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ABSTRACT. Purpose: To help radiologists examine the growing number of computed tomogra-
phy (CT) scans, automatic anomaly detection is an ongoing focus of medical imag-
ing research. Radiologists must analyze a CT scan by searching for any deviation
from normal healthy anatomy. We propose an approach to detecting abnormalities
in axial 2D CT slice images of the brain. Although much research has been done on
detecting abnormalities in magnetic resonance images of the brain, there is little
work on CT scans, where abnormalities are more difficult to detect due to the low
image contrast that must be represented by the model used.

Approach: We use a generative adversarial network (GAN) to learn normal brain
anatomy in the first step and compare two approaches to image reconstruction:
training an encoder in the second step and using iterative optimization during infer-
ence. Then, we analyze the differences from the original scan to detect and localize
anomalies in the brain.

Results: Our approach can reconstruct healthy anatomy with good image contrast
for brain CT scans. We obtain median Dice scores of 0.71 on our hemorrhage test
data and 0.43 on our test set with additional tumor images from publicly available
data sources. We also compare our models to a state-of-the-art autoencoder and a
diffusion model and obtain qualitatively more accurate reconstructions.

Conclusions: Without defining anomalies during training, a GAN-based network
was used to learn healthy anatomy for brain CT scans. Notably, our approach is
not limited to the localization of hemorrhages and tumors and could thus be used
to detect structural anatomical changes and other lesions.
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1 Introduction
In recent years, the number of computed tomography (CT) examinations has increased signifi-
cantly, resulting in a high workload for radiologists. The resulting time pressure increases the
risk of reduced quality and safety of diagnoses and radiologist burnout.1 Therefore, artificial
intelligence solutions have been developed to address this issue and provide quality diagnosis
as a second opinion or pre-diagnosis.
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In this work, we deal with CT brain examinations and aim to support radiologists in finding
relevant pathologies, such as hemorrhages, tumors, or ischemia.

Various methods have been proposed to assist radiologists in this task. In particular, deep
learning-based approaches have shown very good results in many applications and are now the
technology of choice. Deep learning methods for automated anomaly detection can generally be
divided into two types.

The first type is designed to find specific pathologies. Therefore, a model is trained to detect
or segment a particular type of abnormality, usually with a supervised or semi-supervised
approach using annotated training data.2 Good detection performance of such methods has been
demonstrated in the literature, but they are inherently limited to the specific types of findings for
which they have been trained, and at best, unknown abnormalities are detected as false positives.
The second type of method takes a fundamentally different approach. They do not make any
assumptions and do not try to find a specific pathology but are designed to detect any deviation
from “normal.” Therefore, training such models does not require reference segmentations of
pathologies but is usually based on (unsupervised) learning a representation of normal anatomy.
Thus, it potentially has fewer limitations, and a trained model should be less error-prone for
unseen anomalies.

Due to that advantage, we follow the latter approach for our method of general anomaly
detection in brain CT images.

Architectures used for this type of anomaly detection include generative adversarial net-
works (GANs), variational autoencoders (VAE), autoencoders (AE), and combinations of these
methods.3–6 Reconstruction of a normal image is then generally done by mapping an input image
with an encoding network to a latent space and reconstructing the output image with a decoding
network. In the so-called restoration approaches, the encoding is not performed by a trained
network but through iterative optimization with respect to the input in the latent space of the
trained decoding network, such that the decoded (or restored) output image is most similar
to the given input image. Baur et al.7 compared the different unsupervised approaches for
magnetic resonance imaging (MRI) brain images and found that a VAE with restoration and
the “f-AnoGAN,”8 originally proposed for optical coherence tomography data and combining
a Wasserstein GAN9 with encoder training, performed best. In addition, diffusion models have
recently been investigated for anomaly detection. Wyatt et al.10 obtained Dice values of around
0.38 onMRI images with brain tumors. Much research has been done onMRI images, but simply
using these models as is does not solve the problem of detecting abnormalities in CT images of
the brain. The imaging properties of CT imply a high contrast between the skull and the brain
tissue with much more subtle gray versus white matter differences. Thus, the generated recon-
structions must also reflect these properties while especially preserving visible details inside the
brain with lower grayscale contrast.

