
From the Institute of Mathematics and Image Computing
of the University of Lübeck

Director: Prof. Dr. rer. nat. Jan Modersitzki

Deep Learning for Mass Spectrometry
Imaging and Image Registration

Dissertation
for Fulfillment of
Requirements

for the Doctoral Degree
of the University of Lübeck

from the Department of Computer Sciences

Submitted by
Frederic Georg Kanter

from Münster

Lübeck, 2023

First referee:
Second referee:
Date of oral examination:
Approved for printing. Lübeck,

Abstract
In this thesis, we investigate new machine learning methods in the field of molecular
diagnostics and image registration.

The first part is concerned with the analysis of mass-spectrometric data for pathological
diagnostics. Mass spectrometry imaging methods are characterized by a particularly high
resolution, which makes it possible to determine protein concentrations in individual
tissue samples. This has great diagnostic potential for individualized medicine or
the identification of new marker proteins. However, the efficient integration of mass
spectrometry imaging into everyday clinical practice requires automated analysis. Neural
networks are a suitable candidate for this purpose, and despite their numerous successes
in other areas of medical imaging, they have hardly been used in the analysis of mass
spectrometric data. Therefore, we address the application of neural networks for tumor
classification based on spectrometric measurements. We develop a suitable architecture
as well as methods for noise reduction, and compare the performance of our approach
with the current state of the art. We apply our model to three datasets: the classification
of four subtypes of ovarian cancer, the discrimination of amyloid plaques, and the
discrimination of different types of pancreatic cancer.

The importance of image registration continues to grow with the steady increase in
diagnostic imaging. In addition to classical variational techniques, neural networks are
now widely used in this field. Both techniques have different strengths: variational
approaches excel in accuracy, neural networks in speed. In the second part of this thesis,
we present a new methodology to integrate a variational, iterative approach into a neural
network. We aim to replace the updating rule, which is based on derivatives, with a
nonlinear step computed by a network. We focus on large deformations and compare our
model with classical variational methods.

i

Zusammenfassung
Das übergreifende Thema dieser Arbeit besteht in der Entwicklung neuer Methoden des
maschinellen Lernens für die molekulare Diagnostik und Bildregistrierung.

Der erste Teil behandelt die Analyse massenspektrometrischer Daten für die Diagnostik
in der Pathologie. Massenspektrometrische bildgebende Verfahren zeichnen sich durch eine
besonders hohe Auflösung aus, die es ermöglicht, Proteinkonzentrationen in einzelnen
Gewebeproben zu bestimmen. Damit ist ein großes diagnostisches Potenzial für die
individualisierte Medizin oder auch die Identifizierung neuer Markerproteine verbunden.
Die effiziente Integration massenspektrometrischer Bildgebung in den klinischen Alltag
erfordert jedoch automatisierte Analyseverfahren. Neuronale Netzwerke sind hierfür ein
geeigneter Kandidat und werden trotz ihrer zahlreichen Erfolge in anderen Bereichen der
medizinischen Bildverarbeitung bisher kaum in der Analyse massenspektrometrischer
Daten eingesetzt. In dieser Arbeit werden deshalb neuronale Netzwerke zur Tumor-
klassifikation auf der Basis spektrometrischer Messungen entwickelt. Dazu gehören
insbesondere die Entwicklung einer geeigneten Architektur, Methoden zur Entfernung
von Rauschen und ein Vergleich der Leistungsfähigkeit der neuen Methoden mit dem
aktuellen Stand der Technik. Das Modell wird anhand dreier Datensätze evaluiert: der
Klassifikation von vier Ovarialkarzinom-Subtypen, der Unterscheidung von Amyloid-
Plaques und der Unterscheidung unterschiedlicher Karzinomtypen im Pankreas.

Mit der stetigen Zunahme der bildgebenden Diagnostik nimmt auch die Bedeutung der
Bildregistrierung weiter zu. Neben den klassischen variationellen Verfahren werden in
der heutigen Zeit auch neuronale Netzwerke in diesem Bereich häufig eingesetzt. Beide
Techniken haben unterschiedliche Stärken: Variationelle Ansätze sind in ihrer Genauigkeit
noch ungeschlagen, neuronale Netzwerke dagegen in ihrer Schnelligkeit. Im zweiten Teil
dieser Arbeit wird deshalb eine neue Methodik vorgestellt, um einen variationellen,
iterativen Ansatz in ein neuronales Netzwerk zu integrieren. Im Mittelpunkt steht dabei
der Ersatz der ableitungsbasierten Aktualisierungsregel durch einen nichtlinearen Schritt,
der von einem Netzwerk berechnet wird. Insbesondere befasst sich die Arbeit mit großen
Deformationen und einem Vergleich mit klassischen variationellen Verfahren.

iii

Acknowledgments
Many wonderful people have contributed to making this thesis possible. I want to thank
them all for their support.

First of all, I would like to thank Jan Lellmann, who supervised this thesis. It is due
to his support and tireless encouragement that this thesis could be written. I thank him
for the many stimulating discussions, his constructive feedback and his precise criticism,
from which I have learned so much.

Many thanks to all my former colleagues at the Institute of Mathematics and Image
Computing (MIC) and Fraunhofer MEVIS. Each of you has contributed to making my
time at the MIC one of great joy and fond memories. Special thanks go to Alessa and
Sven, who shared an office with me and made my start at the institute so pleasant. I
would also like to thank Annkristin and Danielle for taking the time to listen to my
concerns on so many occasions. Many thanks to Max for his invaluable support in my
work on learning-based registration.

Special thanks to Oliver and Herbert for their guidance and support throughout the
MALDI project. They both answered countless questions about spectrometric imaging
and made it possible for me to work with this technique.

Finally, I would like to thank my family and friends for their unconditional support
and for being the source of so much needed energy. I especially thank Lisa for her
great patience with me and the loving devotion with which she so often took care of me.
Finally, I have to thank Leon for being the deadline that I had such a hard time setting
for myself.

v

Contents
List of Peer-Reviewed Publications ix

1. Introduction 1
1.1. Motivation . 2
1.2. Contributions and Outline . 8

2. Deep Learning Fundamentals 11
2.1. Neural Networks . 11

2.1.1. Activation Functions . 12
2.1.2. Layer Architectures . 13
2.1.3. Training . 15

2.2. Sequence Modeling . 19
2.2.1. Long-range Dependencies . 19
2.2.2. LSTM . 20

2.3. Transformer Networks . 24
2.3.1. Attention . 24
2.3.2. Transformer Architecture . 26

2.4. Meta-Learning . 31

I. Deep Learning for MALDI Mass Spectrometry Imaging 35

3. Deep Learning with Applications to MALDI Mass Spectrometry Imaging 37
3.1. MALDI-Time of Flight . 37
3.2. Related Work . 40
3.3. Model Design . 42

3.3.1. Preprocessing . 45
3.3.2. Feature Extraction . 49

3.4. Linear Methods . 51
3.5. Ovarian Cancer . 53

3.5.1. Data . 53
3.5.2. Experiments and Results . 54
3.5.3. Summary and Discussion . 59

3.6. Amyloidosis . 60
3.6.1. Data . 60
3.6.2. Experiments and Results . 60
3.6.3. Leaking Information . 64

vii

Contents

3.6.4. Summary and Discussion . 66
3.7. Pancreas . 67

3.7.1. Data . 68
3.7.2. Experiments and Results . 68
3.7.3. Summary and Discussion . 76

3.8. Conclusion . 77

II. Meta-Learning for Image Registration 79

4. Image Registration Fundamentals 81
4.1. Image Registration . 81
4.2. Discretization . 81
4.3. Numerical Optimization . 84
4.4. Benchmark Toolboxes . 87
4.5. Neural Networks for Image Registration 89

5. Meta-Learning for Image Registration 95
5.1. Related Work . 95
5.2. Registration Model . 97

5.2.1. Loss . 101
5.2.2. Scheduling . 102
5.2.3. Gradient Calculation . 103
5.2.4. Advanced Strategies . 104

5.3. Data . 105
5.4. Affine Image Registration . 110

5.4.1. Experiments and Results . 110
5.4.2. Summary and Discussion . 120

5.5. Non-parametric Image Registration . 120
5.5.1. Experiments and Results . 120
5.5.2. Summary and Discussion . 130

5.6. Conclusion . 130

6. Discussion 133

Bibliography 137

viii

List of Peer-Reviewed Publications
The following is a list of the author’s publications that were produced in the course of
this thesis.

Journal publications
[Kan+23] Frederic Kanter et al. “Classification of Pancreatic Ductal Adenocarcinoma

Using MALDI Mass Spectrometry Imaging Combined with Neural Networks.”
In: Cancers 15.3 (2023).

[Kle+19] Oliver Klein et al. “MALDI-imaging for classification of epithelial ovarian
cancer histotypes from a tissue microarray using machine learning methods.”
In: Proteomics–Clinical Applications 13.1 (2019), p. 1700181.

Peer-reviewed conference proceedings
[KL22] Frederic Kanter and Jan Lellmann. “A Flexible Meta Learning Model for

Image Registration.” In: International Conference on Medical Imaging with
Deep Learning. 2022, pp. 638–652.

ix

1. Introduction

In modern clinical diagnostics, biomedical imaging is becoming increasingly important.
It encompasses a number of different imaging modalities from light microscopy with
very high spatial resolution to tomography-based imaging (CT, MRI). Tomographic
imaging allows for non-invasive whole-body scans at the cost of relatively low spatial
resolution. In contrast, spectrometry-based imaging such as Matrix-assisted laser
desorption/ionization mass spectrometry imaging (MALDI-MSI) [Cha+06; Wal+08;
Lei+09] and vibrational spectroscopy (Raman spectroscopy, infrared spectroscopy) yields
detailed molecular information at high spatial resolution, but is limited to a confined
region of the patient. Both branches are equally important for modern imaging-based
medicine and pose interesting image processing challenges. One of these difficulties is the
sheer volume of data that needs to be analyzed. Reliable, automated processing is often
required to handle this amount of data efficiently. An important class of such methods is
machine learning.

Recent methodical and technological advances in machine learning — most notably,
Convolutional Neural Networks (CNNs) — have greatly enhanced the available
toolset for analyzing biomedical imagery. The technical progress, such as GPU computing,
enables faster computation times and a large increase of data sets, partly due to more
frequent use of biomedical imaging in medicine, provides sufficient sample sizes for
the data demanding training process [Lit+17; SWS17]. On the other hand, there
have been important methodological advances that address common issues with large
networks such as unsatisfactory convergence in training (stochastic and momentum-based
optimization [KB14]), overfitting (dropout layers, weight sharing, CNNs), vanishing or
exploding gradients (ReLU activation, normalization layers), and degradation (residual
networks [He+16]). Since the work of Krizhevsky et al. [KSH12] achieved an impressive
boost in accuracy at the ImageNet Challenge [Den+09] for image classification, convolutio-
nal networks provide state-of-the-art performance for a variety of imaging based
tasks [Yan+15; Lee+09; Tho+18; SVL14; Hu+18].

Given the current success of machine learning in the field of medical imaging, in this
thesis we propose approaches to two important problems: tumor classification using
MALDI-MSI data and large deformations in image registration. In the first part, we
use neural networks for the analysis of MALDI-MSI data, a technique that has been
largely unexplored in this field. In the second part, we focus on the combination of
classical iterative methods with neural networks in order to combine the advantages of
both approaches.

1

Chapter 1. Introduction

1.1. Motivation
MALDI-MSI: Today, histochemical staining combined with light or electron microscopy
is the most common method of analyzing tissue samples. A number of standard stains
are used to visualize different cellular structures. For example, hematoxylin-eosin stains
cell nuclei and cytoplasm. In addition, so-called histochemical stains allow the detection
of active metabolism or individual metabolic products. This makes it easier for experts
to evaluate tissue samples and enables various applications, such as the search for tumor-
containing regions. However, this requires expert knowledge and there is often little to
no automation. As a result, these methods are costly and can only handle small amounts
of data. Other disadvantages include: no information on molecular structures, such as
protein or lipid concentrations, and no way to correlate differentially expressed molecular
profiles with tissue histology [Med+12]. However, the histological analysis of tissue
samples is an integral part of modern diagnostics but is limited by its time-consuming
and labor-intensive processing steps.

In contrast to staining and microscopy techniques, spectrometric imaging, in particular
MALDI-MSI, allows precise histological classification or identification of biomarkers
and is an essential tool in advanced molecular diagnostics and personalized medicine.
Besides its advantages, mass spectrometry imaging produces complex, high-dimensional
data, which makes analysis and interpretation computationally challenging. Currently,
the data size limits the clinical impact of this promising diagnostic tool. In mass
spectrometric imaging (Figure 1.1), the data allows us to draw conclusions about the
spatial molecular composition of the tissue and holds great potential for applications in
pathology, diagnosis, analysis of tumor growth, outcome prediction, and analysis of drug
uptake. MALDI-MSI typically generates 3D datasets with >105 channels per voxel and
thus remains challenging to process adequately, limiting its deployment in histological
routine.

Nevertheless, to enable the use of this technology, the size of the resulting data must
be reduced. Traditionally, such high-dimensional data is first processed using dimension-
reduction techniques such as peak detection and (non-)linear PCA, with subsequent
analysis using classical machine learning tools such as random forest classifiers, support
vector machines, and hierarchical clustering [Gal+16]. We believe that neural network-
based machine learning provides an alternative to those classical methods.

After gaining popularity under the label of deep learning [LBH15], CNNs have been
extended to generative models [Goo+14], and for augmenting classical optimization
methods [AÖ17]. A new machine learning ecosystem of tools (TensorFlow [Mar+15],
PyTorch [Pas+19]) and pre-trained models reduce the computational effort and provide
better accessibility.

However, applying modern machine learning methods to data with a very large
number of channels, such as diffusion-weighted MRI and spectroscopy imagery has been
much less studied [Beh+17], and is therefore a promising research direction. Additionally,
in the imaging and computer vision communities, so far most effort in developing CNN-
based approaches has gone into processing data with two, less commonly three, spatial
dimensions and usually one to three channels, such as intensity values or RGB data.

2

1.1. Motivation

Figure 1.1.: Process pipeline of MALDI-MSI combined with machine learning. Top left:
Preparation of tissue sample before data acquisition. The tissue taken from
the patient is washed with alcohol, dried, and positioned on a glass slide. A
chemical matrix is applied to provide the environment for laser absorption
and correct charge. Top right: Rapiflex tissue typer acquires the spectral
data. A laser extracts molecules from the tissue, which have single charge and
are accelerated towards a time-of-flight detector by a constant magnetic field.
Each detection time correlates to a characteristic molecule or isotope thereof.
Bottom left: A pathological expert uses chemical staining to analyze the
tissue and marks tumor regions by attributing class labels. Bottom right:
The label and spectral data are then merged to create the data set. The high
resolution of MALDI-MSI allows particularly accurate differentiation based
on different molecular structures. Combined with automated classification
procedures, tissue samples can be analyzed quickly and efficiently. This
automated processing of large amounts of data is beneficial for pathological
diagnostics. Typical existing classification algorithms are of linear nature; in
this thesis we propose non-linear neural networks as a replacement.

3

Chapter 1. Introduction

Such data has a strong spatial coherence in the two or three spatial dimensions, but
no useful notion of spatiality in the channel dimension. This work aims to fill this gap
and apply neural network architectures to high-dimensional multichannel spectrometry
imaging data.

To make routine use of MALDI-MSI in diagnostics even more attractive, we are working
on automated analysis using neural networks to enable rapid processing of large cohorts
of tissue samples. In this work we provide classification results for three real-world use
cases:

Epithelial ovarian cancer (EOC) is an inhomogeneous disease with multiple
histological subtypes. Five main subtypes have been described by the World Health
Organization with diverse molecular structures, clinical behavior, and therapeutic
prognoses [Mei+16; PDE18]. Response to standard therapy can differ vastly and clinical
outcomes improve with adapted therapy approaches for each EOC subtype.

The correct histotyping of ovarian carcinomas is important, as the diverse molecular
features of various subtypes require different approaches in clinical management, including
chemotherapeutic strategies and targeted therapies. In Chapter 3 (Section 3.5), we focus
on four distinct subtypes Serous Ovarian cancer (OC), high-grade serous ovarian cancer
(HGSOC), low-grade serous ovarian cancer (LGSOC), and serous borderline tumors
(sBOT). The classification is particularly challenging due to areas with morphological
overlaps of multiple subtypes.

In this thesis, we aim to provide learning-based algorithms to distinguish between
these ovarian subtypes on such a precise level. These methods allow the full potential of
MALDI-MSI to be unleashed and provide an automated alternative to methods currently
used in routine clinical practice such as histology and extensive immunohistochemistry
staining. These approaches rely on the detection of novel biomarkers, which are still
sparse in the routine. As a result, the misdiagnosis rate is around 15% [Köb+14] and
there is a clear medical need to define new molecular classifiers.

As a solution, we propose learning-based classifiers implemented by various neuronal
networks. In Chapter 3 we consider architectures with and without convolutions,
experiment on possible feature extraction methods, and compare our methods with
non-learning based approaches.

Amyloid fibrils are abnormal proteins that can occur in a multitude of organs
such as the heart, kidneys, nervous system, musculoskeletal system, or gastrointestinal
organs [Ben10]. About 15 million amyloidosis disease cases occur per year if the AL and
AA subtypes are counted as one [Haz13]. The annual death rate is 1 in 1.000 people
for all systemic amyloidosis types [MB03] and without treatment the life expectancy of
patients can drop to six months [Haz13].

A variety of different amyloidosis types exist, distinct from another by type-specific
protein misfoldings [And+13]. The most common types of amyloidosis are light chain
(AL), inflammation (AA), dialysis-related (Aβ2M), and hereditary (ATTR) [Haz13]. The
symptoms of amyloidosis disease are manifold and also vary greatly between affected
organs [Ger+15]. Since treatment focuses on decreasing the concentration of the causative
protein, distinction between the subtypes is of utmost importance and diagnosis can only
be confirmed reliable by tissue biopsy [Haz13].

4

1.1. Motivation

In the clinical workflow, microscopes, staining, and immunohistochemistry are common-
ly used to determine the amyloidosis subtype. However, the immunohistochemistry
method tends to miss AL classification [EN08]. By contrast, mass spectrometry is the
most reliable method for identifying the different forms of amyloidosis [RL11]. Therefore,
we aim to combine MALDI-MSI and machine learning methods to reliably distinguish
between the types ATTR and AL subtypes, which are difficult to separate but benefit
from customized treatments (Section 3.6).

Our learning based methods provide fast, reliable classification with potential speed
up for diagnosis, due to replacing the time-consuming manual classification with an
automated approach. To this end, we extend the methods from Section 3.5 to include
recurrent and residual networks that take more account of the structure of MALDI-MSI
spectra.

Pancreatic ductal adenocarcinoma (PDAC) is the most common neoplastic disease
of the pancreas and accounts for more than 90% of all pancreatic malignancies and with
poor prognosis [Kle+16]. With a 5-year overall survival of less than 8% PDAC is the
fourth most frequent cause of cancer-related deaths worldwide [Bra+18]. Projections
indicate that the number of PDAC diagnoses as well as PDAC-related deaths will
more than double in the next decade in the United States [Rah+14] and in European
countries [Qua+16]. Lifestyle habits, such as alcohol and tobacco abuse, are known to
increase the risk of and appear to be involved in the development of PDAC [Gap+11;
Pel+14; Ols+10; Del+16]. Due to the increase in PDAC cases in the future, accurate
and reliable diagnostic is essential but currently not available.

In contrast to immunohistochemistry staining, the spatially distinct signatures of
MALDI-MSI spectra can be obtained in high throughput in a clinically feasible time
frame. In addition, the method is more cost-effective and could provide a new dimension
to the current classification of patient subgroups, potentially assisting the prediction of
disease progression or resistance development. Our methods are designed to automate
the analysis of MALDI-MSI data, enabling reliable and rapid diagnosis of PADC.

Differentiating PDAC from other pancreatic cancers is complicated. We therefore
extend our methodology with the Transformer architecture, which has shown great
success in processing sequential data similar to MALDI-MSI spectra. We also propose a
new filtering method to address the problem of uninformative spectra (Section 3.7).

Image Registration: The process of finding spatial correspondences between two or
more images is called image registration (Figure 1.2). It is a core task in computer vision
and medical image analysis, where the alignment of images for comparison is of particular
interest. Accompanying increasing availability of tomographic imaging, the importance
of image registration in clinical diagnostics as well as the amount of image data have
grown in recent years. It is a crucial tool for improving imaging-based diagnostics such
as motion correction, intra-operative fusion of different modalities, or change detection
in follow-up studies [SDP13; Fat+15; Lan+09; HDI+11]. Various algorithms have
been established for solving image registration problems [Thi98; Rue+99; Ami94]. In
this thesis we adopt a broad categorization and focus on two popular classes: classical

5

Chapter 1. Introduction

Figure 1.2.: In image registration the deformation needed to map two images onto each
other can be defined on regular grid (magenta). Right: Example affine
deformation with n = 6 degrees of freedom (DOF), consisting of rotation,
translation, and shearing of the object. Affine deformations act globally,
transforming all image points in the same manner. The grid on the right side
visualizes the transformation yielding the underlying brain with its starting
position as on the left side. Left: Example deformable deformation where the
DOF for the transformation is typically proportional to the number of image
points. Deformable transformations are characterized by local displacement,
clearly visible on the left side of the brain. The transformation of image
points can vary in every point, with some areas containing large movements
and other areas with little to no movement.

variational methods [Mod03; Ami94] and neural network-based approaches [Bal+19;
She+19; MC21b; BHH21].

Current variational image registration models are very accurate, but also complex
and — especially for large images — computationally expensive. They often exhibit a
long computation time and may require large amounts of memory. Naturally, clinical
requirements to image registration include short processing times. There is a potentially
large benefit of accurate registration algorithms in diagnosis and treatment [RM03]. Low
run-times could also enable new forms of supporting clinicians in real-time scenarios.
Recent studies either worked on acceleration through improved hardware use [Sha+10],
elaborated computation schemes [Kön+18], or omitting the variational approach in favor
of deep learning algorithms [Bal+19; HGH19; She+19; BBH20].

In contrast to variational methods, neural networks learn to solve tasks in a problem-
adapted and data-driven manner using training examples. Neural network approaches
rely on suitable training data, which is scarce in the medical context. Architectures
and optimization strategies can vary strongly [HKY20] and models are often highly
specialized on a given task or image modality [HGH19]. A popular strategy to boost
performance is the use of auxiliary losses [Her+19], adding additional energy terms to
the distance-based loss formulation and consequently increasing model complexity.

Despite their undisputed success in many areas of machine vision, neural networks
do not yet achieve the level of accuracy of classical methods that have been researched
and optimized in the context of medical image registration. In addition, neural networks
appear to struggle to combine corrections for both large global and small local deformations
and existing models typically resort to predicting small non-linear deformations after a
classical pre-registration.

6

1.1. Motivation

T T ◦ ϕ R

Figure 1.3.: Examples for failed registration by iterative methods. Here a multi-level
scheme and an L-BFGS optimizer are used. The implementation is taken from
the elastix toolbox. Even for affine transformations ϕ, local iterative methods
can get stuck in local minima, and the line search can fail. The left and right
side show the template image T and reference imageR. Center: Application
of the computed transformation T ◦ ϕ yields an incorrect registration result.
In this case, the object is characterized by a nearly-symmetric circular shape
causing the distance function to be highly non-convex with multiple local
minima.

Both methods exhibit noticeable drawbacks. For variational methods, robustness of
the optimization is a large concern. These methods depend on good initial estimates and
well-tuned hyperparameters. In a highly non-convex setting they tend to get stuck in
local minima (Figure 1.3).

Neural networks provide fast inference, but lack accuracy and rely more heavily on
data. They are not as effortlessly applicable to new registration tasks, as they commonly
require to be refined on the new data set, and do not generalize in the same way as
classical approaches.

Since both approaches have opposite strengths and weaknesses, our goal is to combine
classical variational methods and neural networks. In this way, each approach can benefit
from the strengths of the other. This constitutes the motivation of the second part of
this thesis. We propose a trainable architecture for image registration to produce robust
starting points for classical image registration methods. We employ a combined method
to leverage the advantages of classical iterative and learning-based methods (Chapter 5).

In related work, neural networks are used to predict the initial momentum of
LDDMM [Yan+17], as a regularization tool in a conventional registration model [NKV19],
or to create high-level features for subsequent registration [BH19].

7

Chapter 1. Introduction

1.2. Contributions and Outline
The main contribution of this thesis is two-fold. First, we provide automatic learning-
based classification algorithms for high-resolution histological tissue measurements.
The processed data is of high complexity, since histological tissue typing suffers from
morphological similarities between examined classes and the experimental studies contain
noisy measurements. In addition, class labels are applied to tissue sections in whole and
measurements within do not necessarily contain pathological tissue. Secondly, we propose
a method that bridges the gap between variational and learning-based image registration
in order to emphasize that combining both established approaches is a promising field of
study.

Deep Learning for MALDI-MSI. In the first part, we develop novel neural network
classifiers for MALDI-MSI. Prior work on neural networks in combination with MALDI-
MSI data is sparse, therefore we focus on identifying a suitable architecture. We analyze
the influence of established pre-processing steps and design additional pre-processing.
We derive a novel process pipeline for complex MALDI-MSI data composed of

• a novel preprocessing filter, followed by

• a (C-)NN-based network with several possible architectures.

All models are analyzed and different parameter settings are discussed. We compare
our methods to established methods commonly used for automatic tumor classification
in MALDI-MSI. Moreover, we test our methods on three clinical applications: ovarian
cancer, amyloidosis, and pancreas cancer. All three tasks are of great clinical relevance,
diagnosis is currently performed without automatization, and costly expert supervision
is needed. Our methods have been published in [Kle+19; Kan+23] for the ovarian and
pancreas cancer data sets and are extended in this thesis by the amyloidosis data set.
Compared to our publications [Kle+19; Kan+23], we provide a more comprehensive
analysis and expand on the insights of preprocessing as well as the influence of noise in
MALDI-MSI data.

Meta-Learning for Image Registration. In the second part, we focus on the fusion
of classical and neural network-based image registration. A novel network model is
introduced using strategies from meta learning and incorporating successful classical
optimization strategies, such as a multi-level scheme and using past steps in the update
calculation of an iterative scheme. Our model is characterized by

• a shallow architecture utilizing a hidden state approach,

• an iterative update scheme, and

• non-linear updates.

8

1.2. Contributions and Outline

A major section of this part is dedicated to the design of an LSTM-based network for
iterative image registration. We evaluate the performance of the plain network and when
combined with the established L-BFGS optimizer. Both variants are compared to similar
methods implemented in the FAIR and elastix toolboxes. For affine deformations, we
have published the approach in [KL22]. In this thesis, we additionally extend the method
to non-parametric deformations, a more common form in medical image analysis. All
models are evaluated on a synthetic x-ray image data set, an MRI brain data set from
the kaggle platform, and the publicly available fastMRI NYU data set.

Outline. Following this two-part setup, this thesis is structured as follows. In Chapter 2,
a general introduction to deep learning is given in order to provide a foundation for all
models throughout this thesis. Moreover, the concept of meta learning is discussed briefly
as a basis for the methods in Chapter 5. For each type of architecture, related work as
well as a brief overview of applications are provided.

In Chapter 3, the introduced network architectures are applied to MALDI-MSI data.
As the combination of neural networks and MALDI-MSI data is a novel field of research,
suitable models are first designed using the layer structures from Chapter 2. Different
preprocessing steps are evaluated and the influence on the performance is analyzed.
The best-performing model is then compared to widely-used methods including linear
discriminant analysis (LDA) and support vector machines (SVM). The performance of
all methods is evaluated on three clinical use cases of tissue-typing.

The second part of this thesis starts with Chapter 4, where a general introduction
to image registration is given. The variational, iterative model serves as the basis for
this thesis. Important details concerning discretization, numerical optimization, and
advanced strategies such as the multi-level scheme are discussed. In addition, a brief
introduction to the used benchmark toolboxes FAIR and elastix is provided.

The novel design for the registration network is laid out in Chapter 5. Training routines,
data creation, and scheduling techniques are discussed in more detail, owing to the more
important role in comparison to part one of this thesis. The model is benchmarked
against methods from the established registration toolboxes FAIR and elastix.

This thesis concludes with a summary and discussion in Chapter 6, where we position
our work in the context of machine learning in MALDI-MSI and image registration and
provide an outlook on both methods.

9

2. Deep Learning Fundamentals
We begin with an introduction to neural networks (NN), a method of machine learning.
First, key features of these methods are summarized in Section 2.1. These build the basis
of all methods presented in this thesis. Different types of network architectures are used
to solve problems in the fields of image classification and registration.

In Section 2.2, sequence models are characterized and in Section 2.3 Transformer
architectures are introduced. An overview of their properties is given and differences
to the more common neural network architectures are discussed. As the second part of
this thesis focuses on applications of meta-learning strategies in the context of image
registration, the relevant concepts are summarized in Section 2.4.

2.1. Neural Networks
An artificial neural method can be viewed as a way of describing a function f mapping
an input vector to an output vector by means of a collection of nonlinearities (notes)
connected by weights (Figure 2.1). These weights are typically learned in order to
approximate a certain — only partially known — function f̂. In the following we will use
a representation based on alternating linear and nonlinear layers, which grasp the action
of the weighted connections and nonlinearities:

f = fN(...f2(f1(x, θ1), θ2), θN), N ∈ N, (2.1)

where x is the input and can represent diverse data, such as images or audio signals. For
a classification task, the neural network maps the input x to a category y

x 7→ y := f(x,Θ) (2.2)

with Θ designating the trainable parameters of f. The functions fi are often called layers
and are the main building block of each neural network. Each layer consists of a variable
number of j units, also named neurons regarding their biological equivalents in the human
brain. A layer can be described as

fi(x, θi) = σi

(

∑

j

θi,jxj − bi

)

. (2.3)

θi,j is the weight of the layer, fi at the position j, bi is the bias, and x is the input.
Together, the weight θi,j and biases bi form the parameter vector Θ. Here σi denotes
an often nonlinear activation function. Neural networks with many layers are named

11

Chapter 2. Deep Learning Fundamentals

x1

x2

x3

x4

yN

Figure 2.1.: Sketch of a neural network with N = 5. The red layers f1 and f5 are the
input and output layers and are defined by the size of the input x and
output yN . Here a single unit is displayed, which can be used for two-fold
classification or regression tasks. The blue layers (f2-f4) are referred to as
hidden layers and are variable in terms of the number of units per layer.
Grey edges are associated with trainable weights that are iteratively adopted
in order to approximate the desired input-output mapping [Kan18].

Deep Neural Networks (DNN) and have been highly successful in many computer
vision tasks such as image classification [HSS18; SZ15], object detection [He+17; CV18],
and image registration [Bal+19; HGH19; Hei19]. The activation function σi defines the
nonlinear part of fi, while the multiplication of the parameter weights θ with the input
x is a linear - more precisely, affine - operation. The choice of σ is a crucial part of
designing neural networks, therefore the most frequently used are described in the next
section.

