ℝ𝑛)

∥·∥𝑊2(div)
. (4.31)

and where we say that div𝜓 ∈ 𝐿2(Ω) if there exists a 𝑤 ∈ 𝐿2(Ω)
such that∫

Ω

∇𝑣(𝑥) · 𝜓(𝑥)d𝑥 = −
∫
Ω

𝑣(𝑥)𝑤(𝑥)d𝑥, ∀𝑣 ∈ 𝐶∞𝑐 . (4.32)

It follows that under assumption (C1), 𝑢∗ ∈ 𝐿2 is a subgradient

of TV if and only if 𝑢∗ = −div𝜓 for some 𝜓 ∈ 𝑊2
0 (div;Ω) which

satisőes ∥𝜓∥∞ ≤ 1. Furthermore, it holds [BH16, Prop. 7]

TV(𝑢) = ⟨𝑢,−div𝜓⟩𝐿2 . (4.33)

4.2.2 Lifted Total Variation

In Chpt. 3 we have introduced the calibration-based lifting ap-

proach: An energy 𝐹 as in (4.1) can be reformulated as a convex

energy

F𝑑(𝑣) := sup
𝜑𝑥∈K𝑥

𝜑𝑡∈K𝑡

{∫
Ω×ℝ

〈(
𝜑𝑥

𝜑𝑡

)
, d𝐷𝑣

〉}
, (4.34)

K𝑥 := {𝜑𝑥 ∈ 𝐶0(Ω ×ℝ;ℝ𝑛) : 𝜑𝑥(𝑥, 𝑡) ∈ dom𝜂∗ , ∀(𝑥, 𝑡)}, (4.35)

K𝑡 := {𝜑𝑡 ∈ 𝐶0(Ω ×ℝ;ℝ) : −𝜑𝑡(𝑥, 𝑡) ≤ 𝜌(𝑥, 𝑡), ∀(𝑥, 𝑡)}, (4.36)
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which is minimized over

C= {𝑣 ∈ BV(Ω ×ℝ; [0, 1]) : (4.37)

𝑣(𝑥, 𝑡) = 1, a.e. (𝑥, 𝑡) ∈ Ω ×ℝ where 𝑡 ≤ Γmin , (4.38)

𝑣(𝑥, 𝑡) = 0, a.e. (𝑥, 𝑡) ∈ Ω ×ℝ where 𝑡 > Γmax}. (4.39)

In this chapter, we are mainly interested in the lifted representation

of the total variation regularizer, which we denote TV. For 𝐻 ≡ 0

and 𝐽 = TV, it turns out that 𝜑𝑡 ≡ 0 is optimal in (4.34)-(4.36):

𝜑𝑡 is non-negative due to (4.36) and (𝐷𝑣)𝑡 is non-positive on all

Borel subsets of Ω×ℝ due to the primal-dual structure of the prob-

lem and the boundary constraints (4.38)ś(4.39) on 𝑣. Consequently,

we can reduce the lifted total variation to

TV(𝑣) = sup
𝜑𝑥∈𝐶0(Ω×ℝ;ℝ𝑛)
∥𝜑𝑥 ∥∞≤1

{∫
Ω×ℝ
⟨𝜑𝑥 , d(𝐷𝑣)𝑥⟩

}
. (4.40)

Following the duality result in Thm. 3.2.6 and Lem. 3.2.2, the

following equality holds for any 𝑢 ∈ BV(Ω;Γ) and the indicator

function of its subgraph 1𝑢 ∈ BV(Ω ×ℝ; {0, 1}):

TV(1𝑢) = TV(𝑢). (4.41)

Having discussed the subdifferential of the original total variation

and the exact form of the lifted total variation, we now move to

the main contribution in which we compare the subdifferential of

the former and the latter.

4.2.3 Bregman Iteration, Lifted

The lifted Bregman iteration Alg. 5 is based on a łlift-őrstž strategy:

The energy is őrst embedded using calibration-based lifting, after

which the Bregman iteration is applied to the CBL problem. The

required subgradients are chosen in the subdifferential of the lifted

regularizer. In order to motivate our őndings in the subsequent

sections, we here introduce a third variation on the Bregman

iteration. We apply the theory of calibration-based lifting on single

steps of the original Bregman iteration after choosing a subgradient

in the subdifferential of the original regularizer; Alg. 6 is based on

a łBregman-őrstž strategy.

We deőne an augmented data term

𝐻̃(𝑢; 𝑝) := 𝐻(𝑢) − ⟨𝑝, 𝑢⟩ (4.42)

and consider the energy 𝐹Breg(𝑢) = 𝐻̃(𝑢; 𝑝) + TV(𝑢). Writing the
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calibration-based lifted energy as

FBreg(𝑣) = H̃(𝑣; 𝑝𝑘−1) +TV(𝑣), (4.43)

we deőne the following iteration:

Algorithm 6: Bregman Iteration, Lifted (LBI∗)

1 Initialize 𝑝0 = 0

2 Repeat for 𝑘 = 1, 2, ...

3 𝑣𝑘 ∈ arg min𝑣∈C
{
H̃(𝑣; 𝑝𝑘−1) +TV(𝑣)

}
4 Select a threshold 𝑠 ∈ [0, 1] and deőne 𝑢𝑘 ∈ BV(Ω;Γ) as

𝑢𝑘 := Γmin +
∫

Γmax

Γmin

1{𝑣𝑘>𝑠}(·, 𝑡)d𝑡. (4.44)

5 Choose 𝑝𝑘 ∈ 𝜕TV(𝑢𝑘)

As we assume that 𝐹Breg fulőlls the assumptions (A1)-(A4) on

p. 42 as well as (B1)-(B2) on p. 73, it follows directly from the

thresholding Thm. 3.2.4 that for any

𝑣𝑘 ∈ arg min
𝑣∈C

{
H̃(𝑣; 𝑝𝑘−1) +TV(𝑣)

}
(4.45)

it holds that 1{𝑣𝑘>𝑠} ∈ BV(Ω×Γ; {0, 1}) is also a global minimizer of

(4.45) for L1-a.e. 𝑠 ∈ [0, 1]. Furthermore, there is a 𝑢𝑘 ∈ BV(Ω;Γ)
such that 1{𝑣𝑘>𝑠} = 1𝑢𝑘 and that

𝑢𝑘 ∈ arg min
𝑢∈BV(Ω;Γ)

{
𝐻̃(𝑢; 𝑝𝑘−1) + TV(𝑢)

}
. (4.46)

This directly implies that in the special case of the ROF problem,

Alg. 4 and Alg. 6 are equivalent by our terminology.

In order to make the bridge to the equivalence between Alg. 4 and

Alg. 5, we analyze how the lifting step operates on 𝐹Breg, paying

close attention to the given subgradient 𝑝𝑘−1 ∈ 𝜕TV(𝑢𝑘−1). In

preparation for the next section, let us introduce FBreg(𝑣) explicitly

as

FBreg(𝑣) = sup
𝜑𝑥∈K𝑥

𝜑𝑡∈K𝑡

{∫
Ω×ℝ

〈(
𝜑𝑥

𝜑𝑡

)
, d𝐷𝑣

〉}
, (4.47)

K𝑥 := {𝜑𝑥 ∈ 𝐶0(Ω ×ℝ;ℝ𝑛) : 𝜑𝑥(𝑥, 𝑡) ∈ dom{𝜂∗},∀(𝑥, 𝑡)}, (4.48)

K𝑡 := {𝜑𝑡 ∈ 𝐶0(Ω ×ℝ;ℝ) : −𝜑𝑡(𝑥, 𝑡) + 𝑡𝑝𝑘−1(𝑥) ≤ 𝜌(𝑥, 𝑡),
∀(𝑥, 𝑡) ∈ Ω ×ℝ}. (4.49)
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The term 𝑡𝑝𝑘−1(𝑥) in (4.49) comes from the linear Bregman term

⟨𝑝𝑘−1 , 𝑢⟩. Now, we substitute 𝜑̃𝑡(𝑥, 𝑡) := 𝜑𝑡(𝑥, 𝑡) − 𝑡𝑝𝑘−1(𝑥) in

(4.47)ś(4.49) and rewrite the problem as

FBreg(𝑣) := sup
𝜑𝑥∈K𝑥

𝜑𝑡∈K̃𝑡

{∫
Ω×ℝ

〈(
𝜑𝑥

𝜑̃𝑡

)
, d𝐷𝑣

〉

−
∫
Ω

∫
ℝ

⟨𝑝𝑘−1(𝑥), 𝑣(𝑥, 𝑡)⟩ d𝑡 d𝑥

}
,

(4.50)

K̃𝑡 := {𝜑̃𝑡 ∈ 𝐶0(Ω ×ℝ;ℝ) :

− 𝜑̃𝑡(𝑥, 𝑡) ≤ 𝜌(𝑥, 𝑡),∀(𝑥, 𝑡) ∈ Ω ×ℝ}.
(4.51)

This shows that FBreg is the subtraction of F(lifted version of the

original energy 𝐹) and the linear term
∫
Ω

∫
ℝ
⟨𝑝𝑘−1(𝑥), 𝑣(𝑥, 𝑡)⟩ d𝑡 d𝑥

(reminiscent of the linear Bregman term). This opens the question,

whether for a given subgradient 𝑝𝑘−1 ∈ 𝜕TV(𝑢𝑘−1) its lifted represen-

tation 𝑝̃𝑘−1(𝑥, ·) ≡ 𝑝𝑘−1(𝑥) is a valid subgradient in the lifted setting,

that is, whether 𝑝̃𝑘−1 ∈ 𝜕TV(1𝑢𝑘−1
) holds. If we can őnd a suitable

subgradient in the lifted setting that relates to a subgradient in the

original setting we can show that the Bregman iteration Alg. 4 and

the lifted Bregman iteration Alg. 5 are equivalent.

4.2.4 Sufficient Condition for Equivalence

The following proposition shows that the Bregman iteration (Alg. 3)

and the fully continuous formulation of the lifted Bregman iteration

(Alg. 5) are equivalent as long as the subgradients used in either

setting fulől a certain condition. We have to assume uniqueness of

the minimizer for the original problem, as is the case for strictly

convex functionals such as ROF.

Proposition 4.2.1 (Sufficient condition) Assume that the energy

𝐹(𝑢) = 𝐻(𝑢) + TV(𝑢) fulőlls the conditions (A1)-(A4) on p. 42 and

the conditions (B1)-(B2) on p. 73, and that the problems

𝑢𝑘 ∈ arg min
𝑢∈BV(Ω;Γ)

{𝐻(𝑢) + TV(𝑢) − ⟨𝑝𝑘−1 , 𝑢⟩} (4.52)

of the Bregman iteration in Alg. 3 have unique solutions 𝑢𝑘 . For

𝑘 = 1, 2, . . ., let 𝑣𝑘 denote integral minimizers1

1: Integral minimizers are minimiz-

ers 𝑣𝑘 ∈ BV(Ω ×ℝ; {0, 1}) ⊂ C. By

the thresholding Thm. 3.2.4, such

a minimizer always exists as long

as the original problem has at least

one global minimizer. Furthermore,

there exists some 𝑢 ∈ BV(Ω;Γ) such

that 𝑣𝑘 = 1𝑢 .

of the problems

𝑣𝑘 ∈ arg min
𝑣∈C
{H(𝑣) +TV(𝑣) − ⟨𝑝̃𝑘−1 , 𝑣⟩} (4.53)

of the lifted Bregman iteration in Alg. 5.

Assume that the previous iterates 𝑢𝑘−1 and 𝑣𝑘−1 fulől 𝑣𝑘−1 = 1𝑢𝑘−1
. If
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the chosen subgradients 𝑝𝑘−1 ∈ 𝜕TV(𝑢𝑘−1) and 𝑝̃𝑘−1 ∈ 𝜕TV(𝑣𝑘−1)
in either setting satisfy

𝑝̃𝑘−1(·, 𝑡) = 𝑝𝑘−1(·) for a.e. 𝑡 ∈ Γ, (4.54)

then the next iterates 𝑣𝑘 of the lifted Bregman iteration are the indicator

functions of the subgraphs of the next iterates 𝑢𝑘 of the original Bregman

iteration: 𝑣𝑘 = 1𝑢𝑘 .

Proof. If 𝑝̃𝑘−1(·, 𝑡) = 𝑝𝑘−1(·) for a.e. 𝑡 ∈ Γ, as assumed, then the

second integral in (4.50) can be rewritten as

∫
Ω

∫
ℝ

⟨𝑝𝑘−1(𝑥), 𝑣(𝑥, 𝑡)⟩ d𝑡 d𝑥 =

∫
Ω×ℝ
⟨𝑝̃𝑘−1 , 𝑣⟩ d(𝑥, 𝑡). (4.55)

This means that for this the speciőc choice of 𝑝𝑘−1 and 𝑝̃𝑘−1 the prob-

lem (4.53) boils down to (4.50). As (4.50) is the calibration-based

lifted formulation of (4.52) it follows that any integral minimizer

𝑣𝑘 = 1𝑢 of (4.53) is the indicator function of the subgraph of a

minimizer of (4.52). As we assumed that the solution of (4.52) is

unique, it follows 𝑣𝑘 = 1𝑢𝑘 .

4.2.5 Existence of Subgradients Fulőlling the Sufficient

Condition

One question that remains is whether subgradients 𝑝̃𝑘−1 as required

in Prop. 1 actually exist. In this section, we show that, under the

assumption (C1) made in Sec. 4.2.1, this is the case for 𝐽 = TV.

Lemma 4.2.2 (Existence) Under the assumption (C1) on p. 80, for ev-

ery subgradient 𝑝 ∈ 𝜕TV(𝑢) there exists a subgradient 𝑝̃ ∈ 𝜕TV(1𝑢)
satisfying

𝑝̃(·, 𝑡) = 𝑝(·) for a.e. 𝑡 ∈ Γ. (4.56)

Proof. For őxed 𝑝 ∈ 𝜕TV(𝑢) ⊆ 𝐵𝑉∗(Ω)we deőne 𝑝̃ ∈ 𝐵𝑉∗(Ω×Γ) as

⟨𝑝̃ , 𝑣⟩ :=
∫
Ω

∫
Γ
⟨𝑝, 𝑣(𝑥, 𝑡)⟩ 𝑑𝑡 d𝑥. If 𝑝 can be written as a (Lebesgue)

density, this corresponds to setting 𝑝̃ to constant copies of 𝑝 along

the Γ axis, i.e., 𝑝̃(𝑥, 𝑡) := 𝑝(𝑥), ∀𝑡 ∈ Γ.

Following the assumption (C1) on p. 80, we consider functions

𝑢 ∈ 𝑊1,1(Ω;Γ) under the embedding 𝑊1,1 ↩→ 𝐿2 and 𝑝 ∈ 𝐿2(Ω).
Due to the boundedness of Γ it then also holds that 𝑝̃ ∈ 𝐿2(Ω × Γ).
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Therefore, similar to [BH16, Prop. 7] and [ET99, Example I.4.3,

Prop. I.5.1], 𝑝̃ is a subgradient of TVat 1𝑢 if and only if

TV(1𝑢) = ⟨𝑝̃ , 1𝑢⟩ −TV∗(𝑝̃). (4.57)

From section 4.2.2, we recall

TV(𝑣) = sup
𝑧∈Φ𝑥

{∫
Ω×Γ
⟨𝑧, 𝑣⟩ d(𝑥, 𝑡)

}
= 𝜎Φ𝑥 (𝑣), (4.58)

Φ𝑥 := {−div𝑥 𝜑𝑥 |𝜑𝑥 ∈ 𝐶0(Ω × Γ; ℝ𝑛), ∥𝜑𝑥 ∥∞ ≤ 1} (4.59)

and, therefore,

TV∗(𝑝̃) = 𝛿clΦ𝑥 (𝑝̃), (4.60)

where the closure is taken with respect to the 𝐿2(Ω × Γ) norm.

Therefore, if we can show that 𝑝̃ ∈ clΦ𝑥 and TV(1𝑢) = ⟨𝑝̃ , 1𝑢⟩,
by (4.57), we know that 𝑝̃ ∈ 𝜕TV(1𝑢).

The fact that 𝑝̃ ∈ clΦ𝑥 follows directly from 𝑝 ∈ clΨ with Ψ as

in (4.25); recall

Ψ := {−div𝜓 |𝜓 ∈ 𝐶𝑐(Ω; ℝ𝑛), ∥𝜓∥∞ ≤ 1} (4.61)

For every sequence (𝑝𝑛)𝑛∈ℕ ∈ Ψwith 𝑝𝑛
𝐿2(Ω)−→ 𝑝we have a sequence

𝜓𝑛 of 𝐶𝑐(Ω) functions with ∥𝜓𝑛 ∥∞ ≤ 1 and 𝑝𝑛 = −div𝜓𝑛 . Thus

for

(𝜑𝑥)𝑛(𝑥, 𝑡) := 𝜓𝑛(𝑥), (4.62)

it holds −div𝑥(𝜑𝑥)𝑛 ∈ Φ𝑥 and

−div𝑥(𝜑𝑥)𝑛(𝑥, 𝑡) = −div𝜓𝑛(𝑥) = 𝑝𝑛(𝑥). (4.63)

Thus −div𝑥(𝜑𝑥)𝑛(·, 𝑡)
𝐿2(Ω)−→ 𝑝 in for all 𝑡 ∈ Γ. Due to the bounded-

ness of Γ, this implies−div𝑥(𝜑𝑥)𝑛
𝐿2(Ω×Γ)−→ 𝑝̃, which shows 𝑝̃ ∈ clΦ𝑥

as desired.

In order to show the őnal missing piece, namely TV(1𝑢) = ⟨𝑝̃ , 1𝑢⟩,
we use (4.41) to argue that

TV(1𝑢)
(4.41)
= TV(𝑢) = ⟨𝑝, 𝑢⟩ =

∫
Ω

𝑝(𝑥)𝑢(𝑥)d𝑥. (4.64)

We continue by rewriting 𝑢 using a coarea-type formula

TV(1𝑢) = . . . =

∫
Ω

𝑝(𝑥)
∫
Γ

1𝑢(𝑥, 𝑡)d𝑡 d𝑥 = ⟨𝑝̃ , 1𝑢⟩. (4.65)

This concludes the proof.
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By deőning 𝑝̃ based on 𝑝 as above, we have recovered under the

assumption (C1) a subgradient of the lifted regularizer TVof the

form required by Prop. 1.