For brain CT data, Viana et al.11 utilized a 3D implementation of the f-AnoGAN to detect
traumatic brain injuries. Toikkanen et al.12 developed a method to segment intracranial hemor-
rhages in brain CT images and combined a GAN with an encoder to reconstruct pseudo-normal
versions of abnormal input images. Their reconstructions however do not correct structural
changes of the brain, such as ventricle deformations, that might occur due to hemorrhages.
They achieve Dice scores of around 0.7 while focusing on the segmentation of hemorrhages only.
In a recent publication, Lee et al.13 described a combination of GAN and encoder training for CT
emergency triage. They collected a large dataset of more than 34,000 patients for training and used
iterative latent code and noise optimization during inference, showing very promising results.

In summary, there is very little work on unsupervised detection of brain anomalies in CT.
Autoencoders often tend to produce blurry results that lack detail. Diffusion models are expected
to result in higher image quality than VAEs and require less training data than GAN approaches.
On the other hand, reconstruction times are very long, and high image resolutions, which have
been shown to be beneficial for anomaly detection,4 might be hard to obtain due to computational
requirements. Furthermore, when using diffusion models to reconstruct normal versions of an
image, the choice of noise distribution used is critical in determining what sizes of anomalies
can be recovered (see Wyatt et al.10).

The contribution of this work is that we propose an efficient unsupervised GAN-based
method to localize different types of lesions in CT scans of the brain. We choose a GAN-based
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architecture over others because of the above-mentioned disadvantages. We aim to generate high-
resolution healthy image reconstructions and want to ensure that a representation of normal
anatomy is learned first so that our reconstructions will not contain abnormalities. In this work,
we show that with the right choice of GAN training, we can achieve high-quality reconstruction
results even on a moderate-sized training dataset. The paper is structured by first describing the
GAN training and our two image reconstruction approaches, followed by the generation of
anomaly segmentation maps and an evaluation of CT images with hemorrhages and tumors.
We also compare our method with two non-GAN-based approaches.

2 Material and Methods

2.1 Data
We use the publicly available challenge data for intracranial hemorrhage detection provided by
the Radiological Society of North America (RSNA).14 Originally, this dataset contains more than
25,000 CT head examinations with slice-wise annotations for the type of hemorrhage present,
collected at various sites in California, Philadelphia, and Brazil using scanners from different
manufacturers. The resolution of the images in the axial plane ranges from 0.4 to 0.6 mm with
a slice thickness of 5 mm. In addition to the annotations provided, two of our radiologists (I.G.
and K.V.) with more than 10 years of experience in neurological imaging also annotated a subset
of these data by marking slices without findings as “normal.” The RSNA annotations did not
include such information but only hemorrhage annotations. We export more than 1000 normal
2D slices with a size of 512 × 512 pixels. We also select a subset of 30 images with hemorrhages
for testing, where our radiologists have delineated the hemorrhages present. We restrict both
subsets to mid-axial slices of the brain to limit the complexity of the problem in the first step.
The number of slices that can be used from the RSNA dataset is reduced because of the limited
annotation time and because we only use center slices of the brain. The image slices were
grouped according to patients. Images from one patient are only used for either training or testing.

For testing, we also include tumor data from the “Glioma Image Segmentation for
Radiotherapy” study from the Cancer Imaging Archive15 and extract 23 slices that have been
annotated by one of our radiologists. We therefore obtain reference anomaly masks for an
independent dataset.

Thus, in total, we used 1180 “normal” 2D axial images to train our GAN. In addition, we
obtain a total of 53 segmented images with pathologies (30 with hemorrhages and 23 with
tumors). Subsequently, we determined an operating point for the anomaly detection on a
validation set of 27 axial images with segmented pathologies (15 scans with hemorrhages and
12 scans with tumors). Then, we tested our method on 26 test images (15 scans with hemorrhages
and 11 scans with tumors). A summary of the data split for testing and validation is shown in
Table 1.