2.1.1. Activation Functions
The nonlinear component has multiple tasks in the context of neural networks. Firstly, it
enables the approximation of nonlinear objectives. Secondly, it stabilizes the optimization
process used to train the network. Classical activation functions, in particular the sigmoid
function, map the output of the weight input multiplication to a finite interval

sig(z) = 1

1 + e−z
. (2.4)

In addition to the sigmoid function, the hyperbolic tangent

tanh(z) = ez − e−z

ez + e−z
= 1− 2

e2z + 1
(2.5)

is also used in this thesis. Both are integral parts of the LSTM architecture, which
is introduced later on in Section 2.2 and is an important component for our model in

12

2.1. Neural Networks

Chapter 5. From (2.4) and (2.5) it follows that both functions converge to 1 for large
values. For small values, on the other hand, the sigmoid function converges to 0 and the
hyperbolic tangent to -1. For this reason, many different inputs are mapped to similar
outputs in the margins.

This property of activation functions tend to hinder the optimization process due
to an effect called vanishing/exploding gradient: Close to the interval boundaries even
large weight updates lead to very small — or no — changes in the output. This situation
often occurs in very deep networks with a large number of layers. The most prominent
activation function to tackle this problem is the Rectified Linear Unit (ReLU), defined
as

ReLU(z) = max(0, z). (2.6)
In recent years improvements in the form of leaky ReLU and others further, diminish the
occurrence of the phenomenon for values below 0. There are many different variants of
activation functions, some are designed for a special purpose others have shown favorable
properties for many use cases. In this thesis, the effects of varying activation functions
are not investigated and the ReLU activation is used for most layers except within the
aforementioned LSTM layer.

For our classification models in Chapter 3 we also employ the softmax activation

softmax(z)i =
ezi

∑

j e
zj
. (2.7)

The activation returns pseudo-probabilities, which then serve as a basis to classify the
data.

2.1.2. Layer Architectures
We have established the most basic building blocks of each neural network. Following
this introduction, we will discuss some layer architectures, which define the form and
properties of each fi.

All layers depicted in Figure 2.1 are fully connected layers; each unit in the layer has a
connection to each unit in the following layer. The input of each unit in the second layer
consists of the outputs of every unit in the first layer. The relation between these two
layers can be formulated as a matrix-vector multiplication with a dense matrix Θi:

zi+1 = σi(Θizi − bi), (2.8)

where Θi, bi, zi are the weights, biases, and outputs of layer fi, and σi is an activation
function.

Networks based on fully connected layers can solve many complex problems but do
not exploit any topological structures of the input data, such as spatial or temporal
neighborhood relationships. Furthermore, these networks are memory-demanding due to
the high parameter count. A highly successful alternative is based on the mathematical
convolution operation:

zi+1 = σi(Θi ∗ zi − bi), (2.9)

13

Chapter 2. Deep Learning Fundamentals

x1 x2 x3 x4 x5

s1 s2 s3 s4 s5

x1 x2 x3 x4 x5

s1 s2 s3 s4 s5

(a) (b)

Figure 2.2.: Weight sharing. The red arrows denote identical (shared) weights (a) fully
connected model, (b) 3×3 kernel in a convolutional model. Weight sharing
allows sacrificing some generality, which reduces the parameter count, while
preserving a reasonable amount of expressiveness, and allows to guarantee
certain (spatial and temporal) invariances [Kan18].

where ∗ is a (typically 1D to 3D) convolution, applied on one or more dimensions of
the input activations. These kinds of networks, therefore, are named Convolutional
Neural Networks (CNN) and have shown tremendous success in various computer
vision tasks [KSH12]. Figure 2.2 shows the links between layers for fully connected (left)
and convolutional (right) networks.

Another important layer type is the pooling layer. In contrast to the aforementioned
layer forms it does not produce input activations through matrix multiplications but
aggregates neighboring activations. Pooling assists to stabilize the network performance.
It further increases invariance to small translations and improves computational efficiency
— by reducing the dimensions by a constant factor —, and allows to generate networks
that operate on a hierarchy of resolutions. Although pooling has beneficial effects
for machine learning purposes, it results in loss of information due to its reductive
nature [GBC16]. Frequently used pooling operations are the maximum and average
operations applied to a small neighborhood, following a fully connected or convolutional
layer and the associated nonlinearity.

Residual connections are skip-connections between layers in a neural network. In
their work [He+16] the authors found that networks with more layers exhibit worse
accuracy than similar networks with fewer layers. This was not only due to the vanishing
gradient problem, which the authors accounted for by using normalization before and
after gradient calculation. They concluded that deeper networks are inherently more
difficult to optimize. As a solution, they propose “shortcut functions” to formulate the
mapping in (2.2) as a residual function

y = f(x,Θ) + x. (2.10)

The shortcut term — adding x — neither introduces additional parameters nor adds
computational complexity. The new model is able to learn the perturbations with
reference to the identity function instead of learning a new mapping for each layer. The
authors provide experimental results that learned residual functions produce smaller
gradients and thus provide reasonable preconditioning.

14

2.1. Neural Networks

Networks with residual connections outperform their plain counterparts on the classifica-
tion tasks ImageNet [Den+09] and CIFAR 10 [Kri09]. The authors in [He+16] argue that
the residual connections facilitate training in the first epochs for very deep networks. For
this purpose, they consider the standard deviations of the layer responses before passing
them into the nonlinear activation function. For the networks with residual connections,
the analysis reveals smaller responses than their plain counterparts. Also, the responses’
magnitudes are lower and when multiple layers are used, this causes the single layer to
modify the signal less. We make use of residual connections in our model architectures
in Chapter 3.

Most neural networks are composed of these layer building blocks. In general, the
forward pass — defined in (2.2) — through one layer can be summed up as follows. The
input data is processed by the layer either by matrix multiplication or convolution using
a linear operator Θi, here i ∈ [1, N] is the layer index, and some form of pooling may
be applied. Finally, the output is transformed by the activation function in a nonlinear
fashion. This whole pipeline is highly flexible and further operations can be added to it.
We will discuss some of these extensions later in Section 2.2 and Section 2.3.

2.1.3. Training
Now that we know the different types of layers, the question arises as to what is necessary
to make neural networks solve new tasks. We have already seen that the mapping function
f is parameterized by the weights of the layers and that these are adapted by learning on
samples of the tasks to be solved. In order to find suitable values for the weights Θ so
that the networks successfully solve the tasks, an optimization — or, training — process
is required.

We can cast the approximation of the f̂ by f as an optimization problem using an error
metric, for example, the mean squared error (MSE)

L(θ) = ||1
2

∑

x∈Rm

(̂f(x)− f(x; θ))||22. (2.11)

Here the input vector x has the dimension m. In the machine learning context, L is
referred to as cost or loss function. Given the complex structure of the loss, typically
a large number of examples, and high dimensionality of Θ, currently the most viable
option is to find a minimizer of the problem

min
θ∈RN

L(θ) (2.12)

using an iterative first-order method such as Gradient Descent (GD). Gradient descent
adjusts θ step-wise along the opposite direction of the function gradients ∇θL:

θt+1 = θt − ǫ∇θL t ∈ [1, T]. (2.13)

The learning rate ǫ controls the update size. An effective way to derive the gradient
involves the back-propagation algorithm proposed by Rumelhart [RHW86]. The

15

Chapter 2. Deep Learning Fundamentals

forward pass through a neural network f is defined in (2.2), an input x is mapped to an
output y. In the end, the forward pass produces a scalar cost L(θ), an example is given
in (2.11). The back-propagation algorithm enables the information gained in the cost
function to flow backward through the network to compute the gradient ∇θL(θ). One
important ingredient in back-propagation is the chain rule of calculus.

In the most general sense, the full network including the loss function can be viewed
as a composition of functions,

L(θ) = f3(f2(f1(θ))), (2.14)

where the fi depends on the input data x; in this simple example, the network has three
layers. In order to minimize the loss, we need to compute the gradient of L(θ) with
respect to the weights θ. This can be achieved by efficiently evaluating the chain rule:

∇L(θ) = ∇f1(θ) · (∇f2(f1(θ)) · (∇f3(f2(f1(θ))))), (2.15)

where ∇ denoted the generalized gradient (transposed Jacobian). The back-propagation
algorithm performs these Jacobian-gradient products for all layers in a network. In
the general case, the nonlinear nature of neural networks causes L to be non-convex.
Therefore, gradient descent, which uses local updates, cannot be expected to converge to
a global solution. In the field of deep learning an adapted form of the gradient descent,
the Stochastic Gradient Descent (SGD) is used.

The generalization of neural networks demands large data sets, which makes evaluating
∇L computationally expensive. The cost function L can be seen as per-sample cost
functions Lm summed over all samples in the data set. The computational cost can be
reduced by computing L(θ) and ∇θL over a subset of m samples randomly drawn from
the data set [GBC16]. This subset or minibatch results in a new batched cost function

Lm(θ) =
1

2m

m
∑

i=1

(̂f(x(i))− f(x(i); θ))2. (2.16)

The full gradient ∇θL can be viewed as an expectation taken over the samples x(i). In
SGD, it is estimated by

gt = ∇θLm (2.17)

using the m samples from the mini-batch, where m is considerably smaller than the total
number of samples in the data set. We denote gt as the gradient of L(θ) for step t. The
update step in SGD takes the form of

θt+1 = θt − ǫgt, (2.18)

where ǫ is the step size or learning rate. Although the SGD method does not ensure
convergence for non-convex functions, it enables a quick and sufficient reduction of the
cost function in practice [GBC16].

16

2.1. Neural Networks

Advanced Optimizers. In this thesis, the Adam optimizer is used instead of plain
SGD, as introduced by Kingma et al. in 2014 [KB14]. It is one of the most commonly
used optimizers to date, due to its good convergence characteristics [Déf+22] and stability
against noisy or sparse gradients. The Adam optimizer utilizes adaptive estimates of
lower-order moments to compute the weight updates. It incorporates an adaptive learning
rate approach based on previous gradient steps and is an extension of two other adaptive
learning rate methods AdaGrad [DHS11] and RMSProp [Hin12].

Starting from batch-wise gradient calculation in (2.17), we keep the strategy of gradient
calculation on subsets. The novelty of Adam is the introduction of moving averages of
the gradient

mt = β1 ·mt−1 + (1− β1) · gt
m̂t = mt/(1− βt

1)
(2.19)

and the element-wise squared gradient

vt = β2 · vt−1 + (1− β2) · g2t
v̂t = vt/(1− βt

2)
(2.20)

with their respective decay controlling parameters β1, β2 ∈ [0, 1). The averages mt, vt
estimate the first moment (2.19) and second moment (2.20) of the gradient. Due to the
initialization of both averages with 0, the moments are biased towards zero. For this
reason, the authors suggest counteracting this effect by scaling the averages with a factor
1/(1− βt

i), i ∈ {1, 2}. Adding these changes to the weights update in (2.18) yields

θt = θt−1 − ǫ · m̂t/(
√

v̂t + ζ). (2.21)

The recommended default setting for the stabilization parameter ζ is 10−8. In contrast to
SGD the update for θ is not depending directly on ∇θ but on two moment estimates mt

and vt derived from the gradient. As a result, Adam shows better convergence rates and
established itself as the default optimizer in a neural network learning setting. For a more
detailed description of the Adam algorithm, the reader is referred to [KB14]. Through
the introduction of the mean (2.19) and uncentered variance (2.20) of the gradient, Adam
deviates from a purely first-order optimization technique and shares similarities with
more complex optimization methods. Some of these methods, such as Quasi-Newton
Methods, we will discuss in Chapter 4 in the context of image registration.

Since its inception, Adam has established itself as the default optimizer for many
deep learning tasks. In recent years the community proposed adjustments to the
original formulation to further improve generalization and convergence rates. In 2016
Timothy Dozat argued for the incorporation of Nesterov Momentum based on Nesterov’s
accelerated gradient, a method well-known in the optimization community [Doz16]. The
central idea is to apply the momentum step in (2.19) before the gradient update. The
author provides only a single example of image compression using a small encoder-
decoder network applied to the MNIST data set to validate the faster convergence rate
of Nesterov-accelerated Adam (NAdam). Therefore this study serves as proof that
Adam’s performance can be increased further.

17

Chapter 2. Deep Learning Fundamentals

The L2 regularization and weight decay are often used synonymously in the deep
learning community. The authors in [LH19] point out that this is not true for optimization
with adaptive learning rates. As a result, Adam displays poor generalization when used
with L2 regularization in comparison to SGD. As a solution, the authors argue to decouple
the weight decay from the optimization steps. To achieve decoupling, the weight decay
has to be added to the parameter update in (2.21)

θt = θt−1 − ǫ · m̂t/(
√

v̂t + ζ) + λθt−1, (2.22)

where λ denotes the decay factor. In their work, the authors added a global scaling factor
to enable user-defined scheduling of ǫ and λ.

One significant drawback of the Adam algorithm is the large variance of gradients
in the early stages of training. Liu et al. [Liu+20] just recently identified this problem.
Adam is often used in combination with a warmup heuristic or using smaller learning
rates at the start, due to the observation that adaptive learning rate methods tend
to converge in local optima during early training stages. Both strategies mitigate the
phenomena but do not address the underlying problem. Liu and his colleagues attribute
the behavior of Adam in the early stages to a large variance, due to the limited amount
of samples. To address this they promote Rectified Adam (RAdam), an Adam variant
limiting the variance. The proposed variation is not only applicable to Adam but to all
adaptive learning rate optimizers, such as NAdam [Doz16] or RMSprop [Hin12].

The Adam variants each address a disadvantage of the original process. However,
they require a more precise tuning to the task and introduce additional parameters. As
we do not intend to analyze different optimizers in this thesis, we will refrain from an
application and use vanilla Adam instead.

Scheduling. Both the authors of [LH19] and [Liu+20] emphasize the benefits of
scheduling, which is the process of global learning rate adaptation during training.
In classical optimization line-search algorithms are used to determine the optimal step
length, effectively using a different learning rate/step size for each update. One popular
representative is the Armijo line search algorithm, which will be discussed in detail in
Chapter 4. The graph nature of gradient calculation in most deep learning frameworks
prohibits the determination of an optimal learning rate. Instead varying heuristics to
ease convergence can be used. They can be rather static, changing the learning rate
by a constant or a linearly changing multiplicative factor. Different trigger options are
available, e.g. reaching a pre-defined milestone or no improvement of the evaluation
metric in a given time window.

Apart from strategies monotonically decreasing the learning rate more elaborated
methods surged in recent years. In close connection to adaptive learning rate optimizers
like Adam, cyclical rate schedules are proposed in [Smi17]. The idea is to let the learning
rate vary between an upper and lower bound to boost convergence. Suitable bounds
can be found through the evaluation of a given model with increasing learning rates
after a fixed number of epochs. Another interesting technique is so-called warm restarts,
described among others in [LH17]. The learning rate is periodically initialized to a

18

2.2. Sequence Modeling

pre-defined value and decreases in a set time frame. Warm restarts require a quarter
of the epochs compared to currently-used learning rate schedule schemes. The decay
function can also be adapted, in the original work a cosine annealing is used.

Scheduling established itself as an important tool to speed up convergence and a set of
schemes is tested in Chapter 5.

2.2. Sequence Modeling
Although the fundamentals of multi-layer neural networks have been known for a
long time [LeC+98], their popularity increased due to more complex architectures
and advancements in computational hardware. One class of these more advanced model
architectures are sequence models, their most prominent members being Recurrent
Neural Networks (RNN). In contrast to CNNs, which are specialized networks for
values on a grid and images, RNNs are designed to effectively process sequential inputs
in the form of x(1), ..., x(T). Much like CNNs, RNNs use weight sharing over multiple time
steps instead of channels. The concept of RNNs is to introduce and iteratively update
an internal state h(t) according to

h(t) = f(h(t−1), x(t); θ). (2.23)

Ideally, the state h(t) captures a summary of the past sequence inputs, enabling the
network to keep track of past information to predict some future output.

A visualization of the network described in (2.23) can be found in Figure 2.3. RNN
architectures are widely used in the fields of language processing, such as translation
tasks, and reinforcement learning. In both areas, the past sequence positions, either
words or taken actions, are of great importance for following sequence entries. There are
many subcategories of RNN architectures, mainly differ in the connections between the
states h(t) and the input sequence positions x(t) or output sequence positions o(t). For a
more in depth-view of RNN designs and back-propagation through these networks, the
interested reader is referred to [GBC16].

2.2.1. Long-range Dependencies
The unrolled RNN in Figure 2.3 hints towards a typical problem when working with
these architectures: The recursive structure of RNN models causes them to be very deep,
which leads to numerical stability problems in the gradient calculation. In the case of
vanishing gradients, it becomes difficult to correctly determine a descent direction for
the weight update. On the other hand, learning is also highly unstable with exploding
gradients [GBC16]. Accumulation of large gradients results in very large updates to
model weights and hinders convergence.

In addition to these difficulties associated with deep network architectures the weights
in later layers tend to become small. Bengio et al. [BFS93] demonstrated that the
magnitude of the gradient at step t with respect to state t0 decreases exponentially
as t increases. In conclusion, the magnitude of long-term interactions in a sequence

19

Chapter 2. Deep Learning Fundamentals

Figure 2.3.: Sketch of a RNN with t sequence entries in unrolled form. The output ot
is utilized as an additional input ht in combination with the next sequence
input xt+1.

is exponentially smaller than the gradient of short-term interaction, thus learning the
long-term dependencies will take more time and often be hindered by minor changes
in the short-term interactions. One way to counter the exponential decay of gradient
magnitude is adding skip connections, see residual connections in Section 2.1.2. Instead
of connecting every step t to its successor state, it is connected to the state t+ τ with
a delay tune-able τ . This strategy slightly mitigates the decay problem and allows the
network to capture longer dependencies [GBC16]. Another possible solution is the use of
gated RNNs, which will be discussed in the next section.

2.2.2. LSTM
Gated RNNs are designed to model the long-range dependencies other architecture types
struggle with. The core concept is to create a path through the model along which the
derivative magnitudes are stable. This is achieved by weighting the connections inside
the network, in effect creating a trainable gate at each step t. These gates enable the
network to autonomously discard information, clearing the corresponding state and thus
changing the number of included steps dynamically.

The initial idea to implement an additional direct path through the RNN architecture
is attributed to Hochreiter and Schmidhuber in their work Long Short-Term Memory
(LSTM) [HS97]. The LSTM layer is a small neural network in itself but is used in
the same way as any other recurrent layer f in (2.23). There are three gates and one
additional state defined in an LSTM layer. All important states, layers, and the flow of
information through an LSTM cell are depicted in Figure 2.4. The most important steps
are the forget gate (1), input gate (2), current state (3), and output gate (4).

The current state Ct is often used as output at the end of a network consisting of t
LSTM cells. The current state can be calculated as

Ct = vt ⊙ Ct−1 + it ⊙ tanh(Θc ·
[

ht−1, xt
]

+ bc). (2.24)

Here ⊙ denotes the point-wise multiplication.

20

2.2. Sequence Modeling

Figure 2.4.: Sketch of an LSTM cell. The grey-blue boxes denote the network layer,
where σ and tanh denote the activation functions. The circles are point-
wise operations (addition + or multiplication x). Where paths meet, a
concatenation is performed; at departing positions, the object is copied. The
gates are marked as (1) forget gate, (2) input gate, (3) current state, and
(4) output gate. The current state is only used internally to control the
influence of long dependencies in the input sequence xt.

It becomes clear that to calculate the current state, the outputs of the other gates are
needed. Starting with the forget gate

vt = σ(Θv ·
[

ht−1, xt
]

+ bv), (2.25)

defined as vt in this thesis instead of ft in most literature in order to avoid confusion
with the layer function f . The forget gate controls which information from previous
positions is important at the current position. This previous information is encoded in a
state variable Ct−1, the most direct way to pass information within the LSTM network.

The next gate is the input gate

it = σ(Θi ·
[

ht−1, xt
]

+ bi) (2.26)

analogous to (2.25), but with its own weights and bias. Here the information flowing
from the input to the current state is selected.

The hidden state ht enables information from step t to flow through multiple subsequent
cells. It is calculated by the output gate ot

ht = ot ⊙ tanh(Ct). (2.27)

The output gate is defined in the same way as forget and input gates with their weights
and biases.

The LSTM architecture has gained success in various tasks over the past years. We
present some selected applications, which expand on the principle concepts of layer

21

Chapter 2. Deep Learning Fundamentals

design. Although the LSTM architecture is designed with sequence data in mind, the
performance in speech recognition was inferior to deep fully connected networks for a
time. One reason is that LSTM architecture is only able to make use of previous entries
in the input sequence. In speech recognition, the subsequent sequence entries should also
be exploited to achieve the best performance.

Bidirectional LSTM. In [GMH13] the authors extend on the original LSTM design in
(2.25) to (2.27) and introduce a bidirectional LSTM. Two separate hidden layers process
the data in both directions, which are then fed to the same output layer. For simplicity,
we summarize all LSTM gate functions into one hidden layer function H. The network
computes a forward −→h and backward ←−h hidden sequence

−→
h t = H(Θ

x
−→
h
xt +Θ−→

h
−→
h
ht−1 + b−→

h
)

←−
h t = H(Θ

x
←−
h
xt +Θ←−

h
←−
h
ht+1 + b←−

h
)

(2.28)

and combines both into one output using trainable forward Θ−→
h y

and backward Θ←−
h y

weight matrix
yt = Θ−→

h y

−→
h t +Θ←−

h y

←−
h t + by. (2.29)

Both formulas in (2.28) are LSTM layers in one sequence direction either front to back
or back to front, recognizable by the directional arrow. Both layers have trainable weight
matrices Θ.., biases b.., and hidden states h... The backward layer is iterated from t = T

to 1, the forward layer from t = 1 to T . This bidirectional extension on the LSTM
architecture achieves state-of-the-art results in phoneme recognition [GMH13].

Sequence tagging is another interesting task in natural language processing (NLP).
Tagged sequences are used in search engines to recommend web pages or product
advertisements. They are the basis for many modern search algorithms. Linear statistical
models such as Hidden Markov Models (HMM), Maximum Entropy Markov Models
(MEMMs) [MFP00], and Conditional Random Fields (CRF) [LMP01] used to be the
best-performing methods for sequence tagging. In [HXY15], Huang et al. apply various
LSTM architectures to sequence tagging, including a bidirectional LSTM (2.28, 2.29).
Furthermore, they add a CRF layer to the model in [GMH13] to incorporate the
established statistical methods. The authors report a consistent improvement in tagging
accuracy compared to a single CRF model with identical features.

Long-Term Recurrent Convolutional Network. A drawback of the LSTM architecture
is its use of fully connected layers, which limits their usefulness for image sequence data.
A solution is proposed in [Don+15], where the authors combine a CNN-based feature
extraction network with stacked LSTM layers for visual recognition and description in
video sequences (see Figure 2.5). Their method is characterized by a deep hierarchical
visual feature extractor (CNN) and the temporal depth of recurrent networks (LSTM),
rendering the model especially suited to deal with tasks such as video recognition,
image description, or video narration. The Long-Term Recurrent Convolutional Network
(LRCN) can learn to recognize and synthesize temporal dynamics in sequential data.

22

2.2. Sequence Modeling

Figure 2.5.: The Long-Term Recurrent Convolutional Network (LRCN) architecture
combines the strengths of CNNs’ visual recognition and RNNs’ ability to
model time-varying inputs and outputs. LRCN processes the visual input
sequence (left) with a convolutional feature extractor (center left). These
features are passed to a stack of recurrent sequence models (LSTMs, center
right), which produce a variable-length prediction (right) [Don+15].

The LSTM-type architecture improves purely CNN-based models on conventional video
activity challenges and enables direct mapping from image pixels to language descriptions.
The authors demonstrate that learned sequential dynamics can improve on learning in
the visual domain only, as well as learning the dynamics of an output sequence using
fixed visual features [Don+15].

Convolutional LSTM. Although combining convolutions and sequence learning has its
benefits, the principal structure of LSTM layers is untouched. Thus direct application
to higher-dimensional data is still unfeasible. In precipitation nowcasting, the goal
is to predict future rainfall intensity based on past radar maps. Given a sequence of
several past radar maps as inputs, the desired output is a sequence of future radar
maps. The forecasting problem contains both spatial and temporal information relevant
to precise prediction. A solution to this problem is the Convolutional LSTM Network
(ConvLSTM) [Shi+15]. The authors replace all fully connected matrix multiplications in
(2.25) to (2.27) with convolutional operations

vt = σ(Θxv ∗ xt +Θhv ∗ ht−1 + bf)

it = σ(Θxi ∗ xt +Θhi ∗ ht−1 + bi)

Ct = vt ⊙ Ct−1 + it ⊙ tanh(Θxc ∗ xt +Θhc ∗ ht−1 + bc)

ot = σ(Θxo ∗ xt +Θho ∗ ht−1 + bo),

(2.30)

where Θ.. now denotes kernel weights, and where ∗ is the convolution operator. The
new ConvLSTM is able to handle spatio-temporal data by encoding spatial information,
which the full connections in input-to-state and state-to-state transitions in the original
LSTM layer are not. In addition, other architectural designs such as Encoder-Decoder

23

Chapter 2. Deep Learning Fundamentals

structures can also be utilized. The authors report an improved performance on synthetic
and real-world data in comparison to a state-of-the-art optical flow based algorithm,
proving that the advantages of sequence models can be preserved and also be applied to
image data [Shi+15].

As demonstrated above, the LSTM layer is an interesting and versatile model with
many applications in sequence modeling and prediction. It is flexible enough to enable
adaptation to other tasks, where the data itself is not primarily a one-dimensional
sequence but expresses some sequence-like attributes. This suggests that it can be useful
in an iterative process commonly occurring in an optimization context, which we will
investigate in Chapter 5.

2.3. Transformer Networks
The problem of capturing long-term dependencies in RNNs (Section 2.2.1) is not yet
satisfactorily solved and very long sequences remain a challenge. In recent years, a
new architecture, the Transformer [Vas+17], gained popularity, due to its success in
processing long sequences and modeling long-term dependencies. The idea of building
loops into a network is discarded for the mechanism of attention, focusing on smaller
partitions of the input while processing large amounts of information. Attention in
machine learning and especially neural networks can take various forms, from visual
attention [Xu+15] and encoding strategies [SVL14], to weighting the relation between
positions in a sequence [Vas+17]. We briefly summarize the latter, as it is most relevant
to the remainder of this thesis.

2.3.1. Attention
Attention serves as a method to allow the network to focus on certain positions in a
sequence. It enables the model to weigh the relationship between some or all entries
within a sequence. In language processing attention enables the model to learn if certain
words occur regularly in conjunction and even to keep track of connections over multiple
sentences.

Attention-based models have sparked increased interest in recent years. They boost
performances of neural networks in a variety of tasks such as handwriting synthesis [Gra13],
machine translation [BCB15], image caption generation [Xu+15], and object classification
[MHG+14]. The attention mechanism is formulated as a function that produces a
weighting factor zi for a given sequence s of length L, scoring the sequence entry si

zi = Score(si)

Attention(zi) = ez
i

∑L

j=1 e
zj
.

(2.31)

The Score function in (2.31) can be designed in a multitude of ways. Thus attention is a
highly flexible concept, where the exact formulation of Score varies.

24

2.3. Transformer Networks

Attention(zi) can be interpreted as a hidden state decoding the relevant relations
between the input position zi and all other entries in the sequence. This method is easy
to use in combination with RNNs. Each input position has an attached hidden state
decoding the importance of each position in the sequence for the resulting translation.
The hidden state is composed of matrix rows displaying the influence of the corresponding
input position to each entry in the output sequence. The hidden states can be attained
in different ways, for example, learned during training. It can be seen, that for longer
sequences these matrices become quite large and computationally expensive. Additionally,
processing of inputs in parallel is impossible, rendering it unfeasible for our long input
sequences.

Visual Attention. Much like the ConvLSTM in Section 2.2.2, extending attention
beyond one-dimensional sequences is of particular interest. Most notable is the work
of caption generation in [Xu+15]. Instead of sequence data, the authors utilize a
convolutional extractor network to create d-dimensional representations for L image
parts. An LSTM layer creates the caption sequence by generating a word-based context
vector, the previous hidden state, and the previously generated sequence entries. For
the score function, a multilayer perceptron fatt conditioned on the previous hidden state
is used. Two different mechanisms for fatt are discussed: a soft deterministic and a
hard stochastic variant, for more details see [Xu+15]. The proposed attention-based
approach provides state-of-the-art performance on the three benchmark data sets Flickr,
METEOR, and MS COCO. The authors also demonstrate that the learned attention
can be exploited to give more interpretability by visualizing the attention weights in the
original image.

Location Attention. Speech recognition is a more difficult task in the field of NLP.
It requires longer input sequences — thousands of frames instead of a few words —
as well as the ability to differentiate multiple similar speech patterns. Although there
exist suitable models, they often require dictionaries of hand-crafted pronunciation and
phoneme lexica to deal with long speech patterns. In [Cho+15], an attention-based
network is proposed. The authors tackle the problem by adding location attention to
the content-based attention mechanism in [BCB15]. This is achieved by adding features
to the attention mechanism derived from convolving the attention weights from the
previous step with trainable filters. By doing this, the authors decrease the baseline
model’s [BCB15] error rate by 1%, elevating it to the performance level of dominant
speech recognition models.

Attention has become a vital tool in deep learning. It improves prediction accuracy on
difficult real-time detection tasks [Sch+18]. Apart from convolutional networks, it is also
possible to incorporate attention into other model types, such as graph networks [Vel+17;
Fuc+20]. Another interesting work focuses on leveraging the attention mechanism beyond
categorical distributions using graphical models [Kim+17]. A more thorough analysis of
attention in deep learning is given in [NZY21].

25

Chapter 2. Deep Learning Fundamentals

Scaled Dot-Product Attention. In this thesis, we employ scaled dot-product attention.
The Transformer architecture provides a more favorable attention mechanism than the
hidden state formulation in Section 2.3.1. Following the definition in [Vas+17], the
attention function can be described as mapping a query vector and a set of key-value
vector pairs to an output. The authors named their attention function Scaled Dot-Product
Attention, computing the dot or inner product of the query and key vectors. Query and
key vectors have the dimension dk, whereas the values are of dimension dv. To generate
these vectors, the embedded sequence x is multiplied by the three trainable matrices
WQ, WK , and W V . For each position xi in the sequence x we get a query Qi = xiW

Q,
key Ki = xiW

K , and value Vi = xiW
V . Multiple queries, keys, and values are packed in

the matrices Q, K, and V to apply the attention function simultaneously. The output is
computed as:

Attention(Q,K, V) = softmax
(

QK⊤√
dk

)

V , (2.32)

where the softmax is a special case of an activation function σs : R
K → [0, 1]K :

σs(z)i =
ez

i

∑K

j=1 e
zj

(2.33)

with i = 1, .., K and z = (z1, ..., zK) ∈ R
K . Compared to our definition of the attention

mechanism in (2.31), the normalization σs is exactly the same, but the score function is
changed to an inner product of trainable vectors. To further increase the effectiveness of
attention, the authors suggest [Vas+17] to perform linear projections of queries, keys,
and values to the respective dk and dv dimensions.

These projections can be implemented using a fully connected layer in form of matrix
multiplication. These projections are trainable and the attention function is applied to
each projected version of queries, keys, and values in parallel. They call this multi-head
attention, defined by

headi = Attention(QW
Q
i , KWK

i , V W V
i)

MultiHead(Q,K, V) = Concat(head1, ..., headh)WO.
(2.34)

Where W
Q
i , WK

i , W V
i are trainable matrices describing the projections of queries, keys,

and values and WO is a trainable matrix to project h heads to a combined output.