Now we can infer from Prop. 1 and Lemma 4.2.2 that under

assumption (C1) the Bregman iteration and lifted Bregman iteration

are equivalent when applied to the ROF problem, which provides

a convenient validation of our construction of the lifted Bregman

iteration in the continuous setting.

4.3 Equivalence under Sublabel-Accurate

Discretization

In the previous section, we argued for the function solution space

BV(Ω × Γ). While theoretically interesting, this leaves the question

whether a similar equivalence holds after sublabel-accurate dis-

cretization of the problem, i.e., with continuous domain Ω and

discrete range Γℎ = [𝛾1 , ..., 𝛾𝑙].

In this section, we follow a formal line of argument as is also com-

mon in the related literature, arguing mostly pointwise. However,

the arguments could equally be understood in the spatially discrete

setting with őnite Ωℎ , where arguments are more straightforward.

For readability, we consider a őxed 𝑥 ∈ Ω and omit 𝑥 in the

arguments.

4.3.1 Bregman Iteration, Lifted

Analogously to our argument in the continuous setting, we őrst

consider the łBregman-őrstž Alg. 6 ś now in a semi-discretized

sublabel-accurate setting. In the following, we will use the notation

introduced in Sec. 3.3.3; in particular, bold letters will indicate the

sublabel-accurate setting.

In Alg. 6, minimizers of

𝑭Breg(𝒖) = 𝑯̃(𝒖; 𝑝𝑘−1) + 𝑻𝑽 (𝒖) (4.66)

are sought. Again, we are mainly interested in the term 𝑯̃(𝒖; 𝑝𝑘−1)
which represents the sublabel-accurate lifted version of

𝐻̃(𝑢, 𝑝𝑘−1) = 𝐻(𝑢) − ⟨𝑢, 𝑝𝑘−1⟩ . (4.67)

The following proposition states that under certain assumptions

the sublabel-accurate lifted sum of two terms is the sum of the

sublabel-accurate lifted terms.
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Proposition 4.3.1 Consider for 𝑖 ∈ {1, 2}

inf
𝑢∈BV(Ω;Γ)

𝐹𝑖(𝑢), 𝐹𝑖(𝑢) :=

∫
Ω

𝑓𝑖(𝑥, 𝑢, d𝐷𝑢), (4.68)

which fulőll (A1)-(A4) on p. 42 and (B1)-(B2) on p. 73 such that

𝑓𝑖(𝑥, 𝑡, 𝑞) = 𝜌𝑖(𝑥, 𝑡) + 𝜂(𝑞). (4.69)

For some 𝑝 : Ω→ ℝ we consider data terms whose integrands 𝜌1 and

𝜌2 are pointwise linked via

𝜌2(𝑥, 𝑢(𝑥)) := 𝜌1(𝑥, 𝑢(𝑥)) − ℎ(𝑥, 𝑡), ℎ(𝑥, 𝑡) := 𝑝(𝑥)𝑢(𝑥). (4.70)

Applying calibration-based lifting together with the sublabel-accurate

discretization as discussed in Sec. 3.3.3 on the problems 𝐹𝑖 results in

lifted formulations

𝑭 𝑖(𝒖) =
∫
Ω

𝝆
∗∗
𝑖 (𝑥, 𝒖(𝑥)) d𝑥 +

∫
Ω

𝜼
∗∗(𝐷𝒖). (4.71)

Then it holds pointwise

𝝆
∗∗
2 (𝑥, 𝒖(𝑥)) = 𝝆

∗∗
1 (𝑥, 𝒖(𝑥)) − 𝒉∗∗(𝑥, 𝒖(𝑥)) (4.72)

= 𝝆
∗∗
1 (𝑥, 𝒖(𝑥)) − ⟨𝑝(𝑥)𝜸̃, 𝒖(𝑥)⟩, (4.73)

where 𝝆1 , 𝝆2 , 𝒉 : ℝ𝑙−1 ↦→ ℝ are calculated using eq. (3.104), and

𝜸̃ ∈ ℝ𝑙−1 is deőned as

𝜸̃ :=
(
𝛾2 − 𝛾1 , . . . , 𝛾𝑙 − 𝛾𝑙−1

)⊤
. (4.74)

Prop. 4.3.1 shows that the sublabel-accurate lifted sum of two func-

tions is equal to the sum of the sublabel-accurate lifted functions if

one of the summands is linear. This is quite useful in general and

in particular with respect to the (lifted) Bregman iteration.

Proof. We deduce the biconjugate of 𝝆2 step-by-step and show that

the őnal expression implies the claimed equality. Here, 𝑥 ∈ Ω is

őxed and we drop it from the notation. According to (3.104), the

lifted representation of 𝜌2 is

𝝆2(u) = inf
𝑖∈{1,...,𝑙−1},

𝛼∈[0,1]

{
𝜌2(𝛾𝛼

𝑖 ) + 𝛿1𝛼
𝑖
(u)

}
. (4.75)

We use the deőnition of the Fenchel conjugate and the deőnition
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of 𝝆2:

𝝆
∗
2(v) = sup

u∈ℝ𝑙−1

{
⟨u, v⟩ − 𝝆2(u)

}
(4.76)

= sup
u∈ℝ𝑙−1



⟨u, v⟩ − inf

𝑖∈{1,...,𝑙−1},
𝛼∈[0,1]

{
𝜌2(𝛾𝛼

𝑖 ) + 𝛿1𝛼
𝑖
(u)

}


(4.77)

= sup
𝑗∈{1,...,𝑙−1},

𝛽∈[0,1]

{
⟨1𝛽
𝑗
, v⟩ − 𝜌2(𝛾𝛽

𝑗
)
}
. (4.78)

With the deőnition of 𝜌2 in (4.70), this gives:

𝝆
∗
2(v) = sup

𝑗∈{1,...,𝑙−1},
𝛽∈[0,1]

{
⟨1𝛽
𝑗
, v⟩ − 𝜌1

(
𝛾
𝛽

𝑗

)
+ 𝑝𝛾𝛽

𝑗

}
. (4.79)

Using 𝜸̃ as in (4.74), we can express 𝑝𝛾
𝛽

𝑗
in terms of 1

𝛽

𝑗
:

𝝆
∗
2(v) = sup

𝑗∈{1,...,𝑙−1},
𝛽∈[0,1]

{
⟨1𝛽
𝑗
, v⟩ − 𝜌1

(
𝛾
𝛽

𝑗

)
+ 𝑝𝛾1 + ⟨𝑝𝜸̃, 1𝛽𝑗 ⟩

}
(4.80)

= sup
𝑗∈{1,...,𝑙−1},

𝛽∈[0,1]

{
⟨1𝛽
𝑗
, v + 𝑝𝜸̃⟩ + 𝑝𝛾1 − 𝜌1

(
𝛾
𝛽

𝑗

)}
. (4.81)

Next, we compute the biconjugate of 𝝆:

𝝆
∗∗
2 (w) = sup

v∈ℝ𝑙−1

{
⟨v,w⟩ − 𝝆

∗
2(v)

}
. (4.82)

By substituting z := v + 𝑝𝜸̃, we get

𝝆
∗∗
2 (w) = sup

z∈ℝ𝑙−1

{
⟨z − 𝑝𝜸̃,w⟩− (4.83)

sup
𝑗∈{1,...,𝑙−1},

𝛽∈[0,1]

{
⟨1𝛽
𝑗
, z⟩ + 𝑝𝛾1 − 𝜌1

(
𝛾
𝛽

𝑗

)} }
(4.84)

= sup
z∈ℝ𝑙−1

{
⟨z,w⟩ − sup

𝑗∈{1,...,𝑙−1},
𝛽∈[0,1]

{
⟨1𝛽
𝑗
, z⟩ − 𝜌1

(
𝛾
𝛽

𝑗

)} }

− ⟨w, 𝑝𝜸̃⟩ − 𝑝𝛾1 (4.85)

=𝝆
∗∗
1 (w) − (⟨w, 𝑝𝜸̃⟩ + 𝑝𝛾1). (4.86)

In [Möl+15, Prop. 2], the authors consider the special case of a

piecewise (in between the chosen labels 𝛾𝑖) linear data term 𝜎

and derive the following explicit form for the sublabel-accurate
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expression 𝝈∗∗:

𝝈
∗∗(𝒖) =



𝜎(𝛾1) + ⟨𝒖 , 𝒔⟩ , if 𝒖 𝑖 ≥ 𝒖 𝑖+1 , 𝒖 𝑖 ∈ [0, 1],
∞, else,

(4.87)

where

𝒔 𝑖 = 𝜎(𝛾𝑖+1) − 𝜎(𝛾𝑖). (4.88)

Using this result, we see that the negative term in (4.86) is the

biconjugate of the lifted linear term ℎ for admissible w:

h∗∗(w) = ⟨w, 𝑝𝜸̃⟩ + 𝑝𝛾1. (4.89)

This concludes the proof of Thm. 4.3.1.

A consequence of Prop. 4.3.1 is

𝑯̃(𝒖; 𝑝𝑘−1) = 𝑯(𝒖) −
〈
𝑝𝑘−1𝜸̃, 𝒖

〉
− 𝑝𝑘−1𝛾1. (4.90)

In the following, and similar to the continuous setting, we will use

this relation to argue that if the lifted given subgradient 𝑝𝑘−1𝜸̃ is

a valid subgradient in the lifted setting of Alg. 5 with sublabel-

accurate discretization, it means we can őnd a suitable subgradient

in the lifted setting that relates to a subgradient in the original

setting such that Alg. 3 and Alg. 5 with sublabel-accurate dis-

cretization are equivalent.

4.3.2 Sufficient Condition for Equivalence

We again assume that the original problem inf𝑢 𝐹(𝑢) has a unique

solution, as is the case for strictly convex functionals such as ROF

and introduce a sufficient condition on the chosen subgradients

in Alg. 3 and Alg. 5 with sublabel-accurate discretization, which

guarantees that the algorithms are equivalent. This is the semi-

discretized version of Prop. 1:

Lemma 4.3.2 (Sufficient Condition) Assume that the energy

𝐹(𝑢) = 𝐻(𝑢) + TV(𝑢) fulőlls the conditions (A1)-(A4) on p. 42,

the conditions (B1)-(B2) on p. 73, and that, furthermore, the problems

𝑢𝑘 ∈ arg min
𝑢∈BV(Ω;Γ)

{𝐻(𝑢) + TV(𝑢) − ⟨𝑝𝑘−1 , 𝑢⟩} (4.91)

of the Bregman iteration in Alg. 3 have unique solutions 𝑢𝑘 . Assume
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that for all 𝑘 = 1, 2, ... the minimizers 𝒖𝑘 of the problems

𝒖𝑘 ∈ arg min
𝒖∈BV(Ω;ℝ𝑙−1)

{
𝑯(𝒖) + 𝑻𝑽 (𝒖) −

〈
𝒑̃𝑘−1 , 𝒖

〉}
(4.92)

of the lifted Bregman iteration in Alg. 5 with sublabel-accurate dis-

cretization are sublabel-integral, that is they satisfy 𝒖𝑘(𝑥) ∈ 𝚪 with 𝚪

deőned as in (3.102).

If for every 𝑘 = 1, 2, ... and at every point 𝑥 ∈ Ω the chosen subgradi-

ents 𝑝𝑘−1 ∈ 𝜕TV(𝑢𝑘−1) and 𝒑̃𝑘−1 ∈ 𝜕𝑻𝑽 (𝒖𝑘−1) satisfy

𝒑̃𝑘−1(𝑥) = 𝑝𝑘−1(𝑥)𝜸̃, (4.93)

where

𝜸̃ :=
(
𝛾2 − 𝛾1 , . . . , 𝛾𝑙 − 𝛾𝑙−1

)⊤
, (4.94)

then the iterates 𝒖𝑘 of the lifted Bregman iteration with sublabel-

accurate discretization can be mapped to the iterates 𝑢𝑘 of the Bregman

iteration via the pointwise transformation (3.103):

𝑢𝑘(𝑥) = 𝛾1 +
〈
𝒖𝑘 , 𝜸̃

〉
. (4.95)

Proof. It follows directly from Prop. 4.3.1 and the conclusion in

(4.90) that (4.92) for this speciőc choice of 𝑝̃𝑘−1 is the sublabel-

accurate lifted version of (4.91) ś minus the term 𝑝𝛾1 in (4.90).

As the latter does not depend on 𝒖 it is not relevant for the

minimization. As we assume that the solutions 𝒖𝑘 of (4.92) are

sublabel-integral, we may apply the pointwise projection (4.95)

which results according to the theory in Chpt. 3 in a global min-

imizer of (4.91). This concludes the proof as we assume that the

latter is unique.

The proposition states a sufficient condition on the subgradients

𝒑̃𝑘 and 𝑝𝑘 that guarantees that the Bregman iteration Alg. 3 and

the lifted Bregman iteration Alg. 5 with sublabel-accurate dis-

cretization are equivalent. Note that the sufficient condition only

holds under the assumption that the original problem has unique

solutions 𝑢𝑘 and that sublabel-integral solutions 𝒖𝑘 to the lifted

Bregman iteration are found. Both assumptions are fulőlled for the

strictly convex ROF functional. Existence of subgradients fulőlling

the sufficient condition will be discussed in the next section in a

fully discrete setting.
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4.4 Fully-Discretized Setting

In this section, we consider the spatially discretized problem on

the grid Ωℎ with grid spacing ℎ. We discuss how subgradients

𝒑̃𝑘 ∈ 𝜕𝑻𝑽 (𝒖𝑘) can be chosen in practice ś if the choice of the lifted

subgradients was numerically impossible or too expensive it would

be inadvisable to use the lifted Bregman iteration in practice.

Furthermore, we show that subgradients fulőlling the sufficient

condition in Lemma 4.3.2 exist when working with the anisotropic

total variation. We propose a pointwise transformation, which

allows to transform an arbitrary subgradient 𝒑̃𝑘 ∈ 𝜕𝑻𝑽 (𝒖𝑘) of an

integral solution 𝒖𝑘 ∈ 𝚪 into the form required by the sufficient

condition. For the anisotropic total variation, we furthermore show

that the transformed subgradient is indeed a valid subgradient.

This allows us to demonstrate the equivalence of the Bregman

iteration in Alg. 3 and the lifted Bregman iteration in Alg. 5

numerically and is thus part of the sanity check for the proposed

algorithm.

4.4.1 Finding a Subgradient

Let us őrst discuss how to őnd a subgradient 𝒑̃𝑘 for the lifted

Bregman iteration in Alg. 5. While there is ambiguity in the choice,

the primal-dual nature of the lifted problem itself offers a way of

őnding at least one subgradient.

The discretized, sublabel-accurate total variation is of the form

(3.107)

𝑻𝑽 ℎ(𝒖ℎ) =
∑
𝑥ℎ∈Ωℎ

𝜼
∗∗((∇ℎ𝒖ℎ)(𝑥ℎ)), (4.96)

𝜼
∗∗(𝒈 ℎ) := max

𝒒ℎ∈𝑲

{〈
𝒒ℎ , 𝒈 ℎ

〉}
(4.97)

with 𝑲 deőned by (3.109) (isotropic TV) or (3.111) (anisotropic TV).

Here, ∇ℎ denotes the discretized forward-difference operator and

in the following we write (∇ℎ)∗ for its adjoint.

The function 𝜼∗∗ is proper, convex, lower semicontinuous and

1śhomogeneous. Therefore, a subgradient of 𝜼∗∗ fulőlls [RW09,

Prop. 11.3, Example 11.4]:

𝒑ℎ ∈ 𝜕𝜼∗∗(𝒈 ℎ) ⇔ 𝒑ℎ ∈ arg max
𝒑ℎ∈𝑲

{〈
𝒑ℎ , 𝒈 ℎ

〉}
(4.98)
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Due to the properness and lower semicontinuity of 𝜼∗∗, it addition-

ally holds [RW09, Cor. 10.9]

𝜕

( ∑
𝑥ℎ∈Ωℎ

𝜼
∗∗((∇ℎ𝒖ℎ)(𝑥ℎ))

)
⊃

∑
𝑥ℎ∈Ωℎ

𝜕𝜼∗∗((∇ℎ𝒖ℎ)(𝑥ℎ)). (4.99)

Next, we argue that

𝜕(𝜼∗∗ ◦ ∇ℎ)(𝒖ℎ(𝑥ℎ)) = (∇ℎ)∗ (𝜕𝜼∗∗) ((∇ℎ𝒖ℎ)(𝑥ℎ)). (4.100)

According to [Roc70, Thm. 23.9] the equality holds, if ∇ℎ is linear

and the range of ∇ℎ contains a point of the relative interior of the

domain of 𝜼∗∗: 0 is in the range of ∇ℎ as well as in the domain of 𝜼∗∗

which we here denote by 𝐶. 𝐶 is non-empty and convex. According

to [Roc70, Thm. 6.4], 0 is in the relative interior of 𝐶 if and only if

for any 𝒚ℎ ∈ 𝐶 there exists a 𝛼 > 1 such that (1 − 𝛼)𝒚ℎ + 𝛼0 ∈ 𝐶;

For arbitrary 𝒚ℎ ∈ 𝐶 we calculate

𝜼
∗∗((1 − 𝛼)𝒚ℎ + 𝛼0) = max

𝒒ℎ∈𝑲

{〈
𝒒ℎ , (1 − 𝛼)𝒚ℎ + 𝛼0

〉}
(4.101)

= (1 − 𝛼)max
𝒒ℎ∈𝑲

{〈
𝒒ℎ , 𝒚ℎ

〉}
. (4.102)

As we assumed that 𝒚ℎ is in the domain 𝐶, it follows that also

(1 − 𝛼)𝒚ℎ + 𝛼0 is in the domain 𝐶 for any 1 < 𝛼 < +∞. This

concludes the proof of (4.100).