2.2 Architecture and Training
The architecture of our network is schematically shown in Fig. 1. To ensure learning a repre-
sentation of normal brain anatomy, we decided to combine a GAN architecture with an image
encoding step (using an encoder network or an iterative optimization). Thus, we can later com-
pare two different encoding approaches. As shown in Fig. 1, we have two subsequent training
steps: First, the GAN is trained to generate normal CT slices from a latent space vector [see

Table 1 Composition of validation and test dataset with pathologies. A total
of 53 images were manually segmented by two radiologists. The images show
hemorrhages or tumors and were split into test and validation sets as shown.

Hemorrhages Tumors

Validation 15 12

Test 15 11

Total 30 23
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Fig. 1(a)], and second, the encoder is trained to map healthy input images to the latent space [see
Fig. 1(b)]. During inference, an input CT is mapped with the encoder to the latent space and from
there back to the image space with the generator.

As an alternative that requires no training of an encoder network, we implement a restoration
approach. Here, we iteratively optimize over the latent space to find an optimal input vector
for the decoder so that a given image is reconstructed in the best possible way [see Fig. 1(c)].
We describe all steps in detail in Secs. 2.2.1–2.2.4.

2.2.1 GAN training: generating normal CT images

The first part of our method is to train a GAN to learn representations of normal CT images of the
brain. Based on literature research, we use a network architecture after Liu et al.,16 which was
proposed for non-medical images and has been shown to be capable of generating high-reso-
lution images from even small training sets. Also, we verified in our own initial tests that this
architecture leads to better results compared with a Wasserstein GAN9 architecture. The code
base for the discriminator and generator can be found at https://github.com/odegeasslbc/
FastGAN-pytorch/tree/main. We use the proposed architecture with noise injection, spectral nor-
malization,17 and image augmentation (random mirroring, contrast changes, and translation).
Only a small change was made to the architecture as we use smaller feature maps (four instead
of eight) as input to the decoder that is part of the discriminator. In addition, we leave one gen-
erator upsampling block out as we only work with an image size of 512. The model is trained
with a batch size of 8 for 100,000 steps, using the learning rate of 2e − 4 and Adam optimizer.

For our experiments, we used a training dataset consisting of 1180 brain CT slices. Our code
is written in PyTorch, and we train on an NVIDIA GeForce RTX 2080 Ti GPU.

In the first step, we alternatingly train the generator G and the discriminator D (see Liu
et al.16 for model implementation details). This is done by minimizing the generator loss

EQ-TARGET;temp:intralink-;e001;114;180LG ¼ −Ez∼U½−1;1�½DðGðzÞÞ� (1)

and the discriminator loss

EQ-TARGET;temp:intralink-;e002;114;149LD ¼ Ex∼Ireal ½maxð0;1 −DðxÞ� þEz∼U½−1;1� maxð0;1þDðGðzÞÞ� þLrec; (2)

where Ireal denotes the distribution of real normal CT scans, z ∼ U½−1;1� are latent vectors
with components uniformly distributed over the interval ½−1;1�, and Lrec is an additional recon-
struction loss that originally was introduced by Liu et al.16 to enforce the extraction of meaningful
image features in the discriminator (for details, see Ref. 16). Here, we use the reconstruction loss
Lrec as proposed in Ref. 18.

Fig. 1 Overview of our network training and image restoration. (a) Step 1: training the generator
and discriminator of a GAN with real healthy images. (b) Step 2: training an encoder with a fixed
generator. (c) Iterative optimization of z during inference.
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After training, we can use the generator to obtain normal brain images from a random
uniformly distributed latent vector z ∈ ½−1;1�512.