2.3.2. Transformer Architecture
The principle components of the Transformer can be seen in Figure 2.6, introduced
in [Vas+17]. The most noticeable characteristic is the twofold structure consisting
of an encoding part and a decoding part. This Encoder-Decoder structure is widely
applied in the field of computer vision. Renowned examples are Variational Autoencoders
(VAE) [KW13] and Generative Adversarial Networks (GAN) [Goo+20].

Since Transformers are designed to process language, the first layer is an embedding.
Natural language cannot be processed directly by neural networks. Therefore, texts

26

2.3. Transformer Networks

Figure 2.6.: The Transformer network consists of an encoding part (left) and a decoding
path (right). Both contain attention, fully connected, and normalizing
sub-layers. Within each part, residual connections are applied between the
attention and fully connected sub-layer. The encoder and decoder can consist
of repeated sub-layer building blocks, indicated by the gray background
panel [Vas+17].

27

Chapter 2. Deep Learning Fundamentals

(a) (b)

Figure 2.7.: Two pre-training model architectures with a fine-tuning approach. The
output sequence T={T1, ...,TN} is generated from the embedded input
sequence E={E1, ...,EN} by means of Transformer blocks (TB), see
Figure 2.6 for details. (a) BERT uses a bidirectional Transformer without
a mask in the self-attention mechanism. (b) OpenAI’s GPT model uses a
left-to-right Transformer more closely related to the original model. As a
result, BERT models are able to jointly learn both left and right context,
which is beneficial for language tasks, such as question answering [Dev+18].

are converted into so-called tokens. Tokens can be individual words, partial words, or
characters. The words are often converted into a machine-readable form, for example,
binarized, using a fixed vocabulary. Embedding is placing the tokens into the corresponding
vocabulary, a vector of variable size dmodel. Instead of a fixed vocabulary, here embedding
is trainable using a linear layer.

Since the Transformer model does not contain convolutions and recurrences the
information about the position of the tokens within the sequence must also be coded.
The positional encoding adds a value after embedding, which depends on the token’s
position in the sequence. Many variants of positional encoding exist, either fixed or
trainable [Geh+17]. The main building block for the encoder can be seen on the right
side in Figure 2.6 consisting of a multi-head attention and a feed-forward part, a fully
connected layer. There are residual connections for both the attention and feed-forward
part, adding the unprocessed input to the output.

This main block can be repeated multiple times to form the encoder. The decoding
path is created similarly but contains an additional masked multi-head attention. This
is necessary to block information of subsequent positions leaking into prediction and
ensures that the model at position i can only attend to outputs of positions less than i.
The decoder block can also be repeated multiple times. It is possible to deploy encoder-
or decoder-only variants of Transformers if the output does not have to be a sequence.

BERT. Transformer models [Vas+17] have demonstrated dominant performance on a
broad range of sequence tasks, including machine translation, question answering, or text

28

2.3. Transformer Networks

classification. Two popular models are the Bidirectional Encoder Representations from
Transformers (BERT) architecture [Dev+18], which is able to attend to previous as well
as subsequent entries in a sequence, and the unidirectional GPT [Ram+21] (Figure 2.7).
Both models already can be considered large with 110 and 340 million parameters, but
the trend is towards even larger designs such as the GPT-3 [Bro+20] model with 175
billion parameters. Models of this size rely heavily on hyperparameter choice [Liu+19],
but extensive parameter search is especially time and memory consuming.

Sparse Transformer. As memory is a constraint for most research groups and the
application of ever larger models is not feasible in many everyday tasks, much work is
done to reduce the size and memory consumption. This led to the development of Sparse
Transformer models [Chi+19]. The contribution of this work is three-fold: dealing with
weight initialization, sparse attention kernels, and recalculation of weights during the
backward pass. We will discuss the sparse attention kernels in greater detail and refer
the interested reader to the original work for more information on the other topics. One
reason for the high memory demand of Transformer models is the dense attention matrix.
In the full self-attention mechanism, n× n weights are computed for a sequence of length
n. Memory consumption grows quadratically with the sequence length. In [Chi+19] the
authors propose to separate the full attention computation into several faster operations,
which combined yield the full dense operation.

Following the definition in [Chi+19], we extend (2.32) and parameterize the matrices
by a connectivity pattern S = {S1, ..., Sn}, where Si denotes the indices of the input
sequence to which the i-th output attends:

Attention(X,S) = (a(xi, Si))i∈{1,...,n}

a(xi, Si) = softmax
(

(WQxi)(W
Kxi)

⊤
Si√

dk

)

(W V xi)Si

(2.35)

The output at position i is given by the sum of the values weighted by the dot-product
of the keys and queries. X is a matrix of embedded inputs and WQ, WK , and W V are
again the weight matrices to create the queries, keys, and values.

For standard dense left-to-right attention, every element can attend to itself and
all previous elements with the connectivity pattern Si = {j : j ≤ i}. The proposed
factorized self-attention utilizes p separated attention heads, each a subset of indices.
The m-th head A

(m)
i ⊂ {j : j ≤ i} is again the set of indices the i-th output attends

to. Two criteria are used to choose suitable subsets. All sets should be relatively small
|A(m)

1 | ∝ p
√
n and enable all input positions to attend to all output positions in p steps.

This reduces the computational cost to O(n p
√
n). Two different factorization schemes for

p = 2 are tested: Strided attention for periodic data and fixed attention for sequences
with arbitrary correspondences.

In [Chi+19] the sparse Transformer model is tested on autoregressive sequence
generation. Images, text, and audio are treated as sequences using discrete tokenization,
i.e., raw byte representation. Using these sparse attention patterns, the augmented
models achieve state-of-the-art performance for compression and generation of natural

29

Chapter 2. Deep Learning Fundamentals

Figure 2.8.: Left: Overview of the ViT model [Dos+21]. An image is split into fixed-size
patches. These patches are linearly embedded and the position in the
image is encoded. The resulting sequence of vectors is passed into a standard
Transformer encoder. An additional trainable classification token * enables
a small MLP model to classify the patch sequence in a supervised setting.
Right: Standard Transformer encoder block, here we kept the embedding
and positional encoding of the original architecture. Note that these steps
are substituted by the corresponding projection layer and positional encoding
in the ViT model.

language, audio, and images. Although Transformer networks achieved great success in
dealing with sequence data, the application to computer vision tasks was limited at the
beginning. Frequently, attention mechanisms and CNNs are used in conjunction. But
lately, transformers are applied directly to image data.

Vision Transformer. An interesting work is that of Dosovitskiy et al. called Vision
Transformer (ViT) [Dos+21]. A visualization of the model can be found in Figure 2.8
on the left side. Similar to LRCN architecture in Section 2.2.2, they aim to adapt the
sequence model to image data. In contrast to LRCN, Dosovitskiy and his colleagues do
not combine convolutional and Transformer networks, but use a pure Transformer model,
preprocessing the image data before the application of the model: An image is split into
small patches followed by a linear embedding of these patches. The input for a standard
Transformer encoder-only model is a sequence of these embedded image patches.

The computational cost of the attention matrices grows quadratically with the sequence
size, as described in the context of sparse Transformers. Simple flattening the image
and applying attention pixel-wise is therefore not feasible. Instead, the authors reshape
the images x ∈ R

H×W×C into a flattened sequence of 2D patches xp ∈ R
N×(P 2Ċ), where

(H,W) is the image resolution, C the number of channels, and (P, P) the resolution of
the resulting patch. The number of patches corresponds to the input sequence length for
the Transformer model. The latent space is set to fixed size D and all flattened patches
are mapped to the latent space using a trainable projection layer. The problem of image
size and computational cost could also be tackled using a variant of sparse Transformers,

30

2.4. Meta-Learning

however, these require complex engineering to be implemented efficiently.
To enable classification using the Transformer encoder model, a trainable token is

added to the start of the sequence, marked in Figure 2.8 by the asterisk. This token serves
as an image representation at the output of the Transformer encoder. A classification
head parameterized by a few-layer MLP determines the class distribution based on the
representation token (see Figure 2.8). A multitude of position encodings exist, e.g., fixed
periodic encoding using a sine/cosine function [Vas+17] and learned encoding [Geh+17].
In the case of the ViT model, the authors used trainable position encoding.

Dosovitskiy et al. also study the performance/compute trade-off for both ViT and
ResNet. In their experiments, they discover that ViT attains the same level of performance
as ResNet with approximately 2− 4x less computing power. The hybrid model slightly
outperforms ViT adding a small faction to the computational costs due to the feature
extraction network. In summary, Vision Transformer displays state-of-the-art performance
on many image classification tasks, while being relatively cheap to pre-train.

Due to their many desirable properties and impressive performances, Transformers are
used in a wide spectrum of applications with many different model designs. The survey
in [Kha+21] provides a great overview of recent developments.

All of these models have beneficial properties for the analysis of MALDI-MSI data
(Chapter 3). Bidirectional Transformers, such as BERT, link positions in both directions
of a sequence. MALDI-MSI spectra are not directional sequences. Although the position
within the spectrum provides information about the mass of the measured molecular
structures, correlations are possible between high and low mass structures as well as
between structures of similar mass. This property can be accounted for using bi-directional
transformers. Instead of using classical dimensionality reduction methods to enable the
usage of models such as the Transformer, Sparse Transformers could be applied directly
to the spectra. In addition to the sparsity patterns presented here, a pattern could be
developed that takes into account the structure of MALDI-MSI spectra. Similarly, a
1D-convolution variant of ViT could be used to generate much shorter sequences from
the spectra. These would consist of only a few tokens.

However, we first start with an encoder-only Transformer using the initial design
in [Vas+17] to evaluate the utility of the Transformer model in the context of MALDI-
MSI (Chapter 3).

2.4. Meta-Learning
The above network architectures are designed to be trained for solving a single task, e.g.,
mapping objects to a finite set of classes. Meta-learning forgets the learning process
itself, intending to derive learning algorithms from scratch. Meta-learning networks can
be used to find a favorable initialization of another neural network or update the network
parameters based on the loss function.

This results in a typical “bi-level” structure: The “supervisory” meta-learner network
(optimizer) modifies the underlying solver algorithm (optimizee) and guides it to fitting
solutions of the corresponding task-specific network. In this thesis, we adopt some popular

31

Chapter 2. Deep Learning Fundamentals

Figure 2.9.: Computational graph for (2.37) used in [And+16] to compute the gradient
of the optimizer. Top: Flow in the optimizee to increase its performance.
Bottom: Flow in the LSTM cells (optimizer), depicted are the hidden
states ht and the input ∇t. This scheme can also be used to introduce
nonlinear updates to iterative methods in the field of image registration
(Chapter 5). The optimizer is also a model based on LSTM layers. The
iterative optimization procedure corresponds to the optimizee. As it is not
a neural network, the weights θ are not adjusted, but an update for the
procedure is returned directly.

strategies of meta-learning to build an iterative network scheme for image registration.
The concept of meta-learning is well-established in the field of machine learning, mostly

in the form of evolutionary models, a group of optimization algorithms inspired by natural
evolution mechanisms [Tel+21]. Hochreiter et al. [HYC01] expand on these ideas by
introducing neural networks. In their work, they prove that recurrent networks, such as
LSTM models, are a feasible choice for meta-learning systems and enable computations
for large-scale systems previously prohibited by the restricted parameter sizes for non-
network-based models. The authors conduct experiments for semi-linear and quadratic
functions with a shallow LSTM architecture and are able to derive an algorithm able to
approximate the tested functions.

In [And+16] Andrychowicz et al. propose to replace the manual tuning with learned
update rules so that the architecture of the solver is less problem specific and can be
easily adapted to new tasks. Given an objective function f(θ) defined over some domain
θ ∈ Θ, the classical training approach for differentiable functions is some form of gradient
descent:

θt+1 = θt − αt∇f(θt). (2.36)

Modifying (2.36) by introducing a learned update gt with its own set of parameters φ,
yields

θt+1 = θt + gt(∇f(θt), φ). (2.37)

The computational graph of (2.37) is shown in Figure 2.9. In [And+16], the authors use

32

2.4. Meta-Learning

RNNs to explicitly model the update rule gt. They achieve this by using a coordinate-wise
LSTM optimizer consisting of only two layers. They tested their method on different tasks,
including CIFAR-10 classification and style transfer. The LSTM optimizer outperformed
stochastic gradient descent (SGD) and the popular Adam method, among other methods.

MAML. The popular Model-Agnostic Meta-Learning (MAML) architecture was introdu-
ced in [FAL17]. The authors proposed a model-agnostic algorithm compatible with any
model trained with gradient descent. In contrast to the aforementioned models, it does
not learn an update function or learning rule. The network uses entire tasks as inputs and
adapts to new ones in a few-shot manner. It shows excellent generalization to new tasks
with only a few task-specific updates to produce well-performing weight initialization for
any underlying gradient-based model. The authors define such a model as a parameterized
function fθ with parameters θ. For a new task Ti, the model’s parameters are denoted
by θ′i. A gradient update for task Ti takes the form of

θ′i = θ − α∇θLTi
(fθ) (2.38)

with a fixed or learned step-size α. Given a set of tasks p(T), a meta-learning objective
can be formulated,

min
θ

∑

Ti∈p(T)

LTi
(fθ−α∇θLTi (fθ)

), (2.39)

and the model parameters θ are optimized in a few update steps. Similar to classical
neural network models the meta-learner’s weights are updated using SGD across all tasks
in p(T). In their work, the authors demonstrate state-of-the-art performance in regression,
classification, and reinforcement tasks using this few-shot meta-learning model.

Meta-Curvature. Expanding on the MAML model, meta-learning can also be used to
elevate the performances of classical gradient-based methods. In [PO19] Park and Oliva
define trainable curvature matrices which can be applied on an input gradient tensor.
They state that learning curvature information improves generalization even further than
the first-order method in [FAL17]. They claim that given multiple tasks there exists
some common curvature information and propose a method to precondition the gradients
by a learned curvature matrix before updating the underlying model during training.
This approach is related to classical second-order methods such as Newton’s method,
which we will discuss in greater detail in Section 4.3. In order to achieve this, the authors
define a meta-curvature function applied to a gradient tensor G ∈ R

2×3×d

MC(G) = G ×3 Mf ×2 Mi ×1 Mo, (2.40)

with Mf ∈ R
d×d, Mi ∈ R

Cin×Cin , and Mo ∈ R
Cout×Cout as trainable parameters. Here d

denotes the filter size, Cin/Cout the in and out channel size, and ×i is the tensor-vector
product in i-th dimension. Each matrix models dependencies in the input on different
levels, namely in one channel (Mf), in one filter (Mi), and between all filters (Mo). The
formulation in (2.40) results in a transformed gradient, that is then passed to a given

33

Chapter 2. Deep Learning Fundamentals

optimizer. The gradient update for the meta-learning objective in (2.38) can be extended
to

θ′i = θ − αMmc∇θLTi
(f(θ)), (2.41)

with
Mmc = (Mo ⊗ ICin ⊗ Id)(ICout ⊗Mi ⊗ Id)(ICout ⊗ ICin ⊗Mf) (2.42)

a meta-trained matrix. Here Ik denotes the k dimensional identity matrix. Interestingly
the authors state that Mmc does not need to be positive-semi-definite to improve
generalization. Meta-Curvature leads to faster adaptation and better generalization on
synthetic and real-world data and outperforms all tested MAML variants.

For a more comprehensive overview of the developments in meta-learning the reader
is referred to [Hos+21]. In this thesis, we focus on updates in the fashion of first-order
formulations similar to (2.37) and (2.38).

34

Part I.

Deep Learning for MALDI Mass
Spectrometry Imaging

35

3. Deep Learning with Applications to
MALDI Mass Spectrometry Imaging

Matrix Assisted Laser Desorption/Ionization mass spectrometry imaging (MALDI-
MSI) provides high-resolution molecular information, setting it apart from conventional
histological imaging techniques. This makes it a promising technique for histological
examinations and an important component of personalized medicine. However, there
are still unresolved challenges such as undetected noise sources or the size of the
generated spectral data, which makes it difficult to use the full spectral range. These
specific challenges of the MALDI-MSI method are described in Section 3.1, alongside
a brief introduction including important attributes of the measurements. Recent years
brought many advancements in terms of data acquisition and tissue preparation but
fewer improvements on the algorithmic classification side. An overview of the current
developments of machine learning algorithms in MALDI-MSI is given in Section 3.2.
A major part of this thesis is the adaptation of neural networks to the new domain
of MALDI-MSI. So far, these methods are little used in the field of MALDI, although
they have many useful properties to overcome the given challenges. We analyze the
developed methods in Section 3.3 including network architectures, preprocessing steps,
and established benchmark methods. Finally, in Sections 3.5, 3.6, and 3.7, we present
results for the application to different use cases in the context of MALDI-MSI, followed
by a brief discussion of the advantages neural networks bring to MALDI-MSI.

3.1. MALDI-Time of Flight
The MALDI-MSI technique allows for the combined analysis of morphological features
and protein expression in tissue and enables spatially resolved tissue assessment [Kle+14;
Wal+08]. This method enables the determination of spatial distributions of proteins,
peptides, and lipids in a single measurement with a spatial resolution of up to 20 µm.
In the following, we provide a brief introduction to data acquisition. In order to better
understand the challenges related to the physical processes during data generation, as well
as the properties setting mass spectrometry apart from well-known imaging techniques
such as computer tomography (CT) or magnetic resonance tomography (MRT). For a
detailed description of MALDI-MSI physics, see [Gro13, Chap.11].

The MALDI-MSI pipeline starts with applying a chemical matrix to the sample, a
tissue stamp to be examined, and taken from a patient, which is then ionized using
a laser to fracture it. The created ions are accelerated in an electric field and picked
up by a time-of-flight (TOF) detector. Each fragment has an electrical charge of one,

37

Chapter 3. Deep Learning with Applications to MALDI Mass Spectrometry Imaging

Figure 3.1.: Pipeline of MALDI-MSI data acquisition. (a) Biopsy taken from the
patient. (b) Identification and physical extraction of tumor region of interest
(ROI). (c) Compiling multiple ROIs from different patients into one Tissue
microarray (TMA). The TMA is then prepared for data acquisition. (d)
MALDI-MSI imaging: A laser fragments the tissue at several points (spots)
x (red) and a time-of-flight detector measures the molecular mass/charge
distribution in the form of a spectrum (blue).

and ions can be separated according to their mass per charge ratio (m/z). Ions with
lower mass are accelerated more strongly and exhibit shorter detection times. For each
sample, a mass spectrum is recorded at a grid of positions, resulting in many spectra per
sample. The number of grid points and therefore individual spectra range from 105 to
106 on a given grid. At each location, a spectrum with 103 to 104 m/z values is acquired,
depending on the chosen resolution. The magnitude of a single m/z value in a spectrum
indicates the relative frequency of the corresponding sample fracture.

To create large data sets multiple samples are combined on a Tissue microarray
(TMA) [Cas+17]. The technique facilitates the rapid translation of molecular discoveries
to clinical applications. The array is constructed by arranging the patient tissue stamps
on a carrier plate. In general, multiple samples are taken from different patients with
cropped-out regions of interest (ROI) containing various sections of pathological tissue.
These are placed onto the carrier plate, which is inserted into a MALDI-MSI instrument,
where the samples are processed as described above. Figure 3.1 displays the pipeline of
data acquisition used for all experiments in Sections 3.5 to 3.7.

MALDI-MSI can be used to generate spatially resolved molecular signatures (e.g.,
proteins, peptides, lipids, and molecules of cell metabolites) directly from tissue sect-
ions [CFG97; Sto+01; WAD11]. Fixing a single m/z ratio and observing the spatial
distribution of its spectral intensity, these can be represented as an intensity image
(Figure 3.2). Multiple works utilize so-called m/z-images for later processing steps

38

3.1. MALDI-Time of Flight

(a) (b) (c)

Figure 3.2.: Top: m/z-images for the ovarian cancer data set (Section 3.5). Each image
displays all four subtypes. Bottom: The corresponding mean spectra for one
selected subtype of ovarian cancer. m/z-images are heat maps visualizing
the magnitude of selected m/z values over the whole data set. Positions in
the spectrum can be directly linked to identified proteins in a given tissue.
The classification of ovarian cancer subtypes is especially challenging because
a limited set of peaks is not specific to any class. The m/z-images for 3
m/z values with the largest magnitudes serve as an example. The peaks
corresponding to (a) 944 m/z, (b) 836 m/z and (c) 1105 m/z are prevalent
in each class. Each quarter (vertical) of the image displays samples from one
class, see also Figure 3.8.

such as semantic segmentation [LeC+21], clustering [VCV20], or feature extraction with
pre-trained neural networks [Zha+20]. This approach drastically reduces data complexity
and allows to use tools developed for 2D images. Furthermore, the influence of all
noise within a single spectrum on later processing steps vanishes. On the downside,
the user has to determine a limited number of peaks to create the m/z-images and
consequently loses information. Peaks are multiple m/z positions that are characterized
by particularly high magnitudes and can be assigned to specific molecular structures
such as proteins or lipids. As a rule, such a peak consists of three m/z positions, which
describe different isotopes of the same substance. We aim to use the full spectral data
as features for subsequent machine learning methods. Few works focus on a similar
approach, with [Beh+17; Mit+21] being notable exceptions.

39

Chapter 3. Deep Learning with Applications to MALDI Mass Spectrometry Imaging

Noise Sources. Different noise sources are prevalent in MALDI-MSI, which can lead
to degraded spectra, posing additional challenges for machine learning methods. MALDI-
MSI spectra typically exhibit:

1. an intense and variable chemical noise background, resulting in increased signal
intensities [Nor+07].

2. All spectra are recorded independently and magnitudes at the same m/z position
may vary for similar metabolic concentrations. Peak magnitudes are estimates of
the abundance of similar molecules and can contain errors due to noise artifacts
such as ion suppression and electronic noise [Dei+11].

3. Systematic artifacts during acquisition lead to affected mass spectral intensities,
resulting from crystal distribution or ion source contamination. Ion transmission
may gradually decrease during the time of acquisition, due to chemical inhomogeneit-
ies like pH gradients.

Most of these artifacts are related to tissue preparation and vary between acquisitions. For
this reason, data sets across different acquisitions present a particular challenge [Dei+11],
as noise may produce global ion suppression, meaning that spectra may not reflect actual
concentrations and differ vastly from similar spectra with less suppression. In order to
take some burden off the machine learning stage, we include a basic preprocessing step
that corrects for some of these effects, see Section 3.3.

3.2. Related Work
In [Sto+01], Stoeckli et al. argue for more frequent use of MALDI-MSI as a diagnostic
tool in clinical practice, in applications ranging from tumor detection to protein identifica-
tion. The authors highlight the high resolution of the technique as well as the fact that
pathological areas (different morphological structures) are often expressed by highly
specific signals. Multiple peptide image maps can be created by a single acquisition
and enable detailed molecular analysis. Casadonte and Caprioli [CC11] propose a new
protocol yielding a speedup in tissue preparation, enhanced ease of use, and more reliable
reproducibility.

MALDI-MSI has been introduced in other clinical fields such as histopathology, where
it serves as a complementary method to established staining techniques [Lon+16]. Studies
commonly focus on specific use cases, such as tumor detection of amyloidosis, while
relying on a standardized processing pipeline [Win+17]. For a detailed overview of the
current state of MALDI-MSI and recent applications, the reader is referred to [Wal+08].

Besides multiple desirable properties, MALDI-MSI data contains large noise artifacts
derived from acquisition and tissue preparation. As this is a major drawback for automatic
evaluation, multiple studies were conducted concerning noise reduction.

A strong argument for the necessity of sufficient noise reduction in MALDI-MSI is
made in [Dei+11]. The authors tested various normalization techniques such as p-norms
or the median filter to reduce the variance in signal intensities. They claim that the

40

3.2. Related Work

popular total ion count (TIC) normalization is a special variant of p-norm and achieves
the best results in generating images without noise. But TIC normalization relies on the
exclusion of signals that cause artifacts and requires manual intervention.

In [Ale+10], the authors design an edge-preserving denoising method for spatial
segmentation of peak intensity images (m/z-images) derived from MALDI-MSI data. The
method utilizes a total variation-based minimization algorithm providing locally adaptive
noise reduction. The technique improves the performance of subsequent clustering
methods [Ale+10].

Another important aspect is noise within each spectrum due to mass misalignment
during data acquisition. In [Bos+19] this misalignment is compensated by exploiting
the statistical properties of the characteristic chemical noise background. Thus the mass
error is corrected by performing a form of calibration, but the problem of noise due to
structurally non-informative spectral data points remains. We consider the aspect of
non-informative spectra in Section 3.3.1 in more detail. At this point, it should be briefly
stated that these are spectra that do not exhibit the expected characteristic structure of
a MALDI-MSI spectrum. Therefore, they do not provide information about the tissue at
the corresponding grid position.

In recent years, machine learning algorithms are increasingly used in conjunction with
MALDI-MSI. They have a broad range of applications in data analysis, ranging as far as
manifold learning using self-organizing maps [VCV20] and targeted feature extraction
based on linear methods such as linear discriminative analysis [Cor+19]. The size of
MALDI-MSI data poses a problem for effective analysis, therefore another popular usage
for machine learning is dimensionality reduction: For example, in [Ing+17] the authors
successfully adopted a deep unsupervised neural network to map the 3D data to a 2D
manifold. Despite these recent efforts, linear methods in combination with manual feature
extraction are considered the standard baseline in MALDI-MSI [Kle+20; Wu+21] due to
their simple handling.

In contrast, we apply neural networks directly to raw spectrum data similar to the
work of Behrmann et al. in [Beh+17], which we will compare to our work in Section 3.8.
In their work, the authors develop a deep convolutional network adapted to the special
requirements of the MALDI-MSI data domain. The network is able to handle the
characteristics of mass spectrometry data by restricting the local grouping of elements
in the convolutional layers. The authors achieve this by estimating the isotope pattern
size within the data. This so-called IsotopeNet is highly specialized but was able to
outperform a ResNet and LDA classifier on the given data.

In [Mit+21], a 3-layer fully connected and a deep convolutional network achieve higher
accuracy than gradient-boosting decision trees. The authors state that combining both
networks by averaging their class prediction confidences further improves the prediction.

Lately, more complex models were introduced into MALDI-MSI. In 2021 Arrastia et
al. implemented the U-Net architecture to create segmentations of basal cell carcinoma
in m/z-images [LeC+21]. Since most models in the computer vision community are
designed with 2D or 3D images in mind, adapting these architectures is more feasible for
processing m/z-images than spectral data. On the one hand, m/z images are already
in a format that allows common models to be applied directly. On the other hand, the

41

Chapter 3. Deep Learning with Applications to MALDI Mass Spectrometry Imaging

pure spectra are very large and the bundling of multiple spectra to obtain 2D data sets
further amplifies this problem.

3.3. Model Design
Neural networks provide state-of-the-art performance in medical image analysis tasks
such as survival prediction [Yao+17], time series classification [Zhe+14], and image
registration [Yan+17; She+19; NKV19]. In contrast, these models are sparsely used
in MALDI-MSI. We aim to develop adaptations of these strategies to the MALDI-MSI
domain.

Existing applications of neural networks to MALDI-MSI data focus on processing
the m/z-images [LeC+21], see Figure 3.2. This approach is useful if we are interested
in distributions of only few m/z-values in larger tissue samples, but is not suited for
classification based on features that are more distributed over the m/z spectrum. To
the best of our knowledge, the work in [Beh+17] is the first to apply neural networks
directly to the spectral data. The proposed architecture is based on residual networks
with skip-connections but also incorporates expert knowledge to design the field of
view adapted to the spectral patterns prevalent in the data. Therefore, it is not easily
transferable to MALDI-MSI with different spectral patterns without expert advice. More
recent work [Mit+21] successfully employs 1D convolutional networks, fully connected
networks, and a combination of both.

Model. In MALDI-MSI the search for suitable models has just started. We evaluate
multiple architectures including dense fully connected, convolution-based, residual, and
recurrent variants. Furthermore, we are experimenting with varying network depths from
models consisting of a single layer up to 20 layer deep variants. A common linear layer
with softmax activation is used to generate predictions.

One problem of the stochastic batch-wise learning approach in deep learning is the
constant change of input distributions. This covariate shift causes the layers to constantly
adapt to new distributions and slows down training. It has been demonstrated that
training converges faster if the input has zero mean and unit variance [LeC+12]. Based
on this observation, Ioffe and Szegedy propose a normalization step to adapt the mean
µB and variance σ2

B over a given input batch B. The normalization

yi = γ

(

xi − µB
√

σ2
B + ǫ

)

+ β (3.1)

yields a linear transformation yi of the input xi with zero mean and unit variance. Since
changing these batch-wise statistics would restrict the layer function, two trainable
parameters γ and β are added. Both allow to change the scale and shift respectively
and lift the restrictions on the layer function. In [IS15], the authors demonstrate that
BatchNorm enables faster convergences during training, serves as a regularizer to the
model, and even boosts classification performance for established models on the ImageNet
challenge. Therefore, we use BatchNorm [IS15] in all model configurations.

42

3.3. Model Design

Model weights are classically initialized using a uniform distribution over a given
interval, the limits are usually chosen in accordance to layer sizes. In [GB10], Glorot
and Bengio extensively examine the effects of such initialization on the activations in
the model given various activation functions such as sigmoid and hyperbolic tangent.
They found that this simple initialization technique causes the variance of the gradient
to depend on the layer and it decreases with increasing model depth. As a result, large
models tend to have saturated activations (close to zero) and training is slowed down. As
a solution Glorot and Bengio introduce a normalization factor to the uniform distribution,
changing the limits depending on layer position. This Xavier-Normal distribution [GB10]
has established itself as the default weight initialization in deep learning and all model
weights in this chapter are initialized following this heuristic.

We implement L1-norm

γ||Θ||1 = γ

J
∑

j=1

|θj| (3.2)

regularization on the layer weights Θ as part of the loss function with γ weighting its
influence. This penalizes large weights and discourages overfitting. Neural networks
tend to adapt well to training data whenever the feature space of the input samples is
large and the training data is sparse at the same time. This is a combination prevalent
while working with MALDI-MSI data. Overfitting to the training samples hinders
generalization and consequently leads to poor performing classifiers. We employ weight
regularization frequently in this work. In those cases, the weighting factor γ between the
regularizer and data term is provided.

For classification tasks, we use the categorical-cross-entropy loss function. Given a set
of input vectors {xi} and corresponding targets {ti}, the output of our network is defined
as yi = f(xi,Θ). Here f denotes the network with its parameters Θ, in accordance with
(2.1) and (2.2) in Chapter 2. For a binary classification task with two target classes C0

and C1 yi can be interpreted as the conditional probability p(C0|x) with p(C1|x) given
by 1− yi. Then the distribution of targets is a Bernoulli distribution

p(ti|xi,Θ) = f(xi,Θ)ti(1− f(x,Θ))1−ti

= ytii (1− yi)
1−ti ,

(3.3)

where t = 0 and t = 1 correspond to classes C0 and C1. The cross-entropy is given by
the negative log-likelihood

L(y, t) = −
I
∑

i=1

{ti ln yi + (1− ti) ln (1− yi)}, (3.4)

which leads to faster training as well as improved generalization for classification tasks
compared to the sum-of-squares loss function [SSP+03]. For a multi-class problem with
C classes, a general formulation of (3.4) takes the form

L(y, t) = −
I
∑

i=1

C
∑

c=1

{tcn ln yc}, (3.5)

43

Chapter 3. Deep Learning with Applications to MALDI Mass Spectrometry Imaging

where the true class labels are one-hot encoded — for a 3-class classification problem
tc ∈ {[1, 0, 0], [0, 1, 0], [0, 0, 1]} — and the network outputs yc = p(tc = 1) are considered
the probabilities for class c [BN06].