Now we have a convenient choice for 𝒑̃ ∈ 𝜕𝑻𝑽 ℎ(𝒖ℎ): Let 𝒒ℎ(𝑥ℎ)
denote the maximizer of (4.97) for 𝑥ℎ ∈ Ωℎ . Then, using the point-

wise deőnition 𝒑ℎ(𝑥ℎ) := (∇ℎ)∗𝒒ℎ(𝑥ℎ), we obtain a subgradient 𝒑ℎ

of 𝑻𝑽 ℎ(𝒖ℎ). As it holds that

〈
((∇ℎ)∗𝒒ℎ)(𝑥ℎ), 𝒖ℎ(𝑥ℎ)

〉
=

〈
𝒒ℎ , (∇ℎ𝒖ℎ)(𝑥ℎ)

〉
, (4.103)

the lifted Bregman iteration Alg. 5 with sublabel-accurate dis-

cretization in a spatially discrete setting can be implemented as:

Algorithm 7: Lifted Bregman Iteration (LBI) ś Discrete Setting

1 Initialize 𝒒ℎ0 = 0

2 Repeat for 𝑘 = 1, 2, ...

3 Set 𝑭 ℎBreg(𝒖ℎ , 𝒒ℎ) =
∑
𝑥ℎ∈Ωℎ 𝝆

∗∗(𝑥ℎ , 𝒖ℎ(𝑥ℎ))
4 +

〈
𝒒ℎ(𝑥ℎ) − 𝒒ℎ

𝑘−1
(𝑥ℎ), (∇ℎ𝒖ℎ)(𝑥ℎ)

〉
5 Find a solution (𝒖ℎ

𝑘
, 𝒒ℎ

𝑘
) of the saddle-point problem

6 min𝒖ℎ :Ωℎ ↦→ℝ(𝑙−1) max𝒒ℎ :Ωℎ ↦→𝑲ℎ 𝑭 ℎBreg(𝒖ℎ , 𝒒ℎ),
7

Here, 𝝆∗∗ denotes the integrand of the lifted data term; see (3.104).
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In order to demonstrate the equivalence of the Bregman itera-

tion in Alg. (3) and the lifted Bregman iteration in Alg. 5 for

the convex ROF problem, we next discuss how the above cho-

sen subgradients 𝒑ℎ
𝑘
= (∇ℎ)∗𝒒ℎ

𝑘
can be mapped to subgradients

𝒑̃ℎ
𝑘
= (∇ℎ)∗ 𝒒̃ℎ

𝑘
which fulőll the sufficient condition in Lemma 4.3.2.

4.4.2 Subgradient Transformation

In Lemma 4.3.2 we formulated a constraint on the subgradients

for which the Bregman iteration in Alg. 4 and the lifted Bregman

iteration in Alg. 5 are equivalent when applied to the convex ROF

denoising problem. While this property is not necessarily satisőed

if the subgradient 𝒑ℎ
𝑘

is chosen according to the previous paragraph,

we will now show that any such chosen subgradient 𝒑ℎ
𝑘

can be

transformed into another subgradient that satisőes condition (4.93).

This allows us to investigate the conditional equivalence of the two

algorithms experimentally.

Consider a pointwise sublabel-integral (see p. 66) solution 𝒖ℎ
𝑘

with

subgradient 𝒑ℎ
𝑘

:= (∇ℎ)∗𝒒ℎ
𝑘
∈ 𝜕𝑻𝑽 ℎ(𝒖ℎ

𝑘
), where 𝒒ℎ

𝑘
(𝑥ℎ) ∈ 𝑲 is a

maximizer of (4.97) for every 𝑥ℎ ∈ Ωℎ . We deőne a pointwise trans-

formation: For őxed 𝑥ℎ ∈ Ωℎ and 𝒖ℎ
𝑘
(𝑥ℎ) = 1𝛼

𝑖
, let (𝒒ℎ

𝑘
(𝑥ℎ))𝑖 ∈ ℝ𝑛

denote the 𝑖-th row of 𝒒ℎ
𝑘
(𝑥ℎ), corresponding to the 𝑖-th label as

prescribed by 𝒖ℎ
𝑘
(𝑥ℎ) = 1𝛼

𝑖
. Both in the isotropic and anisotropic

case the transformation

𝒒̃ℎ𝑘 (𝑥
ℎ) :=

(𝒒ℎ
𝑘
(𝑥ℎ))𝑖

𝛾𝑖+1 − 𝛾𝑖
𝜸̃ (4.104)

returns an element of the set 𝑲iso or 𝑲an. In the anisotropic case we

can furthermore show that 𝒒̃ℎ
𝑘

also maximizes (4.96) and, therefore,

the transformation returns a subgradient 𝒑̃ℎ
𝑘

:= ∇⊤ 𝒒̃ℎ
𝑘
∈ 𝜕𝑱 ℎ(𝒖ℎ

𝑘
) of

the desired form (4.93). The restriction to the anisotropic case is un-

fortunate but necessary due to the fact that the coarea formula does

not hold in the discretized case for the usual isotropic discretiza-

tions: There is no known discretization that is both isotropic and

satisőes the coarea formula exactly, therefore, any arguments that

rely on rounding/thresholding solutions are generally restricted

to the anisotropic case.
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Proposition 4.4.1 (Projection Formula) Consider the following

anisotropic TV regularizer in the calibration-based lifted setting with

sublabel-accurate discretization:

𝑻𝑽 ℎ(𝒖ℎ) =
∑
𝑥ℎ∈Ωℎ

𝜼
∗∗((∇ℎ𝒖ℎ)(𝑥ℎ)) (4.105)

𝜼
∗∗(𝒈) = sup

𝒒∈𝑲an

{⟨𝒒 , 𝒈⟩} , (4.106)

𝑲an =
⋂

𝑗=1,...,𝑛

{
𝒒
��� ∥𝒒 𝑖 , 𝑗 ∥2 ≤ 𝛾𝑖+1 − 𝛾𝑖 ,∀𝑖 = 1, ..., 𝑙 − 1

}
. (4.107)

Assume that a sublabel-integral 𝒖ℎ is given, i.e., it holds for each

𝑥ℎ𝑚 ∈ Ωℎ that 𝒖ℎ(𝑥ℎ𝑚) = 1
𝛼𝑚
𝑖𝑚
∈ 𝚪 with 𝚪 as in (3.102). Moreover,

assume that 𝒑ℎ = (∇ℎ)∗𝒒ℎ is a subgradient of 𝑻𝑽 ℎ(𝒖ℎ). Then

𝒑̃ℎ := (∇ℎ)∗ 𝑞̃ℎ 𝜸̃ (4.108)

with 𝑞̃ℎ pointwise for each 𝑥ℎ ∈ Ωℎ deőned as

𝑞̃ℎ(𝑥ℎ) :=
(𝒒ℎ(𝑥ℎ))𝑖𝑚
𝛾𝑖𝑚+1 − 𝛾𝑖𝑚

(4.109)

is also a subgradient of 𝑻𝑽 ℎ(𝒖ℎ). Furthermore, (∇ℎ)∗ 𝑞̃ℎ is a subgradi-

ent in the unlifted case, i.e., (∇ℎ)∗ 𝑞̃ℎ ∈ 𝜕TVℎ(𝑢ℎ) for

𝑢ℎ(𝑥ℎ) = 𝛾1 +
𝑙−1∑
𝑖=1

𝒖ℎ𝑖 (𝑥
ℎ)(𝛾𝑖+1 − 𝛾𝑖). (4.110)

Proof. The proof consists of two parts. First, we show that 𝒑̃ℎ in

(4.108) is a valid subgradient in the lifted setting. Second, we show

that (∇ℎ)∗ 𝑞̃ℎ in (4.108) is a valid subgradient in the unlifted setting.

In the anisotropic case the spatial dimensions in the constraint

set 𝑲 (4.107) are uncoupled, therefore we assume without loss of

generality that 𝑛 = 1. Consider two neighboring points 𝑥ℎ𝑚 and

𝑥ℎ𝑚+1
with 𝒖ℎ(𝑥ℎ𝑚) = 1𝛼

𝑖
and 𝒖ℎ(𝑥ℎ𝑚+1

) = 1
𝛽

𝑗
. Applying the forward

difference operator, we have

∇ℎ𝒖ℎ(𝑥ℎ𝑚)ℎ =




(0𝑖−1 , 1 − 𝛼, 1𝑗−𝑖−2 , 𝛽, 0(𝑙−1)−𝑗)⊤ , 𝑖 < 𝑗 ,

(0𝑖−1 , 𝛽 − 𝛼, 0(𝑙−1)−𝑖)⊤ , 𝑖 = 𝑗 ,

(0𝑗−1 , 𝛽 − 1, −1𝑖−𝑗−2 , −𝛼, 0(𝑙−1)−𝑗)⊤ , 𝑖 > 𝑗.

(4.111)

From the previous considerations, we know that the subgradients
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of 𝑻𝑽 ℎ(𝒖ℎ) are given by ((∇ℎ)⊤𝒒ℎ)(𝑥ℎ), where

𝒒ℎ(𝑥ℎ) ∈ arg max
𝒒∈𝑲an

〈
𝒒 , (∇ℎ𝑢ℎ)(𝑥ℎ)

〉
. (4.112)

From the deőnition of 𝑲an and from (4.111) we conclude that

𝒒ℎ(𝑥ℎ𝑚) =




(∗, 𝛾𝑖+1 − 𝛾𝑖 , ..., 𝛾𝑗+1 − 𝛾𝑗 , ∗)⊤ , 𝑖 < 𝑗 ,

(∗, sgn(𝛽 − 𝛼)(𝛾𝑖+1 − 𝛾𝑖), ∗)⊤ , 𝑖 = 𝑗 ,

(∗, 𝛾𝑗 − 𝛾𝑗+1 , ..., 𝛾𝑖 − 𝛾𝑖+1 , ∗)⊤ , 𝑖 > 𝑗 ,

(4.113)

where the elements marked with ∗ can be chosen arbitrarily as

long as 𝒒ℎ(𝑥ℎ𝑚) ∈ 𝑲an. Due to this special form, the transformation

in (4.109) results in 𝑞̃ℎ(𝑥ℎ) ∈ {−1,+1} and thus 𝒒̃ℎ := 𝑞̃ℎ 𝜸̃ = ±𝜸̃.

Crucially, this transformed vector 𝒒̃ℎ is a special case of the form

described in (4.113), therefore it is also dual-optimal in (4.112) and

𝒑̃ℎ = ∇⊤ 𝑞̃ℎ 𝜸̃ is another subgradient in the lifted setting.

It remains to show that (∇ℎ)∗ 𝑞̃ℎ is a subgradient in the unlifted

setting. To this end, we employ sublabel-accurate discretization

with 𝑙 + 1 = 2 labels. The łliftedž label space is 𝚪 = [0, 1], inde-

pendently of the actual Γ ⊂ ℝ; see [Möl+15, Prop. 3]. Then with

𝑢ℎ(𝑥ℎ𝑚) = 𝛾𝛼
𝑖

and 𝑢ℎ(𝑥ℎ𝑚+1
) = 𝛾

𝛽

𝑗
(corresponding to 𝒖𝒉(𝑥ℎ𝑚) = 1𝛼

𝑖

and 𝒖𝒉(𝑥ℎ𝑚+1
) = 1

𝛽

𝑗
from before), applying the forward difference

operator we have

∇𝑢ℎ(𝑥ℎ𝑚) =
1

ℎ
(𝛾𝛽

𝑗
− 𝛾𝛼

𝑖 ). (4.114)

Therefore, dual maximizers of (4.112) are

𝑞ℎ(𝑥ℎ𝑚) = sgn(𝛾𝛽

𝑗
− 𝛾𝛼

𝑖 )|𝚪| = ±1, (4.115)

where the algebraic signs coincide pointwise in the lifted and

unlifted setting. Thus 𝑝ℎ = (∇∗)⊤𝑞ℎ = (∇∗)⊤ 𝑞̃ℎ is a subgradient in

the unlifted setting.

The projection in the proposition above allows us to demonstrate

the equivalence of the Bregman iteration in Alg. 3 and the lifted

Bregman iteration in Alg. 5 numerically as a sanity check an

experimental validation of the proposed lifted Bregman iteration.
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(a) ROF

(b) Stereo Matching,
Umbrella [Sch+14]

(c) Stereo Matching,
Backpack [Sch+14]

Figure 4.2: Input data. Input images
for the ROF and stereo matching
experiments.

4.5 Numerical Results

In this section, we numerically support our theoretical őndings

concerning the equivalence of the Bregman iteration in Alg. 4 and

the lifted Bregman iteration in Alg. 5 when applied to the ROF

denoising problem with subgradients that fulőll the sufficient

condition in Lemma 4.3.2. Furthermore, we investigate a stereo-

matching example which suggests that the lifted Bregman iteration

for variational models with arbitrary data term may produce an

inverse scale space of the solution in which nonlinear eigenfunc-

tions of the regularizer appear in order of the magnitude of their

eigenvalue.

We use the toolboxes sublabel_relax [LM16; Möl+15] and prost

[LM15] which provide CUDA implementations of the sublabel-

accurate discretization framework and PDHG algorithm.

The experiments were performed on an Intel(R) Core(TM) i7-8700

CPU @ 3.20GHz, NVIDIA GeForce RTX 2070, Ubuntu 18.04.6 LTS,

MATLAB R2020b, CUDA 10.2.

4.5.1 Convex Energy with Synthetic Data

In the őrst experiment we consider the ROF problem

inf
𝑢∈BV(Ω;Γ)

𝐹(𝑢), 𝐹(𝑢) = 𝜆

2
∥𝑢(𝑥) − 𝑓 (𝑥)∥2

𝐿2 + TV(𝑢), (4.116)

where Ω = (0, 300) × (0, 300), Γ = [0, 1] and 𝜆 = 0.05. The input

image 𝑓 is shown in Fig. 4.2a.

We compare the results of the Bregman iteration in Alg. 4 and the

lifted Bregman iteration in Alg. 5 with sublabel-accurate discretiza-

tion. The results are shown in Fig. 4.3 and will be discussed after

the following technical details.

Technical Details. After lifting the energy (4.116) using the CBL

approach, the domain Ω × Γ was discretized as Ωℎ × Γℎ , where

Ωℎ is a cell-centered grid with 𝑚 = 300× 300 grid points and Γℎ is
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𝑘 = 2 𝑘 = 3 𝑘 = 4 𝑘 = 5 𝑘 = 6 𝑘 = 10

0.0592 0.0245 0.0115 0.0108 0.0039 0.0009

0.0011 2.7872 · 10
−6

2.4374 · 10
−6

3.5398 · 10
−6

1.3498 · 10
−6

9.7515 · 10
−7

Figure 4.3: Equivalence of Classical and Lifted Bregman on a Convex Problem. On the convex ROF denoising problem
with anisotropic TV, a plain implementation of the classical Bregman iteration as in Alg. 4 (top row) and a naïve
implementation of the lifted generalization as in Alg. 6 with lifted subgradients chosen as described in Sec. 4.4.1 (middle

row) show clear differences. If, however, the lifted subgradients are transformed as described in Sec. 4.4.2 such that they
fulőll the sufficient condition in Lemma 4.3.2, the lifted iterates (bottom row) are visually indistinguishable from the
classical iteration in this fully convex case. This is also quantitatively supported by the mean of the absolute pixelwise

difference, e.g., 1

|Ωℎ |
∑
𝑥ℎ∈Ωℎ |𝑢 𝑙=2

𝑘
(𝑥ℎ) − 𝑢 𝑙=5

𝑘
(𝑥ℎ)|, given under the images.

a nodal grid with 𝑙 grid points. The energy was then discretized

using the sublabel-accurate discretization and solved using the

PDHG algorithm.

For the implementation, we relied on the toolbox sublabel_relax

[LM16; Möl+15] which provides an implementation of the ROF

problem with CBL lifting and sublabel-accurate discretization. It

uses őnite forwards differences and Neumann boundary conditions

for the total variation. Note, that we here used anisotropic total

variation.

For the Bregman iteration we used 𝑙 = 2 labels (Fig. 4.3, top row),

in case of the lifted Bregman iteration we used 𝑙 = 5 labels. We

computed the lifted Bregman iteration twice: First, we chose the

subgradients required by the linear Bregman term as described

in Sec. 4.4.1 (Fig. 4.3, middle row). Second, we additionally trans-

formed the chosen subgradients as described in Sec. 4.4.2 (Fig. 4.3,

bottom row).

We solved the (lifted) Bregman iteration steps with the PDHG

implementation in prost [LM15].

Results. The results shown in Fig. 4.3 clearly support our theory

that Alg. 4 and Alg. 5 are equivalent when applied to the convex
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Figure 4.4: Artiőcial Data for Stereo

Matching. The backgrounds of the
input images 𝐼1 and 𝐼2 are chosen to
be identical. Only within the three
circles 𝐼1 and 𝐼2 differ. The informa-
tion within the circles is shifted four
pixels sideways; the circles them-
selves stay in place. The black square
marks the area of the close-ups of 𝐼1
(top) and 𝐼2 (bottom).

ROF problem when the subgradients fulőll the sufficient condition

in Lemma 4.3.2: Once subgradients are transformed to fulőll the

sufficient condition, the solutions of Alg. 4 and Alg. 5 are the same

up to numerically negligible differences.

Using subgradients which do not fulőll the sufficient condition,

we observe a slightly different behavior of the iterates 𝑢𝑘 . The

nonlinear eigenfunctions of the total variation appear to linearly

increase in magnitude during the iteration instead of appearing at

a precise iteration step.