2.2.2 Image reconstruction: encoder training

To reconstruct a normal representation of a test image, we need to encode the image x by a latent
vector z, such that GðzÞ ≈ x, i.e., the generated image GðzÞ is similar to the input image x.
Therefore, we train an encoder network E to obtain z from x. For the encoder training
[Fig. 1(c)], the parameters of the generator remain fixed, and the discriminator is not used.
We train the encoder by minimizing the encoder loss

EQ-TARGET;temp:intralink-;e003;117;371LE ≔ Ex∼Ireal ½w1lperceptðx; GðEðxÞÞÞþw2lMSEðx; GðEðxÞÞÞ�; (3)

with so-called loss lpercept,
19 mean squared error loss lMSE, and empirically chosen fixed weights

w1 ¼ 1, w2 ¼ 10 balancing both loss terms. We use the same training dataset of 1180 normal
brain CT slices as for the GAN training. In addition, we augment the images during training, such
that random rectangular parts of the image are erased, meaning that the image in this area is set to
the background value with an empirically chosen probability of 0.25. This should prevent the
encoder from learning the identity function. The network is trained for 20,000 steps. The encoder
architecture consists of eight down-sampling blocks that each include 2D convolution, batch
normalization, and gated linear unit activation layers. A schematic representation of the encoder
architecture is shown in Fig. 2.

2.2.3 Image restoration: optimization of z

As an alternative to training an encoder and using the trained network during inference, we
compute a solution z to the minimization problem

EQ-TARGET;temp:intralink-;e004;117;177 min
−1≤z≤1

w1lperceptðx; GðzÞÞþw2lMSEðx; GðzÞÞ; (4)

with the loss lpercept,
19 mean squared error loss lMSE, and empirically chosen fixed weights

w1 ¼ 1, w2 ¼ 10 balancing both loss terms. We compute a numerical solution through iterative
optimization of the objective function w.r.t. to the latent variable z ∈ R512 starting from the initial

guess z ¼ ~0. We used Adam optimizer, and z is clipped component-wise to the range ½−1;1� at
each step. The iteration is stopped after a fixed number of steps (8000), taking around 110 s.
So, in this method, we do not train a network, but for each image, we iteratively compute our
own individually optimized solution for inference.

Fig. 2 Schematic representation of our encoder architecture. The orange arrows represent a
downsampling block that is shown on the right. C, channels; N , image dimension.
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2.2.4 Obtaining anomaly maps

After training the networks, we are able to reconstruct a healthy version of a given input image
using our iterative encoding method or the encoder, resulting in image pairs of the input image x
and a normal representation x̂ ¼ GðzÞ. We then obtain a difference map D ¼ ρðx − x̂Þ with a
residual function ρ∶R → R, e.g., ρ ¼ j · j for detecting any change, which results inD ¼ jx − x̂j,
or if we are trying to detect certain abnormalities that appear brighter than normal tissue, such as
hemorrhages, we could choose ρ ¼ maxð·; 0Þ, which results in D ¼ maxðx − x̂; 0Þ.

Finally, we use a threshold to generate a binary anomaly mask. The mask is refined by
applying a morphological closing operation and using a network ensemble. This means that
we train our GAN three times with the same settings and thus also get three binary maps
after reconstruction, which are then combined by a majority vote. By doing so, we can neglect
regions that are falsely segmented as anomalies because of missing details in a single
reconstruction.

2.3 Evaluation
We evaluate our method with two datasets. The first set includes 30 images with hemorrhages,
whereas the second additionally contains 23 images with brain tumors. We show receiver oper-
ating characteristics (ROC) curves plotting pixel-wise false-positive rate against true-positive rate
for different thresholds (see Fig. 7), and we report boxplots showing Dice overlap (Fig. 6). Other
segmentation metrics such as the Haustorff distance would not provide meaningful results in our
scenario, as there are often very small false-positive areas in the generated anomaly masks.
Furthermore, we evaluate the realism of the images generated by our GAN through a visual
Turing test.21,22 For this purpose, we mixed randomly generated and real images and asked radi-
ologists and two medical imaging scientists to classify which images are generated and which
are not.