The process of pooling is a well-known practice in deep learning. It is used to reduce
the data dimension and combine information. Different kinds of pooling operations
are used, including mean and max pooling. Given a size n, the max pooling operation
returns the maximum value of the n neighbors of a given data point. Combined with
striding larger than one, this merges information from multiple data points into one.
In Section 3.7, we apply max pooling with a kernel size of n = 4 in conjunction with
the Transformer model. A peak in the MALDI-MSI spectrum is associated with a
specific chemical structure, for example, a protein or fragment thereof. Peaks consist
of four data points building a reappearing pattern, in which the ratio of magnitudes is
consistent. Therefore max pooling enables smaller spectrum sizes without too much loss
of information.

Class Balance. Class balance in medical data sets is often hard to ensure, due to some
pathologies being more prevalent. This is especially true for most data sets considered
in this thesis. The imbalance can reach a ratio of 4:1, as in the pancreas data set in
Section 3.7. We evaluate multiple strategies to ensure class balance:

1. inverse class frequency balancing,

2. class minimum balancing,

3. class maximum balancing.

Inverse class frequency balancing introduces a weighting factor to the loss calculation.
We determine the class weights as inverses of the class frequency to increase the influence
of classes with few representatives during training. The second and third strategies are
preprocessing steps: During the creation of data splits, as described in Section 3.3.1 below,
we either include a limited number of samples for each class (minimum balancing) or
draw repeatedly from classes with few representatives (maximum balancing).

Voting Strategies. MALDI-MSI data can consist of several thousand spectra per
patient tissue sample. In clinical routine, determining class membership for each of those
spectra is not always the main interest. Instead, the clinician may only need to know
whether the whole tissue sample contains any pathological tissue or none. Consequently,
we need to assign class membership to whole patient tissue samples based on the predicted
classes of the single spectra therein.

To accommodate this task, we implement two different approaches. Firstly we introduce
a majority voting strategy to the prediction step. Given a set of class predictions
associated with one patient, we assign the majority label to that patient. The result is
two-fold. On the one hand, we provide an interpretation of our results more suitable for
clinical analysis. On the other, we are able to provide additional confidence scores for
whole patient tissue samples calculated from the ratio of class predictions.

44

3.3. Model Design

As an alternative, we replace the linear classification layer with a custom voting
layer. We keep the general structure of our network architectures. Single spectra remain
as input to the network, but we adopt an online-learning approach as a single batch
is used. Each batch consists of a single patient tissue sample. As we know a patient
sample is composed of multiple associated spectra. The resulting batch is passed to
the network, which processes the spectra individually in the established fashion. The
network returns predictions for the individual spectra within the batch (patient sample).
Based on these predictions statistics such as the mean, median, minimum, and maximum
for the whole batch are calculated. These statistics are then passed to an additional
linear layer followed by the softmax activation producing a single prediction for the whole
batch (patient sample), which is compared to the patient sample ground truth using the
loss function. The error for the patient prediction is then used in the backpropagation
step to update the model weights. Keeping the main body of the network the same and
only adapting the final classification layer, we enable the usage of whole patient tissue
samples as input even though they vary in size.

3.3.1. Preprocessing
The workflow of acquiring MALDI-MSI data results in chemical noise originating in
tissue preparation and machine-dependent technical noise. Moreover, the produced data
is complex and high-dimensional and consequently poses severe challenges for subsequent
machine learning methods. We will provide information on established preprocessing
methods as well as our own methods developed in conjunction with our classification
methods.

Noise Reduction. A common strategy to reduce technical noise is baseline remov-
al [Nor+07; GRM06] and spectrum normalization with Total Ion Count (TIC), which
is the 1-norm applied to each spectrum [Dei+11]. As mentioned in Section 3.1, the
baseline is defined as the common shift (increase) in signal intensity. A method for
baseline removal is proposed in [Nor+07], where the authors subtract an estimate for the
baseline from each spectrum in an iterative manner. The chemical noise can cause large
differences in peak magnitudes. Consequently, two spectra of similar structures with equal
chemical composition can differ in terms of absolute values. This is partially attributed to
gradually decreasing ion transmission during acquisition. Without normalization, these
artifacts result in inaccurate ion distributions and may lead to incorrect analyses [Dei+11].
We divide each spectrum by its median and apply TIC normalization to compensate
for these differences in magnitude so that all spectra are normalized to unit median
(Figure 3.3).

An issue arising from the high spatial resolution of MALDI-MSI data is that ground
truth — which is typically generated by hand by expert clinicians — is expensive and can
often be unreliable on an individual-spectrum basis. As data points with an allocated
label may not express the desired morphological structures and thus the measurement
might wrongfully be labeled as pathological tissue. We designed a standard deviation
based filter to identify spectra with little or no information. Spectra with little

45

Chapter 3. Deep Learning with Applications to MALDI Mass Spectrometry Imaging

Figure 3.3.: Influence of median filtering on the signal magnitudes of all 462 spectra
taken from one patient tissue sample. We multiply a mass spectrum with an
intensity-scaling factor to expand the range of the spectra intensities in order
to project spectra onto a common intensity scale. Left: Effects of median
normalization for randomly selected m/z positions. After normalization,
the range of peak intensities is increased compared to the raw spectrum.
Orange horizontal lines denote medians, boxes show quartiles, and outliers
are marked by + symbols. Right: Median aU value for all 462 spectra
within the patient tissue sample. After normalization, the median value is
uniformly set to one.

information are associated with low informativeness in the spectral range. As a measure
of informativeness, we use the total number of peaks with a magnitude greater than
the standard deviation multiplied by a modifiable factor within the spectrum. After
expert evaluation of the results for different values, we set this factor to 6. A spectrum
is accepted if a predefined threshold is met. For evaluation of the informativeness, the
range of data points in each spectrum is restricted to the 60% along the horizontal
axis (m/z range). At the end of the spectrum in higher Dalton ranges few peaks are
present with little diagnostic value. In Figure 3.4 spectrum examples for different levels
of informativeness can be found.

Another possible source of noise is the inconsistent number of spectra per patient
samples, ranging from as low as two to more than a couple of hundred associated spectra.
Samples with too few spectra do not provide a sufficient basis for reliable prediction and
may hinder effective training of our learning methods. We consider patient samples with
less than 20 spectra as not informative for classification and exclude these samples from
evaluation.

Classifying solely based on single spectra disregards the spatial relationship between
neighboring grid points. Pathological tissue typically spreads over multiple of these grid
points, thus combining neighboring points could improve robustness. This is implemented
by stacking n neighboring spectra of length m together and using a n×m spectral matrix
as input. The spectral matrix incorporates spatial information inherent in the tissue
sample. We conduct experiments with varying sizes of neighbors n.

46

3.3. Model Design

(a) (b)

(c) (d)

Figure 3.4.: Examples for spectrum informativeness ratings ranging from an informative
spectrum to a spectrum containing only noise. Negative values may occur
due to baseline correction during measurement. (a) A spectrum is considered
good or informative if a threshold of peaks with a magnitude large than the
standard deviation within the signal is met. Visually they are characterized
by high magnitudes in the first 50% of data along the horizontal axis and
diminishing peaks near the end. (b) A sufficient spectrum usually displays
higher peak concentration in the first 50% of data peaks and a faster decline
of peak magnitudes near the end. However, the absolute values of magnitudes
remain similar to good spectra. (c) A spectrum is considered insufficient if
it displays considerably decreased magnitudes (vertical scale) and does not
display peak concentration in the first 50% of data. (d) Finally, a spectrum
contains very little information if it is defined by a noise dominated signal
with few peaks and overall small magnitudes.

47

Chapter 3. Deep Learning with Applications to MALDI Mass Spectrometry Imaging

Training Validation Test

Figure 3.5.: Top: Data set creation starts from a full-size TMA. Bottom: Patient tissue
samples vary in size and are randomly assigned as a whole to one of the
three subsets: training (50%), validation (20%), and test (30%). Percentages
are computed from spectrum counts. Repeating the process with 3 random
seeds yields a three-fold data split used for cross-validation.

Cross-validation. In machine learning, cross-validation is an important tool for statistical
analysis and outlier detection. We apply 3-fold cross-validation for all experiments in this
chapter. We first assign each spectrum to a patient. Denoising is applied and patient
samples with too few associated spectra are removed. Followed by the creation of three
different data splits, each categorized into training-, validation-, and test data subsets.
We randomly split a given TMA into these three subsets, an example can be seen in
Figure 3.5. Splitting is done for each class individually so that approximately 70% of
the data is used for training our algorithms, namely the training data set (50% of total
patients’ spectra) and the validation set (20% of total). The remaining 30% are used as a
test data set to evaluate the final classification performance and therefore unseen during
the training phase. We perform the split by selecting full patient tissue samples randomly
without replacement and assigning them and all associated spectra to one of the three
data sets until the desired share is reached. As a result, the sample distributions in the
training, validation, and test data sets vary slightly among the different splits. Repeating
this process with varying seeds for the pseudo-random number generator yields the 3-fold
cross-validation. We created all data sets in this section using the described assignment
process, detailed information about all sets is given in Tables 3.1, 3.7, and 3.13 below.

48

3.3. Model Design

3.3.2. Feature Extraction
The size of raw MALDI-MSI data is relatively large, prohibiting the direct application of
most machine learning tools. Manual or algorithmic feature extraction is used to enable
the processing of MALDI-MSI spectra. We will introduce some frequently used methods.

Most studies rely on the manual feature extraction by peak picking, where a limited
number of peaks are chosen and the rest of the spectrum is omitted. The peaks are either
identified by an expert or an algorithm. Possible candidates are peaks associated with
peptides (proteins) or molecules of interest or peaks with a high distinctiveness measured
by a predefined metric. In [Kle+20], the authors propose a typical two-stage approach:
First discriminative peptide masses are selected by receiver operating characteristics
(ROC) analysis, followed by the computation of the Mann-Whitney-Wilcoxon statistics
for each class and peak pair. As a result, a probability is assigned at any given peak for
each class indicating whether the spectral intensity at this m/z value is larger than in
other classes. The authors restricted the number of selected peaks to 10. Peak picking is
able to drastically reduce the data dimension, but leads to a loss of information.

Principle Component Analysis. One popular method frequently used in MALDI-MSI
to reduce data dimensionality is the Principle Component Analysis (PCA). We also
consider PCA as a preprocessing step and provide an introduction to it below. We describe
how the PCA method creates low-dimensional features from a set of observations {xi}.
This will allow a better understanding of the method’s properties and possible drawbacks
when applied to MALDI-MSI. PCA is a feature reduction method that transforms the
data such that the direction (component) with the greatest variance is mapped to the
first component of a new low-dimensional space of given dimension p. We consider a set
of observations {xi} with i = 1, ..., n, where xi ∈ R

m. Note that in most cases we want
p to be considerably lower than m. Here we consider p = 1 and u1 direction vector of
that space. Then u⊤1 xi is the projection of data point xi to the low-dimensional subspace.
Using the set mean x̄, the variance of all projections is

1

n

n
∑

i=1

(u⊤1 xi − u⊤1 x̄)
2 = u⊤1 Su1, S :=

1

n

n
∑

i=1

(xi − x̄)(xi − x̄)⊤. (3.6)

Here S defines the data covariance matrix. PCA can be interpreted as maximizing the
variance in (3.6) with respect to u1 over all vectors of unit length. Enforcing the length
constraint using a multiplier yields the Lagrangian

L(u1, λ1) := u⊤1 Su1 + λ1(1− u⊤1 u1). (3.7)

Setting ∇u1
L equal to zero, we see that stationary points are characterized by

Su1 = λ1u1, (3.8)

i.e., u1 has to be an eigenvector of S with the eigenvalue λ1. Multiplying both sides by
u⊤1 yields

u⊤1 Su1 = λ1 . (3.9)

49

Chapter 3. Deep Learning with Applications to MALDI Mass Spectrometry Imaging

Comparing (3.6) and (3.9), one can see that the variance is largest when u1 is equal to the
eigenvector having the largest eigenvalue [BN06]. Repeating this process with additional
directions orthogonal to those considered yields further components. Consequently, the
data can be represented by p eigenvectors u1, ..., up of the data covariance matrix S.
This requires us to find p eigenvalues and corresponding eigenvectors, which for large
data matrices as in MALDI-MSI is computationally expensive. Nevertheless, PCA is
an established tool for data analysis, dimensionality reduction, or feature generation in
machine learning and is also frequently applied in the setting of MALDI-MSI.

Principle Component Pursuit. In their work, Candès et al. state that although PCA is
the most used tool for data analysis and dimensionality reduction, it struggles to perform
for noisy data [Can+11]. The authors propose an algorithm for a robust version of PCA
(RPCA), aiming for a low-rank matrix L0 recovered from the corrupted measurements.
Central to their argument is the assumption that high-dimensional data has a low intrinsic
dimensionality, i.e., it can be represented by a lower-dimensional subspace and a sparse
“noise” component [EY36; CDS01]: Given the data matrix M ∈ R

n,m, there exists a
low-rank approximation of the form

M = L0 + S0, (3.10)

with a low-rank component L0 and sparse noise component S0. The Principle Component
Pursuit (PCP) algorithm solves

arg min
L∈Rn,m,S∈Rn,m

‖L‖∗ + λ‖S‖1 s.t. L+ S = M (3.11)

to obtain L0 and S0. Here ‖ · ‖∗ denotes the nuclear norm and ‖ · ‖1 the l1-norm.
In the context of MALDI-MSI, the data matrix Mn,m consists of stacked spectra xi

with i ∈ {1, ..., n} and the i-th row of L0 contains a low dimensional representation of
individual spectra xi. The rank of a matrix is the dimension of the vector space spanned
by its columns. For low-rank matrices, the number of linearly independent columns is less
than the total number of columns, so the corresponding vector space is low-dimensional
compared to the vector space of a full-rank matrix. Low-rank representations are a
popular method of dimension reduction.

Non-negative Matrix Factorization. Another method to calculate a low-rank approxi-
mation of a large data matrix M ∈ R

n,m is Non-negative Matrix Factorization
(NMF) [LS99]. It has existing applications in the field of compression, feature extraction,
and basis learning [VG96; LS00]. Leuschner et al. first introduced this method to
MALDI-MSI data in 2019 [Leu+19]. The method determines a number of p characteristic
non-negative basis vectors. In the field of MALDI-MSI, it is assumed that a comparatively
small number of p structures are represented in the data associated with different proteins
or chemical components. The data matrix M consists of n acquisition points each with a
spectrum of size m. As a result, NMF provides a set of p basis vectors by solving the
formulation

arg min
K∈Rn,p,X>0∈Rp,m

1

2
‖M −KX‖2F , (3.12)

50

3.4. Linear Methods

where K is a coefficient matrix and X is a set of stacked spectral basis patterns. In
addition, orthogonality constraints on X are introduced such that XX⊤ ≈ I, which
results in less correlated pseudo spectra. Input features for subsequent classifiers can be
obtained by mapping a spectrum xi to a feature vector xf

i with a length of p:

x
f
i = xiX

⊤ (3.13)

We test different combinations of feature extraction and classifiers.

3.4. Linear Methods
MALDI-MSI is a novel tool for pathological and morphological studies [CC11]. Most
recent works concentrate on possible fields of applications and interesting medical use
cases [Lon+16]. The classification of the acquired data is an important part of the
successful application of MALDI-MSI in the clinical workflow. Despite its crucial
function, most studies utilize relatively simple linear classifiers [Kle+20; Lon+16] in
combination with extensive preprocessing. The feature extraction process serves as
dimension reduction and enables the subsequent use of out-of-the-box linear classifiers.
This practice is considered state-of-the-art in the MALDI-MSI community. Therefore,
we consider the most frequently used variants — Linear Discriminant Analysis (LDA)
and Support Vector Machines (SVM) — as benchmarks:

Linear Discriminant Analysis. The Linear Discriminant Analysis method aims to
find a linear combination of features to separate objects into a given number of classes.
The classes are modeled as a multivariate normal distribution. The classification of
new samples is performed by maximizing the posterior probabilities in regard to the
class distributions (Figure 3.6). The class probability density functions are calculated
using a subset of the training samples. In this work, we use LDA as implemented in the
scikit-learn library (version 0.19.1) [Ped+11].

Support Vector Machine. In the Support Vector Machine method, each sample is
represented as an element of a vector space. It can be assumed that vectors resulting
from samples of the same class are similar to each other with regard to the decision
function. The method aims to find a hyperplane in order to differentiate between samples
of different classes. The distance of vectors closest to the hyperplane is maximized
to enable robust classification for unseen samples. The vectors used to calculate the
hyperplane are called support vectors. In the baseline SVM method, it is assumed that
the samples are linearly separable (Figure 3.6). This is not the case for most classification
problems with real-world applications such as MALDI-MSI. A nonlinear decision function
can be introduced to SVMs using the so-called kernel trick (Figure 3.7). The idea is
to nonlinearly embed the given vector space into a higher-dimensional space, in which
the samples are linearly separable. A kernel function is used to efficiently solve the
resulting maximization problem without having to explicitly compute the embedding

51

Chapter 3. Deep Learning with Applications to MALDI Mass Spectrometry Imaging

Figure 3.6.: Decision functions for LDA and SVM (linear) methods. Left: Distributions
for a two-class problem resulting from LDA classification. The black line
marks the decision boundary. LDA struggles to model complex class
distributions and depends on good feature extraction. Right: The SVM
chooses the decision boundary by maximizing the margin (blue arrow)
distance to the closest samples, also called support vectors (red framed
vectors). Here an SVM with a linear decision function is shown. Similar to
LDA, this method struggles with complex class distributions, which often
are not linearly separable (compare Figure 3.7).

into the (potentially very high dimensional) space [SC08]. In addition to the linear SVM,
we investigate a radial basis function (RBF) kernel SVM. For multiclass classification,
we train binary classifiers in a “one-against-one” strategy and determine the final class
decision by a majority voting strategy on the outputs of the pairwise classifiers as
implemented in the scikit-learn library.

52

3.5. Ovarian Cancer

Figure 3.7.: Complex class distributions often require nonlinear decision boundaries. Left:
Two-class problems with class distributions that are not separable by a linear
decision function as used in LDA or SVM (linear). Kernel SVMs are able
to model nonlinear decision functions, visualized by the curvy black line.
Right: The kernel trick enables to efficiently and nonlinearly project the
classification problem into a higher dimensional space, in which the decision
boundary becomes a hyperplane (blue rectangle).

3.5. Ovarian Cancer
In the following, we present the results for the classification of ovarian cancer subtypes.
A focus is on the search for a suitable network architecture as well as the evaluation of
the models when combined with established feature extraction techniques.

3.5.1. Data
Epithelial ovarian cancer (EOC) is an inhomogeneous disease with multiple histological
subtypes. Five main subtypes have been described by the World Health Organization
with diverse molecular structures, clinical behavior, and therapeutic prognoses [Mei+16;
PDE18]. Response to standard therapy can differ vastly and clinical outcomes could be
improved with adapted therapy approaches for each EOC subtype. Serous Ovarian cancer
(OC) tumors are the most frequent EOC subtypes (70%) and are of particular clinical
interest. High-grade serous ovarian cancer (HGSOC) and low-grade serous ovarian cancer
(LGSOC) differ on the molecular level, containing mutations on different genes, such as
BRAF or BRCA, resulting in genetic instability. The precursors of LGSOC are serous
borderline tumors (sBOT), these two types are considered to be difficult to distinguish
due to their similar morphological patterns.

Ovarian clear cell carcinoma (OCCC) is a rare EOC subtype characterized by clear
cytoplasm and endometriotic foci, which are able to evolve to cancer [MSK16]. The
described EOC subtypes require customized chemotherapeutic and targeted therapies.
The classification of these subtypes remains challenging. There frequently are areas with
morphological overlap between the HGSOC and LGSOC subtypes and OCCC structures

53

Chapter 3. Deep Learning with Applications to MALDI Mass Spectrometry Imaging

Table 3.1.: Data set sizes after random split (percentage of total in parentheses). Samples
from individual patients are distributed across the three data sets. Care is
taken to ensure that approximately 50% of the patients are used as training
data, 20% are used for evaluation during training, and 30% are used in the
test data set. The training and test data sets are preferentially populated, so
the evaluation data set can be smaller.

Training Validation Testing
Patient Spectra Patient Spectra Patient Spectra

Data set I 56 (53.3%) 12051 (52.4%) 16 (15.2%) 3470 (15.1%) 33 (31.4%) 7483 (32.5%)
Data set II 56 (53.3%) 11749 (51.1%) 20 (19.0%) 3743 (16.3%) 29 (27.6%) 7512 (32.7%)
Data set III 54 (51.4%) 12059 (52.4%) 18 (17.1%) 3584 (15.6%) 33 (31.4%) 7361 (32.0%)

can be included in HGSOC.
In this study, our data set contains tissue specimens from 67 patients with a total of

111 patient tissue samples, of which 8 are rejected due to the low spectra count within.
The samples are distributed to the EOC subtypes as follows: sBOT (19 tissue samples/
14 patients), HGSOC (31 tissue samples/ 19 patients), LGSOC (26 tissue samples/ 14
patients), OCCC (35 tissue samples/ 20 patients). Each spectrum consists of 8668 values.

The study was designed by Silvia Darb-Esfahani and Carste Denkert from the Institute
of Pathology, Charité-Universitätsmedizin Berlin. The annotation was performed by
Eliane T. Taube from the Institute of Pathology, Charité-Universitätsmedizin Berlin.

3.5.2. Experiments and Results
First, we focus on finding a suitable network architecture to process MALDI-MSI data.
We present the results for different architectures including the IsotopeNet proposed
in [Beh+17], followed by a combination of feature extraction described in Section 3.3.1
and our architectures. Finally, we compare the best-performing model to the commonly-
used baseline classifier methods LDA and SVM.

Architecture. We train on data set II (Table 3.1) in order to evaluate the various
architectures. Hyperparameters are chosen by random search: Batch size [50, 400],
epochs [50, 200], learning rate [10−2, 10−6], weight regularization [10−1, 10−4], kernel
size [128, 256], and feature channels [4, 8], see Table 3.2. All models are trained on an
NVIDIA RTX 2080 GPU with 8 GB memory. In general, all models are L1-regularized
with weights ranging from 10−3 to 10−5 in order to avoid overfitting, given the limited
amount of data and large feature size.

Models with a depth of more than two layers perform worse than relatively shallow
few-layer architectures. Particularly interesting is the poor performance of IsotopeNet,
which indicates that the specialized filter design is not readily applicable to our MALDI-
MSI data. The best-performing architectures are a single layer fully connected network
as well as a two-layer convolutional network with 86% and 89% of patient samples

54

3.5. Ovarian Cancer

Table 3.2.: Parameter configurations and prediction accuracy on the test set for spectra
(values for patient samples in parentheses) using different neural network
architectures. Best accuracy marked in bold numbers.

Model Accuracy L1 weight Batch Size LR Kernel Size Feature Channel
Fully connected 0.7661 (0.8621) 10−3 150 10−3 - -
CNN 1 0.7866 (0.8965) 10−4 150 10−3 128 4
CNN 2 0.8073 (0.8333) 10−4 200 10−4 (256, 128) (8,8)
IsotopeNet [Beh+17] 0.5482 (-) 10−4 150 10−4 3 8

correctly classified. Both models achieve an increase of 25% compared to the IsotopeNet.
Consequently, we test both architectures in combination with feature extraction methods
from Section 3.3.1, which are commonly applied in MALDI-MSI.

Feature Extraction. Starting from our findings during the model search, we continue
to test the most promising candidates fully connected and CNN 2 with feature extraction
methods. Generally, neural networks do not need manual or algorithmic feature
extraction, since the first few layers in a model are basically designed to perform this
task. Nevertheless, passing processed features into a network can be beneficial, e.g.,
for dimensionality reduction. In combination with linear methods, the NMF method
proved to be efficient when applied to MALDI-MSI data [Leu+19]. When we use NMF to
generate features for our neural networks, we only achieve accuracies of up to 50%. This
is far less than when we apply the networks directly to the raw spectra, with accuracies
of up to 80%. For most parameter configurations, neither the fully connected nor the
CNN model can achieve reasonable accuracy. The results are often in the range of 25%
and indicate that no classification could be achieved when NMF is used as a feature
extractor.

The conceptually related PCA and PCP methods achieve promising results in combina-
tion with both architectures. But the gain in accuracy does not justify the application
of these time and memory consuming algorithms. The PCP method with 50 features
takes approximately 19 hours of computing time and uses up to 11 GB of memory. The
PCA takes considerably less time to compute, under a minute for 512 features, but
does not provide the same level of accuracy on the patient tissue level. Both methods
utilize a matrix representation of the spectral data and perform a variant of singular
value decomposition (SVD) favoring smaller matrices. Therefore, it is expected that
computational time and storage requirements will increase for data sets with larger
spectra. The spectra evaluated here are relatively small, with a length of 8668. We are
confident that a more thorough parameter tuning achieves higher accuracies and the use
of feature extraction methods does not add value compared to applying the models to
the raw spectra.

Finally, we test the grouping of multiple neighboring pixels into one sample. We are
limited by the length of our spectral data and memory constraints on the hardware side.
The best results are obtained using a five spectra neighborhood and the convolutional

55

Chapter 3. Deep Learning with Applications to MALDI Mass Spectrometry Imaging

Table 3.3.: Prediction accuracy for spectra (values for patient tissue samples in
parentheses). The best-performing models of the selection process are fully
connected and CNN1. We evaluate performance when combining the models
with NMF, PCA, and PCP. The number of features is given in the feature
size column. Our neighbors’ approach increases the input size by the number
of neighbors used, provided in the feature size column. The PCP and PCA
methods allow similar model performance compared to using the full spectral
range if a sufficient number of components are used. The NMF and Neighbor
methods do not improve model performance. Best accuracy marked in bold
numbers.

Fully connected CNN 1
Method Feature Size Accuracy Method Feature Size Accuracy
NMF 60 0.3991 (0.3) NMF 256 0.4217 (0.3793)

1600 0.4293 (0.3) 1200 0.3911 (0.3)
PCA 128 0.6097 (-) PCA 512 0.7558 (0.8181)

512 0.8196 (0.8965)
PCP 1 0.7571 (0.8275)

15 0.7892 (0.8965)
50 0.7814 (0.9310)

Neighbors 5 0.7328 (0.7741)

architecture. Classification accuracy does not improve using grouped spectra, therefore
we omit the adaptation of established preprocessing into our classification pipeline. The
inherent feature extraction within the convolutional network outperforms all methods
except the memory-intensive PCP (11 GB). The gain in classification accuracy on the
patient level comes at the cost of a loss on the spectral level. Table 3.3 contains the most
important results for our feature extraction experiments.

Ovarian Cancer Classification. In the following, we present our work MALDI-Imaging
for Classification of Epithelial Ovarian Cancer Histotypes from a Tissue Microarray
Using Machine Learning Methods [Kle+19] in Proteomics–Clinical Applications
2018. We use the following preprocessing steps:

• Median normalization

• Removal of tissue samples with small tumor regions

• Majority voting (tissue sample — patient — accuracy)

• 3-fold cross-validation (see Table 3.1)

56

3.5. Ovarian Cancer

Table 3.4.: Prediction accuracy on the test data sets for spectra (values for patients in
parentheses) using different classification algorithms. Best accuracy marked
in bold numbers.

LDA SVM-lin SVM-rbf FCN CNN
Data set I 0.61 (0.82) 0.77 (0.85) 0.76 (0.79) 0.76 (0.82) 0.76 (0.79)
Data set II 0.58 (0.79) 0.77 (0.79) 0.68 (0.72) 0.77 (0.86) 0.82 (0.97)
Data set III 0.57 (0.79) 0.72 (0.76) 0.70 (0.70) 0.69 (0.82) 0.70 (0.79)
∅ 0.59 (0.80) 0.75 (0.80) 0.71 (0.83) 0.74 (0.83) 0.76 (0.85)

As baseline methods, we employ the LDA and SVM methods. In addition to the linear
variant of SVM (SVM-lin) we also test a radial basis function (RBF) kernel SVM (SVM-
rbf), which could solve more complex classification problems. Based on the results from
our preceding experiments we choose to train a fully connected network (FCN) with a
single layer and a two-layer network (CNN) with one convolutional layer (four feature
maps, kernel size 120, stride 1). The second layer in the convolutional model is again a
fully connected layer. Both model weights are L1-regularized to avoid overfitting with
weights of 10−3 for the FCN architecture and 10−4 for the convolutional network. Weights
are randomly initialized as stated in Section 3.3 and training is performed using the
Adam optimizer with a learning rate of 10−3, a reduce-on-plateau reduction strategy as
well as a batch size of 150. Multiple parameter configurations are tested using random
search, among which the setting in (Table 3.2) yields the best results.

The linear discriminant analysis yields the least accurate results. On average, it
achieves an accuracy of 59% on the spectra level and 80% on the patient level. The
linear SVM (75% individual spectra, 80% patient) performs similarly to the linear neural
network (74% individual spectra, 83% patient). SVM-rbf yields an accuracy of 71%
on the spectra level and 74% on the patient level after voting. The CNN achieves the
best performance with an accuracy of 76% and 80% on the spectra and patient level
respectively.

Overall, the differences in accuracy for the top 3 models vary only slightly (Table 3.4).
Figure 3.8 displays the predicted subtypes on the patient level for the SVM-lin and
CNN methods. Regarding specificity on the patient level, all methods (LDA, SVM-lin,
SVM-rbf, FCN, CNN) achieve above 91% on OCCC, sBOT, and LGSOC, and 72-93%
on HGSOC (see Table 3.6).

On the individual spectrum level, the specificity ranges from 84% (OCCC, sBOT,
LGSOC) to 75-87% (HGSOC). Regarding sensitivity the network models and SVM-lin
achieve the best results, scoring 80-100% on the patient and 75-89% on the spectra level
(OCCC, sBOT, HGSOC). The LGSOC histotype displays the lowest sensitivity values
of all subtypes (64-75% on patient, 58-59% on spectra). We are able to mostly classify
the OCCC, HGSOC, and sBOT subtypes correctly. In contrast, LGSOC classification
accuracy is considerably lower, falling below 50% for all methods. Confusion matrices for
all methods indicate that LGSOC is mainly confused with OCCC.

57

Chapter 3. Deep Learning with Applications to MALDI Mass Spectrometry Imaging

Ground truth CNN

linear SVM linear SVM (individual spectra)

Figure 3.8.: EOC histotype prediction from TMA (data set II). Top left: Ground truth
test set. Top right: CNN results for patient prediction with a sensitivity
of 69-100% and a specificity of 90-99%. Bottom left: SVM-lin results for
patient prediction with a sensitivity of 65-93% and a specificity of 87-99%.
Bottom right: SVM-lin results in sensitivity of 59-83% and specificity
of 86-98% on the individual spectrum level. Incorrectly classified patient
samples are marked in purple (encircled).

Table 3.5.: Sensitivity on the best test data set for spectra (values for patient in
parentheses) using different classification algorithms. Values are provided
per EOC histotype and averaged over three different splits. Best sensitivity
marked in bold numbers.