4.5.2 Non-Convex Stereo Matching with Artiőcial Data

In the following example, we aim to empirically investigate whether

properties of the Bregman iteration carry over to the lifted Bregman

iteration for arbitrary (non-convex) data terms. We consider a

relatively simple formulation of the stereo-matching problem:

inf
𝑢∈BV(Ω;Γ)

{𝐻(𝑢) + TV(𝑢)} , (4.117)

𝐻(𝑢) = 𝜆

∫
Ω

ℎ𝜏 (|𝐼1(𝑥1 , 𝑥2) − 𝐼2(𝑥1 , 𝑥2 − 𝑢(𝑥))|) d𝑥. (4.118)

Here, 𝐼1 and 𝐼2 are two given input images and ℎ𝜏(𝛼) := min {𝜏, 𝛼}
is a threshholding function. In our experiments, we used𝜆 =

1
7 and

𝜏 = 0.1. Note that the intensity-based data term is non-convex.

Input Images. A typical observation when using nonlinear scale

space methods is that components in the solution corresponding

to non-linear eigenfunctions of the regularizer appear at certain

points in time depending on their eigenvalue.
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𝑘 = 1 𝑘 = 2 𝑘 = 4 𝑘 = 10

Input 𝑘 = 1 𝑘 = 3 𝑘 = 6

Figure 4.5: Lifted Bregman on Stereo Matching Problem with Artiőcial Input Data. We applied the lifted Bregman
iteration in Alg. 5 to a non-convex stereo matching problem with data term (4.118). We evaluated the algorithm for an
isotropic (top) and an anisotropic (bottom) implementation of the total variation. The input data for the isotropic setting is
shown in Fig. 4.4; in the anisotropic setting we used square instead of circular cutouts (bottom left). For this non-convex
data term, the lifted Bregman iteration demonstrates a behavior reminiscent of the classical, convex (quadratic) inverse
scale space ŕow: Components that correspond to nonlinear eigenfunctions of the total variation regularizer appear
progressively in the depth map and components associated with larger eigenvalues appear at later iterations.

We thus constructed two artiőcial input images 𝐼1 and 𝐼2 such that

the minimizer 𝑢̃ of the data term in (4.118) is the sum of eigen-

functions of the isotropic (anisotropic) TV, i.e., scalar multiples of

indicator functions of circles (squares).

In the following we elaborate the isotropic setting. For non-

overlapping circles B𝑟𝑖 (𝑚𝑖), 𝑖 = 1, ..., 𝑗 < ∞ with centers 𝑚𝑖 and

radii 𝑟𝑖 , we want a solution of the form

𝑢̃(𝑥) =
𝑗∑
𝑖=1

1B𝑟𝑖
(𝑚𝑖)(𝑥), (4.119)

where

1B𝑟𝑖
(𝑚𝑖)(𝑥) =




1, if 𝑥 ∈ B𝑟𝑖 (𝑚𝑖),
0, else.

(4.120)

Fig. 4.4 shows the input data, which was designed accordingly;

note that there is no displacement except inside the circles, where

it is non-zero but constant.

Technical Details. After lifting the energy (4.118) using the CBL

approach, the domain Ω × Γ = (300, 300) × [0, 10] was discretized

asΩℎ×Γℎ , whereΩℎ is a cell-centered grid with𝑚 = 300×300 grid

points and Γℎ is a nodal grid with 𝑙 = 5 grid points. The energy

was then discretized using the sublabel-accurate discretization and

solved using the PDHG algorithm.
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For the implementation, we again relied on the github toolbox

sublabel_relax [LM16; Möl+15] which provides an implemen-

tation of a slightly different stereo matching problem with CBL

lifting and sublabel-accurate discretization. It uses őnite forwards

differences and Neumann boundary conditions for the total varia-

tion.

We solved the lifted Bregman iteration steps with the PDHG

implementation given in prost [LM15].

Results. In analogy to the convex ROF example in Fig. 4.3 and the

theory of inverse scale space ŕow, we would expect the following

property to hold for the lifted Bregman iteration: The solutions

ś here the depth maps of the artiőcial scene ś returned in each

iteration of the lifted Bregman iteration progressively incorporate

the discs (eigenfunctions of isotropic TV) according to their radius

(associated eigenvalue); the biggest disc should appear őrst, the

smallest disc last.

Encouragingly, the experiments conőrm these expectations nu-

merically also for the non-convex case, see Fig. 4.5. This suggests

that the lifted Bregman iteration could be useful for designing

őlters that decompose the solution of a variational problem with

arbitrary data term into eigenfunctions of the regularizer.

4.5.3 Non-Convex Stereo Matching with Real-World Data

We also computed results for a stereo-matching problem with

real-world data using a more elaborate formulation of the stereo-

matching problem as in [Möl+15]

inf
𝑢∈BV(Ω;Γ)

{𝐻(𝑢) + TV(𝑢)} ,

𝐻(𝑢) = 𝜆

∫
Ω

∫
𝑊(𝑥)

∑
𝑗=1,2

ℎ𝜏(𝑑 𝑗(𝐼1(𝑦), 𝐼2(𝑦)))d𝑦 d𝑥.
(4.121)

Again, 𝐼1 and 𝐼2 are two given input images and ℎ𝜏(𝛼) := min {𝜏, 𝛼}
is a truncation function. Furthermore,𝑊(𝑥)denotes a patch around

𝑥 and 𝑑 𝑗 is the absolute gradient difference

𝑑 𝑗(𝐼1(𝑦), 𝐼2(𝑦)) =
���� 𝑑𝑑𝑥 𝑗 𝐼1(𝑦1 , 𝑦2) −

𝑑

𝑑𝑥 𝑗
𝐼2(𝑦1 , 𝑦2 − 𝑢(𝑦))

���� . (4.122)

In our experiments, we used 𝜏 = 0.1. The input images are shown

in Fig. 4.2bś4.2c.



102 4 Lifted Bregman Iteration

𝑘 = 1 𝑘 = 8 𝑘 = 21 𝑘 = 60

Figure 4.6: Lifted Bregman for Non-Convex Non-Linear Scale Space. Shown are the results of the lifted Bregman
iteration applied to a non-convex stereo matching problem with the data term described in (4.121) and total variation
reqularizer. The input image pairs were taken from the łUmbrellaž and łBackpackž instances from the Middlebury
stereo datasets [Sch+14], see also Figs. 4.2bś4.2c. At 𝑘 = 1, the solution is a coarse approximation of the depth map. As
the iteration advances, details are progressively incorporated according to their scale. The results show a qualitative
similarity to the inverse scale space ŕow associated to the Bregman iteration in case of the convex ROF denoising problem.

Technical Details. Again, we őrst lifted the energy (4.121) using

the CBL approach. For the Umbrella (Backpack) input images the

domainΩ×Γ = (1480, 1008)×[0, 30] (Ω×Γ = (1470, 1008)×[0, 30])
was discretized as Ωℎ × Γℎ , where Ωℎ is a cell-centered grid with

𝑚 = 1480 × 1008 (𝑚 = 1470 × 1008) grid points and Γℎ is a nodal

grid with 𝑙 = 5 (𝑙 = 5) grid points. The energy was then discretized

using the sublabel-accurate discretization and solved using the

PDHG algorithm.

For the implementation, we again relied on the github toolbox

sublabel_relax [LM16; Möl+15], which provides an implementa-

tion of the stereo matching problem with CBL lifting and sublabel-

accurate discretization. It uses őnite forwards differences and

Neumann boundary conditions for the total variation. This time,

we used isotropic TV regularizer and chose subgradients according

to Sec. 4.4.1. We solved the lifted Bregman iteration steps with the

PDHG implementation given in prost [LM15].

Results. The results can be seen in Fig. 4.6 (Umbrella: 𝜆 = 0.1;

Backpack: 𝜆 = 0.083). Again, the evolution of the depth map

throughout the iteration resembles an inverse scale space ŕow. The

őrst solution is a smooth approximation of the depth proportions

and as the iteration continues, őner structures are added.

4.5.4 Conclusion

We have proposed a combination of the Bregman iteration and the

calibration based lifting approach with the aim of extending the
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inverse scale space iteration to variational problems with convex,

1-homogeneous regularizer and possibly non-convex data term.

We showed that the lifted Bregman iteration is in fact an extension

of the classic Bregman iteration: For the convex ROF denoising

problem, the iterates of the two algorithms Alg. 4 and Alg. 5 agree

if a sufficient condition on the subgradients is fulőlled.

Applied to nonconvex problems, numerical experiments show that

the behavior of the solutions of the lifted Bregman iteration is

very similar to what one expects in classical inverse scale space.

Components that correspond to nonlinear eigenfunctions of the

total variation regularizer appear respective to their eigenvalue

over the course of the iteration.

This opens up a number of interesting theoretical questions: Does

the lifted Bregman iteration in its continuous limit provably lead

to an inverse scale space ŕow with similar properties as the classic

inverse scale space ŕow (4.10)-(4.12)? Do nonlinear eigenfunctions

of the regularizer appear at a scale of the ŕow determined by the

respective eigenvalue as in (4.13)? If this was the case, one could

deőne weak data-dependent spectral representations as in (4.14)

and deőne edge-preserving őlters as in (4.16) for the solution to a

broad class of variation problems (4.1).

Such a theory is, however, mathematically challenging. Let us

consider a single step of the lifted Bregman iteration:

𝑣𝑘 ∈ arg min
𝑣∈C
{𝜆H(𝑣) +J(𝑣) − ⟨𝑝̃𝑘−1 , 𝑣⟩} . (4.123)

Assuming sufficient regularity of the energy such that additivity

of the subdifferentials holds [Roc70, Thm. 23.8], the optimality

condition reads

0 ∈ 𝜆𝜕H(𝑣𝑘) + 𝜕J(𝑣𝑘) − 𝑝̃𝑘−1. (4.124)

Assume we have 𝑞̃𝑘 ∈ 𝜕H(𝑣𝑘) and 𝑝̃𝑘 ∈ 𝜕J(𝑣𝑘) such that the

condition is fulőlled:

0 = 𝜆𝑞̃𝑘 + 𝑝̃𝑘 − 𝑝̃𝑘−1 (4.125)

⇔ −𝑞̃𝑘 =
1

𝜆
(𝑝̃𝑘 − 𝑝̃𝑘−1). (4.126)

Interpreting 𝜆 small enough again as the łtimež passed between

step 𝑘 − 1 and 𝑘, replacing the discrete steps of the lifted Bregman

iteration informally with a continuous time variable 𝑠 ∈ [0, 𝑇), and

dropping the dependecy on Ω for better readability gives

−𝑞̃(𝑠) = 𝜕

𝜕𝑠
𝑝̃(𝑠), 𝑞̃(𝑠) ∈ 𝜕H(𝑣(𝑠)), 𝑝̃(𝑠) ∈ 𝜕J(𝑣(𝑠)), 𝑝̃(0) = 0.
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Unfortunately, it is not clear how to őnd an explicit form for the

solution 𝑣 for a general data term 𝐻. Thus, the question whether

eigenfunctions of the regularizer appear at a scale of the ŕow given

via the respective eigenvalue as in the convex setting (see (4.13))

currently remains open.

As the theory behind the application of the lifted Bregman iteration

to variational problems with arbitrary, possibly non-convex data

term is still to be fully developed, the here presented approach

opens many interesting questions. Is it possible to deőne a spectral

theory that is dependent on the input data, the data term and the

regularizer of the problem at hand? Can we deőne an inverse scale

space for/of the unknown solution to a data term, where the notion

of scale is introduced via the eigenfunctions and eigenvalues of

the regularizer? So far we do not have answers to these questions

yet, which would constitute a larger step towards constructing

non-linear decompositions, őlters, and generation of a hierarchy of

solutions to problems with non-convex data terms, with a precise

nonlinear notion of scale.
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In this chapter, we propose a learning-based framework for solving

variational problems

inf
𝑢∈BV(Ω;Γ)

𝐹(𝑢), 𝐹(𝑢) :=

∫
Ω

𝑓 (𝑥, 𝑢(𝑥), d𝐷𝑢), (5.1)

where Ω ⊂ ℝ𝑛 is open and bounded, and Γ ⊂ ℝ is closed; see

also sidenote on p. 42. Furthermore, we assume that 𝑓 fulőlls the

assumptions (A1)ś(A4) introduced on p. 42 and is in addition

(B1) separable in the sense that 𝑓 : Ω×ℝ×ℝ𝑛 can be written with

the help of 𝜌 : Ω ×ℝ→ ℝ and 𝜂 : ℝ𝑛 → ℝ as

𝑓 (𝑥, 𝑡, 𝑝) = 𝜌(𝑥, 𝑡) + 𝜂(𝑝), (5.2)

(B2) positively 1-homogeneous in the last parameter, i.e.,

𝜂(𝜆𝑝) = 𝜆𝜂(𝑝), ∀𝑝 ∈ ℝ𝑛 , 𝜆 > 0. (5.3)

Assumptions (B1)ś(B2) will allow us to employ a special form of

the calibration-based lifting (see p. 56) and to compare it to the

state-of-the-art approach, which uses sublabel-accurate discretiza-

tion. The framework proposed in this chapter could, however, be

adjusted to problems (5.1) fulőlling only (A1)ś(A4). In this case,

the implementation of the constraints (5.9)ś(5.10) would have to

be replaced by an implementation of the constraint (3.47).

In the following, we denote by 𝐷 : BV(Ω;Γ) → ℝ the data term

𝐷(𝑢) =
∫
Ω

𝜌(𝑥, 𝑢(𝑥))d𝑥, (5.4)

and use throughout our explanations and experiments the total

variation regularizer TV : BV(Ω;Γ) → ℝ,

𝑇𝑉(𝑢) =
∫
Ω

𝜂(𝐷𝑢). (5.5)

The TV regularizer is admissible as it is convex, positively 1-

homogeneous and lower-semicontinuous in BV(Ω;ℝ)with respect

to the 𝐿1
loc

-topology, see [AFP00, Prop. 3.6]. It is used exemplarily

as it is common in variational imaging problems. Using the EmNeF

approach in combination with a different regularizer which fulőlls

assumptions (B1)ś(B2) only requires to change the implementation

of the constraint (5.9).
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5.1 Motivation and Outline

As outlined in the previous chapters, calibration-based lifting is a

powerful theoretical framework, for reformulating non-convex vari-

ational problems of the form (5.1) as convex ones, and, since being

introduced into the imaging community [Poc+09; Poc+10], related

papers have won prizes at CVPR 2016 or SSVM 2021. However,

applications of calibration-based lifting in the imaging commu-

nity are hard to őnd, which might be due to the complex theory,

numerically challenging implementation and computational run

time which is not suited for real-time applications.

Neural őelds (NFs)11: Neural őelds [Xie+22] are

coordinate-based networks: they ac-

cept (often low-dimensional) coordi-

nates as inputs and predict the value

of a őeld at said coordinates ś here

őeld refers to a physical quantity de-

őned over the input domain.

, on the other hand, celebrate a huge practical

success and are widely used in a variety of applications [Xie+22;

Mil+21; Koe+22]. They allure with their computational efficiency

in representing functions.

Our aim in this chapter is to present a novel framework for solving

variational problems (5.1) numerically by combining the strong

theory of calibration-based lifting with the computational power

of neural őelds. Instead of tackling the calibration-based lifted

formulation (5.1) with the PDHG algorithm (see Sec. 3.3.2 ś Sec. 3.4),

we propose a neural őelds based approach which we call embedded

neural őelds (EmNeF).

SA-PDHG Approach. The state-of-the-art is to discretize the

lifted energy using the sublabel-accurate discretization scheme

[Möl+15; MC17] discussed in Sec. 3.3ś3.3.3 and to solve the discrete

problem with the primal-dual hybrid gradient (PDHG) [Poc+09;

Poc+10; Möl+15] algorithm. While this approach allows to őnd

good solutions of variational problems (5.1), it also has several

drawbacks.

The sublabel-accurate discretization leads to a rather intricate

problem, which requires, among others, to calculate projections

onto the piecewise (in between the the chosen discretization points

of Γ (labels)) epigraph of the Fenchel conjugate of the data term.

This projection is not always easy to compute and might require

further approximation steps.

The sublabel-accurate discretization scheme, furthermore, relies on

assumptions (B1)-(B2). If these assumptions are not fulőlled, an-

other discretization scheme such as the őnite-difference approach

from [Poc+10] which we also discussed in Sec. 3.3 needs to be

employed. This discretization leads to a discrete problem which

is less involved to implement, but more expensive to solve, as it

requires a őner discretization with respect to the Γ-axis.

https://cvpr2016.thecvf.com/
https://ssvm2021.sciencesconf.org/
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EmNeF Approach. In the EmNeF approach, the goal is to łlearnž

a continuous representation of the lifted solution in terms of a

neural őeld. While we use terminology and frameworks from

the learning community, the EmNeF approach is not a classical

learning approach as it does not generalize to different input

data. It can instead be understood as stochastic optimization of a

non-linear approximation.

Our method can be described in two steps, where the őrst step

again consists of using the calibration-based lifting framework

(Chpt. 3) in order to express problems of the form (5.1) as convex

problems

inf
𝑣∈C

sup
𝜑𝑥∈K𝑥

𝜑𝑡∈K𝑡

F(𝑣, 𝜑𝑥 , 𝜑𝑡), (5.6)

where

F(𝑣, 𝜑𝑥 , 𝜑𝑡) :=

∫
Ω×ℝ

〈(
𝜑𝑥

𝜑𝑡

)
, d𝐷𝑣

〉
. (5.7)

Developing a full approximation theory using neural őelds is a

long-term undertaking for the scientiőc community as a whole

[HSW89; CMB00; SM17; Her+21] and we do not aim to do so here.

In order to not give this impression, for the remainder of this

chapter, we will argue informally without rigorously deőning the

function spaces. Therefore, we consider the primal constraint set

C= {𝑣 : Ω ×ℝ→ [0, 1] : 𝑣(·, 𝑡) = 1, 𝑡 ≤ Γmin ,

𝑣(·, 𝑡) = 0, 𝑡 > Γmax}, (5.8)

as well as the dual constraint sets

K𝑥 := {𝜑𝑥 : Ω ×ℝ→ ℝ
𝑛 | 𝜑𝑥(𝑥, 𝑡) ∈ dom𝜂∗ , ∀(𝑥, 𝑡)}, (5.9)

K𝑡 := {𝜑𝑡 : Ω ×ℝ→ ℝ | − 𝜑𝑡(𝑥, 𝑡) ≤ 𝜌(𝑥, 𝑡), ∀(𝑥, 𝑡)}. (5.10)

Again, 𝐷𝑣 represents the distributional derivative, and 𝜌 and 𝜂

denote the integrands of the data term and TV regularizer.