3 Experiments and Results
For generating normal CT scans, we empirically set the dimension of the latent space to 512, i.e.,
we consider vectors z ∈ ½−1;1�512. Smaller dimensions led to decreased quality of the generated
images showing repetitive image artifacts. Larger latent vectors did not further improve the
results. As the method relies on the capability of the model to generate data that follow the
distribution of normal healthy images, it is of interest to use a good generator. To give a quan-
titative analysis of the generated normal CT scans, we compute the unbiased Fréchet inception
distance.23 Comparing the generated samples from the GAN, we obtain FID ¼ 19.01 for real
healthy examples, whereas FID ¼ 30.48 for real disease images. Thus, our generated images
are more similar to healthy images.

We evaluate the quality of the GAN images through a visual Turing test, where we ran-
domly shuffled 25 real CT images and 25 CT images generated by our GAN, and two expe-
rienced radiologists and two experienced scientists from our medical imaging community
evaluate which images were generated images. The results are summarized in Table 2.
The radiologists rated the image quality as very good and were unable to correctly classify
∼20% of the images. Our medical imaging colleagues were unable to distinguish between
fake and real images.

In addition, qualitative examples of the generated images are shown in Fig. 3. It is visible
that a variety of ventricle and skull shapes are represented by the generated images. Brain
tissue details such as sulci or center line are recognizable, which lets the images appear
realistic.

To obtain a further quantitative value for the reconstruction quality, we calculated the root
mean square error (RMSE) between the input and output images for each of the 100 real CT
slices with and without anomalies. For this purpose, the intensity range of the images was
normalized to the interval ½0;1�. Although we obtain a mean and standard deviation of the abso-
lute difference of 0.032� 0.081 and an RMSE of 0.089 for the image pairs with anomalies, the
mean ± standard deviation and the RMSE for normal image pairs are only 0.024� 0.070 and
0.076, respectively. Moreover, the 90% percentile of the pixel difference was 0.074 for normal
images and 0.106 for images with abnormalities. To summarize, we achieve good reconstruction
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quality for healthy images. The measured reconstruction quality of the healthy images is
significantly better compared with images with abnormalities, which is due to the fact that
abnormal areas are poorly or “healthy” reconstructed. In addition, the quality of healthy image
reconstruction is sufficient so that the images can be differentiated into two classes (normal and
abnormal), as in Walluscheck et al.18

A qualitative impression of our results for three test images is given in Fig. 4. The shown
reconstructions are average images of the reconstructions of three GAN models and therefore
appear blurrier than the individual reconstructed images. The shown residual is color-coded to
make it visible in the overlay. Stronger deviations appear in a darker orange color.

We also test the performance of our method on CT volumes. Figure 5 shows the segmen-
tation overlay on several consecutive axial slices for two test volumes. We observe that using our
method on 2D slices of CT scans leads to sensible results when applied to subsequent slices. As
done here, a connected component analysis on the results of multiple slices can further reduce
small false-positive findings.

3.1 Hemorrhage Dataset
When testing on hemorrhage data, only positive values are considered because hemorrhages
appear brighter than healthy tissue. In Fig. 6, we present the Dice overlap for increasing the
anomaly threshold for our model with encoder and with restoration on the validation set (15
images). We observe that our results highly depend on the threshold. After choosing a threshold
on the validation set (t ¼ 36), the network with restoration achieved a median Dice overlap of
0.71 (mean Dice 0.62� 0.24) on the test dataset (15 images). The Dice for the version with
an encoder is slightly lower with a median of 0.66 (mean Dice 0.61� 0.25) leading to a p-value
of 0.96 in a statistical Wilcoxon test. We detect 91.7% of the reference lesions. A lesion is

Fig. 3 Exemplary output images from our trained generator from randomly sampled latent vectors.

Table 2 Turing test results.