Histotype LDA SVM-lin SVM-rbf FCN CNN
OCCC 0.67 (0.93) 0.80 (0.80) 0.77 (0.79) 0.79 (0.85) 0.85 (0.97)
sBOT 0.49 (0.60) 0.75 (0.93) 0.56 (0.60) 0.78 (0.93) 0.80 (1.00)
LGSOC 0.53 (0.71) 0.59 (0.64) 0.49 (0.56) 0.58 (0.75) 0.59 (0.69)
HGSOC 0.59 (0.89) 0.83 (0.89) 0.89 (0.93) 0.78 (0.86) 0.76 (0.82)

58

3.5. Ovarian Cancer

Table 3.6.: Specificity on the best test data set for spectra (values for patient samples
in parentheses) using different classification algorithms. Values are provided
per EOC histotype and averaged over three different splits. Best specificity
marked in bold numbers.

Histotype LDA SVM-lin SVM-rbf FCN CNN
OCCC 0.85 (0.92) 0.91 (0.94) 0.92 (0.96) 0.91 (0.94) 0.90 (0.97)
sBOT 0.95 (0.99) 0.98 (0.99) 0.98 (0.99) 0.97 (0.99) 0.98 (0.99)
LGSOC 0.84 (0.94) 0.92 (0.93) 0.95 (0.97) 0.91 (0.91) 0.92 (0.93)
HGSOC 0.79 (0.88) 0.86 (0.87) 0.75 (0.72) 0.84 (0.93) 0.87 (0.90)

3.5.3. Summary and Discussion
We applied neural networks to MALDI-MSI data to distinguish between EOC subtypes.
We proposed model architectures to process the given data on an individual spectrum
level and provided class membership predictions for whole patient samples, usable in
clinical routine. Different dimensionality reduction and feature extraction algorithms were
tested and finally, our networks’ performances were compared to the established linear
classification methods of LDA and SVM. Our neural network-based pipeline achieved the
highest sensitivity and specificity scores. These results encourage further investigation of
such classifiers in the context of MALDI-MSI.

For the first time, we demonstrated that MALDI-MSI combined with machine learning
approaches can classify different histologic subtypes of epithelial ovarian cancer. Most
mass spectrometry imaging studies attempt to classify only tumor types that have major
histological differences, for example, squamous and adenocarcinoma [Med+12; AW15;
Kri+16], or tumors in different organs. The differentiation of EOC subtypes is a much
more detailed question and of greater interest in routine pathology, as the morphological
structures of EOC subtypes can be quite similar. [Mei+16].

The best overall EOC histotype prediction was achieved by using a two-layer CNN
classifier. We attribute the shallow model design to the relatively small number of
qualitatively different tissue samples in this data set, the high feature dimension, and
the consequential susceptibility to overfitting. CNN, FCN, and SVM-lin were all able
to distinguish between the three EOC types OCCC, sBOT, and HGSOC resulting in
sensitivity values from 82% to 100% after voting. The classification of LGSOC tissue
appears to be more challenging. Just recently LGSOC and HGSOC had been described
as distinct and autologous histotypes and morphological structures are highly similar.

Additionally, compared to other groups, the number of samples in the data set is low.
Due to limitations in the accuracy of ground truth labels, small stromal regions may be
present in the tumor regions. Hence, classification based on individual spectra results in
decreased values for accuracy, sensitivity, and specificity.

Subsequent studies will have to investigate, based on a larger cohort, what impact
technical variables could have on the classification robustness. Furthermore, the model
can be adapted further to address the challenges posed by MALDI-MSI data.

59

Chapter 3. Deep Learning with Applications to MALDI Mass Spectrometry Imaging

3.6. Amyloidosis
Building on the results from the ovarian cancer data set, we apply the network classifiers
to differentiate cardiac amyloidosis plague. We use existing models as a baseline to
further investigate architectural designs for neural networks in MALDI-MSI, particularly
emphasizing the deployment of residual connections and recurrent models.

3.6.1. Data
Amyloidosis is caused by the extracellular deposition of various proteins. Up to a hundred
different proteins have been identified as causative agents for amyloidosis. Systemic
cardiac amyloidoses (CA) are an uncommon, but underdiagnosed cause of heart failure.
Understanding of underlying ATTR amyloidosis mechanisms can be improved and therapy
options developed, if ATTR is reliably detected and distinguished from secondary types
of amyloidosis, such as amyloid light-chain (AL). Therefore, simultaneous observation
of cardiac amyloidosis and its secondary effect on the adjacent tissue is one of the key
requirements for individual therapy and diagnostic developments.

The amyloidosis data set contains tissue samples from 73 patients. During preprocessing,
four patient tissue samples were rendered insufficient due to containing too few associated
spectra. These samples were excluded, resulting in a total of 69 patient samples. The
samples are distributed as follows: ATTR (33 tissue samples/ 33 patients), of which
11 tissue samples also contain inflammation, AL (32 tissue samples/ 32 patients), and
8 tissue samples/patients which do not contain amyloidosis. As we are interested in
the identification of ATTR, two groups are defined. The first class contains solely
ATTR and the second class combines the AL and healthy samples (AL-Control). Each
spectrum consists of 8666 m/z positions. Again, we create three different data splits for
cross-validation (Table 3.7)

The study was designed by Carsten Tschöpe and Sophie van Linthout from the
Berlin-Brandenburg Center for Regenerative Therapies and Berlin Institute of Health
Center for Regenerative Therapies (BCRT), Charité. The annotation was performed by
Karin Klingel from the Institute for Pathology and Neuropathology, University Hospital
Tübingen. Founding was provided by the Pfizer Aspire grand.

3.6.2. Experiments and Results
Building on our experiments in Section 3.5, we apply the network models to amyloidosis
data. For the ovarian cancer data set, the most promising feature extraction is PCA;
consequently, we also test if feature extraction provides a benefit for the amyloidosis data
set. In addition to the convolutional and fully connected model, we also employ residual
as well as recurrent network architectures, which have been shown to achieve good results
on time-series and 1D signal classification [GMH13; LQH16]. All experiments are again
conducted on an NVIDIA RTX 2080 GPU with 8 GB memory. Starting from the findings
on the ovarian cancer sub-typing problem, the best-performing models are tested on
the amyloidosis data set. We keep the model architectures but choose a new set of

60

3.6. Amyloidosis

Table 3.7.: Data set sizes after random split (percentage of total in parentheses). Samples
from individual patients are distributed across the three data sets. Care is
taken to ensure that approximately 50% of the patients are used as training
data, 20% are used for evaluation during training, and 30% are used in the
test data set. The training and test data sets are preferentially populated, so
the evaluation data set can be smaller.

Training Validation Testing
Patient Spectra Patient Spectra Patient Spectra

Data set I 34 (49.3%) 72534 (51.1%) 12 (17.4%) 24094 (17.0%) 23 (33.3%) 45236 (31.9%)
Data set II 36 (52.2%) 74619 (52.6%) 11 (15.7%) 22245 (15.7%) 22 (31.9%) 45000 (31.7%)
Data set III 35 (50.7%) 71392 (50.3%) 14 (20.3%) 26920 (19.0%) 20 (29.0%) 43552 (30.7%)

hyperparameters by random search: Batch size [50, 150], epochs [10, 50], learning rate
[10−3, 10−5], weight regularization [10−3, 10−4], kernel size [4, 8, 128, 256], and feature
channels [4, 8]. For the CNN model, the best parameter settings regarding accuracy are
a kernel size of 8 with 4 channels, weight regularization with the factor 10−4, a learning
rate of 10−5, and a rate decay of 0.9 in combination with a reduce-on-plateau schedule.
For the FCN model, the learning rate starts at 10−3 and the rate scheduling is the same.
The weight regularization factor is 10−3.

Feature Extraction. Again, feature extraction does not lead to satisfying results. For
the two-class problem, NMF with varying numbers of basis patterns results in an accuracy
of 59%, suggesting random assignment of classes. The sensitivity and specificity scores of
0.28 and 0.94 show however that the model indeed does not assign the classes at random
but rather that one class dominates the predictions, resulting in a prediction accuracy
reflecting class distributions.

Feature extraction seems to be beneficial only in the combination of PCA with
a small number of components and the FCN model. This combination achieves a
prediction accuracy of 81% on the patient tissue sample level and 75% on the spectral
level with reasonable sensitivity and specificity levels of 0.77 and 0.73 (see Table 3.8).
Interestingly, feature extraction worsens the performance of the CNN model, even
resulting in predictions worse than chance. The CNN model with PCA feature extraction
tends to emphasize the AL-Control class and regularly misclassifies the dominant ATTR
class. This indicates poor model generalization and emphasizes that the CNN model is
not able to learn reasonable class distributions based on the features created by the PCA
algorithm. Similar to the results in Section 3.5 for the ovarian cancer data set, feature
extraction seems to limit the models’ capabilities and is only effective in combination
with the FCN model without improving results. Therefore, we omit the feature extraction
in the following.

Amyloidosis Plaque Classification. Residual connections allow deep networks to
achieve higher accuracies (Section 2.1). So far our models have been very shallow, but

61

Chapter 3. Deep Learning with Applications to MALDI Mass Spectrometry Imaging

Table 3.8.: Results of amyloidosis classification for best-performing models in the ovarian
cancer setting. An additional feature extraction step hinders conversion for
the CNN model but achieves reasonable results in terms of prediction accuracy
for the FCN model. NMF does not work in combination with a dense model
and leads to increased misclassification on both the spectrum and patient
level. Based on these results and our observations from the ovarian data set,
we omit the evaluation of NMF in combination with CNN models. Overall we
constitute that feature extraction does not provide significant benefits for the
prediction of amyloidosis plaque types. The sensitivity and specificity values
are calculated on the spectral level. Best results marked in bold numbers.

Model Feature Extraction Accuracy (spectrum) Accuracy (patient) Sensitivity Specificity
FCN NMF (64) 0.5995 0.5909 0.2882 0.9406
FCN PCA (16) 0.7556 0.8181 0.7731 0.7364
FCN None 0.7556 0.8182 0.7731 0.7364
CNN PCA (16) 0.4074 0.4091 0.4656 0.3437
CNN None 0.7624 0.7273 0.7510 0.7750

for our larger models, we are evaluating whether the residual connections can improve
the models’ predictions. For the ovarian cancer data set, FCN and CNN achieve the best
performances, followed by a linear SVM. Therefore, we apply these models again to the
task of amyloidosis subtyping and also test new architectures: a two-layer LSTM and a
two-layer and four-layer convolutional models with residual connections. Again, we use
the commonly used LDA and SVM methods as a baseline to evaluate the performance of
our networks.

We train all classifiers on individual spectra while monitoring the performance on the
validation set. The model with the highest accuracy score on the validation data is used
to evaluate the performance on the unseen test data. We retain the processing pipeline
established in Section 3.5, consisting of median normalization, removal of patient samples
with small tumor regions, 3-fold cross-validation, and a majority voting scheme.

In the first experiment, we focus on the comparison of neural network based classifiers
and the baseline LDA and SVM. Model configurations yielding the best accuracy for
four different model architectures are presented in Table 3.9. Two models are single-layer
networks (FCN, CNN), and the Recurrent as well as the Residual model consists of
two layers. As explained in the model search section 3.5, parameter configurations are
determined using random search. As before, increasing the depth of model architectures
leads to improved training accuracy up to 99% for the Recurrent model, but prediction
accuracy on the validation set drops.

Following the 3-fold cross-validation scheme, we first compare the network model
performances to LDA and SVM. The comparison is carried out on the first split and all
results are listed in Table 3.10. The simple FCN and LDA underperform with a patient
accuracy of 65% and 69%. From the experiments in Table 3.8, we know that the FCN
model does not benefit from features previously extracted by other methods. For NMF

62

3.6. Amyloidosis

Table 3.9.: Parameter configurations for models with the highest accuracy on the test set.
The most impactful parameters are the learning rate and regularization factor.
Two simple-layer models (FCN, CNN) and one two-layer model (Residual,
Recurrent) were tested.

Model L1 weight Batch Size LR Kernel Size Channels
FCN 10−3 100 10−4 - -
CNN 10−4 150 10−5 128 4
Residual 10−3 50 5 · 10−3 (128, 128) (8,8)
Recurrent 10−4 100 10−5 (256, 128) 4

Table 3.10.: Prediction accuracies for all network classifiers and both baseline models on
the first cross-validation split. Except for the dense FCN model, all networks
achieve promising results with an accuracy ranging from 78% to 86% on the
patient level. The best prediction of baseline methods is achieved by the
linear SVM with 78%. The networks outperform the baseline methods by
8% on the patient level. Best results marked in bold numbers.

Model Split Accuracy (spectrum) Accuracy (patient) Sensitivity Specificity
FCN I 0.5939 0.6522 0.5369 0.6592
Residual I 0.8334 0.7826 0.8267 0.8411
CNN I 0.8048 0.8696 0.8414 0.7627
Recurrent I 0.8165 0.8261 0.8146 0.8188
LDA I 0.6594 0.6957 0.5964 0.7315
SVM-lin I 0.7951 0.7826 0.8124 0.7754
SVM-rbf I 0.7398 0.7391 0.7570 0.7201

the results get worse and in combination with PCA the model achieves the same level of
accuracy as used without it. CNN models achieve better results without prior feature
extraction, probably due to the small size of the selected features. We decided not to use
PCP, because previously the time taken to calculate was too long and the benefit minor.

Both SVM variants display improved results compared to LDA and FCN with patient
accuracy of 78% and 73%. The linear SVM variant interestingly outperforms its RBF-
kernel counterpart in every metric, delivering more reliable predictions on both the
spectra and patient level. But both variants lack the performance of the remaining three
network models with a gap in accuracy ranging from 4% to 13%.

These results suggest focusing on the network models, as the conventional machine
learning tools under-perform and do not provide any benefits over networks. To determine
the overall best-fitting model type, we evaluate all network models on the full cross-
validation split. In Table 3.11, the accuracies on spectrum and patient level as well as the
sensitivity and specificity of patient prediction are listed. The Residual model achieves
the best accuracy of all models when averaging over all splits. On the spectrum level,

63

Chapter 3. Deep Learning with Applications to MALDI Mass Spectrometry Imaging

Table 3.11.: Prediction accuracies for all network classifiers. Displayed are the remaining
two splits of the 3-fold cross-validation and the mean accuracies over all
splits including the results shown in Table 3.10. Best results marked in bold
numbers.

Model Split Accuracy (spectrum) Accuracy (patient) Sensitivity Specificity
FCN I 0.5939 0.6522 0.5369 0.6592

II 0.7556 0.8182 0.7731 0.7364
III 0.7259 0.7 0.8472 0.5912
∅ 0.6918 0.7235 0.7191 0.6623

Residual I 0.8334 0.7826 0.8267 0.8411
II 0.8266 0.7727 0.7397 0.9218
III 0.7539 0.75 0.8830 0.6106
∅ 0.8046 0.7684 0.8165 0.7912

CNN I 0.8048 0.8696 0.8414 0.7627
II 0.7624 0.7273 0.7510 0.7750
III 0.7478 0.7 0.8623 0.6207
∅ 0.7717 0.7656 0.8182 0.7195

Recurrent I 0.8165 0.8261 0.8146 0.8188
II 0.7614 0.6818 0.6472 0.8866
III 0.7545 0.8 0.7801 0.7261
∅ 0.7775 0.7693 0.7473 0.8105

it correctly classifies 80% of samples and 75% on the patient level. Only the Recurrent
model displays a better patient level prediction accuracy of 76%.

In Figure 3.9, the patient prediction for the Recurrent and Residual model as well as
the best-performing SVM on the evaluation split one are provided. On the patient level,
the Recurrent model achieves the overall best accuracy followed by the Residual model,
which achieves better performances on the spectra level.

3.6.3. Leaking Information
A major problem in the combination of MALDI-MSI and machine learning tools is often
insufficient separation of training and test data. As pointed out in [Des22], most studies
rely on manual or algorithmic feature extraction prior to applying machine learning
algorithms, which eventually leaks information from the test set into the training set.
Many researchers in the field of MALDI-MSI do not have a machine learning background
and are unaware of this problem.

To verify that the given models learn meaningful features for the classification task,
we applied a random label test for our best-performing model. This approach is similar
to the suggestions in [Des22] to test whether information leaked into the test set. In this
test, the class labels are randomly assigned to each patient.

64

3.6. Amyloidosis

Ground truth Residual

Recurrent linear SVM

Figure 3.9.: Top left: Ground truth of the amyloidosis test split I. Top right: Prediction
of the Residual model on the patient level. Bottom left: Predictions for
the Recurrent model. Bottom right: Results for the linear SVM. False
classified patient samples are marked by a purple circle. All models have
an intersection of four patients that are not correctly predicted. Such
a result may indicate that the samples in question have characteristics
that make prediction difficult. Possible reasons range from an incorrectly
transmitted label to low tumor incidence, and the samples are candidates
for re-examination by an expert.

65

Chapter 3. Deep Learning with Applications to MALDI Mass Spectrometry Imaging

Table 3.12.: Results for the best scoring model with randomized labeling in the training
set (values for patient in parentheses). The table shows ATTR sensitivity
and specificity, the corresponding values for AL-Control are given by the
opposite ATTR value. We evaluated the Residual model on a randomized
version of all three data splits in Table 3.7. Best results marked in bold
numbers.

Model Split Accuracy Sensitivity Specificity
Residual random (I) 0.4046 (0.3478) 0.8889 0.0
Residual random (II) 0.5228 (0.5455) 0.0 1.0
Residual random (III) 0.5259 (0.5500) 0.0 1.0

This process is applied only to the training set, keeping the validation and test set
untouched and therefore with the correct class labels. This results in a new training set
with patient samples having incorrect labeling. The best scoring model from Table 3.10
is evaluated again using the corrupted data. All other parameters are kept fixed and
splits are the same as before (Section 3.3.1).

If, as explained in [Des22], information from the test or validation data set would be
included in the training, the classification of test data would result in high accuracies.
This is because the data set would be fully learned and classification would not be based
solely on the incorrect labels in the training data set.

The classification scores for each split drop, displaying a prediction accuracy in the
range of 40% to 53% for the given test set (Table 3.12). Again, we consider the two-class
problem classifying amyloidosis. The corrupted data causes problems in predicting the
patient samples correctly, demonstrating that the presented data splitting prevents the
information from leaking into the test set. The results, especially the sensitivity and
specificity values, suggest that no meaningful features can be learned from the corrupted
data. Instead, a single class is assigned to all samples and an accuracy of about 50% is
obtained.

3.6.4. Summary and Discussion
We extended the application of neural networks to MALDI-MSI data. For distinguishing
the amyloidosis type ATTR from the AL subtype grouped together with amyloidosis
plaque-free samples. All network models were evaluated in comparison to the established
classifiers as SVM and LDA. Additionally, we tested if feature extraction/ dimensionality
reduction benefits prediction precision.

In previous experiments (Section 3.5) network models outperformed other classifiers
on MALDI-MSI data. On our amyloidosis data set, the overall accuracy was lower
compared to the ovarian cancer data set. Feature extraction generally did not benefit
the prediction accuracy, and — previous similar results — the best-performing models
were neural networks without feature extraction. The margin to the baseline classifiers
widened in the case of amyloidosis plaque classification. This indicates that more complex

66

3.7. Pancreas

network models are needed to handle this task which exhibits an even smaller number of
samples compared to the ovarian cancer data set, while the feature size remains the same.
Interestingly, more complex and deeper model architectures did not increase prediction
accuracy. The scarcity of samples in the amyloidosis data set appears to prevent deep
models from generalizing well. While there are some features distributed over the whole
spectrum, the most important correlations between peaks appear to occur in a more
narrow neighborhood.

For the CNN, Recurrent, and Residual models, prediction accuracy dropped after
majority voting and computing scores on a patient level. In the case of the Residual
model, accuracy dropped by 4% to 75%. For the two-class problem, the decision threshold
is set to 50%. Since statistics over a relatively small number of patient samples can easily
be affected by a single misclassification, the drop at the patient level can be attributed
to these borderline cases. In the future, it could be beneficial to incorporate model
confidence into the voting process or the training itself.

The Residual model achieved the best overall performance, followed by a CNN
without skip-connections. Compared to the baseline methods, our classifiers achieved an
improvement of 4% to 13%.

Winter et al. [Win+17] report remarkable prediction accuracies for the classification of
ATTR and AL plaque types. They achieved an accuracy of 93.9% after cross-validation,
a potential improvement of 17% over our best model. We believe that multiple factors
contribute to this astonishing difference. First, the tissue sections in [Win+17] can
be considered to be labeled more broadly. The authors do not use the MALDI-MSI
spectra themselves to classify large tissue sections but a statistic over a rather low-
dimensional space of six predetermined features. Whereas our data attribute a label to
every measurement and, as discussed in Section 3.3.1, this leads to strong noise artifacts
and potentially mislabeled measurements containing no plaque at all. Second, we refer to
the work of [Des22], which points out the possible pitfalls when testing the distinctiveness
of single peaks before classification. The hand-designed filter to extract reliable features
for ATTR classification brings the risk of information leaking out of the test set. In
general, we consider the process of evaluating the classification performance of possible
features before the classification stage questionable. We agree with the findings in [Des22]
that this practice is highly prevalent in MALDI-MSI studies and can lead to unreliable
studies with impressively high reported accuracies up to 100%. For this reason, we took
care to clearly separate training and validation from test data. We remark that [Des22]
cite our publication [Kle+19] as an example of good practice in the field of MALDI-MSI.

3.7. Pancreas
We further investigate architectural designs for neural networks in MALDI-MSI using a
pancreatic cancer data set. It is the largest MALDI-MSI data set yet with hundreds of
patient samples and a large feature space with a spectra length of 53 397 m/z positions. In
previous sections, we were able to demonstrate that neural networks yield higher accuracy
applied to MALDI-MSI data than their established linear counterparts. Therefore, we

67

Chapter 3. Deep Learning with Applications to MALDI Mass Spectrometry Imaging

Table 3.13.: Data set sizes after random split (percentage of total in parentheses). Samples
from individual patients are distributed across the three data sets. Care is
taken to ensure that approximately 50% of the patients are used as training
data, 20% are used for evaluation during training, and 30% are used in the
test data set. The training and test data sets are preferentially populated,
so the evaluation data set can be smaller.

Training Validation Testing
Patient Spectra Patient Spectra Patient Spectra

Data set I 267 (51.1%) 14348 (50.3%) 100 (19.2%) 5578 (19.5%) 100 (19.2%) 8627 (30.2%)
Data set II 270 (51.7%) 14323 (50.2%) 97 (18.6%) 5611 (19.7%) 155 (29.7%) 8619 (30.1%)
Data set III 254 (48.7%) 14297 (50.1%) 102 (19.5%) 5577 (19.5%) 166 (31.8%) 8679 (30.4%)

focus on the Transformer, as well as the influence of a new preprocessing step to filter
non-informative spectra.

3.7.1. Data
Pancreatic ductal adenocarcinoma (PDAC) accounts for more than 90% of all pancreatic
malignancies and has generally poor prognosis [Kle+16]. We investigate the feasibility
of neural networks to accurately classify pancreatic ductal adenocarcinoma based on
MALDI-MSI measurements. Tissue samples from 450 patients, diagnosed with exocrine
pancreatic cancer, were prepared at the University of British Columbia. The tumor tissue
specimens are categorized as ductal adenocarcinoma patients (n = 261) and non-ductal
(n = 189) with the largest subgroup Ampullary carcinoma (n = 103). Other pancreatic
cancer types are: Acinar cell carcinoma, carcinoma NOS (n = 1), chronic pancreatitis
(benign, n = 3), intraductal papillary-mucinous carcinoma-invasive (n = 6), intraductal
papillary-mucinous carcinoma-noninvasive (n = 6), mucinous cystic neoplasm-noninvasive
(n = 6), mucinous noncystic carcinoma (n = 6), neuroendocrine tumor (n = 41), pseudo-
papillary tumor, serous cystadenoma (n = 1), and signet-ring cell carcinoma (n = 1).
Peptide signatures extracted from tissue samples yield 434 aligned m/z values in the
range of 800–3200 dalton. Table 3.13 shows the data splits for cross-validation.

The study was designed by Steve Kalloger and David F. Schaeffer from the Department
of Pathology and Laboratory Medicine, University of British Columbia. The annotation
was performed by Axel Wellmann from the Institute of Pathology, Celle. Founding was
provided by the BMBF-MSTAR grand.

3.7.2. Experiments and Results
In previous sections we developed a process pipeline for MALDI-MSI data, consisting
of a filtering step, data set generation for cross-validation and various neural network-
based classifiers. This processing pipeline is tested in the context of pancreatic cancer
classification, the most challenging task due to its enormous size and molecular similar

68

3.7. Pancreas

Table 3.14.: Class distribution for the metastasis prediction problem. The class Ductal-
pN1 accounts for nearly half of all spectra in the data set. The cancer type
Ampullary accounts for 40% of spectra with an even split between metastasic
and non-metastasic cases. The class shares of the total data set are given in
parentheses.
Count Ampullary-pN1 Ampullary-pN0 Ductal-pN1 Ductal-pN0

Spectrum 25812 5015 (19.43%) 5139 (19.91%) 12165 (47.13%) 3493 (15.53%)
Patient 630 99 (15.71%) 93 (14.76%) 335 (53.17%) 105 (16.67%)

tissue types. We introduce a more recent model, the Transformer [Vas+17], to MALDI-
MSI. The tremendous success of this model for sequential data makes it an interesting
candidate for analyzing MALDI-MSI spectra. The Transformer and its various succes-
sors [Fuc+20; Dev+18; Bro+20; Dos+21] define current benchmarks in a multitude of
tasks such as image captioning, language processing, and image generation. A drawback
of the Transformer model is memory consumption (see Chapter 2, Section 2.3). As a
result, all experiments are conducted on up-scaled hardware in form of a 2x6-core Intel
Xeon Gold 6128 CPU @ 3.40GHz with 24 logical cores and 3x GeForce RTX 2080 Ti
GPUs with 11 GB of memory each. We omit the baseline methods due to their inferior
performance in the previous experiments and focus on filtering as well as balancing
strategies.

Metastasis Prediction. The previous success of our models encourages us to test them
in a more challenging medical scenario. An influential factor, that heavily impacts the
survival rate in cancer treatment, is the development of metastasis. Therefore, metastasis
prediction is a highly valuable field of study. Based on the rich metabolic information
MALDI-MSI provides, the question arises whether the development of metastasis can be
predicted using a combination of spectral imaging and machine learning. Investigation of
this question results in a four-class problem, with the classes Ductal-pN0 (no metastasis),
Ductal-pN1 (metastasis), Ampullary-pN0, and Ampullary-pN1. One problem that
becomes evident immediately is class imbalance. The dominant class Ductal-pN1 has
12 165 samples, nearly half of all samples in the data set. The smallest class Ductal-pN0
accounts for only 3493 samples. Class distributions can be found in Table 3.14. The
influence of imbalanced data on the training of neural networks is well documented [HG09].

As a reference point for potential balancing strategies, we train a Residual model,
which achieved the best performance classifying amyloidosis plaques (Section 3.6). We
employ the two-layer Residual model with kernel sizes of 255 and 127. The number of
feature channels is 32 and 16 for the first and second layers. The learning rate is set to
10−5 and no weight regularization is used.

The results for metastasis prediction are unsatisfactory for this reference model. The
mean accuracy over all three splits is 66% on the spectrum and 68% on the patient level.

69

Chapter 3. Deep Learning with Applications to MALDI Mass Spectrometry Imaging

Table 3.15.: Accuracy for the Residual model for predicting metastasis development from
MALDI-MSI data. The first four rows indicate that the model struggles
to predict metastasis development. Different balancing strategies are used
to counter class imbalance in form of inverse frequency weights (invBal)
or class member downsampling (minBal). Sensitivity and Specificity are
provided for class Ductal-pN1 on the patient level. Best results averaged
over all splits are marked in bold numbers.

Model Split Accuracy (spectrum) Accuracy (patient) Sensitivity Specificity
Residual I 0.6294 0.6503 0.8667 0.6176

II 0.6809 0.6966 0.8219 0.7083
III 0.6851 0.6993 0.9028 0.7183
∅ 0.6651 0.6821 0.8638 0.6814

Residual (invBal) I 0.6116 0.6434 0.8533 0.6471
II 0.6813 0.6966 0.7945 0.7222
III 0.6825 0.7133 0.8889 0.7606
∅ 0.6585 0.6844 0.8456 0.71

Residual (minBal) I 0.6123 0.6783 0.88 0.6471
II 0.5779 0.6138 0.8108 0.7042
III 0.6515 0.6853 0.8889 0.7465
∅ 0.6139 0.6591 0.8599 0.6993

In Table 3.15, the sensitivity and specificity values for the dominant Ductal-pN1 class are
provided. The unbalanced class distribution results in many samples incorrectly classified
as Ductal-pN1, as is evident by the high sensitivity and low specificity.

To counteract the class imbalance, we test two different balancing strategies. First,
a weight is assigned to each class to increase the impact of smaller classes during the
loss computation. The weight is determined by the inverse frequency of samples in the
corresponding class. Second, we force each class to have the same number of samples
before constructing the training set. We test maximum and minimum balancing, both
balancing strategies are described in greater detail in Section 3.3. Balancing is only
applied to the training and validation sets, the class distribution in the test set is
unchanged.

Keeping the model design and parameters fixed, we evaluate whether balancing
improves the model’s performance for metastasis prediction. As can be seen in Table 3.15,
balancing does not improve the overall prediction accuracy. Training with inverse
frequency weights yields a similar level of accuracy, sensitivity, and specificity. For the
minimum balancing the prediction is even worse, dropping 5% on the spectrum and 2%
on the patient level. Overall accuracy is not affected by balancing the class distributions.

Inspection of the confusion matrices in Figure 3.10 reveals two interesting aspects.
When comparing the confusion matrix for the model predictions without balancing on
the left side and with balancing on the right side, it becomes evident that balancing can

70

3.7. Pancreas

Figure 3.10.: Confusion Matrices for predictions of the Residual model in Table 3.15.
Left: Residual model without balancing strategies. The dominance of
Ductal-pN1 results in high accuracy for that particular class with low
accuracies for all other classes. Apart from Ampullary-pN1, all classes are
most often wrongfully classified as Ductal-pN1. Right: Influence of inverse
frequency balancing on the prediction accuracy. Balancing is able to reduce
miss-classification as Ductal-pN1 for the Ampullary tumor type, but does
not change the rate for Ductal-pN0.

reduce the influence of the class imbalance. This corresponds to the shift in sensitivity
and specificity for the prediction of Ductal-pN1. But the changes are minor reducing
misclassification of Ampullary to Ductal by 4% and 7%. The misclassification within the
Ampullary classes benefits the most, gaining 9% in accuracy.

Since balancing does not yield increased accuracy, we investigate adding a special layer
to the model. Voting after classification on the individual spectrum often worsens the
results. This can be contributed to the low patient count compared to the fast number
of spectra in total. Misclassification of one patient sample can lead to a drop in accuracy
of multiple percentage points. We employ a Voting Layer before loss calculation to
shift the model’s focus away from the spectra level towards the clinically relevant patient
level. The design of the Voting Layer is presented in detail in Section 3.3.1.

Again, we use the Residual model to evaluate the influence of the proposed additional
layer. To train models with a Voting Layer increases instability related to the choice
of parameters. The parameter search often produces model configurations, where the
loss does not converge during training. These models tend to assign a single class to all
samples, which not necessarily has to be the dominant class. The Voting Layer often
hinders learning, recognizable by low validation accuracy scores during training.

The test results are inferior compared to the original model or balancing strategies. The
mean accuracy of approximately 58% is a loss of six percentage points when compared
to the original model. Overall it can be said that the current implementation of voting
into the training procedure does not increase the model’s performance.