This leads us to the second step of the EmNeF approach, where

we introduce three neural őelds 𝑭𝑣
Θ𝑣
, 𝑭

𝜑𝑥
Θ𝑥

and 𝑭
𝜑𝑡
Θ𝑡

which accept

coordinates (𝑥, 𝑡) ∈ Ω× Γ as input. The őelds are to be understood

as non-linear approximations of the primal and dual variables

𝑣, 𝜑𝑥 , 𝜑𝑡 . During łtrainingž, random points in the continuous

domain Ω × Γ are chosen and the parameters of the őelds are

iteratively updated such that the neural őelds minimize/maximize

the lifted energy (5.7). To this end, the energy (5.7) is incorporated in

the loss functions according to which the parameters of the neural

őelds are updated. After the training (stochastic optimization of

the parameters) is completed, each őeld can be understood as a
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parameterized neural approximation of a primal/dual solution

𝑣∗ , 𝜑∗𝑥 and 𝜑∗𝑡 . The conceptual difference to the PDHG approach

is that we obtain via stochastic optimization a non-linear neural

approximation 𝑭𝑣
Θ𝑣

of the minimizer 𝑣∗ which is deőned on the

continuous domain Ω × Γ.

Outline. In Sec. 5.2, we discuss some basic principles of machine

learning from a high-level perspective and give a short introduction

to the here used methods. In Sec. 5.3, we describe the architecture

of the neural őelds and demonstrate how the sets (5.8)ś(5.10) can

be incorporated as hard constraints into the design of the neural

őelds. We describe the training process as well as the inference

and rendering steps. In Sec. 5.4, we compare the performance of

the EmNeF approach to established approaches with respect to

number of parameters, runtime and objective function value: In

the non-convex case, we compare against a CUDA implementation

[LM15] of the PDHG algorithm [Poc+09; CP11; Gol+13; FB18] using

the sublabel-accurate discretization scheme [LM16; Möl+15]. In

the convex case, we additionally compare against the established

convex optimization toolbox CVXPY [Agr+18; DB16].

5.2 Introduction to the Learning Framework

In this section, we discuss the basic principles of machine learn-

ing required for the remainder of this chapter from a high-level

perspective. For more in-depth discussions see for example [BN06;

LBH15].

Neural networks are inspired by the biological nervous system.

The human brain is believed to contain about 100 billion neurons

which generate, receive, and conduct small electric signals, and as

such process information [VBH16]. In the terminology of artiőcial

neural networks, the neurons are analogous to the network’s nodes,

which are essentially non-linear function blocks. The architecture

of the network describes which nodes are connected and how

they interact with each other. One node can have multiple input

and output connections which are equivalent to the biological

structure of dendrites and axons. How exactly information is passed

on between the nodes is modelled by the trainable parameters

(weights) of the network.

Neural Networks. Mathematically, a neural network can be viewed

as a family of functions 𝑭Θ : ℝ𝑛 → ℝ𝑑, parameterized by a param-

eter vector Θ ∈ ℝ𝑝 . During the training process, this parameter



5.2 Introduction to the Learning Framework 109

vector Θ is optimized to minimize a loss function 𝐿(Θ). The pa-

rameterized functions are typically composed from different layers.

Each layer is a non-linear parameterized function 𝑓𝑖 : ℝ𝑚𝑖 → ℝ,

𝑓𝑖(𝑥;𝜃𝑖) = 𝜎𝑖

(
𝑚𝑖∑
𝑗=1

𝑎𝑖 , 𝑗𝑥 𝑗 − 𝑏𝑖

)
, (5.11)

where 𝜎𝑖 is called activation function (see Tab. 5.1 for some examples)

and 𝜃𝑖 = (𝑎𝑖 ,1 , ..., 𝑎𝑖 ,𝑚𝑖 , 𝑏𝑖) are the trainable weights (parameters of

the network). Concatenating all layers and writing Θ = (𝜃1 , ..., 𝜃𝑝),
the full network is described by

𝑭Θ(𝑥) := 𝑭(𝑥;Θ) := 𝑓𝑝(... 𝑓2( 𝑓1(𝑥;𝜃1);𝜃2); ...𝜃𝑝). (5.12)

Some Examples. Neither input nor output of a neural network

are per se restricted to a speciőc data type and both are prob-

lem dependent. Let us consider three examples, which showcase

the versatility of neural networks and emphasize the difference

between data-driven approaches ś which are trained on labeled

data ś and model-driven approaches ś which incorporate (physical)

knowledge about the solution:

1. One of the prototypical examples in learning is the problem

of image recognition and categorization. A network is trained

on a set of labeled images such that new, previously unseen

instances belonging to the same group of classes can be

labeled correctly.

A famous example is the task of classifying handwritten

digits in the MNIST dataset [LeC98]. The goal is to obtain

a network that accepts an image of a single, handwritten

digit as input and returns the digit as output. Such a network

could be trained with the categorical cross-entropy loss

function. Such data-driven approaches typically require a

large amount of labeled data, since physical knowledge of

the problem is missing. The MNIST dataset, for example,

consists of 60,000 examples in the training set which amounts

to 6,000 examples for each class.

2. Deep learning can also be used for medical applications such

as image registration, see [HKY20] for an overview. The latter

is the task of őnding a deformation 𝜑 which maps a template

image 𝑇 into the coordinate system of a reference image 𝑅

so that 𝑇(𝜑(𝑥)) ≈ 𝑅(𝑥). The problem is also visualized in

Fig. 1.1.

For example, one can train a convolutional neural network

(CNN) to predict the deformation 𝜑 for given input im-

ages 𝑇 and 𝑅. The loss function can be an assembly of

different penalty terms which either ensure the similarity
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of 𝑇(𝜑(𝑥)) ∼ 𝑅(𝑥) or certain assumptions on 𝜑. While the

network is trained on a given data set, it also includes phys-

ical knowledge of the problem through the loss function

and generalizes to previously unseen images of the same

modality/type.

3. Neural networks can also be used for solving partial differ-

ential equations (PDEs), see [Cuo+22] for an overview.

Consider for example the heat equation. In this scenario, a net-

work could be trained to accept low-dimensional coordinate

points from the integration domain as input and to predict

the value of the solution at these points. The governing PDE,

as well as the initial and boundary conditions are translated

into a loss function optimization problem. The training pro-

cess can be augmented with łdataž, for example if parts of

the solution are already known, but is mainly model-driven

through the governing PDE.

Training. During the training process, one seeks to őnd łgoodž

values for the parameters (also called weights) Θ with respect to a

loss function 𝐿, which assesses the quality of the current weights.

Consider for example the the mean squared error (MSE) in supervised

training, where 𝑘 input samples 𝒙 = (𝑥1 , ..., 𝑥𝑘) , 𝑥𝑖 ∈ ℝ𝑛 and their

corresponding desired (ground truth) 𝒚 = (𝑦1 , ..., 𝑦𝑘) , 𝑦𝑖 ∈ ℝ𝑑 are

given:

𝐿MSE(Θ; 𝒙 , 𝒚) :=
1

𝑘

𝑘∑
𝑖=1

(𝑭(𝑥𝑖 ;Θ) − 𝑦𝑖)2 . (5.13)

After calculating the loss function for the current weights, the

gradient of the loss function with respect to the weights is de-

rived using automatic differentiation. The parameters Θ are then

updated accordingly, in the most simple form using the classical

gradient descent (GD) algorithm

Θ
𝑘+1

= Θ
𝑘 − 𝛼𝑘∇Θ𝐿(Θ𝑘 ; 𝒙 , 𝒚), (5.14)

where 𝛼𝑘 is the (adaptive) stepsize. More widely used in practice

is the stochastic gradient descent (SGD) algorithm, which updates

the weights in (5.14) by approximating the gradient ∇Θ𝐿 in each

iteration over a randomly chosen subset of (𝒙 , 𝒚) [Bot12]. Its use is

motivated by the high cost of running the backpropagation over

the full training set. An overview over more reőned stochastic

optimization approaches such as Adam [KB14] can be found in

[Rud16].

Even if the chosen loss function is convex with respect to the

networks output, it is typically non-convex with respect to the

networks parameters𝚯 due to the non-linearities 𝜎𝑖 in the network.
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Therefore, the problem

inf
Θ∈ℝ𝑞

𝐿(Θ; 𝒙 , 𝒚) (5.15)

is typically non-convex, which makes the formulation of conver-

gence results for classical gradient-based optimization strategies

tricky. Current research is concerned with the question of which

characteristics make certain global minimizers more attracting

than others for certain optimization algorithms [MMS21; CB20;

Gun+18].

In the following subsections, we discuss three concepts that will

be of particular relevance in the design of our approach:

▶ Generative adversarial networks (GANs): The term describes

a competitive learning framework in which two networks

are trained against each other. In the usual use case, one

network (the generator) tries to create new images which are

similar to images in a given training set, while the other

network (the discriminator) tries to discriminate these newly

generated images from original (non-generated) images. The

setting can be viewed as a game, since the cost of each player

(network) is inŕuenced by the other player’s parameters, but

the players can only control their own parameters.

In the EmNeF approach, we also optimize the parameters of

multiple networks. While one network learns to minimize

a given loss function, other networks learn to maximize it.

▶ Neural őelds (NF) and physics-informed neural networks (PINN):

Both terms are closely related and describe a certain type of

network which accepts typically low-dimensional coordinate

points as input and has a PDE or variational model as a

loss function. After the training process, the network can be

understood as a continuous, parameterized solution of the

PDE or variational model it was trained with. The inference

(forward) step can be thought of as discretization/evaluation

of the solution.

In the EmNeF approach, we make use of the properties

of neural őelds in order to avoid the problems typically

encountered during discretization and optimization of the

calibration-based lifted energies.

▶ Positional encoding: Positional encoding is a successful pre-

processing step applied in the context of neural őelds. It

maps the low-dimensional input coordinates to a higher-

dimensional space and speeds up learning solutions with

high-frequency content. While thematically subordinate to

neural őelds, positional encoding is a central part of the

EmNeF approach.
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Table 5.1: Activation Functions are
often non-linear and sometimes
even non-smooth. Together with lin-
ear weighting, they allow networks
to learn highly non-trivial tasks.

Name Function Plot

ReLU 𝜎(𝑥) =
{

0, if 𝑥 ≤ 0,

𝑥, else. −1 −0.5 0.5 1

−1

−0.5

0.5

1

Sigmoid 𝜎(𝑥) = 1
1+exp(−𝑥) −10 −5 5 10

−1

−0.5

0.5

1

Tanh 𝜎(𝑥) = exp(𝑥)−exp(−𝑥)
exp(𝑥)+exp(−𝑥) −10 −5 5 10

−1

−0.5

0.5

1

5.2.1 Generative Adversarial Networks (GANs)

Generative adversarial models fall under the relative broad umbrella

term of generative modeling. In the tutorial [Goo16], a soft introduc-

tion to generative modeling and the related taxonomy can be found.

We here follow the tutorial and introduce some of the important

concepts.

Generative Modeling. This describes the task of learning an ś

either implicit or explicit ś approximation 𝑝model of the true proba-

bility distribution 𝑝data of a given data set. If the goal is an explicit

approximation of the probability distribution, the trained model

(network) can be understood as a parameterized representation

of the approximated probability distribution. In case of an implicit

approximation, the model provides an indirect way of interacting

with the approximated probability distribution, e.g., by drawing

samples from it. In this case, the network maps some latent vari-

able (which can be in the same or in a different space then the

training data) and returns a sample drawn from the approximated

probability distribution (see łGeneratorž in Fig. 5.1).

Generative Adversarial Models. The goal of generative adversarial

networks (GANs) [Goo+14; Goo+20; Gui+23] is to generate plausible

new data after looking at training examples that is to learn the

probability distribution implicitly.

Consider a real-life example: Both the art connoisseur and the art

forger study famous art pieces in order to accumulate knowledge.

The art forger uses the acquired knowledge in order to create new

art pieces which resemble the work of some famous artist. The

art connoisseur uses his knowledge to recognize pieces of some

famous artist. The more attention the pieces of the art forger get
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and the better educated the audience is, the higher is the incentive

for the art forger to work on the plausibility of his work.

GANs use the concept of adversaries in a learning framework. Two

networks are trained simultaneously. The generator𝐺Θ𝐺 : ℝ𝑧 → ℝ𝑛

is trained to generate new, plausible samples of the estimated

probability distribution 𝑝model. The discriminator𝐷Θ𝐷 : ℝ𝑛 → [0, 1)
acts as an antagonist which is trained to discriminate real from

fake samples of the true probability distribution 𝑝data (see Fig.5.1).

Mathematically, 𝐷Θ𝐷 and 𝐺Θ𝐺 are antagonistic players in a game;

both networks inŕuence each other, but each network has its own

set of parameters.

Typically, the cost

−1

2
𝔼𝑥∼𝑝data

log(𝐷Θ𝐷 (𝑥)) −
1

2
𝔼𝑧 log(1 − 𝐷Θ𝐷 (𝐺Θ𝐺 (𝑧))) (5.16)

is used for the discriminator, while different choices for the cost of

the generator are explored in the literature, such as the negative

cost of the discriminator or

1

2
𝔼𝑧 log(1 − 𝐷Θ𝐷 (𝐺Θ𝐺 (𝑧))). (5.17)

The interested reader can őnd an overview and discussion of

alternative choices in [Goo16; Gui+23].

During training, the parameters of the networks are updated

alternately. Denoting the respective loss functions by 𝐿𝐷 and 𝐿𝐺,

the (adaptive) step sizes by 𝛼𝑘 and 𝛽𝑘 , and the sampled batches by

𝒙 and 𝒛, this alternating update can be speciőed as:

Θ
𝑘+1
𝐷 := Θ

𝑘+1
𝐷 − 𝛼𝑘∇Θ𝐷𝐿

𝐷(Θ𝑘
𝐷 ;Θ𝑘

𝐺 , 𝒙 , 𝒛), (5.18)

Θ
𝑘+1
𝐺 := Θ

𝑘+1
𝐺 − 𝛽𝑘∇Θ𝐺𝐿

𝐺(Θ𝑘
𝐺;Θ𝑘+1

𝐷 , 𝒙 , 𝒛). (5.19)

In the special case where the negative cost of the discriminator

is used as cost for the generator (𝐿𝐺 = −𝐿𝐷) this is conceptually

similar to the PDHG algorithm: The parameters Θ𝐷 and Θ𝐺 are

updated alternately in order to minimize/maximize the same loss

function.

Adaptation to our Work. Motivated by the success of such ap-

proaches, we design and train multiple neural networks, represent-

ing the primal and dual variables of the lifted energy (5.7), which

are then optimized in a minimax fashion.

We are not the őrst to borrow ideas from the GAN approach in

order to solve primal-dual energies. We would like to especially
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Generator

Discriminator

Latent Variable Faked Sample

True Samples

?

?

Figure 5.1: Generative Adversarial Network. The generator learns the distribution of the training data (green squares)
and generates new samples (red squares). The discriminator learns to estimate the probability of whether a given image is
a real or generated sample.

point out [MC19a], which addresses the problem of generative

modeling ś but instead of considering the input data to be samples

from a probability distribution (ł0-currentž), the authors argue

that perceiving them in terms of k-currents [Mor16, Chpt. 4] allows

to incorporate available geometric information into the model: the

given data can be oriented with respect to a latent variable which

represents for example time (in case of a video sequence) or rotation

(in case of handwritten digits). Using this current-based lifting

approach, the authors formulate a primal-dual energy which they

solve by training multiple networks in a GAN-inspired manner.

5.2.2 Coordinate-Based Neural Networks

As the name suggests, coordinate-based neural networks accept (of-

ten low-dimensional) coordinate points as input and predict

some value at these points. Two recent and popular examples

of coordinate-based neural networks are physics-informed neural

networks (PINNs), which were őrst proposed in [RPK19], and neural

őelds (NFs), see [Xie+22] for a broad overview and introduction.

While the term physics-informed neural network is used in the con-

text of partial differential equations (PDEs), the term neural őeld

is typically associated with imaging problems. Both frameworks,

however, share a lot in common.

Physics-Informed Neural Networks. PINNs combine deep learn-

ing frameworks with PDEs and constrain neural networks by

including prior (physical) knowledge of the problem at hand.

[Cai+21] demonstrate how PINNs can be used for solving ill-posed

problems. As a classical example, consider the heat equation [Cai+21].
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For initial condition ℎ and boundary condition 𝑔, the heat equation

is given as:

𝜕

𝜕𝑡
𝑢(𝑥, 𝑡) = Δ𝑥𝑢(𝑥, 𝑡), 𝑡 ∈ [0, 𝑇], 𝑥 ∈ Ω, (5.20)

𝑢(𝑥, 0) = ℎ(𝑥), 𝑥 ∈ Ω, (5.21)

𝑢(𝑥, 𝑡) = 𝑔(𝑥), 𝑡 ∈ [0, 𝑇], 𝑥 ∈ 𝜕Ω. (5.22)

The goal is to train a neural network that accepts low-dimensional

coordinates (𝑥, 𝑡) ∈ Ω̄ × [0, 𝑇] as input and returns the value of

the solution 𝑢 at the given points. In a fully model-driven approach,

the loss function is chosen such that it penalizes the residual of the

governing PDE (5.20)

𝐿𝑃𝐷𝐸(Θ; 𝒙 , 𝒕) :=
1

𝑘

𝑘∑
𝑖=1

(
𝜕

𝜕𝑡
𝑭(𝑥𝑖 , 𝑡𝑖 ;Θ) − Δ𝑥𝑭(𝑥𝑖 , 𝑡𝑖 ;Θ)

)2

. (5.23)

The initial (5.21) and boundary (5.22) conditions can either be

similarly included in the loss function as soft constraints or they

can be enforced as hard constraints in the output layer of the

network [Wu+23]. If the solution 𝑢 is known at certain interior

points, this information can be included in the loss function as well

by adding an additional term such as the mean squared error (MSE).