Reader

Scientists Radiologists

A B ðAþBÞ∕2 C D ðC þDÞ∕2

TP (out of 25) 7 11 9 22 19 21.5

TN (out of 25) 13 12 12.5 17 21 19

Recall TP / (TP + FN) 0.37 0.46 0.42 0.73 0.83 0.78

Precision TP / (TP + FP) 0.28 0.44 0.36 0.88 0.76 0.82

Accuracy (TP + TN) / (P + N) 0.40 0.46 0.43 0.78 0.80 0.79

TP, number of correctly classified generated images; TN, number of correctly classified real images.
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counted as detected when the Dice is >0.1 for both network versions. We also tested the
supervised hemorrhage segmentation tool BlastCT20 on our test data and obtained a median
Dice score of 0.73. The difference in our results is not statistically significant (p-value
>0.5). Therefore, our methods achieve similar results as this supervised approach.

Fig. 4 Exemplary results on images from our hemorrhage (rows 1 and 3) and tumor test set
(row 2). Our segmentation is obtained from the residual by thresholding with the best value
obtained from the ROC analysis on our validation set. Reference: manual segmentations for
hemorrhages and tumors.

Fig. 5 Exemplary segmentation results on subsequent axial slices with hemorrhages for two
patients.

Fig. 6 Dice overlap on hemorrhage data from the validation set for different anomaly thresholds.
(a) Our model with restoration. (b) Our model with encoder.
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3.2 Combined Dataset
As our approach is not trained to detect a specific type of lesion, it can be used on data, including
multiple anomalies. When testing on data with tumors and hemorrhages, we do not consider any
prior knowledge of image values. Thus, the anomaly threshold is applied to the absolute values of
the difference image. First, we determine a threshold on the validation set (27 images) and use
this operating point to report results on our test data (26 images).

The best result is obtained with a median Dice overlap of 0.43 (mean Dice 0.40� 0.18) for
the restoration and 0.30 (mean Dice 0.37� 0.19) for the encoder network version (Table 3). A
statistical test on both results leads to a p-value of 0.02 showing statistical significance. We
observe that, overall, the Dice values are lower than the previously presented results for the
hemorrhage dataset. However, we would like to emphasize that we did not develop a method
for the exclusive detection of hemorrhage and therefore include these data in our evaluation.
Furthermore, we achieved an accuracy of 92.9% on the tumor data in our test set, which means
that our method is suitable for application to multiple types of abnormalities.

In Fig. 7, we show the ROC curves for the model with encoder and restoration for two test
sets. We see that the restoration method performs better than the encoder model. Also, the per-
formance for both models is better on the hemorrhage test set than on the combined test set.
In addition, we mark the performance of the BlastCT tool20 (tested on hemorrhage data) as
a point in the graph and see that it is similar to our models.

3.3 Comparison with Other Models
A natural candidate for comparison to our method would be the work of Lee et al.,13 which has
been proposed for emergency triage in brain CT scans. Their results are of high quality and very

Fig. 7 ROC curves for two test datasets (H, hemorrhage; T+H, tumor and hemorrhage) for two
network versions (restoration and encoder). The result for the hemorrhage detection tool BlastCT20

is marked as a point.

Table 3 Summary of the anomaly segmentation for two network variants on
two test sets showing the mean Dice values with standard deviation.

Test set

Dice

Restoration Encoder

Hemorrhage 0.62� 0.24 0.61� 0.25

Hemorrhage and tumors 0.40� 0.18 0.37� 0.19
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promising. We applied the available trained network to our test data but obtained unsatisfactory
reconstruction results that showed strong deviations from our input images. Therefore, we refrain
from further quantitative analysis for comparison here.

In addition, we compare our model with two state-of-the-art models, namely, an
autoencoder24 and a diffusion model called “AnoDDPM,”10 that were both proposed for anomaly
detection in brain MR images. We trained both methods on our training dataset and applied them
to our hemorrhage test data (15 images).

Figure 8 shows ROC curves for the autoencoder, diffusion model, and our two network
versions on our hemorrhage test dataset. It shows that our method performs slightly better.
To get a visual impression of the performance difference, we show the results for all four models
on a disease test case with prominent hemorrhages in Fig. 9.