Particularly interesting is the fact that misclassification is most prevalent within the
tumor type classes (Ductal/Ampullary). We suspect that MALDI-MSI in combination

71

Chapter 3. Deep Learning with Applications to MALDI Mass Spectrometry Imaging

Table 3.16.: Effects of the Voting Layer. For sensitivity and specificity, only the Ductal-
pN1 results are reported. The Voting Layer forces the model to operate on
the patient level. Therefore the results for the three split cross-validation
are reported on the patient level. Compared to the raw model or balancing
strategies, the Voting Layer delivers inferior predictions.

Model Split Accuracy Sensitivity Specificity
Residual (+ Voting Layer) I 0.5594 0.7866 0.6029

II 0.6069 0.8513 0.5352
III 0.5734 0.9861 0.3943
∅ 0.5799 0.8747 0.5108

with machine learning does not enable reliable metastasis prediction. The reasons can be
manifold, including the possibility that proteomic and metabolic patterns are too similar
and changes within too minor to be detected. Therefore, we omit metastasis prediction
and focus on differentiating between the ductal (PDAC) and non-ductal (non-PDAC)
types.

PDAC vs. non-PDAC. PDAC and non-PDAC tumors show large differences in patient
survival rate and reliable diagnostics to identify PDAC are currently not adequately
available. In the following section, we present our work Classification of Pancreatic
Ductal Adenocarcinoma Using MALDI-MSI combined with Neural Networks [Kan+23],
published in Cancers Special Issue Advances in Mass Spectrometry Imaging-Based
Cancer Research 2023.

Current classification strategies for PDAC use a univariate approach by identifying
single m/z peak locations, followed by the evaluation of these m/z peaks in their ability
to discriminate between pancreatic ductal adenocarcinoma and ampullary carcinoma.
This is achieved using Receiver Operator Characteristics (ROC) analysis to a total of
435 m/z peak locations from both ductal and ampullary carcinoma. A total of 131 m/z
peak locations are identified, expressing discriminative intensity distributions between
PDAC and ampullary carcinoma (AC). The discriminative power is measured by the
area under the curve (AUC), and a peak is considered if its AUC value is either above
0.7 or below 0.3.

As a result, three proteins are identified, displaying significantly higher intensity
distributions in PDAC tumor regions compared to ampullary carcinoma (Figure 3.11).
These proteins are promising candidates for potential biomarkers to distinguish PDAC and
non-PDAC samples. The seven m/z locations corresponding to the PELC, AHNAK, and
COLA3 proteins are listed in Table 3.17. These proteins have known biological functions
in PDAC development. PLEC drives proliferation, migration, and invasion [Shi+13].
AHNAK also influences proliferation as well as migration [Zha+19a] and COL6A3 is
a potential prognostic factor for PDAC [Svo+20; Kan+14]. Also, these three proteins
are potentially interesting biomarkers, the AUC value of approximately 0.7 does not

72

3.7. Pancreas

Amullary carcinoma Ductal adenocarcinoma

(a)

(b)

(c)

(d)

Figure 3.11.: Discriminative protein markers for pancreatic ductal adenocarcinoma and
ampullary carcinoma tissue sections. For orientation, results of hematoxylin
and eosin (H&E) staining are provided in the first row (a). Three marker
proteins were identified at the positions (b) m/z 1459 assigned to COL6A3,
(c) m/z 1479 assigned to Plectin and (d) m/z 1267 assigned to AHNAK
are shown. All three proteins display increased intensity distributions
in ductal adenocarcinoma. Black lines delineate the tumor border area.
Purple indicates low intensity and yellow indicates high intensity at the
corresponding m/z position.

73

Chapter 3. Deep Learning with Applications to MALDI Mass Spectrometry Imaging

Table 3.17.: Differential intensity distributions of peptides (MALDI-MSI) and
their corresponding proteins in tissue sections from pancreatic ductal
adenocarcinoma and ampullary carcinoma tissue (tumor regions).

m/z value AUC (AC/PDAC) Protein
1459.7 0.721 Collagen alpha-3(VI) (COL6A3)1586.8 0.700
1267.7 0.715 AHNAK1655.8 0.719
1461.7 0.710

Plectin (PLEC)1479.8 0.714
2115.1 0.701

support PDAC assessment in a clinical setting. Furthermore, several studies demonstrate
that multivariate statistical treatment of MALDI-MSI data achieves superior results
compared to the baseline univariate marker identification [McC+05; DBS10; Jon+11;
Ves+14]. Multivariate statistics utilize the complete spectral information, thus obtaining
differences that are undetectable using univariate methods. Machine learning algorithms
have the potential to explore statistical correlations, find similarities within spectral
subgroups, and use these findings to classify the data.

In order to do so, we apply neuronal network models to the pancreatic cancer data
set. Our experiments for the metastasis prediction demonstrated that class imbalance
is a major concern while working with the data. Therefore, we aim to reduce the
impact by performing the classification of PDAC (n = 260) against all non-PDAC
(n = 189, including 103 ampullary carcinoma patients). We employ several models as
classifiers: a two-layer Residual model and an encoder-only variant of the Transformer
architecture [Vas+17], see Figure 3.12 for the modified version.

The Residual model is used as a baseline, due to its performance in classifying
amyloidosis plaque types. For the Transformer model, the size of the attention matrices is
n×n, where n denotes the sequence length. A spectrum consists of several thousand data
points, rendering the application of a Transformer to the full-scale spectrum unfeasible.
Consequently, we reduce the sequence length using a preceding pooling layer with a
kernel size of 4. We choose the size based on the scale of a single peak, consisting of
3 individual data points. After a parameter search over the learning rate, batch size,
channel dimensions, and the number of heads, we arrive at two model configurations
that perform best on the test set, which we refer to as Transformer-1/2 (Table 3.18).
Again, we initialize the model weights by randomly selecting values from a truncated
normal distribution (Xavier). As activations, the Rectified-Linear-Units (ReLU) function
is used as well as the Adam optimizer.

During the random search over parameter configurations, we observe a high sensitivity
to the choice of the learning rate for both the Residual and Transformer model. For
this reason, the best-performing models use similar learning rates of 10−4 to 10−5. Rates

74

3.7. Pancreas

Figure 3.12.: Transformer architecture in the encoder-only variant utilized in this thesis.
The original design in [Vas+17] is largely kept with minor changes to the
input embedding: The MALDI-MSI spectrum can be seen as a histogram
correlating mass counts to detection time. These spectra are by nature
numeric data and do not need to be embedded, as is the case with text. As
a result, the embedding layer can be omitted and the inputs fed raw to the
Transformer-Encoder. We enable classification by adding the softmax layer
from the original Transformer decoder path on top of a multi-layer encoder
structure. The Lx indicates that the grey encoder block can be repeated
multiple times and all Transformer models in this work are composed of
the here displayed encoder building block.

Table 3.18.: Parameter configurations for the Residual and Transformer models. The
number of heads is exclusive to the Transformer architecture.

Model Kernel Size Channel Learning Rate Batch Size Heads Pooling Size
Residual (200, 100) (16, 8) 10−5 100 - -
Transformer 1 (256, 256) (16, 8) 10−4 100 2 4
Transformer 2 (512, 512) (16, 8) 10−4 500 2 8

75

Chapter 3. Deep Learning with Applications to MALDI Mass Spectrometry Imaging

Table 3.19.: Results for neural network models. Given are the model classification
accuracies for spectrum and patient predictions. Best accuracy in bold
numbers.

Model Split Accuracy (spectrum) Accuracy (patient)
Residual I 0.86 0.86

II 0.76 0.77
III 0.77 0.76
∅ 0.80 0.80

Transformer1 I 0.85 0.86
II 0.78 0.77
III 0.77 0.77
∅ 0.80 0.80

Transformer2 I 0.83 0.84
II 0.77 0.76
III 0.78 0.79
∅ 0.80 0.80

outside of this range cause the loss either to decrease (higher rates) or to not converge at
all (lower rates). The other parameters, i.e., batch size and channel dimension, do not
show the same effect. Increased network depth does not improve accuracy but ultimately
harms performance.

Application of the noise filter (Section 3.3.1) results in an increase of 3% in accuracy
for all tested models. The filter excludes 2183 grid points, accounting for approximately
13% of spectra. The Transformer model achieves an accuracy of 85% on the spectral level
and gains an additional percent if evaluated on the patient level (see Table 3.19). But
the best performance is again achieved by the Residual model with an accuracy of up to
86% on both the spectral and patient level. Averaged over the 3-fold cross-validation, the
Residual model achieves an accuracy of 80% on both levels. The Transformer attention
mechanism seems to not improve on the prediction compared to the Residual model’s
skip connections.

3.7.3. Summary and Discussion
Univariate methods and single protein marker classification do not produce sufficient
accuracies for PDAC classification. This can be attributed to tissue heterogeneity and
the large data size complicating reliable identification of relevant molecular patterns. We
demonstrated that neural networks offer an alternative to univariate approaches. Our
models were able to differentiate between PDAC and non-PDAC tissue with an accuracy
of up to 86% and sensitivity of 82% and allow for an accurate and quick prediction of
large data sets with limited preprocessing.

We evaluated the performance of two model architectures: a Residual model, based on

76

3.8. Conclusion

the original ResNet architecture [He+16], and the popular Transformer model [Vas+17]
in an encoder-only variant. The Residual model achieved the best performance on a
single split but overall both architectures were able to predict PDAC with an accuracy
of 80%.

Additionally, we proposed a preprocessing step to tackle the problem of noise due to
structurally non-informative spectral data points. We addressed this caveat, utilizing only
properties of the spectrum itself without the need for user interaction. Our filter reduces
noise by excluding spectra before the classification step. In the case of the pancreatic
cancer data set, we were able to identify 2183 spectra with low informativeness, resulting
in an increased accuracy of 3% across all models.

3.8. Conclusion
We evaluated the application of neural network-based classification combined
with the MALDI-MSI technique. Neural networks proved to be a good alternative to
the currently employed classification algorithms, often improving on the results these
methods are able to achieve. These results encourage a more frequent usage of neural
networks in the context of MALDI-MSI.

In Section 3.5 we employed neural networks to classify four subtypes of ovarian cancer.
These subtypes share many morphological structures and classification thereof is regarded
as a complex task. In contrast to predeceasing studies, we advocate utilizing the full
spectral range instead of commonly-used feature extraction. Neural networks express
great capabilities for automatic feature extraction, due to their layered structure. The
hierarchical design allows the modeling of more complex features.

As mentioned in Section 3.2, so far, few works applied neural networks to raw
spectral input. The IsotopeNet [Beh+17] is characterized by a thorough analysis of
the morphological/proteomic structures in the given data set. As a result, the network
model achieves high prediction accuracies. But, as we demonstrated in Section 3.5, is
not seamlessly adaptable to any MALDI-MSI data set. The basis of the IsotopeNet is a
Residual network with skip connections, which we use as inspiration for later model designs
in Sections 3.6, 3.7. In accordance with the findings in this thesis, the work in [Mit+21]
also successfully employed neural networks in a MALDI-MSI setting. The authors
state that few-layer models are sufficient to outperform decision tree algorithms, similar
to our observations concerning the relationship between model depth and prediction
performance.

For the ovarian data set, our models achieved the best performances in terms of
prediction accuracy, proving superior to established methods, such as LDA and SVM.

Commonly machine learning algorithms are combined with feature extraction when
employed in MALDI-MSI, which can either be automatic (e.g. PCA, NMF) or hand-
designed (peak picking). We demonstrated in Section 3.6 that feature extraction harms
the network’s performance in many cases and the best results are achieved when omitting
feature extraction.

At this point it is necessary to mention a common mistake when working with hand-

77

Chapter 3. Deep Learning with Applications to MALDI Mass Spectrometry Imaging

designed features: In many studies utilizing a combination of machine learning and
MALDI-MSI, data sets are not sufficiently separated. This leads to unreasonably high
prediction rates while working with manual features, as demonstrated in [Des22]. In our
experiments, the implementation of data splitting based on patients prevents information
from leaking into training. We also advocate against testing the separation capabilities of
features before the classification step, a common practice while working with MALDI-MSI
data.

Although reliable metastasis prediction currently appears to be out of reach (Section 3.7),
we successfully applied our models to the classification of pancreatic ductal adenocarcinoma,
a prevalent and difficult-to-diagnose disease. We found that MALDI-MSI data contains an
additional noise source, apart from the ones described in the literature [Dei+11; Nor+07].
We designed a filter to remove spectra with low informativeness as a preprocessing step,
which resulted in an increased accuracy of 3% for the PDAC classification. Moreover, we
tested the recent Transformer architecture in the field of MALDI-MSI, demonstrating
performance on the level of our best-performing model.

78

Part II.

Meta-Learning for Image Registration

79

4. Image Registration Fundamentals
In this chapter, we focus on image registration as well as the registration framework used
in this thesis. First, we give a general introduction to the concept of image registration
in Section 4.1, which serves as a basis to better understand the newly developed network-
based methods presented in Chapter 5. Discretization is discussed in Section 4.2 and
relevant optimization methods are presented in Section 4.3 along with the line search
and multi-level scheme. Optimization is central to the methods developed in this thesis,
which serve as a bridge between classical and learning-based approaches, as the classical
formulation provides the basis on which we build our methods. Section 4.4 provides an
overview of the benchmark toolboxes, which will be used in Chapter 5 to compare our
methods to baseline variational methods.

4.1. Image Registration
In the following, we expand on the brief introduction to image registration in Chapter 1
and the implementation details. We focus on the alignment of two gray-valued images,
denoted as a fixed reference image R : R2 → R and a template image T : R2 → R. A
deformation field ϕ : R2 → R

2 maps points from the reference to the template image
domain. The goal is to find ϕ so that the deformed template image T ◦ ϕ is similar to
the reference image regarding a given similarity metric. We can differentiate between
two forms of transformation, globally operating affine and local nonlinear (deformable)
deformations. Finding a suitable transformation function is classically formulated as an
optimization problem,

min
ϕ

f(ϕ), f(ϕ) := D(R, T ◦ ϕ) + γS(ϕ), (4.1)

with a similarity metric D, a regularizer S, and a tuneable weight γ > 0. The
objective function f often displays multiple local minima. Therefore, developing robust
optimization algorithms is a field of intense research in image registration. Multiple
methods aim to solve the optimization problem in (4.1). We categorize these into classical
variational methods [Ami94; Mod03; Bre+19; DR04; DGM98] and neural network based
approaches [Bal+19; She+19; MC21b; BHH21].

4.2. Discretization
We follow the discretize-then-optimize approach used in FAIR [Mod09]. The objective
function f and transformation ϕ are discretized on regular grids of equidistant points on

81

Chapter 4. Image Registration Fundamentals

the image domain
ΩR := (ω1, ω2)× ...× (ω2d−1, ω2d) ⊂ R

d. (4.2)

The location of grid points in the discretized domain can differ depending on the grid.
Prominent examples of grid types in the literature are cell-centered, nodal, and staggered
grids. Depending on the discretization and desired properties, for example, during image
interpolation, a cell-centered grid can be employed [HM06]. In this thesis, we discretize
images and transformations on cell-centered grids, which are well-suited for our use case.
Since they are easy to use and allow us to take advantage of the automatic differentiation
tools of the PyTorch framework. The number of cells in each dimension is given by
m̄ := (m1,m2, ...,md) and the size of a cell is determined by the spacing h := (h1, ..., hd).
The cell center coordinates are defined as

xj :=

(

ω1 + h1

(

i1 −
1

2

)

, ..., ω2d−1 + hd

(

id −
1

2

))

, (4.3)

with multiindex i = (i1, ..., id), il = 1, ...,ml for l = 1, ..., d. We arrange all coordinate
components in a lexicographical fashion and store them in a single vector x =∈ R

dm. See
Figure 4.1 for a visualization of a cell-centered grid. We can discretize an image I in a
similar fashion and define a function

I(x) := (I(xk))k=1,...,m ∈ R
m (4.4)

mapping the coordinates to a vector of image intensities. Here m =
∏

k mk denotes the
total number of cells. The given grid notations are used to define our loss function in
Chapter 5. For a more detailed discussion of grids see [Pap08] and [Mod09].

Interpolation. In practice, images are discrete data on a regular grid of pixels or voxels.
Computing the deformed image T (ϕ) requires evaluating the image at any point of the
continuous domain ΩT which requires image interpolation. Various methods can be
used, such as nearest-neighbor-interpolation [TBU00] or spline-based models [LGS99].
We employ standard bilinear interpolation following [Mod09]. Linear interpolation is
commonly used in the context of medical image registration [Sha+10]. Note that the
interpolation is ideally differentiable when using gradient-based update schemes, such
as backpropagation, in neural networks. Although linearly interpolated images are
not ensured to be continuously differentiable we opted in favor of fast and efficient
computation in this case.

Distance Measure. We established that the energy function in (4.1) consists of two
parts, the distance metric and a regularizer. The distance metric or distance measure
defines image similarity. In this thesis, smaller distance values correspond to a better
alignment of images. We adopt the categorization established in [Kön18] and distinguish
between mono-modal (unimodal) and multi-modal distance measures. For the sake of
completeness, we discuss both variants but solely employ mono-modal distance measures
in Chapter 5. If the images both originate from the same acquisition device (mono-modal),

82

4.2. Discretization

Figure 4.1.: Cell-centered grid on the domain ΩR for a two-dimensional image (d = 2).
The grid points cij = (yi +

h1

2
, zj +

h2

2
) are located at the center of the cells.

The user can choose the cell size (h1,h2), for full-scale images the number of
cells is usually the same as the number of pixels.

this allows us to directly compare the two images. The sum of squared differences (SSD)
is a frequently used distance metric. It is easy to implement, fully differentiable, and
therefore a well-suited candidate for gradient-based methods in the form of (4.7) or neural
networks with their backpropagation update [RHW86]. More advanced variants of the
SSD metric are described in [Pli+08; Hil+01; Du+16].

The discretized SSD metric is

DSSD(ϕ) := h̃

m
∑

i=1

((T ◦ ϕ)i(x))−Ri(x))
2, (4.5)

where h̃ =
∏

d hd. The terms (T ◦ ϕ)(x) as well as R(x) are the discretized deformed
template and reference image as described in (4.4). A discussion of the continuous SSD
measure can be found in [Mod03].

In medical image analysis, we often compare images from different acquisition devices.
As a result, similar structures in the images can vastly differ in image intensity and
prohibit the deployment of methods measuring image similarity by point-wise comparison.
Alternatively, multi-modal distance metrics can be used. A multitude of methods exist
in form of maximization of correlation ratio [SDP13], measurement of image gradient
alignment [HM05; HM06], or modeling similarity by a shared distribution of random
variables [Mae+97]. For a more complete overview of common distance metrics, the
reader is referred to [KBD17; Sha+10].

83

Chapter 4. Image Registration Fundamentals

Curvature Regularizer. As mentioned in Section 4.1 the second part of our energy
function is a regularizer. It is a crucial component of the variational model, especially
for non-parametric deformation. Registration problems usually are ill-posed [Had02]
without a unique and stable solution [Mod03]. Regularization favors specific properties
of the deformation and is regularly based on a physical model of motion [FM02; BMR13].
It does not depend on the image data in (4.1), but only on the displacement itself.
The curvature regularizer [FM03] is popular for real-world problems [Bre+19; Her+19;
Pol+16] and is used throughout all experiments in Chapter 5.

Fisher and Modersitzki introduced the curvature regularizer in 2003 [FM03]. It
is based on the second-order derivatives of the displacement. Given a displacement
u(x) := ϕ(x)− x, the discrete formulation of the curvature regularizer is

Scurv(ϕ) = h̃

m
∑

i=1

d
∑

j=1

(∆u)2i+(j−1)m. (4.6)

Here ∇2u is a finite-differences approximation of the Laplacian. The non-trivial kernel
of the curvature regularizer contains the affine transformations reducing the need for
pre-alignment and favoring smooth deformations.

4.3. Numerical Optimization
Classical registration algorithms for obtaining a suitable deformation are commonly based
on numerical optimization methods [SDP13; Mod03]. In this thesis, we focus on these
methods, which aim to find an approximate minimizer of (4.1). These gradient-based
solvers produce iterative update steps in the form of

xk+1 = xk − αkBk∇f(xk) (4.7)

with a step length αk and a preconditioning matrix Bk. When choosing Bk to approximate
(∇2f(xk))

−1, this results in a “Quasi-Newton Method” [NW06, Chap.6], see also [DS96,
Chap.9]. Note that the calculation of the conditioning matrix Bk can be very time
and memory-consuming. For example, the Newton method requires us to compute the
exact Hessian of the objective function in every iteration and solve a system of linear
equations based on it. An alternative is the use of an approximated Hessian, for instance
in the popular Broyden-Fletcher-Goldfarb-Shanno (BFGS) method. We apply the BFGS
method and especially its adapted limited-memory version for most of the experiments
in Chapter 5 and therefore discuss it in more detail here.

BFGS Method. Instead of computing the next update using Bk, which would require
solving a linear system of equations at each step, an update can be derived for

Hk = B−1k , (4.8)

the inverse approximate Hessian containing the second-order-derivatives for f in (4.1) at
the current iterate xk. This formulation allows the calculation of the search direction

84

4.3. Numerical Optimization

by means of a matrix-vector multiplication. As mentioned above, the BFGS method is
a Quasi-Newton method only requiring the gradient of the objective function at each
iterate [NW06, Chap.6]. For large problems, computing Hk is not feasible due to the high
computational costs. The limited-memory BFGS (L-BFGS) does not store the full dense
matrix but instead uses an implicit approximation represented by a few vectors. These
vectors contain curvature information only from the most recent iterations. Following the
formulation in [NW06, Chap.6] and ∇fk := ∇f(xk), the update for the limited-memory
BFGS takes the form

xk+1 = xk − αkHk∇fk. (4.9)

and the inverse Hessian Hk+1 can be directly updated by

Hk+1 =

(

I − skg
T
k

gTk sk

)

Hk

(

I − gks
T
k

gTk sk

)

+ ρksks
⊤
k (4.10)

where
ρk =

1

g⊤sk
(4.11)

with sk = xk+1 − xk and gk = ∇fk+1 −∇fk the differences in the iterates and gradients
thereof. Here I is the identity matrix. We can limit the number of vectors sk and gk
to k ∈ {K − 1, ..., K − n}, where K is the current step and n ∈ N the number of past
steps we want to include, in this thesis we use n=5. In the first iteration, an initial H0 is
required, we follow the guidelines in [NW06, Chap.6] and set it to

H0 =
1

∇f(0)I. (4.12)

For more details, we refer to [DS96; NW06].

Line Search. Finding a suitable step length α > 0 in (4.7) is crucial for the L-BFGS
method. Various line search algorithms exist to find α so that the objective function
value is sufficiently reduced. Exact line search algorithms test multiple step lengths to
determine an exact minimum, which can be very time-consuming. In contrast, inexact line
search algorithms only require α to fulfill some weaker conditions. One popular example
is the curvature condition [NW06, Chap.3], which ensures the slope of the objective after
the update is reduced by at least some given factor. In this thesis we employ the Armijo
condition [NW06, Chap.3] as proposed in [Mod09], which ensures a sufficient decrease
in the objective function. We also follow the implementation in [Mod09], starting with
α = 1, reducing the step length by half until the condition is met or a maximum of ten
iterations is reached. This serves as a safeguard and stops the optimization, preventing
an update along a non-descent direction causing the optimization to fail. As a result,
the registration is not accurate and usually demands user interaction for the given image
pair. This drawback of line search will be discussed in Chapter 5.

85

Chapter 4. Image Registration Fundamentals

Level 4 Level 3 Level 2 Level 1

Figure 4.2.: Multi-level representations of two images. Top: X-ray image of a hand with
a starting resolution of 128× 128 pixels on the left (level 4), in each level the
image size is halved. The last image on the right has a resolution of 16× 16
pixels (level 1). Bottom: The ML representation for a brain MRI image,
also starts from 128× 128 pixels with a final resolution of 16× 16. The low-
resolution representations (right) produce fewer local minima in the distance
function, due to the reduced detail present in the images. This enables better
compensation of large deformations on coarse image representations.

Multi-Level Scheme. The objective in (4.1) often is non-convex and rarely has a
global minimum but commonly contains multiple local minima. Iterative gradient-based
methods operate in a local fashion and tend to get stuck in local minima. The solution
may not correspond to the desired deformation. A solution to this is a coarse-to-fine
multi-level scheme, solving the registration problem on different resolutions, starting with
a coarse image representation (Figure 4.2). The objective function generally has fewer
local minima on a low-resolution image representation.

We compute image representations of different resolutions by successively sub-sampling
the images to a size of mcoarse = ⌊m

2
⌋ for both reference and template images. Sub-

sampling is achieved using linear interpolation described in Section 4.2. Repeating this
process results in a sequence of differentially coarse resolved image representations. The
corresponding deformation grids are sub-sampled in the same fashion to maintain the
original ratio, between grid and image. Additionally, a low-pass filter can be applied before
sub-sampling [Jäh05; Mod09] to further smooth images and consequently reduce the
number of local minima in the objective function, as the smoothing of images eliminates
detailed structures.

The registration problem is solved iteratively, starting with the lowest resolutions for
the image and deformation grid. As an initial guess for the first iterate, either the identity
transformation or the result of another registration can be used. An upsampled version
of the current level’s result is then used as a starting point for the next finer level. In
order to obtain the versions of the images with different resolutions, we use the bicubic
variant of the interpolation methods of PyTorch.

86

4.4. Benchmark Toolboxes

4.4. Benchmark Toolboxes
For comparison purposes, we will review the FAIR [Mod09] and elastix [Kle+10] toolboxes.
Both toolboxes provide a modular structure to enable the user to design and apply a
registration pipeline for any given problem. We will briefly discuss both variants and
their suitability as benchmark methods.

FAIR. FAIR stands for Flexible Algorithms for Image Registration. It provides state-
of-the-art numerical methods as well as registration techniques implemented using the
MATLAB [MAT18] software environment. FAIR is originally designed for educational
purposes with a special emphasis on the theoretical background. In FAIR, the registration
problem is phrased in a variational setting. An in-depth description of all registration
pipeline modules, such as transformation models, distance measures, regularizers, and
numerical tools, can be found in [Mod09].

Although Python-based our own implementations follow the formulations in FAIR,
consequently the algorithms depicted in Sections 4.2 to 4.3 are also implemented in FAIR
using the same discretize-then-optimize approach.

Given the modular structure of FAIR, the user has many options to customize the
registration setting. In this thesis, we aim to compare a classical with a learned
optimization. Therefore, we want to keep the setting as similar as possible, adjusting the
following modules:

• The transfomation is set to either affine2D or nonpara2D accordingly to the
setting in our network model.

• The distance D is set to SSD, which is the distance function used in our experiments
in Chapter 5.

• We enable the multi-level scheme with 4 levels of resolution. FAIR provides a
kernel option to smooth the multi-scale images, which we set to gaussian.

• We chose the regularizer S to be mbCurvature, due to the reasons provided in
Section 4.2. The mb stands for matrix based, clarifying the method of implementation.

• For default optimizer, we choose limited BFGS.

Elastix. Elastix [Kle+10] is a toolbox for image registration based on the well-known
Insight Segmentation and Registration Toolkit (ITK). It is designed with a medical use
case in mind and provides a collection of algorithms similar to the design of FAIR. The
SimpleElastix extension makes it available in a variety of programming languages such
as Python, which enables effortless integration in our existing framework.

Elastix is characterized by modular design similar to FAIR. We use the grid search
technique to find suitable parameter configurations for our tasks in Chapter 5. An
overview of the most important components of elastix is depicted in Figure 4.3.

87

Chapter 4. Image Registration Fundamentals

a

a

c

d

b

pyramid

interpolatorpyramid

sampler distance

transform

optimizer

Figure 4.3.: Illustration of elastix components [Kle+10]. The parameters the (a) pyramid,
(b) sampler, (c) distance, and (d) optimizer modules are adjusted using grid
search. Here T and R are the template and reference images, x denotes the
grid vector, and ϕk is the transformation at step k. The final transformation
is denoted by ϕ̂

.

Given the task requirements, we select a subset of options, that we consider useful
to test such as Gradient Descent and L-BFGS. We compare our network models to the
configuration with the smallest error on the test set. Here the error is the Mean Square
Error between the predicted and the ground truth deformation, evaluated on the grid.
The transform module defines whether an affine or non-parametric transformation is
considered. The transformation module is set accordingly to the given task in Chapter 5.
We consider the following modules, parameter options are given in parentheses:

(a) We discussed the multi-level image representations in Section 4.3. In elastix, these
are set by the image pyramid module. We apply a smoothing kernel to reduce
the number of minima in the distance function (FixedSmoothingImagePyramid,
MovingSmoothingImagePyramid).

(b) The sampler defines the positions used to evaluate the current transformation using
the distance measure. More points provide a more accurate evaluation at the cost
of longer calculation times (Grid, RandomCoordinate).

(c) We partly divert from our settings in FAIR and test multiple distance metrics
(AdvancedMeanSquares, AdvancedNormalizedCorrelation).

(d) Similar to the metric module, we allow for an expanded selection of choices regarding
the optimizer. Apart from two L-BFGS variants, we also included the more recent
AdaGrad and an adaptive SGD (AdaGrad, AdaptiveStochasticGradientDescent,
QuasiNewtonLBFGS, AdaptiveStochasticLBFGS).

We compare both benchmark methods to our network-based approach in Chapter 5.

88

4.5. Neural Networks for Image Registration

For completeness, we also mention the Advanced Normalization Tools (ANTs) [ATS+09]
framework, which has gained increased popularity in recent years. It provides a variety
of methods with a focus on deformable image registration and originally was developed
with neuroimaging data in mind.

4.5. Neural Networks for Image Registration
Neural networks, especially CNNs, are also increasingly used in image registration. Today,
they account for many newly developed methods [Bal+19; Roh+17; Cao+17; Vos+17]
and nearly reach the same level of accuracy as classical methods [Xu+21]. This has two
main reasons: First, the success of networks in other areas of computer vision indicates
their potential in image registration. Secondly, they allow for fast registration of new
images in a single forward pass. Classical methods with their iterative approach require
considerably more time to process unseen image pairs. We discuss a few important
representatives of convolutional neural networks, as well as the more recent iterative and
recursive network variants.

First, we consider networks that generate a transformation in a single forward pass
without inspiration from classical methods, such as iterative updates or a variational
setup.

Spatial Transformer. In [JSZ+15], the Spatial Transformer module is introduced
(Figure 4.4). It enables CNNs to learn invariance to translation, scale, and rotation.
The network module spatially transforms an image or feature map by producing
transformations for each input sample. Incorporated into a CNN, the module allows the
network to learn to transform its input and minimize the network’s loss function. The
most important property is the differentiability of the sample grid, which allows the loss
gradient to flow back to the transformation parameters. The module is split into three
parts: a localization network, a grid generator, and a sampler. The localization network
converts the input into parameters of a spatial transformation. This step produces a
transformation conditioned on the input. Next, a sampling grid is created using the
transformation parameters. This is done by the grid generator. Finally, the feature
map and sampling grid are passed to the sampler to create the transformed output.
Although the Spatial Transformer is originally designed to boost the performance of
existing models in tasks such as classification or co-localization.