In [Cai+21] it is shown that such a partially data-driven approach

can lead to superior results compared to the fully model-driven

approach.

The network is trained on batches of coordinate points. These

batches can be sampled grid-free and randomly, however, it can be

beneőcial to give special attention to boundary points or to areas of

interest [Wu+23]. A PINN, therefore, learns a parameterized neural

representation of the solution of the PDE in a grid-free manner.

Differential terms in the PDE can either be accounted for by

sampling neighboring łgridž points with a őxed distance to the

randomly sampled points, and using őnite differences (FD) when

calculating the loss function or by applying automatic differentiation

(AD) frameworks [Cai+21]. While AD-reliant approaches prevail in

literature, it has been observed experimentally that incorporating

FD-terms in the loss function can lead to better results ś although

the theory behind the better results is still unknown [LDR22].

Once a PINN is trained, it can easily be evaluated with arbitrary

resolution. This step is also called inference. Note, that the approach

also comes with some caveats: Since the spatial points are randomly

sampled during training, the probability of sampling the location

of a singularity during the training process is zero. Also, it is

important to sample a good ratio of boundary and inner points in

order to avoid exploding gradients. And, last but not least, due to
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non-convexity associated to most learning problems, convergence

can be a problem.

Neural Fields. The term neural őeld was coined by the imag-

ing community and a summary of related terms and topics, as

well as an extensive literature review about NFs can be found in

[Xie+22]. A őeld here refers to a physical quantity that is deőned

over coordinates. Neural őelds parameterize such a őeld. They are

coordinate-based neural networks, which map a coordinate point

to a scalar or vectorial quantity.

Neural őelds have proven especially powerful for the task of novel

view synthesis. For this task, the available training data consists of

various 2D images taken from a 3D scene. The input images are

randomly sampled on a hemisphere surrounding the scene and

saved together with the information of the current camera position

and angle. The goal is to generate new 2D images of the 3D scene

from previously unseen angles and positions. Neural radiance őelds

(NeRFs) [Mil+21] have proven to be especially successful in this task.

They accept 5D input coordinates ś three of them describing the 3D

spatial location (𝑥, 𝑦, 𝑧) and two of them describing the viewing

direction (𝜃,𝜓) ś and output 4D information of the volumetric őeld

ś three for the color information (𝑟, 𝑔, 𝑏) and one for the density 𝛼.

In order to render a synthetic 2D image from this volumetric őeld,

one needs to think of a camera ray travelling through the scene.

The ray is discretized and the discrete coordinate points (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖)
together with the viewing direction (𝜃,𝜓) of the ray are passed to

the NeRF. The NeRF produces for each 5D (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 , 𝜃,𝜓) point

a prediction of color (𝑟𝑖 , 𝑔𝑖 , 𝑏𝑖) and density (𝛼𝑖). The information

along one ray is then accumulated as color information (𝑅, 𝐺, 𝐵)
corresponding to one pixel in the synthetic 2D image.

While NeRFs are currently most prominent in the őeld of computer

vision, applications of neural őelds are diverse and include inverse

problems in cryogenic electron microscopy (Cryo-EM) [Zho+19] and

surface reconstruction problems with explicit boundary curves

[Pal+22].

Adaptation to our Work. Our EmNeF approach is inspired by

[Pal+22], where the authors consider the problem of surface recon-

struction for explicitly given boundaries. Starting with Plateau’s

minimal surface problem, the authors embed the problem in the

space of k-currents [Mor16, Chpt. 4] and approximate the problem

of the embedded problem by training a neural őeld. Similarly,

we aim to solve variational problems (5.1) by őrst embedding

the problem using calibration-based lifting and then őnding a

non-linear approximation of the solution to the lifted problem
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by stochastically optimizing the parameters of the neural őelds.

Neural őelds convince through their expressive power. With this

approach we hope to reduce the number of required parameters

and to simplify the implementation.

5.2.3 Positional Embedding

It has been observed that neural networks learn low-frequency

components in the solution faster than high frequency components.

This behavior is referred to as frequency bias [Bas+20] or spectral

bias [Rah+19]. As the distribution of the training data inŕuences

the spectral bias [Rah+19; Bas+20; Tan+20; ZRL21], manipulating

said distribution can accelerate the training process. In [Rah+19]

the authors demonstrate that components with high frequency

are learnt faster if the input data lies in a low-dimensional, com-

plexly shaped manifold of a high-dimensional input space. This is

especially interesting with respect to neural őelds; In comparison

to other neural networks the input space of neural őelds is often

low-dimensional and rather densely distributed.

In order to accelerate the training process positional embedding

strategies have been suggested; The idea is to deőne a function

𝛾 : ℝ𝑛 → ℝ𝑁 , 𝑛 ≪ 𝑁, which maps low-dimensional input data,

e.g., 𝑥 ∈ ℝ2, into a higher-dimensional space, e.g., 𝛾(𝑥) ∈ ℝ1024

and which simultaneously makes the training data more sparsely

distributed.

A comparison of different positional embedding strategies can be

found in [ZRL21]. The authors argue that distance preservation

between original and embedded space is important for generaliza-

tion and that a high matrix rank of the embedded representation

across positions causes better memorization of the training data.

One of the discussed strategies is the random Fourier features (RFF)

encoding which we use in the EmNeF approach.

Random Fourier Features. Random Fourier features have their

origin in the natural language processing community [Xu+19] and

were studied in the context of neural őelds in [Tan+20; ZRL21]. The

RFF encoding is deőned as a map 𝛾 : [0, 1)𝑛 → ℝ2𝑚 of the form

𝛾(𝑥) :=

©­­­­­­­
«

𝑎1 cos(2𝜋𝑏⊤
1
𝑥)

𝑎1 sin(2𝜋𝑏⊤
1
𝑥)

...

𝑎𝑚 cos(2𝜋𝑏⊤𝑚𝑥)
𝑎𝑚 sin(2𝜋𝑏⊤𝑚𝑥)

ª®®®®®®®
¬
, (5.24)
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Figure 5.2: RFF Encoding. Positional encoding strategies are preprocessing steps used for coordinate-based neural
networks. They increase the dimensionality of the input, which improves the network’s capability of learning high-
frequency components and leads to an acceleration of the training procedure. In the RFF encoding (5.24), randomly
chosen spatial coordinates are projected onto higher-dimensional hyperspheres. Here, the sampled coordinates are in
[0, 1)2 (leftmost), and three possible projections for randomly chosen 𝑏1 , 𝑏2 ∈ N(0, 𝜎2) as well as 𝑎1 = 𝑎2 = 1 are shown.
The forth dimension of the projected coordinates is color-coded.

where the parameters 𝑎𝑖 ∈ ℝ are randomly chosen and the vec-

tors 𝑏𝑖 ∈ ℝ𝑛 are randomly sampled from the normal distribu-

tion N(0, 𝜎2). The RFF encoding can be considered as a prepro-

cessing step; Before being passed to the trainable layers of the

network, an input 𝑥 ∈ [0, 1)𝑛 is replaced by its higher-dimensional

representation 𝛾(𝑥) ∈ ℝ2𝑚 (see Fig. 5.2).

5.3 EmNeF

The idea of the EmNeF approach is to łlearnž a parametric non-

linear approximation of the primal 𝑣∗ ∈ C and dual 𝜑∗𝑥 ∈ K𝑥 ,

𝜑∗𝑡 ∈ K𝑡 solutions of the problem (5.6) by stochastically optimizing

multiple neural őelds.

We introduce three neural őelds 𝑭𝑣
Θ𝑣

: Ω × ℝ → [0, 1],
𝑭
𝜑𝑥
Θ𝑥

: Ω × ℝ → ℝ𝑛 and 𝑭
𝜑𝑡
Θ𝑡

: Ω × ℝ → ℝ which are param-

eterized by trainable weights Θ𝑣 ∈ ℝ𝑞𝑣 , Θ𝑥 ∈ ℝ𝑞𝑥 and Θ𝑡 ∈ ℝ𝑞𝑡 .

We stochastically optimize these parameters for the problem

inf
Θ𝑣∈ℝ𝑞𝑣

sup
Θ𝑥∈ℝ𝑞𝑥 ,
Θ𝑡∈ℝ𝑞𝑡

F

(
𝑭𝑣
Θ𝑣
, 𝑭

𝜑𝑥
Θ𝑥
, 𝑭

𝜑𝑡
Θ𝑡

)
. (5.25)

As the primal and dual variables play contrary roles in minimizing/

maximizing the primal-dual energy, the neural őelds are later

łtrained against each otherž, which is reminiscent of the generator

and discriminator in the GAN setting. Our approach is visualized

in Fig. 5.3ś5.4.

In the remainder of this section, we explain the architecture of the

neural őelds, the implementation of the constraint sets, the stochas-

tic optimization of the parameters and the inference process.
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(𝑥, 𝑡)

RFF

RFF

RFF

𝑇𝑣 𝑣

Θ𝑣

𝑇𝜑𝑥 𝜑𝑥

Θ𝑥

𝑇𝜑𝑡 𝜑𝑡

Θ𝑡

𝜕𝑥

𝜕𝑡

Regulariser

Data Term

Loss 𝐿𝜈 𝚯𝒗
∗Minimize loss

Loss 𝐿𝑥 𝚯𝒙
∗Minimize loss

Loss 𝐿𝑡 𝚯𝒕
∗Minimize loss

Figure 5.3: EmNeF Architecture. EmNeFs offer a uniőed strategy for solving problems of the form (5.1) building on
the theory of calibration-based lifting. Instead of solving the lifted energy (5.7)-(5.10) using one of the discretization
approaches discussed in Sec. 3.3 and the gradient-descent based PDHG algorithm as discussed in Sec. 3.4, we suggest
solving the primal-dual problem with the help of neural őelds. After the parameters have been optimized, the neural
őelds represent a non-linear parametric approximation of the solutions 𝑣∗ , 𝜑∗𝑥 and 𝜑∗𝑡 . The procedure of optimizing the
parameters resembles the generative-adversarial networks (GAN) setting where multiple networks are trained against
each other. The EmNeF approach is easy to implement.

Batches RFF Encoding EmNeF Output Rendering

Figure 5.4: EmNeF. The EmNeF approach can be used for solving variational problems of the form (5.1). In this example
we have Ω, Γ ⊂ ℝ1. During training, random coordinate points in Ω× Γ are sampled and passed though an RFF encoding
into the EmNeF. The parameters of the primal/dual neural őelds are iteratively updated to minimize/maximize the
energy (5.6). At the end of the training procedure, ideally, the three networks have learned an approximation of the
optimal primal/dual variables. After the training is complete, a suitably őne grid can be chosen in order to infer the lifted
solution 𝑣∗ with optimal resolution. Thresholding of 𝑣∗ results in an approximate minimizer 𝑢∗ of (5.1).
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5.3.1 Architecture

All three neural őelds 𝑭𝑣
Θ𝑣
, 𝑭

𝜑𝑥
Θ𝑥

and 𝑭
𝜑𝑡
Θ𝑡

have the same general

architecture of one input, two hidden, and one output layer, see

Fig. 5.5. Let us discuss these three main blocks:

Input Layer. The input layer implements the random Fourier fea-

ture encoding deőned in (5.24). The RFF parameters 𝑎𝑖 , 𝑏𝑖 , and 𝜎2

are typically manually chosen rather than trained. Consequently,

this layer has no trainable parameters. We use it as a preprocess-

ing step in order to improve the neural őelds capability to learn

high-frequency representation [Tan+20].

In our experiments, the RFF encoding increases the dimension of

inputs (𝑥, 𝑡) ∈ ℝ3 from 𝑛 + 1 = 3 to 2𝑚 = 211. We set 𝑎𝑖 = 1 and

use 𝑚 random coefficients 𝑏𝑖 ∈ ℝ𝑛+1 drawn from the multivariate

normal distribution N(0, 2𝜋𝜎2𝐼), with variance 𝜎2. This means

that the RFF encoding reduces for the notation 𝒙 = (𝑥, 𝑡) to

𝜸 : ℝ𝑛+1 → ℝ2𝑚 ,

𝜸(𝒙) :=
(
cos(𝑏⊤1 𝒙), sin(𝑏⊤1 𝒙), ..., cos(𝑏⊤𝑚𝒙), sin(𝑏⊤𝑚𝒙)

)
. (5.26)

The choice of the variance 𝜎2 has a notable impact on the results

and will be discussed further in Sec. 5.4.

Hidden Layers. Each hidden layer has the same number of

neurons ś in our examples 25 or 26 ś and we use ReLU activation

functions for 𝑭𝑣
Θ𝑣

and Tanh activation functions for 𝑭
𝜑𝑥
Θ𝑥

and 𝑭
𝜑𝑡
Θ𝑡

as shown in Fig. 5.5. For now, the choice of activation function

is based on őrst experiments and observations; a more thorough

theoretical investigations is desirable in the future.

Last Layer. The last layer of the neural őelds is especially impor-

tant: By choosing suitable activation and transformation functions,

the constraints imposed by C,K𝑥 , and K𝑡 can be enforced as hard

constraints, as will be discussed in the next section.

5.3.2 Hard Constraints

In Sec. 5.2.2, we have discussed the implementation of constraints

in the context of PINNs: Constraints can either be implemented

as soft constraints by adding a Lagrangian multiplier to the loss

function, or as hard constraints by customizing a network’s output

layer.
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𝑭𝑣
Θ𝑣

: RFF ReLU ReLU 𝑇𝑣◦Sigmoid

𝑭
𝜑𝑥
Θ𝑥

: RFF Tanh Tanh 𝑇𝜑𝑥

𝑭
𝜑𝑡
Θ𝑡

: RFF Tanh Tanh 𝑇𝜑𝑡◦ReLU

Figure 5.5: Network architecture. The three neural őelds 𝑭𝑣
Θ𝑣
, 𝑭

𝜑𝑥
Θ𝑥

, and 𝑭
𝜑𝑡
Θ𝑡

share the same general architecture: Inputs to

the neural őelds are preprocessed using the RFF encoding in order to allow the neural őelds to better learn high-frequency
solutions. The RFF encoding increases the dimensionality of the inputs for example from 3 to 211. It has no trainable
parameters and we, therefore, consider it as part of the input layer. All three neural őelds have two hidden layers with the
same width (in our experiments 25 or 26), however, the activation functions are chosen differently as indicated in the
őgure. The output layers of the neural őelds play a special role, as they are used to enforce the constraints imposed by
C,K𝑥 and K𝑡 as hard constraints. This is done by customizing the activation functions as indicated in the őgure. The
deőnition of the transformations 𝑇𝑣 , 𝑇𝜑𝑥 and 𝑇𝜑𝑡 is given in (5.27), (5.34), and (5.36).

In this work, we implement the constraints C,K𝑥 , and K𝑡 as hard

constraints. The reasons are twofold. First, soft constraints would

require adding suitable Lagrangian multipliers, which would

result in a more complicated primal-dual structure and require

training/tuning additional variables. Second, it has been observed

in the context of PINNs that hard constraints lead to superior

results compared to soft constraints [Wu+23].

Primal Constraint C. According to the constraint set C (5.8), the

primal neural őeld 𝑭𝑣
Θ𝑣

is required to assume values in [0, 1] and

to meet the boundary conditions.

We employ the sigmoid activation function (see Table 5.1), which

guarantees values in [0, 1], and deőne an additional pointwise

transformation 𝑇𝑣 : [0, 1] ×ℝ→ [0, 1] in order to ensure that the

boundary constraints are satisőed:

𝑇𝑣(𝑦, 𝑡) :=




1, if 𝑡 ≤ Γmin ,

0, if 𝑡 ≥ Γmax ,

𝑦, otherwise.

(5.27)

Denoting the sigmoid function as 𝜎𝑆, the last layer is completely

described with

𝑇𝑣 ◦ 𝜎𝑆 . (5.28)
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Dual Constraint K𝑥 . The dual constraint set K𝑥 in (5.9) is de-

termined by the choice of the regularizer. In our experiments, we

use the total variation regularizer for which the integrand can be

written as

𝜂(𝑝) = 𝜆∥𝑝∥2 , (5.29)

where 𝜆 > 0 is a regularization parameter. For 𝜆 = 1, the (point-

wise) Fenchel conjugate is calculated as

𝜂∗(𝑞) = sup
𝑝∈ℝ𝑛

⟨𝑝, 𝑞⟩ − ∥𝑝∥2 =




0, if ∥𝑞∥2 ≤ 1,

∞, else.
(5.30)

In order to account for the regularization parameter, we use the

conjugacy rule [RW09, p. 475]

𝜆 𝑓 (𝑝) ∗←→ 𝜆 𝑓 ∗(𝜆−1𝑣). (5.31)

This means that for arbitrary 𝜆 > 0 the (pointwise) Fenchel conju-

gate of the total variation regularizer is given by

𝜂∗(𝑞) =



0, if ∥𝑞∥2 ≤ 𝜆,

∞, else.
(5.32)

Therefore, we can rewrite the constraint set K𝑥 in (5.9) as

K𝑥 = {𝜑𝑥 : Ω ×ℝ→ ℝ
𝑛 | ∥𝜑𝑥(𝑥, 𝑡)∥2 ≤ 𝜆, ∀(𝑥, 𝑡)}. (5.33)

Consequently, we need to restrict the output of 𝑭
𝜑𝑥
Θ𝑥

pointwise to

a ball with radius 𝜆. We deőne a projection 𝑇𝜑𝑥 : ℝ𝑛 → B𝜆 onto

the 𝑛-dimensional scaled unit ball with radius 𝜆:

𝑇𝜑𝑥 (𝑦) :=



𝜆

𝑦

∥𝑦∥2 , if 1
𝜆 ∥𝑦∥2 > 1,

𝑦, otherwise.
(5.34)

Note that this projection is not differentiable. This is theoretically

problematic during the optimization process of the network’s

parameters; in practice it appears to work well, similarly to the

ubiquitously used (and equally non-differentiable) ReLU non-

linearity. The transformation 𝑇𝜑𝑥 completely describes the last

layer.