Fig. 8 ROC curves for two recently published models and our two model versions on our
hemorrhage test dataset.

Fig. 9 Qualitative comparison of the reconstruction performance for the diffusion model
AnoDDPM, an autoencoder, and our two network versions on a hemorrhage test case.
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We note that the hemorrhage within a ventricle is still visible in the reconstruction of the
AnoDDPM. We found that the noise distribution used for the diffusion model has a strong in-
fluence on what kind of abnormalities are removed in the reconstruction. This could be a dis-
advantage as it cannot be ensured that the reconstruction always represents normal anatomy. We
note that the hemorrhage within a ventricle is still visible in the reconstruction of the AnoDDPM.
We found that the noise distribution used for the diffusion model has a strong influence on what
kind of abnormalities are removed in the reconstruction. This could be a disadvantage as it cannot
be ensured that the reconstruction always represents normal anatomy. The image reconstructed
by the autoencoder does not show details inside the brain tissue and is generally blurred. In this
example, we see that our model provides images with normal anatomy, even for this example
image that shows a brain heavily affected by bleeding. Our network produces sharp and detailed
images that contain no abnormalities.

4 Discussion and Conclusion
We present a method for detecting nonspecific abnormalities in brain CT scans that does not
require annotated data. Unlike many GAN approaches, the architecture we have chosen requires
only a very small amount of training data and produces high-resolution images that are less
blurred than the VAE or AE methods. Instead of learning to detect specific abnormalities,
we learn normal representations of brain CT scans and detect the deviations from normal in
unseen images. We train with healthy 2D CT slices only and show that we can detect and localize
hemorrhages and tumors. When testing our unsupervised approach with hemorrhage data, we
obtain good results comparable to a recent supervised CT segmentation tool (Monteiro et al.20)
for hemorrhages. Thus, we show that our approach can localize lesions that were not specified
during training. Our network is not susceptible to the size of the anomalies as we compare the
images per pixel and do not filter or constrain the output according to the residual size.

By training a GAN to produce normal images in the first step, we ensure that we only obtain
images that show normal anatomy, regardless of the type or severity of the abnormality in the
input image. At the same time, our reconstructions have good image contrast and show more
details of the brain tissue than comparable autoencoder approaches.

For our model, we compare two approaches to image reconstruction, namely, training an
encoder and iterative optimization for image restoration. We find that both methods produce very
similar reconstructions. In the quantitative evaluation, the restoration method seems to perform
slightly better, but the difference is not statistically significant. Also, the restoration model
requires 110 s to reconstruct a 2D image, whereas the encoder model takes only around 0.02 s,
which could be advantageous in an application.

As our method is based on grayscale comparisons, the performance is limited by the gray
value deviation of the lesion compared with the healthy tissue. Very subtle lesions are therefore
likely to be missed. However, this is a general observation that affects any approach based on
detecting lesions by analyzing image value intensities and also includes manual detection by
radiologists. However, a limitation of our work is the limited training dataset of 1180 images
and the small test dataset of 26 images. It would be a great future addition to further test the
model on a larger amount of data if more images were available.

We have shown that our method produces consistent results when applied to consecutive
axial slices and is therefore suitable to locate lesions in CT volumes.

By learning a representation of normal CT scans, we can reconstruct the overall anatomy of
a healthy brain. Thus, structural changes such as ventricular deformations are also corrected in
our reconstruction. In the future, detection of such changes may also be possible with our
method. Anatomical details such as the exact location of the sulci of a particular patient are not
optimally reconstructed. Therefore, these differences between input and reconstruction are cur-
rently detected as anomalies in some cases, as can also be seen in Fig. 4 (small extra areas in the
segmentation mask). In future work, we would like to investigate how to distinguish between
these “irrelevant” differences and true anomalous differences. Possible research could include
developing learning-based methods to obtain anomaly maps from the reconstructed images
rather than computing the difference image.
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