VoxelMorph. The VoxelMorph [Bal+19] model is a fully convolutional network that
uses the Spatial Transformer to establish a purely learning-based registration method.
Unlike classical methods, VoxelMorph formulates the registration as a function that
maps the input image pair directly to a transformation. For this purpose, the network
uses the template T and reference image R as inputs to calculate the transformation
ϕ. The mapping function is parameterized by the network parameters θ. This step is
performed by a UNet [RFB15] architecture. The pyramid structure of the UNet generates
differently resolved representations of the input images and fulfills a similar function

89

Chapter 4. Image Registration Fundamentals

Figure 4.4.: Visualization of the Spatial Transformer [JSZ+15] module. The localization
network predicts the transformation parameters θ based on the given input
feature map U. A regular grid ϕ is defined by the grid generator. The
sampling grid ϕθ is applied to U producing the output feature map V.
The localization network, grid generator, and sampler build the Spatial
Transformer module.

as the multi-level scheme (Section 4.3) in classical approaches. The reference image R
is transformed by the Spatial Transformer module using the computed transformation
ϕ. The use of the fully differentiable Spatial Transformer allows adjustment of the
network parameters with respect to the gradient of the loss function. The authors
propose two loss variants: an unsupervised loss based on an image similarity metric
and a variant including an additional auxiliary loss function using the Dice score on
anatomical segmentations. VoxelMorph is designed for deformable transformations and
therefore remains dependent on a stable affine pre-registration step. The VoxelMorph
model achieves accuracy comparable to classical methods but is several times faster.

Based on the success of VoxelMorph, other methods have been developed that
rely on the use of completely convolutional networks. In [HGH19], the convolutional
model is extended using strategies from classical image registration and applied to the
challenging task of lung registration. The authors use a multi-level scheme to predict
large deformations, which occur during the breathing of the patient between two CT
scans. Here a cascaded UNet structure is used in combination with a segmentation-based
auxiliary loss.

However, for large deformations, existing end-to-end (learn-to-map) models typically
struggle to reach the accuracy of classical methods [She+19]. Moreover, these architectures
are focused on particular applications and regularly are characterized by their large
number of parameters [Hei19].

This has led to the development of new models that no longer solely rely on learn-to-map
CNNs but combine classical and learning-based methods. First, individual components of
classical optimization methods were replaced by neural networks. The authors of [NKV19]
proposed to replace the regularization term S in (4.1) with a trainable component. Next,
models were designed to solve tasks that are not the registration itself but are related

90

4.5. Neural Networks for Image Registration

to it. In [Hoo+21] a model was trained to perform the — usually very expensive —
process of hyperparameter tuning for a given registration network. Similar to this Mok
et al. [MC21b] presented a conditional registration framework to optimally chose the
regularization weight γ in (4.1). The high-dimensional feature maps of a convolutional
registration network are “conditioned” on (i.e., depend on) the regularization weight γ.
For this reason, the method is only applicable to CNN-based registration.

While prior work employs these auxiliary strategies to improve the network’s perfor-
mance, the focus of attention has recently shifted to the variational and iterative core
of classical methods. These models are more closely related to the model presented in
Chapter 5 of this thesis.

VR-Net. The VR-Net [Jia+21] converts a generic variational problem, such as optimiza-
tion in image registration, into two sub-problems: a point-wise closed-form solution and
a denoising problem. Thereby VR-Net embeds

min
ϕ

∫

Ω

D(R(x), T (x+ ϕ(x)) dx+ γS(ϕ(x)) (4.13)

into the framework of a neural network. The authors reformulate (4.13), employing the
first-order Taylor expansion to derive an alternative problem:

T (x+ ϕ) ≈ T (x+ ϕω) + 〈∇T (x+ ϕω), ϕ− ϕω〉

ϕω+1 = argmin
ϕ

∫

Ω

D(ρ(ϕ)) dx+ γS(ϕ), (4.14)

where
ρ(ϕ)(x) := T (x+ ϕω) + 〈∇T (x+ ϕω), ϕ− ϕω〉 − R(x). (4.15)

Additionally, they use variable splitting to decouple the data and regularization term

min
ϕ,v

∫

Ω

D(ρ(ϕ)) dx+ γS(v) s.t. ϕ = v (4.16)

and add a penalty function to derive the two sub-problems

ϕk+1 = argmin
u

∫

Ω

D(ρ(ϕ)) dx+
θ

2

∫

Ω

‖vk − ϕ‖2 dx (4.17)

and
vk+1 = argmin

v

γS(v) + θ

2

∫

Ω

‖v − ϕk+1‖2 dx. (4.18)

Here (4.18) can be considered a denoising problem for known ϕk+1. Since the Taylor
expansion (4.14), holds only true for small deformations ϕω, a warping operation is
adopted to break large deformations into Nwarp smaller steps. Given a closed-form
solution of (4.17) the problem in (4.13) can be solved in an iterative manner using
Nwarp×Niter steps. The authors use three custom layers: the warping layer (WL) in form

91

Chapter 4. Image Registration Fundamentals

of bilinear interpolation, the consistency layer (ICL), imposing intensity consistency, and
the generalized denoising layer (GDL), implemented as a residual UNet. The trainable
parameters in VR-Net consist of the penalty weight θ in (4.17, 4.18) and the UNet
weights. Cascading Nwarp of Niter layers yields the VR-Net architecture. The weights
can be shared between cascades, reducing the computational cost without a noticeable
loss in accuracy. Different initialization strategies for the starting grid ϕ are proposed
such as zero, Gaussian distribution, or learned. In the learned variant, another UNet is
used to predict the initial grid. The learned initialization works best but increases the
overall parameter count due to the additional network. The model is evaluated on 2D
and 3D MR data and compared to iterative methods, such as Free Form Deform (FFD),
as well as data-driven models, such as VoxelMorph [Bal+19] or RC-Net [Zha+19b]. As
metrics, the Dice score and Hausdorff distance on segmentation masks are used. The
authors report that their model outperforms both iterative and data-driven methods on
the 2D data set and achieves second-best performance behind FFD on the 3D data set.
Although VR-Net does not map the images to a deformation directly, its run-time is
close to purely data-driven models.

Multi-scale Neural ODEs. Some classical methods, such as LDDMM, model the
dynamics of the transformation ϕ as a differential equation described by a fixed predefined
function. In [Xu+21] a flexible, trainable ordinary differential equation (ODE) formulation
is used to learn a registration optimizer. Let the function f(θ) parameterize the
transformation ϕθ, then the optimization in (4.1) can be written as

θ̂ = argmin
θ

f(θ), (4.19)

where
f(θ) := D(R, T ◦ ϕθ) + γS(θ). (4.20)

Using an iterative solver as in (4.7) and letting the step size approach zero, one arrives
at an ODE for the unknown parameters

d

dt
θ(t) = fω(θ(t), t), t ∈ [0, T]. (4.21)

Here fω is a trainable neural network, which enables Neural ODEs to use flexible functions
in contrast to the fixed predefined versions used in classical methods. In [Xu+21], Runge-
Kutta methods are used to solve (4.21) and derive the output at step K. Additionally,
the ODE is solved at different resolutions yielding a multi-scale ODE model. The model
consists of three scales each executing three update steps (K = 3). An unsupervised loss
composed of a similarity metric, a perturbation-based self-similarity, and regularization
is used. The similarity metric is computed on extracted context vectors and the authors
also design a “disentanglement” network to deal with different images from different
modalities. For each image, a context and style representation is created, which is used
by a generator network to produce images of the “same” modality. The Neural ODE
model addresses the problem of large deformations by cascading an affine and deformable

92

4.5. Neural Networks for Image Registration

Figure 4.5.: The L2O [FHH22] optimizer network. The input to the model is a four-fold
feature map. It consists of the preceding displacement, possible displacements
for every voxel in the form of coordinates, the dissimilarity cost of each
sampled displacement, and hidden states comprised of output feature channels
from the UNet backbone. The authors apply eight recurrent iterations of
the here depicted model to build a trainable optimizer.

variant of its architecture to build a hybrid model. For evaluation, the BraTS MR
data set is used. Large deformations are created by simulating affine and deformable
transformations, in a similar manner to the data creation in Section 5.3 of Chapter 5.
The MS-ODE outperforms all tested iterative and learning models based on the Dice
score and root mean square error on the simulated deformations.

Learning Iterative Optimization. In [FHH22], the L2O model is proposed, a network
designed to mimic the behavior of the popular Adam optimizer. The model consists of a
UNet backbone, which is recurrently applied to adopt an iterative update scheme. In
contrast to the MS-ODE model, it relies on pre-registration to handle large deformations.
The composition of the inputs is particularly interesting, which consists of displacement
coordinates, a dissimilarity cost calculated on MIND [Hei+12] features, and a hidden
state propagated through the recurrent iterations of the network. The L2O optimizer
network and its inputs are depicted in Figure 4.5. The authors point out that the image
pair is not provided directly as an input to the model, mirroring the relationship of
input and model aimed for in our network design (Chapter 5). Another similarity to
our approach is the use of hidden states to provide information containing nonlinear
relations between steps. Here selected channels of the UNet’s output feature map are

93

Chapter 4. Image Registration Fundamentals

used as hidden states, while in our model, the hidden state of an LSTM layer serves
a similar purpose. The authors apply eight recurrent iterations through the backbone
UNet in order to build an optimizer. To favor fast convergence of the network optimizer,
deep supervision is used. In deep supervision, the loss is calculated using the outputs of
each level of the network. Here a level can denote a layer in the network or a step in a
recurrent application. This type of loss calculation increases the influence on the initial
iterations in a recurrent scheme. The L2O model is trained on multiple registration
tasks, including the EMPIRE or DIR-Lab COPD data sets, and evaluated using the
target registration error on 300 corresponding landmarks. The authors report superior
results to the base-line Adam in the case of none pre-registered image pairs while yielding
lower accuracy on pre-registered images. The L2O model produces smooth deformations,
indicated by the low Jacobian determinants, and converges considerably faster than
Adam.

All of the latter network models use concepts of variational optimization to combine
the accuracy of classical methods with the speed of learning-based image registration.
In a similar spirit, we focus on using a rough network-based estimate to guide classical
methods in Chapter 5.

94

5. Meta-Learning for Image
Registration

Classical registration methods often rely on a coarse alignment to produce optimal
results [Kön18]. As early as 2016, a proposal was made in [Lia+17] to use a trainable
agent for this purpose. A first step is to combine classical registration with learning
processes. In this chapter, we will expand on that idea by introducing concepts from
the field of meta-learning to classical image registration methods. We focus on large
deformations to increase the performance of simple structured optimizers (Section 5.4).

Most models in the field of image registration can either be attributed to classical
methods, such as variational approaches, or more recent network-based models. We
aim to develop a framework incorporating strategies of both approaches. The resulting
model is presented in Section 5.2. We start by providing a brief overview of existing
network-based registration and popular meta-learning strategies (Section 5.1). The model
architecture is the main contribution of this thesis and is presented in detail in Section 5.2.
As we have adopted a supervised training approach, we need artificial ground truth
deformations, the creation of which is described in Section 5.3.

We test our model design on multiple data sets and benchmark our approach against
the established FAIR and elastix packages. The results for the affine and non-parametric
deformation settings are provided in Sections 5.4, 5.5. Finally, in Section 5.6 we discuss
the results and place our model in the context of existing registration models.

5.1. Related Work
The growing success of neural networks in a diverse set of machine learning tasks, such
as image recognition [He+16] and translation [Vas+17], motivated their application to
the task of image registration. One approach is to replace individual parts of classical
processes. For example, in [Yan+17] a network is used to predict the initial momentum
of LDDMM. Far more frequently, neural networks are used in an end-to-end fashion.
The design can vary greatly, but all methods have in common that they learn to directly
map one image to another, an example is the VoxelMorph architecture [Bal+19]. For an
overview of other influential representatives, see Section 4.5.

The approach in this thesis is inspired by meta-learning, which can increase the
effectiveness of existing optimization methods through data-driven learning: Already in
2001, Hochreiter et al. [HYC01] proved that Recurrent Neural Networks can be used
to form efficiently trainable optimizers that can adapt to a variety of problem classes.
Building on this, Andrychowicz et al. [And+16] showed that trainable optimizers can

95

Chapter 5. Meta-Learning for Image Registration

achieve better results — measured in terms of the loss — than manually designed
update rules, including Stochastic Gradient Descent, RMSprop, Adam, and Nesterov’s
Accelerated Gradient Descent.

Due to their strong generalization capabilities, meta-learning networks can also be used
to solve the most common computer vision tasks, as demonstrated in [FAL17]. In a more
general way, these networks can be trained to approximate any updating operator [AÖ17].
Given an objective, the trained operator calculates gradient-like information while being
embedded in a classical gradient descent optimization. This approach yields remarkable
results in reconstructing images from projections of simulated CT images.

The methods in [Hoo+21; MC21b] aim to reduce user interaction by proposing trainable
strategies for the hyperparameter search. In a similar fashion, our affine model is partly
designed to produce robust starting points for classical methods, reducing outliers. In a
classical setting, these would have to be manually corrected.

In [MC21a], Mok and Chung expand on their work [MC21b] to further accelerate
hyperparameter tuning, replacing all residual blocks in the Deep Laplacian Pyramid
Image Registration Network (LapIRN) [MC20] with a conditional instance normalization
module. The cLapIRN achieves top-performing results on multiple tasks in the Learn2Reg
2021 challenge [Her+22].

Some recent work tries to bridge the gap between traditional iterative and learning-
based methods. Important representatives with methodological affinities to the model
proposed in this thesis have already been described in more detail in Section 4.5. In line
with that work is the Gradient Descent Network for Image Registration
(GraDIRN) [Qiu+22]. The model embeds an unrolled multi-resolution optimization
and calculates iterative update steps based on image dissimilarity. In the fashion
of a bi-level optimization, the inner level aims to align two images, while the outer
level uses a self-supervised loss to update the network’s parameters. This method has
conceptual similarities with our approach. An iterative methodology is used and the
approach is designed as a bi-level optimization. The method is fully learning-based and
requires upstream affine registration. Furthermore, the network is not used to solve large
deformations as we intend with our model.

The Recurrent Registration Neural Network (R2N2) [San+19] replaces the set of
fixed basis functions in parameterized image transformations with trainable Gaussian
kernels to align an image pair. A local deformation is defined as a Gaussian function
with trainable position, shape, and weight components. The model consists of three
sub-networks: a convolutional variant of the gate recurrent unit (GRU) named gated
recurrent registration unit (GR2U), an extension of the LSTM layer, a network to predict
the position of the basis function, and finally a network to predict the parameters for
the Gaussian. Evaluated on 2D lung MR images, the R2N2 achieves comparable results
to a baseline B-spline registration while gaining a speedup of factor 15. The sequential
registration of this approach is similar to our iterative method. However, the focus is
only on small local deformations that can be corrected by B-spline interpolation. As the
model predicts the parameters of the B-spline functions, they are bound to the form of
Gaussian functions. Furthermore, a Spatial Transformer module (Section 4.5) is required
to apply the displacement to the images. Our approach, on the other hand, directly

96

5.2. Registration Model

generates a dense displacement field and allows its application without the use of the
Spatial Transformer module.

Conceptually, our model is most similar to [FHH22; Qiu+22] in that its core is an
iterative update scheme parameterized by a neural network. Our approach differs in that
we are primarily interested in solving large deformations. Therefore, our model serves
to provide initial values for a classical method and, unlike [FHH22; Qiu+22], does not
require an upstream registration by another network.

5.2. Registration Model
We aim to incorporate the formulation of an iterative update of classical, gradient-based
optimization

xk+1 = xk + αk∇f(xk) (5.1)

into a neural network setting. The step size αk is usually set using a line search algorithm,
such as the Armijo rule (Section 4.3). The structure corresponds to a bi-level optimization
problem [Fra+18] and also exists in a similar form in the field of meta-learning [FAL17]
or [Hos+21] for a comprehensive overview.

We retain the iterative nature of classical registration approaches but replace the
update step with a neural network in a similar way to meta-learning. The network Θγ

then encodes a nonlinear update:

xk+1 = xk + θk, θk := Θγ(∇f(xk)). (5.2)

The minimization process can now be automatically tuned to a specific problem class by
adapting the weights in Θγ, in contrast to relying on generic strategies such as Newton-
or Quasi-Newton methods.

Compared to the construction of a classical image registration model (4.1) from
Section 4.1 the choice of the objective f is less crucial. Classically, the quality of the
obtained deformation is directly affected by the choice of the data term D and regularizer
S that make up the objective function f . In our model, the choice of f is less important,
because it only serves as a guide to construct an iterative process of the form (5.2).
Like any other neuronal network, it can be trained using any loss and is not bound
to finding a good minimizer of a given objective. Here, we use a simple SSD term
D(R, T) := ‖R− T‖22.

To build a model that is at least as powerful as an iterative method with K iterations,
we repeat (5.2) K times by stacking a corresponding number of layers. As an alternative,
we investigate whether K iterations through layers with shared weights are capable
of performing similarly. The model created in this manner should benefit from the
non-linear gradient information on f , thus adding the potential of non-linear, trainable
steps. Comparable to the method presented in [FHH22], the model has no direct access
to the input images R and T and information about the problem is exclusively passed
through the gradient of the distance function f .

97

Chapter 5. Meta-Learning for Image Registration

Model Graph. We prepend a projection layer Lin to our main building block Θγ . This
enables us to alter the dimension and allows to either reduce or expand the main block’s
feature size. In addition, it allows for the combination of input channels, hence we call
this layer Fuse Layer.

The update (5.2) is implemented employing an LSTM cell, following [HS97]. We
decided to use the LSTM cell because it features a hidden state that allows us to carry
over additional history from previous layers. In this way, in our model, the update not
only depends on the current iterate xk and gradient ∇f(xk) but also on the hidden state
hk that can potentially incorporate previous gradient and function value information.
The LSTM output ok is then passed to the another projection layer, the Scale Layer,
Lout:

(hk+1, ok) = LSTM(hk, Lin(∇f(xk))) ∈ R
dx × R

dh (5.3)
θk = Lout(ok) ∈ R

dh × R
dx , (5.4)

xk+1 = xk + θk, (5.5)

where dx is the dimension of transformation parameters, and dh is the size of the LSTM
hidden states. The Scale Layer acts as the counterpart to Fuse Layer and projects the
outputs of the LSTM layer back into the space of the inputs. Our complete network is of
the form

Θγ,K = Lout(LSTMk(... LSTM0(h0, Lin(∇f(x0))))). (5.6)

This theoretically allows our model to mirror successful methods with gradient history
such as L-BFGS [NW06, Chap.6]. As inputs, we only use gradient information, derived
from the distance function f . The images R and T are used solely to calculate the new
distance after each layer update.

Figure 5.1 shows the model graph for two repetitions of a full network. The LSTM cells
have individual weights, whereas the Fuse Layer Lin and Scale Layer Lout share their
respective weights over the K repetitions. Model weights are initialized to implement an
approximate identity mapping in order to avoid that early updates are directed against
the descent direction.

We introduce two types of projection layers in our model: the Fuse- and Scale Layer.
These two layers project the inputs to the model feature space or the outputs to the
space of transformations. The input to our model can either be the gradient of the
distance measure, the regularizer, or a combination thereof. Generally, the gradient is
calculated with respect to each transformation parameter. Consequently, the dimension
of the input can be rather low, in the case of affine transformations, or considerably large
when dealing with deformable transformations. Additionally, if we want to incorporate
the gradient of both, the distance measure and the regularizer, the multichannel input
has to be reduced to fit the single-dimensional LSTM design. The Fuse Layer design is
illustrated in Figure 5.2.

The Fuse Layer is designed to reshape the input to fit the main module and allows
to change the input dimensions. In the case of affine transformations, a linear layer
achieves the best results. Non-parametric transformations are implemented as a vector

98

5.2. Registration Model

Figure 5.1.: Computational graph for constructing the registration network. The inputs
ik−1 are passed through the Fuse Layer (Lin) reducing their size and fusing the
input channels. The main block Θγ predicts the update θk in (5.2) and new
hidden state hk from the nonlinear gradient information ik−1 := ∇f(xk−1)
and the previous hidden state hk−1. The Scale Layer (Lout) restores the
original size and creates the update θk. The update is then added to the
iterate xk. Repeating this process K times, the resulting stacked architecture
imitates the structure of classical iterative optimization methods, while
providing the necessary degrees of freedom to make the process more efficient
and robust through training.

99

Chapter 5. Meta-Learning for Image Registration

Figure 5.2.: Variants of the Fuse Layer (orange): convolutional and linear. Top: A
convolution with kernel size k, here k = 3 is depicted. The convolutional Fuse
Layer is applied to the deformation grid. In the case of a two-dimensional
image (d = 2), we aim to combine the gradients of the displacements in all
image directions. Therefore, the gradients for the two directions (∇f(xd1),
∇f(xd2)) are processed as different channels (different shaded blue squares).
The channels are reduced and the gradient information from both directions
is combined (mixed blue squares). Afterwards the spatial dimensions are
reduced to one, using a flattening operation. Bottom: Affine transformations
are parameterized by a rotation matrix A (yellow) and translation vector b
(brown), see also Figure 5.4. Passing the gradients ∇f([A; b]) directly into
the LSTM layers limits feature space within the model. We project the
inputs onto a higher dimensional feature space by expanding its size using a
linear layer. Similar to the convolutional variant the gradient information
of rotation and translation is combined during the process (yellow-brown
squares).

100

5.2. Registration Model

field of point-wise deformations. Therefore, the input is a two-dimensional grid and a
convolutional layer of fixed weights is used. We also evaluated trainable weights but
found that these made training more difficult. The weights are set to implement a mean
filter over the spatial dimensions.

We have established that the inputs must be adapted to the sequential design of
the LSTM layer. The output of the main block must now be projected back into the
space of the transformations. This is the task of the Scale Layer. Here there are again
several versions according to the Fuse Layer. For affine transformations a linear layer is
sufficient. For the case of non-parametric transformations, we test different designs from
simple bilinear interpolation to fully trainable convolutional layers, which we discuss in
Section 5.5.

To stabilize the training of our network, we normalize the input by dividing it by its
2-norm:

∇f(xk) =
∇f(xk)

||∇f(xk)||2 + ǫ
. (5.7)

We set ǫ to 10−8 throughout all experiments.

5.2.1. Loss
Since no natural ground truth exists in image registration, self-supervised or weakly-
supervised approaches [HGH19; MC21b] are often used in practice. In contrast, we
employ a supervised learning method by using simulated deformations to create a ground
truth, similar to [Dos+15]. We specifically do not use the distance f as loss, thus
providing the network with the opportunity to freely find the optimal registration in
terms of distance to the ground truth deformation map.

Deform Loss. In this way, we enable the network model to not necessarily construct a
better solver for minimizing f but to pursue the underlying primary goal of finding a
good registration. The solution is not limited to the quality of iterative methods and
allows for a more forgiving choice of the distance and regularizer used in f . We define
the loss directly by comparing the mean squared error (MSE) of the deformation fields:

LD(ϕxK
) =

1

n

n
∑

i=1

‖ϕxK
(zi)− ϕx̄(zi)‖22 (5.8)

where {zi|i ∈ {1, . . . , n}} is the image grid, x̄ denotes the ground truth deformation
parameters and xK is the output of K applications of Θγ as outlined above. We call this
the Deform Loss.

Trajectory Deform Loss. Other work has shown that deep supervision [FHH22;
LeC+21] increases accuracy and enables faster convergence of neural networks for tasks
such as registration or classification. The idea is to add loss terms based on the activations

101

Chapter 5. Meta-Learning for Image Registration

of the intermediate layers, e.g., at each scale in a multi-level scheme [LeC+21], or at each
iteration [FHH22]. Applying this idea to (5.8), we propose to use

LT (ϕxK
) =

k

K

K
∑

k=1

LD(ϕxk
) (5.9)

where k ∈ {1, . . . , K} denotes the step at which the Deform Loss LD(ϕxk
) is calculated.

This Trajectory Deform Loss is designed to enable the initial steps to influence the
loss computation and avoid early deformations that are completely unrealistic while
maintaining the focus on the last step.

Multi-Level Loss. As discussed in Chapter 4, classical methods benefit strongly from a
multi-level approach. Similarly, we consider a multi-level variant of our network. Along
with this model, we test a version of the loss function that is applied at each resolution
level. Starting from (5.8), we denote the final transformation ϕxK

of each level l as ϕl

and the final transformation of the whole model as ϕ̄. Then the Multi-Level Loss is
defined as

LML(ϕ̄) =
1

L

L
∑

l=1

LD(ϕl). (5.10)

Both Trajectory Deform Loss LT and Multi-Level Loss LML operate utilizing the Deform
Loss LD on either multiple steps or resolutions and therefore could be considered a form
of deep supervision. They are designed to encourage faster convergence in the early
stages of the iterative process at the center of our model design. In theory, it is also
possible to replace LD with LT in (5.10), which we did not investigate in the context of
this thesis.

5.2.2. Scheduling
In classical optimization, the choice of appropriate step size is crucial. Therefore, a line
search method, such as Armijo (Section 4.3), is used to determine an optimal step size.
In the field of neural networks, the choice is often less important, since one is generally
more interested in a sufficient and robust reduction of the loss than in convergence to a
possible (local) minimizer. A working step size is often determined via parameter search
and fixed for the time of training. Step size is the notation favored in the optimization
community, the learning community denotes it as learning rate, but the two terms can be
used interchangeably. For the sake of consistency, we will adopt the notation of learning
rate from here on.

Adjusting the learning rate during training can promote model convergence. Small
learning rates result in more updates since the changes applied to model parameters are
small. On the contrary, too large learning rates may lead to divergent behavior. Since
in this work we are designing a model that has an iterative update structure, several
scheduling rules are tested.

102

5.2. Registration Model

The first scheduling rule is Reduce On Plateau, which reduces the learning rate by
an assigned factor once learning stagnates. The StepLR variant reduces the learning
rate using a multiplicative decay factor after a defined period of training epochs. The
third evaluated scheduler is Exponential Decay, which decays the learning rate by a fixed
factor every epoch. Another technique is proposed in [LH17], the Cosine Annealing:

ηt = ηmin +
1

2
(ηmax − ηmin)

(

1 + cos
(

Tcur

Tmax
π

))

, (5.11)

where ηmax is set to the initial learning rate and ηmin is a lower bound.

5.2.3. Gradient Calculation
The model proposed in this thesis can be viewed as a bi-level optimization problem. The
inner level is the registration of the images by adjusting the transformation parameters
xk, aiming at the reduction of the distance between the deformed images, see (4.1) in
Section 4.1. The outer level consists in training the network itself to derive the update
θk (5.2) for the inner level. Algorithm 1 depicts the wrapping algorithm used to embed
the inner optimization into the network.

Algorithm 1 Wrapping function to enable batch-wise gradient calculation using
autograd. The inner level cost function can be arbitrary. For image registration,
we use the definition in (4.1).
Input: xk: iterate at step k

Input: T ,R: template and reference image
Input: f : inner level cost function

1: xk ← xk.requires_grad_(True) ⊲ Enable graph-based gradient calculation
2: fk ← f(xk, T ,R)
3: ∇f(xk)← autograd.grad(xk, fk)
4: return ∇f(xk)

The implementation of the inner level is of utmost importance, as the gradient ∇f is
used as input for the network. This results in two requirements for the implementation:
the inner level has to be differentiable to derive the gradient at each step and the
calculation of the gradient should be as precise as possible. We want to use the outputs
as initial values for a classical gradient-based method that requires such a high degree
of accuracy. In this way, we ensure a smooth interaction between the two methods.
The latter is realized by using a double-precision floating-point format instead of single-
precision. The disadvantage is that the network model itself and especially the inputs of
the inner level also have double-precision format, which increases memory consumption.
In the spirit of the implementation presented in FAIR [Mod09], the inner optimization
is fully differentiable and gradient calculation is performed by employing the autograd
routine provided by the PyTorch framework. We wrap the autograd.grad subroutine
to enable batch-wise gradient calculation. We pass the iterates xk of step k in the inner

103

Chapter 5. Meta-Learning for Image Registration

Figure 5.3.: Multi-level variant of the proposed model. Following the classical multi-level
scheme, the image pairs are passed to sub-networks with increasingly higher
resolution. Each of these sub-networks contains K repetitions of the main
building block (Figure 5.1) as well as the weight-shared Fuse- and Scale
Layers (Figure 5.2). Each sub-network returns its final transformation ϕli

to deform the next level template image Ti+1 before it is passed into the
next sub-network. Moreover, the sub-networks hidden state hli is also passed
to the following block to enable the flow of high-level gradient information
throughout the complete multi-level model.

level as inputs and calculate the outputs using f in (4.1). This allows us to calculate ∇f
for multiple image pairs at once with respect to xk.

5.2.4. Advanced Strategies
Multi-Level Models. Classical iterative methods use application-specific strategies to
elevate their performance. Most notable is the multi-level scheme to avoid local minima
and to speed up runtimes by using the low-cost coarse results as initialization for the finer
resolutions. This strategy is so effective that many learning-based approaches also use
it to improve their accuracy [HGH19; Xu+21; San+19; MC20]. Due to this undeniable
advantage, we have implemented a multi-level variant of our model. Figure 5.3 illustrates
the multi-level model. The multi-level model consists of L sub-networks that operate on
different resolutions of the image pair. The template image Tl+1 is transformed with the
predicted ϕl of the previous level before it is passed to the next sub-network l + 1. The
hidden states hl are also passed to the next level to keep track of past updates.

Freeze Strategies. Generally, all layers of a model are trained simultaneously. For our
iterative model, this would mean to train all K update steps at the same time. However,
the quality of the first steps is crucial for the calculation of later steps. Therefore, it
makes sense to train the steps in isolation first, in order to ensure that the first steps
produce meaningful updates. We do this by progressively training each of the main

104

5.3. Data

blocks in our model. Each block is trained for a limited number of epochs, then the
weights are fixed and the process continues with the next block until each layer has been
trained. We evaluate different freeze strategies: either keeping past layer weights fixed or
allowing for combined training of all preceding layers, adding successive layers once a
required number of epochs is met. A similar approach is used in [HGH19], where the
authors train each level of their multi-level UNet in the same progressive manner.

5.3. Data
In image registration, the ground truth is usually not known. Traditional approaches do
not need a ground truth, as they do not learn from data, and instead rely on hand-crafted
distance functions and regularization [Mod03]. Learning-based methods typically work
in an unsupervised [Vos+17; Zha+19b; Jia+21] or semi-supervised fashion [HGH19]. As
a result, the formulation of the loss function is heavily studied, often employing support
functions to encode the desired property [HGH19]. This may lead to loss formulations
heavily adapted to fit a given task.

Our approach is inspired by the work in [Dos+15], where the authors solve optical flow
estimation as a supervised learning task. To generate the large Flying Chairs data set,
the authors randomly sample 2D affine transformation parameters for the background
and chair objects. In creating their own translations, the authors obtain a set of image
pairs, ground truth optical flow, and occlusion regions.

In [Dos+15], the resulting data set is of fixed size and data augmentation is used to
further increase data variability. Ideally, our network does not encounter a deformation
twice during training for optimal generalization capability. Therefore, we use an “on the
fly” routine, drawing samples from the given deformation distribution during training.
Consequently, we do not have a fixed training set. However, the validation and test set
are created once and then fixed — i.e., saved to disk — in order to enable comparison of
model performance. To ensure reproducibility, we pass a random number generator to
the data creator and attribute a starting seed point to every training, validation, and
test set.