Dual Constraint K𝑡 . The dual constraint set K𝑡 (5.10) is largely

determined by the integrand 𝜌 of the data term: The negative

output of the dual neural őeld 𝑭
𝜑𝑡
Θ𝑡

needs to be pointwise bounded

from above by the data. We employ the ReLU activation function

(see Table 5.1), which guarantees values in [0,+∞). Denoting
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the output of the dual őeld right after application of the ReLU

activation function as 𝑭̃
𝜑𝑡
Θ𝑡

, it holds

𝑭̃
𝜑𝑡
Θ𝑡
≥ 0 ⇔ 𝑭̃

𝜑𝑡
Θ𝑡
− 𝜌 ≥ −𝜌 ⇔ −(𝑭̃𝜑𝑡

Θ𝑡
− 𝜌) ≤ 𝜌. (5.35)

Therefore, we deőne 𝑇𝜑𝑡 : [−1, 1] ×Ω ×ℝ→ ℝ pointwise as

𝑇𝜑𝑡 (𝑦, 𝑥, 𝑡) := 𝑦 − 𝜌(𝑥, 𝑡). (5.36)

Denoting the ReLU activation function by 𝜎𝑅, the last layer of the

dual neural őeld 𝑭
𝜑𝑡
Θ𝑡

is completely described with

𝑇𝜑𝑡 ◦ 𝜎𝑅 . (5.37)

A Note on Implementation. As the constraints on 𝑭
𝜑𝑥
Θ𝑥

and 𝑭
𝜑𝑡
Θ𝑡

hold the complete information on the variational problem, imple-

menting a new problem is as easy as rewriting the implementation

of these constraints. Notably, only the integrand of the original,

low-dimensional data term and the (pointwise) Fenchel conju-

gate of the integrand of the original, low-dimensional regularizer

are needed and no further knowledge of the CBL embedding

approach is required. This makes the EmNeF approach easy to

implement, ŕexible, and more accessible than the sublabel-accurate

discretization discussed in Sec. 3.3.

5.3.3 Training

While we use the word łtrainingž, the process can be thought of

as stochastically optimizing the parameters of the neural őelds.

During training, we minimize the expected value of the integrand

of F in (5.7), i.e.,

𝔼(𝒙 ,𝑡)
(
𝑭
𝜑𝑥
Θ𝑥
(𝒙 , 𝑡)∇ℎ𝑥𝑭𝑣Θ𝑣

(𝒙 , 𝑡) + 𝑭
𝜑𝑡
Θ𝑡
(𝒙 , 𝑡)∇ℎ𝑡 𝑭𝑣Θ𝑣

(𝒙 , 𝑡)
)
, (5.38)

where (𝒙 , 𝑡) are assumed to be uniformly distributed, and where

we use the notation ∇ℎ𝑥𝑭𝑣Θ𝑣
, ∇ℎ𝑡 𝑭𝑣Θ𝑣

for the components of the

distributional derivative 𝐷𝑭𝑣
Θ𝑣

.

Batches. Instead of training the neural őelds on a őxed, discrete

grid Ωℎ × Γℎ , we use in each training step 𝑘 randomly sampled

coordinate points 𝑿 := {(𝒙 𝑖 , 𝑡𝑖) | (𝒙 𝑖 , 𝑡𝑖) ∈ Ω × Γext}𝑘𝑖=1 from a uni-

form distribution over the continuous domainΩ×Γext (see Fig. 5.6).

Here, Γext denotes an interval which is slightly larger than Γ, i.e.,

Γext := [Γmin − ΔΓ , Γmax + ΔΓ] (5.39)
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for some ΔΓ > 0. As the primal variable is required to be constant

for 𝑡 ≤ Γmin or 𝑡 ≥ Γmax, see (5.8), Ω×Γ is the most interesting area.

We sample from Ω × Γext in order to ensure that enough relevant

points are sampled while also taking into account the constraint.

In the terminology of neural networks, these random points 𝑿 are

the batches the őelds are trained on.

Loss Functions. Replacing the functions 𝑣, 𝜑𝑥 , 𝜑𝑡 in (5.6)ś(5.7)

with the neural őelds yields (again, informally, without considering

any function spaces)

inf
Θ𝑣∈ℝ𝑞𝑣

sup
Θ𝑥∈ℝ𝑞𝑥 ,Θ𝑡∈ℝ𝑞𝑡

F

(
𝑭𝑣
Θ𝑣
, 𝑭

𝜑𝑥
Θ𝑥
, 𝑭

𝜑𝑡
Θ𝑡

)
, (5.40)

where

F

(
𝑭𝑣
Θ𝑣
, 𝑭

𝜑𝑥
Θ𝑥
, 𝑭

𝜑𝑡
Θ𝑡

)
=

∫
Ω×ℝ

〈(
𝑭
𝜑𝑥
Θ𝑥

𝑭
𝜑𝑡
Θ𝑡

)
, 𝐷𝑭𝑣

Θ𝑣

〉
. (5.41)

In each training step, the parameters are updated successively

by performing a gradient descent step on the parameters Θ𝑣 and

gradient ascent steps on the parameters Θ𝑥 and Θ𝑡 with respect

to (5.41).

Given a batch 𝑿 := {(𝒙 𝑖 , 𝑡𝑖) | (𝒙 𝑖 , 𝑡𝑖) ∈ Ω × Γext}𝑘𝑖=1 as described

above, the loss functions that the individual őelds are trained on

are as follows:

𝐿𝑣(Θ𝑣 ;𝑿 ) =
1

𝑘

𝑘∑
𝑖=1

𝑭
𝜑𝑥
Θ𝑥
(𝒙 𝑖 , 𝑡𝑖)⊤∇ℎ𝑥𝑭𝑣Θ𝑣

(𝒙 𝑖 , 𝑡𝑖)

+𝑭𝜑𝑡
Θ𝑡
(𝒙 𝑖 , 𝑡𝑖)∇ℎ𝑡 𝑭𝑣Θ𝑣

(𝒙 𝑖 , 𝑡𝑖), (5.42)

𝐿𝑥(Θ𝑥 ;𝑿 ) =
1

𝑘

𝑘∑
𝑖=1

− 𝑭
𝜑𝑥
Θ𝑥
(𝒙 𝑖 , 𝑡𝑖)⊤∇ℎ𝑥𝑭𝑣Θ𝑣

(𝒙 𝑖 , 𝑡𝑖), (5.43)

𝐿𝑡(Θ𝑡 ;𝑿 ) =
1

𝑘

𝑘∑
𝑖=1

− 𝑭
𝜑𝑡
Θ𝑡
(𝒙 𝑖 , 𝑡𝑖)∇ℎ𝑡 𝑭𝑣Θ𝑣

(𝒙 𝑖 , 𝑡𝑖). (5.44)

The gradients ∇ℎ𝑥𝑭𝑣Θ𝑣
and ∇ℎ𝑡 𝑭𝑣Θ𝑣

can either be implemented with

the help of őnite differences or with automatic differentiation.

While the latter approach prevails in literature, it has experimen-

tally been observed in [LDR22] that the former can lead to better

numerical results. Therefore we chose to implement the gradi-

ents ∇ℎ𝑥𝑭𝑣Θ𝑣
and ∇ℎ𝑡 𝑭𝑣Θ𝑣

with the help of őnite forward differences.

While central differences have a better order of consistency, they

have a high-frequency null space, which can lead to checkerboard

artifacts in conjunction with total variation [Lel+13a].
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Figure 5.6: Sampling. In each train-
ing step, 𝑘 random coordinate points

𝑿 = {(𝒙 𝑖 , 𝑡𝑖) ∈ Ω × Γ}𝑘𝑖=1 are sam-
pled (red). Together, these points
form the batch, which the neu-
ral őelds are trained on in this
step. As we use őnite differences
for calculating the őrst-order terms
in the loss functions, we addition-
ally sample adjacent coordinates
(𝒙 𝑖 + ℎ𝑥 𝑒1 , 𝑡𝑖), (𝒙 𝑖 + ℎ𝑥 𝑒2 , 𝑡𝑖) and
(𝒙 𝑖 , 𝑡𝑖 + ℎ𝑡 ) (blue), where 𝑒𝑖 are 𝑖-th
unit vectors and ℎ𝑥 is a vector that
contains grid step sized for each Ω-
axis.

In order to compute the forward differences, we need to sample

coordinates which are adjacent to the randomly sampled ones (see

Fig. 5.6 for an example with Ω ⊂ ℝ2). Let 𝒆 𝑖 denote the 𝑖-th unit

vector. Let ℎ𝑥 be a vector which contains the chosen grid step sizes

with respect to the individual Ω axes and ℎ𝑡 the grid step size with

respect to the Γ axis. Then the gradients are calculated as

∇ℎ𝑥𝑭𝑣Θ𝑣
(𝒙 𝑖 , 𝑡𝑖) :=

1

ℎ𝑥

©­­­
«

𝑭𝑣
Θ𝑣
(𝒙 𝑖 + ℎ𝑥𝒆1 , 𝑡𝑖) − 𝑭𝑣

Θ𝑣
(𝒙 𝑖 , 𝑡𝑖)

...

𝑭𝑣
Θ𝑣
(𝒙 𝑖 + ℎ𝑥𝒆𝑑 , 𝑡𝑖) − 𝑭𝑣

Θ𝑣
(𝒙 𝑖 , 𝑡𝑖)

ª®®®
¬
, (5.45)

∇ℎ𝑡 𝑭𝑣Θ𝑣
(𝒙 𝑖 , 𝑡𝑖) :=

1

ℎ𝑡

(
𝑭𝑣
Θ𝑣
(𝒙 𝑖 , 𝑡𝑖 + ℎ𝑡) − 𝑭𝑣

Θ𝑣
(𝒙 𝑖 , 𝑡𝑖)

)
, (5.46)

using őnite forward differences both for the spatial dimensions

and the range.

5.3.4 Inference

We are mainly interested in the output of the primal neural őeld 𝑭𝑣
Θ𝑣

,

as the latter approximates the primal solution 𝑣∗. For the inference

step, we chose a discrete grid Ωℎ × Γℎ with a particular őne

resolution of the range

Γ
ℎ
=

{
𝛾ℎ1 , ..., 𝛾

ℎ
𝑙

�� 𝛾ℎ1 = Γmin , 𝛾ℎ𝑙 = Γmax , 𝛾ℎ𝑖 < 𝛾ℎ𝑖+1

}
(5.47)

for large 𝑙. Note that the runtime of the inference step scales linearly

with the number of labels 𝑙 but is comparatively fast, see Fig. 5.7.

We evaluate 𝑭𝑣
Θ𝑣

on said grid, choose the threshold 𝑠 = 0.5 ∈ [0, 1],
and calculate 𝑣ℎ : Ωℎ × Γℎ → {0, 1} as

𝑣ℎ(𝒙 𝑖 , 𝑡𝑖) =



1, if 𝑭𝑣
Θ𝑣
(𝒙 𝑖 , 𝑡𝑖) > 𝑠,

0, otherwise.
(5.48)
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Figure 5.7: Runtime of Inference

Step for a Grid of Size 100× 100× 𝑙.
The 𝑥-axis denotes the number of
labels 𝑙 and the 𝑦-axis the runtime
in seconds. Neural őeld inference
is generally very efficient, which al-
lows to achieve precision by increas-
ing the label count.

Furthermore, we compute 𝑢ℎ : Ωℎ → ℝ as

𝑢ℎ(𝒙 𝑗) = 𝛾ℎ1 +

(
𝛾ℎ
𝑙
− 𝛾ℎ

1

)
𝑙

𝑙∑
𝑖=1

𝑣ℎ(𝒙 𝑗 , 𝑡𝑖). (5.49)

Together, (5.48)ś(5.49) describe the projection of the neural őeld

approximation of a solution to the embedded problem (5.6) onto

the discrete version of the original solution space of (5.1). In

the terminology of neural őelds, this step can be viewed as the

rendering process.

5.4 Numerical Results

In the following, we investigate a proof-of-concept implementation

of the EmNeF method and test it on a convex denoising and non-

convex stereo matching problem. For each problem we manually

selected the variance parameter 𝜎 associated to the RFF encoding,

the number of nodes in the hidden layers, and the step sizes

used for the SGD optimizers. In all experiments we increased the

dimension of the inputs from 3 to 211 with the RFF encoding and

optimized the weights of the neural őelds over 50.000 update steps

using batches of size 2500.

The experiments were run on a 2 x 6-core Intel(R) Xeon(R) Gold

6128 CPU @ 3.40GHz system (24 logical cores), NVIDIA GeForce

RTX 2080 Ti, Ubuntu 18.04.1 LTS, Python 3.8, and CUDA 10.1.

5.4.1 Convex Case: Denoising

First we considered the Rudin-Osher-Fatemi (ROF) denoising

problem: For some input image 𝑓 we seek a solution 𝑢 ∈ BV(Ω;ℝ)
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(a) Input image (b) CVXPY solution u_cvxpy (c) SA - PDHG solution u_prost

(d) EmNeF solution u_emnef (e) Difference u_emnef − u_cvxpy (f) Difference u_emnef − u_sapdhg

Figure 5.8: Qualitative Comparison between EmNeF and Classical Convex Optimization Approaches on a Convex

Problem. We consider the ROF denoising problem (5.50) for the input image in Fig. (a). While convex variational problems
are not the main topic of interest for embedding techniques, this allows us to compare the EmNeF approach to classical
optimization approaches both on the original and lifted energy. We compare the following three approaches: The original
problem is solved using CVXPY in combination with the MOSEK backend, see Fig. (b). The lifted problem is solved using
sublabel-accurate discretization in combination with the PDHG algorithm and using the proposed EmNeF approach, see
Figs.(c)ś(d). The EmNeF approach does only approximate the numerical CVXPY solution, which is further illustrated
by the difference between the EmNeF and CVXPY result, see Fig. (e). Differences are especially noticeable around the
corners of the building and the windows.

which minimizes the energy

𝐹(𝑢) =
∫
Ω

(𝑢(𝑥) − 𝑓 (𝑥))2 d𝑥 + 𝜆𝑇𝑉(𝑢). (5.50)

The problem is inherently convex, therefore there is no need for

convex relaxation. However, as we can easily compute global min-

imizers of the original problem, applying the lifting approach

allows us to compare the results achieved with the EmNeF ap-

proach to results achieved with a classic non-smooth convex solver

ś both on the original and the CBL energy. In our őrst experiment,

we solved the ROF denoising problem (5.50) using three different

methods:

▶ CVXPY: We őrst computed a numerical ground truth solu-

tion u_cvx of the original (convex) energy (5.50) using the

CVXPY toolbox [Agr+18; DB16] with the MOSEK backend

[ApS22].

▶ SA - PDHG: Second, as discussed in Chpt. 3, we em-

bedded the problem using calibration-based lifting and

solved the lifted energy with sublabel-accurate discretization

and the PDHG algorithm. We used the prost [LM15] and

sublabel_relax [LM16; Möl+15] toolboxes.

▶ EmNeF: Finally, we employed the proposed EmNeF ap-

proach as described in Chpt. 5.3.
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The results are summarized in Fig. 5.8, Fig. 5.9, as well as in

Table 5.2, and will be discussed after the following technical

details.

CVXPY Implementation Details. Starting from the original prob-

lem (5.50), the image domain Ω = (𝑎1 , 𝑏1) × (𝑎2 , 𝑏2) ⊂ ℝ2 was

discretized using a regular grid

Ω
ℎ :=

{(
𝑥1
𝑗 , 𝑥

2
𝑘

) ��� 𝑗 = 1, ..., 𝑚1 , 𝑘 = 1, ..., 𝑚2

}
, (5.51)

where ℎ𝑖 := 𝑏𝑖−𝑎𝑖
𝑚𝑖

and 𝑥 𝑖
𝑗

:= 𝑎𝑖 + (𝑗 − 0.5)ℎ𝑖 . The total variation

was calculated using őnite forward differences and Neumann

boundary conditions: Denoting the discretization of 𝑢 at
(
𝑥 𝑖
𝑗
, 𝑥 𝑖

𝑘

)
by 𝑢ℎ

𝑗,𝑘
, we deőne

∇ℎ𝑢ℎ𝑗,𝑘 :=

(
∇ℎ

1
𝑢ℎ
𝑗,𝑘

∇ℎ2𝑢ℎ𝑗,𝑘

)
, (5.52)

where

∇ℎ1𝑢ℎ𝑗,𝑘 :=




1
ℎ1

(
𝑢ℎ
𝑗+1,𝑘
− 𝑢ℎ

𝑗,𝑘

)
, if 𝑗 ≤ 𝑚1 − 1,

0, else,
(5.53)

and

∇ℎ2𝑢ℎ𝑗,𝑘 :=




1
ℎ2

(
𝑢ℎ
𝑗,𝑘+1
− 𝑢ℎ

𝑗,𝑘

)
, if 𝑘 ≤ 𝑚2 − 1,

0, else.
(5.54)

Omitting the constant factors 1
ℎ1ℎ2

, the discrete energy was thus

given by

𝐹ℎ(𝑢ℎ) :=
𝑚1∑
𝑗=1

𝑚2∑
𝑘=1

(
𝑢ℎ𝑗,𝑘 − 𝑓

ℎ
𝑗,𝑘

)2

︸                   ︷︷                   ︸
𝐷ℎ(𝑢ℎ)

+𝜆
𝑚1∑
𝑗=1

𝑚2∑
𝑘=1

∥∇ℎ𝑢ℎ𝑗,𝑘 ∥2
︸               ︷︷               ︸

TVℎ(𝑢ℎ)

. (5.55)

We computed a minimizer of this discrete energy using CVXPY

[Agr+18; DB16] in combination with the Mosek [ApS22] solver. For

Ω = (0, 400) × (0, 626) and 𝜆 = 0.4, Mosek achieved an objective

function value of 1460.5110 within approximately 29 seconds using

the default stopping criteria. The result is shown in Fig. 5.8b.

SA - PDHG Implementation Details. After lifting the energy

(5.50) using the CBL approach, the domain Ω × Γ was discretized
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Table 5.2: ROF Experiments. We solved the ROF problem (5.50) for the input image Fig. 5.8a with three different methods:
CVXPY (Fig. 5.8b), SA - PDHG (Fig. 5.8c) and the proposed EmNeF (Fig. 5.8d). The CVXPY method used a classic
optimization approach on the original energy, the SA - PDHG method used a classic optimization approach on the lifted
energy. The proposed EmNeF approach was based on the newly introduced learning framework on the lifted energy. As
this convex problems is already efficiently classically solvable without embedding, the CVXPY approach performed best
as expected. While the SA - PDHG approach came quite close to the objective function value achieved with CVXPY, the
EmNeF approach only approximated the correct solution. While the EmNeF approach cannot (yet?) compete with the
two established methods, it offers room for őnetuning and future improvements. Especially for non-convex problems it is
highly interesting, as it is relatively easy to implement and requires a comparatively small amount of labels.

Approach Labels 𝑚3 Runtime [min] objective function value

CVXPY ś 0:29 1460.5110

SA - PDHG 2 1:32 1468.5067

SA - PDHG 5 5:10 1468.8050

EmNeF (mean) 100 (inference) 8:22 1911.3859

No optimization (input image) ś ś 4725.4132

using Ωℎ from (5.51) and

Γ
ℎ := {𝛾𝑙 | 𝑙 = 1, ..., 𝑚3} , (5.56)

where ℎ3 := Γmax−Γmin

𝑚3
and 𝛾𝑙 := Γmin + (𝑙 − 1)ℎ3. The problem

was then discretized using the sublabel-accurate discretization

described in Sec. 3.3ś3.3.3 and solved using the PDHG algorithm.

For the implementation, we relied on the prost [LM15] and

sublabel_relax toolboxes [LM16; Möl+15]. The latter provides an

implementation of the ROF problem with CBL lifting and sublabel-

accurate discretization, also using őnite forward differences and

Neumann boundary conditions.

Using the input image in Fig. 5.8a, we solved the lifted ROF problem

for Ω = (0, 400)× (0, 626), Γ = [0, 1] and 𝜆 = 0.4, once with𝑚3 = 2

and once with 𝑚3 = 5 labels. Note that the choice of 𝑚3 = 2 labels

is in fact a reasonable choice in this scenario, as the original data

term is convex and the sublabel-accurate discretization allows for

a convex approximation of the data term in between the chosen

labels. The additional choice of 𝑚3 = 5 allows to get an impression

of how the runtime scales with respect to the discretization of the

label space Γ.

We set the maximum number of PDHG iterations to 50.000. The

runtime was approximately 92 seconds for 𝑚3 = 2 labels and 310

seconds for𝑚3 = 5 labels. We projected the lifted solutions onto the

original solution space with the pointwise transformation (3.103).

Plugging the projected solution into the discrete energy (5.55) gave

a value of 1468.5067 for 𝑚3 = 2 labels and of 1468.8050 for 𝑚3 = 5

labels. The projected solution for 𝑚3 = 5 is shown in Fig. 5.8c.

EmNeF Implementation Details. We employed the EmNeF ap-

proach as described above, i.e., with hard constraints, randomly
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Figure 5.9: Objective Function

Value of EmNeF approach for ROF

Problem. As the EmNeF approach
is stochastic, we solved the given
ROF problem 20 times. Over the 20
runs we achieved an average objec-
tive function value of 1911.3859.

sampled training batches, RFF encoding and őnite differences in

the loss function. Again, we set Ω = (0, 400) × (0, 626), Γ = [0, 1]
and 𝜆 = 0.4. We optimized the weights of the neural őelds over

50.000 update steps using batches of size 2500, a primal learning

rate of 0.3, dual learning rate of 0.9, as well as 𝜎 = 4.

As the approach is stochastic, we solved the problem 20 times and

consider in the following the mean values over the 20 runs, see

also Fig. 5.9. The training took on average 8 : 22 minutes. For the

inference step, we used the discrete gridΩℎ×Γℎ withΩℎ from (5.51)

and Γℎ from (5.56) with 𝑚3 = 100 labels. After rendering the

solution, this resulted in u_emnef shown in Fig. 5.8d and plugging

the rendered solution into (5.55) gave on average an objective

function value of 1911.3859.

Comparison of Results. In case of the convex ROF problem, the

classic CVXPY approach gave the best result while also requiring

the least runtime. While the SA - PDHG approach came close to the

objective function value, it was slower than the CVXPY approach.

The EmNeF approach was the weakest approach in this scenario,

as it had the longest runtime and reached the highest objective

function value. However, the EmNeF approach is not restricted

to convex problems and still young. While the implementation of

the sublabel-accurate discretization is rather intricate, the imple-

mentation of the EmNeF approach is more simple and adapting

the given code to a new problem is as easy as re-implementing

the original pointwise data term. This makes the approach still

interesting for the non-convex setting.

Comparing the results visually, the biggest differences are notice-

able around the boundaries of the building and its windows. In the

EmNeF result, the boundaries appear to be smoother, in the sense

that corners are blurred while edges are preserved. We attribute

these artifacts at least partially to the RFF encoding. Retraining
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(a) Input images 𝐼1 , 𝐼2 [Sch+14] (b) SA - PDHG result u_sapdhg (c) EmNeF result u_emnef

Figure 5.10: Comparison of EmNeF for stereo matching to the lifting-based approach. We considered the stereo
matching problem (5.57)ś(5.58) for the łUmbrellaž [Sch+14] data set Fig. (a). The variational problem was embedded
using the CBL approach and solved using sublabel-accurate discretization and the PDHG algorithm Fig. (b) and once
with the EmNeF approach Fig. (c). Similar to the observations made in the ROF experiment, the EmNeF depth map is
smoother compared to the depth map produced by SA - PDHG.

the model while using starting weights from the previous run

and iteratively increasing the variance 𝜎 of the RFF encoding does

help to achieve sharper corners in the results. However, it is not

advisable to choose a very large 𝜎 from the start, as this might

hinder the network from converging properly; we leave a detailed

study to future work.

5.4.2 Stereo Matching

In contrast to the ROF denoising problem, the stereo matching prob-

lem is non-convex, which makes it more interesting for embedding

methods such as our EmNeF approach. The aim in stereo matching

is to construct a depth map of a 3D scene from multiple, given 2D

images; see also p. 5.

Here, we assume that we are given two rectiőed 2D input images 𝐼1
and 𝐼2 (see Fig. 5.10a). Our aim is to solve the variational problem

inf
𝑢∈BV(Ω;Γ)

𝐹(𝑢), 𝐹(𝑢) := 𝐷(𝑢) + 𝜆𝑇𝑉(𝑢), (5.57)

where the data term is deőned as

𝐷(𝑢) :=

∫
Ω

min {0.15; |𝐼1(𝑥1 , 𝑥2) − 𝐼2(𝑥1 , 𝑥2 − 𝑢(𝑥))|} d𝑥. (5.58)

We solved the problem (5.57) using two different methods:

▶ SA - PDHG: First, we embedded the given problem using

calibration-based lifting and solved the lifted energy with

sublabel-accurate discretization and the PDHG algorithm.

We again used the prost [LM15] and sublabel_relax tool-

boxes [LM16; Möl+15].

▶ EmNeF: Second, we employed the proposed EmNeF ap-

proach as described in Chpt. 5.3.
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Table 5.3: Stereo Matching Experiments. We solved the stereo matching problem (5.57) for the input images in Fig. 5.10a
with two different methods: SA - PDHG (Fig. 5.10b) and the proposed EmNeF (Fig. 5.10c). The SA - PDHG method uses
a classic PDHG optimization approach on the lifted energy using sublabel-accurate relaxation. The proposed EmNeF
approach is based on the newly introduced learning framework on the lifted energy. The SA - PDHG approach reached
a smaller objective function value while also requiring less runtime and was thus numerically superior. The EmNeF
approach on the other hand is more accessible in the sense that it can be easily adapted to a new non-convex data term.
While the SA - PDHG approach requires to implement projections onto the epigraph of the piecewise Fenchel conjugate
of the data term, the EmNeF approach only requires to implement the original pointwise data term.

Approach 𝑚3 Max. Iterations Runtime [min] objective function value

SA - PDHG 8 100.000 3:57 757.3621

SA - PDHG 8 200.000 7:59 757.4286

SA - PDHG 8 1.000.000 39:48 757.4701

EmNeF 100 (inference) 50.000 9:00 932.3928

𝑢 ≡ 0 ś ś ś 2864.7905

More details on the implementation of the different approaches can

be found in the following paragraphs. The results are summarized

in Fig. 5.10 and Table 5.3, and are further discussed after the

technical details.

Discrete Energy. Let us őrst discuss the discretization of the

energy, which we used to compare the results achieved with the

SA - PDHG and EmNeF approach. Similar to the ROF example,

we deőned Ωℎ as in (5.51) and calculated the discrete total vari-

ation using őnite forward differences and Neumann boundary

conditions, see (5.52)ś(5.55).

We assumed that the input images 𝐼ℎ
1

and 𝐼ℎ2 are given on the cell-

centered grid Ωℎ (5.51). In order to evaluate 𝐼ℎ
1

on the transformed

grid

Ω̃
ℎ :=

{(
𝑥1
𝑗 , 𝑥

2
𝑘 − 𝑐𝑢

ℎ
(
𝑥1
𝑗 , 𝑥

2
𝑘

)���(𝑥1
𝑗 , 𝑥

2
𝑘

)
∈ Ωℎ

)}
, (5.59)

we used a bilinear interpolation. Here, 𝑐 is a constant parameter,

which declares the maximal expected, pixel-wise shift between 𝐼ℎ
1

and 𝐼ℎ2 . Denoting the result of the bilinear interpolation of 𝐼ℎ2 on

Ω̃ℎ by 𝐼ℎ2 , the discrete energy was thus given by

𝐹ℎ(𝑢ℎ) := 𝐷ℎ(𝑢ℎ) + 𝜆TVℎ(𝑢ℎ), (5.60)

𝐷ℎ(𝑢ℎ) :=
𝑚1∑
𝑗=1

𝑚2∑
𝑘=1

max

{
0.15;

����
(
𝐼ℎ1

)
𝑗 ,𝑘
−

(
𝐼ℎ2

)
𝑗 ,𝑘

����
}
. (5.61)

In the following, we used this discrete energy in order to qual-

itatively compare the (projected) results of the SA - PDHG and

EmNeF experiments.
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SA - PDHG Implementation Details. After lifting the energy (5.57)

using the CBL approach, the domain Ω × Γ was discretized us-

ing Ωℎ from (5.51) and Γℎ from (5.56). The problem was then

discretized using the sublabel-accurate discretization described in

Sec. 3.3ś3.3.3 and solved using the PDHG algorithm.

In the repository [LM16], an implementation of a stereo matching

problem with slightly different data term can be found. The data

term was implemented as a cost volume, i.e., a matrix 𝐶 ∈ ℝ𝑚1 ,𝑚2 ,𝑧

which stores a (pixel-wise) cost, where 𝑧 denotes the maximal

expected shift (described in pixels):

𝑐 𝑗 ,𝑘,𝑙 = max
{
0.15;

���𝐼1 (
𝑥1
𝑗 , 𝑥

2
𝑘

)
− 𝐼2

(
𝑥1
𝑗 , 𝑥

2
𝑘 − 𝑙ℎ2

)���} . (5.62)

The total variation was again implemented using őnite forward

differences and Neumann boundary conditions.

We ran our experiments for Ω = (0, 202) × (0, 296), Γ = [0, 1],
𝜆 = 0.1, 𝑧 = 30, and 𝑚3 = 8, and set the maximum number of

PDHG iterations to
{
105 , 2 · 105 , 106

}
, which resulted in runtimes

of approximately 237, 479, and 2388 seconds. We projected the

lifted solutions onto the original solution space using the pointwise

transformation (3.103) and plugged the projected solutions into

the discrete energy (5.60), which gave an objective function value

of approximately 757. All results are summarized in Tab. 5.3.

EmNeF Implementation Details. We employed the EmNeF ap-

proach with hard constraints, randomly sampled training batches,

RFF encoding and őnite differences in the loss function. For

Ω = (0, 202) × (0, 296) and Γ = [0, 1]we optimized the weights of

the neural őelds over 50.000 update steps using batches of size 2500,

a primal learning rate of 0.15 and dual learning rate of 0.5. We set

𝜎 = 3.0, 𝜆 = 0.1 and assumed that the maximal shift is 30 pixels.

We trained the neural őelds 20 times and in the following consider

the mean values over the 20 runs, see also Fig. 5.11. On average,

training took 540 seconds. For the inference step, we used the

discrete grid Ωℎ × Γℎ with Ωℎ from (5.51) and Γℎ from (5.56) with

𝑚3 = 100 labels. After inference, this resulted in the deforma-

tion u_emnef shown in Fig. 5.10c. Plugging the rendered solution

into (5.60) gave an average objective function value of 932.3928.

Comparison of Results. The SA - PDHG approach converged

to a smaller objective function value while also requiring less

runtime. Visually, the greatest difference between the solutions of

the SA - PDHG and EmNeF approach is again the bluntness of

corners and shapes in the solution of the EmNeF approach. We
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Figure 5.11: Objective Function

Value of EmNeF Approach for

Stereo Matching Problem. As the
EmNeF approach is stochastic, we
solved the given stereo matching
problem 20 times. Over the 20 runs,
we achieved an average objective
function value of 932.3928.

attribute this at least partially to the RFF encoding and speciőc

choice of the variance parameter 𝜎2.

Although the EmNef approach in its current form is numerically

inferior to the established SA - PDHG approach, the here presented

results demonstrate the potential of the proposed method. The

EmNeF approach is more accessible in the sense that it can be easily

adapted to a new non-convex data term. While the SA - PDHG

approach requires to implement projections onto the epigraph

of the piecewise Fenchel conjugate of the data term, the EmNeF

approach merely requires to implement the original pointwise

data term. With more research dedicated to the inŕuence of the

RFF encoding, the convergence behavior as well as tweaking and

őnetuning of the method, the EmNeF approach could evolve

into an easy-to-use strategy for solving non-convex variational

problems.

5.5 Discussion and Outlook

With the EmNeF approach we have introduced a methodologically

interesting approach for solving variational problems with pos-

sibly non-convex data term and TV regularizer of the form (5.1).

By combining results from calibration-based lifting with modern

learning techniques, we created a framework for diverse applica-

tions. While the results of the EmNeF approach are not (yet) on

par with the ones achieved with established methods, we would

like to point out certain advantages the EmNeF approach has to

offer especially in the non-convex setting.
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5.5.1 Accessibility of CBL Method

In the imaging community, the calibration-based lifting approach

is celebrated for its practical usefulness as it allows to solve cer-

tain non-convex variational problems with convex optimization

strategies. While the approach yields compelling results, it is rarely

found in practical applications. We conjecture that this is at least

partially caused by the relatively advanced mathematical theory

and potential difficulties during discretization and optimization.

In Sec. 3.3, we have discussed different discretization schemes

for an energy which has been embedded using the calibration-

based lifting approach; A őnite-difference discretization approach

which is easy to implement but numerically expensive, and a őnite-

element discretization approach which leads to a sublabel-accurate

discretization also employed in the SA - PDHG experiments that

is numerically less expensive but more intricate to implement. The

EmNeF approach proposed in this chapter is as easy to implement

as the őnite-difference discretization approach, yet it does not

come with the high numerical costs:

We were able to achieve the above shown results with 135.361

(66.657) trainable parameters in the ROF (stereo matching) case.

Putting these numbers into perspective, in the SA - PDHG examples

we worked on a őnite gridΩℎ×Γℎ whereΩℎ had 400·626 = 250.400

(202 · 296 = 59.792) grid points in the ROF (stereo matching)

case. This means that the results with the EmNeF approach were

achieved using the equivalence of 1+0.5 (1+1.1) parameters (labels)

per grid point. In the experiments, we have demonstrated that the

sublabel-accurate discretization requires only 𝑚3 = 2 labels in the

special case of an (originally) convex problem, see Tab. 5.2. This is,

however, not the case for (originally) non-convex problems.

In conclusion, the EmNeF approach could make calibration-based

lifting more accessible for practical applications. Compared to

the sublabel-accurate discretization it does not only simplify the

implementation, but it also offers the possibility of approximating

the results using fewer parameters (labels).

5.5.2 Future Research

The EmNeF approach and neural őelds in general are a rather

new area of research and neither can nor should be viewed as

a replacement for classic numerical optimization and discretiza-

tion/approximation. The latter are built upon strong theoretical

results developed over many decades and meet standards required

in practice. As neural őelds are still young, they lack some theo-

retical foundation and understanding ś this, however, can both
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be understood as current disadvantage and possibility for future

improvements.

In the literature, one can őnd many theorems stating that inőnitely

deep or wide feed-forward neural networks are universal function

approximators which can learn an implicit representation of any

sufficiently regular function [HSW89; CMB00; SM17; Her+21]. In

practice, however, neural networks are only of őnite width and

depth. The pressing question for the EmNeF approach is: How do

the three neural őelds need to be designed in terms of their width,

depth and activation functions in order to have the expressive

capacity of approximating functions in their respective solution

spaces (5.8)ś(5.10) well? Such an analysis of the approximation

error is, e.g., done in [Bar94; Bar93].

We have already pointed out that even if the loss function is convex

with respect to the network’s output, it is typically non-convex with

respect to the network’s parameters. This is also the case for the

EmNeF approach: Even though the CBL approach convexiőes the

variational problem, the loss functions of the three networks are

non-convex with respect to the networks’ parameters. Therefore,

we still have to solve non-convex problems during training. Does

the EmNeF approach (always) converge to a global minimizer and

which global minimizer is preferred in a non-unique setting?

Research concerning neural őelds is rapidly changing and growing.

As applications of neural őelds increase, theoretical results become

ever more important and are a topic of ongoing research. In the

future, we expect that missing theoretical results can be extended

over time and help to improve the encouraging experimental

results.
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