Affine Deformations. For the affine deformations, we create an artificial data set by
deforming a 128 × 128 template image, keeping the original image with added noise
as a reference and the deformed variants as templates. Transformation parameters are
chosen randomly from a uniform distribution of rotations in [−60◦, 60◦] and translations
of at most a quarter of the image dimensions. The shear and scale factors are defined
as entry-wise manipulations of the rotation matrix A. The size of the manipulations is
also randomly chosen up to 15% of the maximum rotation angle. In Figure 5.4 the data
creation process is visualized. The creation of affine deformations is straightforward. The
limited number of degrees of freedom and formulation as matrix multiplication enables
us to synthesize image pairs. We can create reasonable deformations by choosing suitable
limits of the underlying uniform distributions. To be able to utilize the same supervised
learning strategy for non-parametric transformations poses a problem. As the name

105

Chapter 5. Meta-Learning for Image Registration

Figure 5.4.: Creation of image pairs to use as ground truth, affine case. Left: Affine
deformations can be encoded by a rotation matrix A and a translation vector
b combined in a transformation vector x with 6 degrees of freedom. We
create x using three distinct uniform distributions. First, we draw a rotation
angle as a base value for the first four entries of x. Second, four shear values
are drawn from the second distribution and added independently to the
different rotation matrix A entries. The translation vector b consists of
two random values. Center: Applied to a regular grid, the transformation
produces a deformed grid. Transforming the image with the given grid using
interpolation results in a new image. Right: Keeping the original image as
a template and the deformed image as a reference yields an image pair. The
transformation ϕ between these images is known, thus enabling supervised
learning.

106

5.3. Data

suggests we no longer have a limited set of parameters to control the movement globally.
Instead, each grid point can theoretically be freely moved to every other position in the
image.

Non-parametric Deformations. In reality, those movements are confined by physical
constraints such as tissue density or object rigidness, and non-parametric deformations
are characterized by strong local and less global movement. We model this behavior
through a combination of randomly sampled supporting points and a linear combination
of Radial Basis Functions (RBF). The following description of randomly generating these
deformations is best viewed in conjunction with Figure 5.5:

1. The input image is downscaled by a chosen factor. We achieved the best results by
setting it to 2, i.e., an image of size 128 is reduced to 64× 64. This is necessary to
expand the effect of the intended deformation beyond small neighborhoods around
the supporting points.

2. We want to avoid changes in the background. As these are not accounted for
in the objective function f , see Chapter 4. Background pixels often have the
same intensity, so local shifts in this region do not result in a changed SSD value.
Consequently, the gradients passed to our model do not change either while the
loss on the deformation grid is affected by background changes. This unnecessarily
complicates learning for our model. We avoid these deformations by determination
of the object using a simple detection algorithm, which uses a rectangular box to
define the object.

3. We randomly choose coordinates within the limits of the detected object.
Again we introduce a parameter to control the number of coordinates, we want
to transform. The parameter defines which fraction of coordinates will be shifted.
Multiple fractions are tested and we report the corresponding value for each data
set.

4. In a similar manner we choose some coordinates outside the object to be fixed. As
the grid is created using interpolation, we need some coordinates outside the object
to stay the same. Otherwise, the interpolation would create deformations outside
the object. Here we select every sixth coordinate, which is marked as red crosses
on the left side of Figure 5.5.

5. The coordinates in step (3) are shifted independently in all image dimensions. We
apply a random translation to the supporting points, marked by blue stars in
Figure 5.5. The translation limits are determined by h · s. Here h denotes the cell
spacing, introduced in (4.3) in Section 4.2, and s ∈ [0, 1].

6. Both the shifted coordinates (inside) and fixed coordinates (outside) are passed to
a RBF interpolation as supporting points. In this thesis, we make use of the
RBF interpolation function provided by the scipy package (1.2.1) [Vir+20]. We

107

Chapter 5. Meta-Learning for Image Registration

Figure 5.5.: Data set generation for non-parametric deformations. Left: The image is
scaled down (1), by a factor of 2, and the object is automatically detected
(2). The object boundaries define the intervals from which support points are
randomly extracted (3, marked by blue stars). To avoid strong deformations
in the background, coordinates are selected at regular intervals with a stride
of 6 (4, marked by red crosses). Center: The support points from step (3)
are shifted randomly in all image directions (5). The shifted coordinates in
the interior and fixed coordinates in the exterior of the object are passed to
the RBF interpolator. The resulting grid is used to transform the original
image (6) and Gaussian noise is added. Right: The original image is used
as template T and the transformed image as reference R.

108

5.3. Data

Figure 5.6.: Sample image pairs from Hands (left), Brain (center), and fastMRI (right).

employ thin-plate basis functions r2 ⊙ log(r) for the Blobs data set and
√

(

r
ǫ

)2
+ 1

otherwise, here r denotes radius. The result of the interpolation is a deformed grid,
which is used to deform the input image from step (1). We keep the original image
as template T , add Gaussian noise to the transformed image, and use the final
result as reference R for the registration task.

Data Sets. Both data generation methods enable us to use a supervised learning
approach, as well as define increasingly large deformations. We evaluated the models on
three registration tasks:

• A simple synthetic example of registering x-ray images of two different hands
(Hands),

• an MRI Brain data set from the kaggle platform originally designed for tumor
detection, containing samples with and without tumor regions 1,

• and DICOM brain images (fastMRI) from the NYU fastMRI data set [Zbo+18;
Kno+20].

Registration tasks are created by applying the random transformation, as described
above, to a randomly selected image. Exemplary image pairs for affine deformations are
displayed in Figure 5.6.

1https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection — visited 2021

109

Chapter 5. Meta-Learning for Image Registration

5.4. Affine Image Registration
We apply our newly designed model to the task of affine image registration, where the
deformations can be described by a matrix multiplication and a translation, taking the
form ϕx(z) := Az + b with A ∈ R

2×2 and b ∈ R
2. As a result, the iterates xk consist

of the unknown rotation matrix A and translation vector b, as displayed in Figure 5.4.
We omit the regularizer, i.e., S = 0, as the restrictions inherent to affine deformations
provide sufficient regularization. We address the problem of large deformations and
propose a non-linear, trainable registration step to provide robust starting points for
subsequent classical methods.

5.4.1. Experiments and Results
Scheduling. The updates in earlier steps are usually large, whereas later updates
progressively become smaller in size. For this reason, we also address the question of
whether a flat network with split weights is able to approximate the early and late update
steps. We also investigate the influence of various scheduling techniques on our model
with shared weights. We focus on a dynamic adjustment of the learning rate for the
outer optimization. The model configurations here are as follows: the initial learning
rate is set to 10−3, the batch size is 50, and we test 10 iterative passes through the model.
A layer consists of a main building block of our architecture (see Figure 5.1).

We train the network on synthetic x-ray hand images. The deformations are created
as described in Section 5.3, using a maximum angle of 60 degrees, no shear, and a
maximum translation of one-tenth of the image dimensions in all spatial directions. The
performance is evaluated on a separate test set, created with the same transformation
parameters but a different seed point for the random number generator. We evaluate
the quality of the registration using the L1 distance of the deformation grids. Three
different scheduling techniques and a model without any scheduling are compared. The
three techniques are exponential decay (ExDecay), reduce on plateau (RoP), and cosine
annealing (CA). The number of epochs varies between 150 epochs for no scheduling and
300 epochs for RoP, due to the employment of early stopping, which terminates the
training if the loss no longer declines. Without scheduling the model achieves the lowest
average L1 distance of 1522 followed by CA with an average of 1828. Both ExDecay and
RoP express higher average errors nearly doubling the distance to 2774 and 2759. On the
right side of Figure 5.7, registration results for the model with no learning rate scheduling
can be seen. The model often gets stuck in local minima between the individual fingers
and scheduling does not improve performance. Multiple iterative applications of a single
main building block are insufficient compared to a classical method and scheduling does
not improve the model performance. Furthermore, a shared weights model cannot map
large and small updates to the same extent. This can be seen from the fact that initial
large deformations are approximated well, but the later steps are too large (Figure 5.8).
Therefore, we will use models with multiple layers in the following, where each layer
theoretically approximates a single step in the iterative scheme.

110

5.4. Affine Image Registration

Figure 5.7.: Results for the scheduling experiments. Left: L1 distance of the ground truth
and predicted grid for the models with no scheduling (None), exponential
decay (ExDecay), reduce on plateau (RoP), and cosine annealing (CA).
No scheduling works best for a shared weights model. Orange horizontal
lines denote medians, boxes show quartiles, and outliers are discarded for
better visibility. Right: Registration results for selected samples in the test
set. The first and third rows display the results for the classical baseline
approach and even rows show the results for the model without learning rate
scheduling. The model does not yet achieve accuracies on the level of the
baseline method.

Figure 5.8.: Visualization of the ten steps resulting from the iterative application of the
same layer without scheduling. Starting from the initial image pair on the
left side, each step is displayed as an overlay of the template (blue) and
reference (red) image. White-colored objects mark a good match between the
template and reference. The model is able to correct the largest motion but
struggles to find the global minimum, applying too large updates between
steps five to seven.

111

Chapter 5. Meta-Learning for Image Registration

Figure 5.9.: Results for the freezing strategies. Left: Mean Squared Error between
the ground truth and predicted deformation grid. Two hyperparameter
configurations for a 5-layer model with (w) and without (w/o) progressively
trained weights are displayed. For both configurations progressively freezing
layer weights benefits the accuracy, indicated by the smaller quartiles and
smaller minima. Right: Regarding the distance function f , freezing the
weights again results in a better fit with smaller median values, smaller
quartiles, and smaller minima. Orange horizontal lines denote medians,
boxes show quartiles, and outliers are discarded for better visibility.

Freezing Strategies. To retain the iterative structure of classical methods, we evaluate
whether progressive training by freezing the layer weights benefits model accuracy. A
model with 5 layers is trained progressively, fixing the weights of each layer after 50 epochs
are reached. The same model is then trained without this strategy while maintaining the
hyperparameter configuration. We provide results for two exemplary hyperparameter
configurations:

(1) A 5-layer model trained for 250 epochs with a batch size of 100, a learning rate of
10−3, and the Deform Loss (LD).

(2) A 5-layer model trained for 250 epochs with a batch size of 50, a learning rate of
10−3, and the Deform Loss (LD).

The samples during training are created “on the fly” with a consistent seed point for
the random number generator. During one epoch, 850 samples are fed to the model.
No further techniques such as learning rate scheduling or weight regularization are used.
The results in Figure 5.9 indicate that progressively freezing the layer weights improves
the error between ground truth and predicted deformation grids as well as the distance
function f . Therefore, we will continue to progressively train the layer weights, following
the suggestions in [HGH19].

Loss. Next, we test whether considering multiple steps during loss calculation benefits
accuracy. For that reason, we compare multiple model configurations using both the

112

5.4. Affine Image Registration

Deform Loss LD and its multi-step variant Trajectory Deform Loss LT . In the following,
we show two configurations for small and larger scale models resulting from a random
search on the hyperparameter settings. The search space includes the number of epochs
[100, 500], batch size [25, 100], and learning rate [10−2, 10−6]. The data we use is the
same as in the freezing experiments except we added Gaussian noise to the object area
in the image in the range of a third of the variance within the image.

The weighting of each step in the loss calculation is described in Section 5.2. The
Trajectory Deform Loss is intended to guide the model to the solution encouraging
meaningful updates. It can be considered as a form of deep supervision as proposed
in [FHH22]. In Figure 5.10, we compare the results of two model configurations with
different loss variants:

(1) A 2-layer model trained for 100 epochs with a batch size of 50, a learning rate of
10−3, and the Deform Loss (LD).

(2) A 4-layer model trained for 300 epochs with a batch size of 50, a learning rate of
10−3, and the Trajectory Deform Loss (LT).

The samples during training are created “on the fly” with a consistent seed point for
the random number generator. During one epoch, 800 samples are fed to the model.
No further techniques such as learning rate scheduling or weight regularization are used.
We consider a small model with only two layers and a larger model with four layers.
Comparing the boxplots, it becomes apparent that both loss variations result in similar
performances. For small-scale models, the Deform Loss is able to reduce the maximal
error between the deformation grids from 0.8 to 0.6, while the mean and median error is
constant with 0.07 and 0.05. But this can be considered within the statistical margin of
error while working with neural networks.

A similar trend can be identified for the large model configurations concerning the
mean squared error on the translation grid. It should be mentioned that the overall
improved performance of the second configuration models can be attributed to the model
size and the number of training epochs. It can be assumed that two iterative updates
are too few to sufficiently approximate large affine deformations present in our data. As
a result, the Trajectory Deform Loss does not improve the accuracy while being more
memory demanding. Our model design requires keeping track of the graph of all steps in
order to calculate the gradient. For smaller models this is feasible but with increased
model size we run into memory problems. For this reason, we decide to make use of the
Deform Loss enabling larger model and batch sizes while we do not have to accept any
loss in accuracy compared to the Trajectory Deform Loss.

Benchmarks. Based on the findings from the previous experiments, we test the
performance of our model in comparison to classical registration methods. The following
results were first presented in our contribution [KL22] to the Medical Imaging with Deep
Learning (MIDL) conference in 2022.

All experiments are performed on a 2x6-core Intel Xeon Gold 6128 CPU @ 3.40GHz
with 24 logical cores and 3x GeForce RTX 2080 Ti GPUs with 11 GB of memory each.

113

Chapter 5. Meta-Learning for Image Registration

Figure 5.10.: Results for the loss comparison. Left: Mean Square Error between the
ground truth and predicted deformation grids. On the left, the accuracy
on the test set for the two-layer models trained with Deform Loss and
Trajectory Deform Loss is shown. The performance of both loss variations
is nearly identical. The right side displays the results for the four-layer
models. Again both loss variants display a similar performance. Right:
The trend is confirmed by the resulting distances f . For the small model,
the Deform Loss displays little improvement but for the large model, there
is less difference between both variants with similar median and quartiles.
Orange horizontal lines denote medians, boxes show quartiles, and outliers
are discarded for better visibility.

We use a simple classical baseline method (plain), where we use a limited-memory
BFGS solver with a memory size of l = 5 and an Armijo line search for minimizing f

directly. The maximum number of BFGS iterations is set to K = 30. In our experiments,
more iterations did not increase registration quality. Finding suitable initial estimates
for the Hessian is a difficult task, we refer to [NW06; Mod03] for a detailed discussion.
We follow the proposal in [NW06, Chap.6] and set the initial estimate of the Hessian to
the identity matrix scaled by 1

∇f
. We embed the solver into a coarse-to-fine approach on

4 levels to obtain minimal robustness against local minimizers. The image resolutions
range from 16× 16 to 128× 128.

We also provide a combined (comb) method, where we apply the plain algorithm to
the predictions of our model. The model is trained independently to compute an initial
estimate. To further highlight the benefits of predicting initial estimates, we reduce the
iterations in our plain algorithm to K = 15.

Again we employ a random search over the hyperparameters batch size [50, 200],
learning rate [10−3, 10−5], and epochs [50, 1000]. We use the Adam optimizer with the
default settings for the momentum. Based on our previous results we use the Deform
Loss, adapt freezing to successively train layer weights, and do not utilize any form
of scheduling. For the affine model, we use a linear projection layer to increase the
number of trainable parameters by 4 compared to the input size. We extend the previous
measurement of performance by means of MSE with absolute errors of the obtained

114

5.4. Affine Image Registration

Table 5.1.: Mean squared error (MSE) of deformation grids on test sets for Hands, Brain,
and fastMRI tasks. By augmenting a simple L-BFGS method (plain) with
our network (comb), its robustness can be greatly improved, with performance
similar to FAIR and elastix on the specialized tasks (see also Figure 5.12).

Hands Brain fastMRI

MSE

pl
ai
n

co
m
b

FA
IR

el
as
tix

pl
ai
n

co
m
b

FA
IR

el
as
tix

pl
ai
n

co
m
b

FA
IR

el
as
tix

mean 1.17 0.02 0.19 0.22 1.00 0.28 0.43 0.33 0.69 0.58 0.12 0.12
median 0.30 0.00 0.02 0.00 0.24 0.00 0.02 0.00 0.07 0.03 0.01 0.00
max 8.28 0.23 2.76 3.53 5.43 4.69 7.69 7.13 6.62 6.33 6.60 6.80

parameters A in the Frobenius norm ‖A−Agt‖F and b in the Euclidean norm ‖b− bgt‖2.
Both errors are again calculated between the ground truth deformations and the model’s
predictions.

We compare our model to two benchmark methods: First, the implementation of affine
image registration in the freely available FAIR toolbox [Mod09]. We use a multi-scale
approach with 4 levels similar to our own plain method. Here we set no limit on the
number of iterations on each level. In addition, FAIR provides multiple strategies to
increase robustness such as an improved estimate of the initial Hessian, filtering, and
regularized interpolation. We report the results for the best-performing parameter setting
consisting of an L-BFGS solver, the mean squares (MS) distance measure, and again a
coarse-to-fine approach on 4 levels. Second, we compare our model to the elastix toolbox.
An extensive grid search on the test set to select the optimal distance metric, optimizer,
and multi-scale scheme is performed. The search space is described in detail in Section 4.4
of the preceding chapter.

Again we start with rigid deformations using rotations in [−60◦, 60◦] and translations
of at most a quarter of the image dimensions. Image pairs are created following the
algorithm described in Section 5.3 using all available data sets (Hands, Brain, fastMRI)
and Gaussian noise is added to the reference images ranging up to a third of the variance
within images.

The simple baseline method (plain) has poor performance regarding the MSE over the
samples in the test set (Table 5.1). It displays a much higher mean MSE as well as the
highest maximum error. Since the mean can easily be influenced by a small number of
large outliers, the poor performance can be attributed to the insufficient robustness of
the method. The outliers are caused by suboptimal local minima and failed line searches
during optimization. A few representative examples of such outliers are presented in
Figure 5.11. Our model alone has also difficulties to achieve accurate registration.

However, our combined strategy (comb) yields accuracies comparable to the highly
tuned FAIR and elastix results. What is clearly evident from the fact that the comb
method achieves the same median MSE as elastix on both the Hands and Brain data sets,
even outperforming FAIR by a narrow margin of 0.02. Overall FAIR and elastix show

115

Chapter 5. Meta-Learning for Image Registration

Figure 5.11.: Elastix registration results with the worst MSE for the data sets fastMRI
(top) and brain (bottom). Outliers can be mostly attributed to a high
level of symmetry leading to an incorrect initial estimate for the rotation.

good results, but also fail in a significant number of cases, indicated by the relatively high
mean values compared to the comb approach. This trend is confirmed by the outliers
(+) depicted in Figure 5.12. Applied to smaller tasks, our comb method learns to avoid
extreme outliers and in the case of the Hands data set eliminates the outliers entirely.
The performance of the comb method is less satisfactory when we consider larger tasks
such as the fastMRI data set. Here the classical methods achieve a lower mean error
of 0.12 compared to the 0.58 of the combined approach. We attribute this to a much
higher inter-object variance, which poses a more challenging problem for learning-based
approaches. The classical methods operate on an instance basis and therefore are less
susceptible to increased variance in the data.

A closer look at the difference in accuracy regarding the rotation matrix A and the
translation vector b (Figure 5.13, 5.14) reveals that our combined method struggles to
predict the correct rotation but is better at predicting translations. For the small data
sets Hands and Brain, it displays higher errors between the ground truth and predicted
rotation matrix compared to FAIR. On the other hand, this relation reverses for the
translation, where the comb method outperforms FAIR by a large margin (Figure 5.13).
This trend holds true in all tasks (Figure 5.14). Again one can see that the comb method
reduces outliers compared to the two benchmark methods, but overall produces larger
errors in the rotation matrix A. Results for the translation vector reveal that comb is able
to outperform FAIR on smaller data sets, but lacks the accuracy of elastix. We consider
the task of learning exact rotations to be particularly challenging in the given setting.
The nearly symmetric structure of the brain results in a complex distance function f

with many local minima.
So far, we have only looked at rigid deformations. An open question is how our model

behaves when additional shear effects occur. We extend our deformations by a shear

116

5.4. Affine Image Registration

Figure 5.12.: Left: When using only either the trained network (learn) or the simple
baseline method (plain) the performance is not competitive. However, when
combined (comb), the MSE is comparable to or even better than FAIR (see
orange median bars; outliers are not shown for clarity). Right: MSE of
the predicted deformation fields for all tasks. On the smaller Brain and
in particular Hands data sets, our approach allows reducing the number
of extreme outliers and yields performance comparable to the established
methods (see also 5.1). Orange horizontal lines denote medians, boxes show
quartiles, and outliers are marked by + symbols.

Figure 5.13.: Distance to ground truth of matrix A (left) and translation vector b (right)
for the experiment in Figure 5.12–left. The learn method has problems
estimating the rotation accurately. Compared to plain, it is on average
more accurate with less scatter. However, in some cases, the plain method
achieves a better prediction by up to an order of magnitude. The comb
approach improves the prediction of rotation but does not reach the level
of FAIR. Looking at translation, the ratio turns and FAIR performs worse
than our model (learn). The gap with FAIR increases when the comb
approach is considered. The trend can be seen for both the Hands and
Brain data sets.

117

Chapter 5. Meta-Learning for Image Registration

Figure 5.14.: Distance to ground truth of matrix A (left) and translation vector b (right)
for the experiment in Figure 5.12–right. Looking at the prediction of the
rotation matrix on the right side, it is clear that the comb method has
problems determining rotations accurately. For all three data sets, the
performance is worse than the two benchmark methods of FAIR and elastix.
One possible reason is that the plain method has weaknesses in determining
rotation (see Figure 5.13). For translation, the comb method achieves higher
accuracies than FAIR for all three data sets. However, it is beaten by elastix,
but only by a small margin for the Hands data set.

factor up to 15% of the rotation angle. The generation of the new fully affine deformations
follows the description in Section 5.3. We repeat the experiments from before with the
same hyperparameter settings. The results are listed in Table 5.2. Considering full affine
deformations including shearing or scaling shows no loss in performance. For the small
data sets, the accuracy even improves slightly, especially for the Brain data with reduced
mean error and maximum error of 0.04 and 0.56. In the case of fastMRI, the mean error
increases, resulting from an extreme outlier with an error of 94.30.

Multi-level Model. Finally, we investigate the influence of a multi-level (coarse-to-
fine) network structure, which is proven to benefit model accuracy in a medical image
registration setting [HGH19]. We follow the implementation used in FAIR without image
smoothing. The ML variant of our model is depicted in Figure 5.3. The multi-level
structure improves the network performance. This becomes especially clear for the small
data sets (Table 5.3). The multi-resolution model alone achieves near-perfect results
on the synthetic Hands data set. The greatest improvement is shown for the fastMRI
data set, where the comb model yields the lowest mean and median error of 0.04 and 0.0,
outperforming the established benchmark toolboxes. We want to particularly highlight
the improvement in mean error compared to FAIR and elastix. This again underlines
that our learned model can reduce the number of outliers.

118

5.4. Affine Image Registration

Table 5.2.: Mean squared error (MSE) of deformation grids on test sets for Hands,
Brain, and fastMRI tasks. Shown are the results for full affine deformations:
Transformations are created by adding a scalar to each rotation matrix entry
randomly sampled from a uniform distribution (15% of rotation angle). The
results confirm the findings in Table 5.1 for the purely rigid deformations.
The fastMRI data set exhibits an extreme outlier, but still, the combined
(comb) method exceeds baseline (plain) performance.

Hands Brain fastMRI

MSE

pl
ai
n

le
ar
n

co
m
b

pl
ai
n

le
ar
n

co
m
b

pl
ai
n

le
ar
n

co
m
b

mean 1.17 0.02 0.01 1.02 0.13 0.04 0.96 0.72 1.19
median 0.31 0.01 0.00 0.39 0.04 0.00 0.72 0.29 0.02
max 6.55 0.13 0.23 4.51 1.54 0.56 3.02 4.97 94.30

Table 5.3.: Mean squared error (MSE) of deformation grids on test sets for Hands, Brain,
and fastMRI tasks. Shown are the results for a multi-level (coarse-to-fine)
model architecture. The multi-level structure further improves the results and
for small sets such as Hands enables our approach to generate near-perfect
results. The learn procedure produces an extreme outlier in the fastMRI
data set, which is even more pronounced in the comb procedure. Despite this
outlier, the mean of both methods is lower than that of the plain method,
suggesting that this is an isolated phenomenon.

Hands Brain fastMRI

MSE

pl
ai
n

le
ar
n

co
m
b

pl
ai
n

le
ar
n

co
m
b

pl
ai
n

le
ar
n

co
m
b

mean 1.17 0.00 0.00 0.98 0.23 0.21 0.69 0.49 0.44
median 0.30 0.00 0.00 0.45 0.01 0.00 0.07 0.07 0.00
max 8.28 0.03 0.00 3.19 4.18 6.43 6.62 7.85 8.97

119

Chapter 5. Meta-Learning for Image Registration

5.4.2. Summary and Discussion
We introduced a new architecture to incorporate the iterative nature of classical optimiza-
tion into neural networks. Based on the structure of the model, we examined how different
scheduling techniques affect performance. It was found that these techniques had little
effect on the accuracy of the registration. To best approximate the iterative nature
of classical methods, we applied successive training of the weights. This significantly
improved the accuracy of our approach.

Finally, we evaluated our model’s capability to predict robust initial estimates for
simple non-tuned optimizers (plain). We measured the performance of the combined
method in comparison with two established frameworks FAIR and elastix. The results
demonstrated that our model can predict robust starting points for the plain optimizer.
We focused extensively on large deformations up to 60 degrees of rotation and translations
in the range of a quarter of image dimensions, which are especially challenging. If the
distribution of possible deformations can be derived from the data, our supervised
approach enables good registration results in a few steps without expensive parameter
tuning.

We proved that combining both classical and learning-based methods is beneficial, as
is evident from the reduction of outliers. This trend is reflected by current developments
in the field of image registration [FHH22; Jia+21; Xu+21; Qiu+22]. In the classical
setting, outliers occur mostly due to a failed optimization, where no descent direction is
found. An exciting connecting task is the transfer of this promising strategy to non-linear
deformations, a more frequent problem in medical imaging. Currently, we also have not
considered more specialized data terms or auxiliary loss functions, which are frequently
used [HGH19; FHH22; Her+19].

5.5. Non-parametric Image Registration
The first problem that arises when moving from affine to non-parametric deformations
is the increase in memory requirements. For two-dimensional images of size 128× 128,
xk grows to a size of 32 768 × 1, if each grid point is to be individually and locally
transformable. In combination with the need to collect several samples in one batch to
train effectively, the choice of the Fuse Layer and Scale Layer are of high importance.
In addition, we need to add a regularizer to our objective function f in order to avoid
foldings and thus ensure the regularity of the grid. Gradients have to be determined
with regard to the regularizer and passed to the network. In our model, this results in a
doubling of the input channels. This is because the gradients of each image direction
are represented by a separate channel. In the context of this thesis, we have chosen the
curvature regularizer, as it is a pragmatic and successful choice in practice [FM03].

5.5.1. Experiments and Results
As the size of our model is the most pressing problem in the non-parametric setting, we
first look for a suitable solution to reduce the size of the iterated xk and subsequently

120

5.5. Non-parametric Image Registration

T T ◦ ϕ R

Figure 5.15.: Example image pair from the Blobs data set. Left: The template image T
is a two-dimensional Gaussian distribution. Center: The transformation ϕ

(grid) is used to deform the template image. We intentionally created very
strong non-parametric deformations to challenge our model. Right: The
result is the reference image R.

of the model itself. For this purpose, we again construct a synthetic problem with
very large non-parametric deformations and simply structured objects in the form of
two-dimensional Gaussian-shaped ellipses. For the sake of simplicity, we will call these
Blobs in the further course of the thesis. An example of such a blob object is provided in
Figure 5.15.

Projection Layer. Using this data, we search for a suitable design for the two projection
layers. For the Fuse Layer, we use a two-dimensional convolutional layer with a kernel
size of k = 5. We initialize the weights with 1

k
so that all elements of the input contribute

equally. The weights of the layer are not trainable, in all experiments with trainable
weights the loss did not reasonably converge. The number of input channels depends on
the objective function. For the configuration with an SSD data term and a curvature
regularizer, it follows that the inputs have two channels, which are reduced to a single-
channel output. A number of different values for the regularization weight γ have been
tested and the best results have been obtained with 10−5. This value has been adopted
for the following experiments. The weight enters the model calculations only via the
gradients of the inner distance function f , it is not explicitly defined as a trainable
parameter. Finally, the output of the convolution layer is converted to a one-dimensional
vector to fit the LSTM requirements.

To generate a dense displacement field from the one-dimensional output of the main
block, we use another layer. The Scale Layer works in the opposite way to the Fuse
Layer, generating a deformation grid from the outputs. It is especially challenging to
guarantee the regularity of the resulting grid. We are therefore testing four different
variants for the Scale Layer : an up-convolution layer, a Gaussian smoothing layer with
trainable mean and variance, bilinear interpolation followed by a trainable smoothing
layer, and bilinear interpolation.

To test the different variants of the scale layer, we exchange the corresponding layer

121

Chapter 5. Meta-Learning for Image Registration

Figure 5.16.: Results on the Brain data set for the different versions of our Scale Layer:
Up-convolution (UpConv), Gaussian (Gauss), trainable smoothing layer
(SK), and two forms of interpolation on full-scale (Interpolation) and coarse
inputs downscaled by the factor 4 (Coarse). Left: Mean squared error of
deformation grids on the test set for different forms of the Scale Layer. The
layers based on interpolation produce the lowest errors. Of the trainable
layers, the UpConv layer achieves comparable error rates to interpolation.
Right: The value of the distance function f averaged over all samples in
the test set for the five tested layer types. The quality of the registration is
best when interpolation layers are used. Up-convolution creates blocks of
pixels the size of the kernel, producing a checkerboard pattern in the image,
resulting in large distances. An example image can be found in Figure 5.17.

122

5.5. Non-parametric Image Registration

Gaussian UpConv Coarse Interpolation

Figure 5.17.: Exemplary deformation grid for different layer variants (upper row). The
interpolation-based variants produce the smoothest grids and the best image
quality (lower row). The Gaussian layer results in many folds within the
grid, which in turn leads to blurred checkerboard patterns in the image (far
right). Strong checkerboard patterns are also the result of the UpConv
layer and step patterns are also visible in the generated grid (center right).
These are the result of the layer design, as the UpConv layer maps one
input value to multiple outputs.

in each case in a model consisting of three main blocks. We train all models with a
learning rate of 5 · 10−4, a batch size of 250, and use the Deform Loss. Due to the applied
early-stopping, the number of epochs varies slightly between 120 and 150, which is the
maximum number of epochs. Again, the quality of the registration is determined by the
error between the predicted grid and the ground truth. In addition, we also consider the
value of the distance function f , which classically serves as a quality criterion in image
registration. The results are shown in Figure 5.16.

Looking at the error in the deformation grids, the variants based on interpolation
perform best, and only the trainable UpConv layer achieves a similar level of accuracy.
For inputs at full resolution and interpolation as a scale layer, a mean error and median
of 0.01 are achieved. The UpConv layer manages to achieve a mean error of 0.04 and
a median of 0.02. If we reduce the size of the inputs by a quarter (Coarse) and use
interpolation, a mean error of 0.08 and a median of 0.04 is still achieved. A major
drawback of the trainable UpConv layer is revealed when we consider the distance
function f and the resulting grids (Figure 5.17). Here, the model with the UpConv layer
loses accuracy and produces the largest errors with a mean distance of 35 553 and a
median of 29 653. In comparison, both the interpolation and coarse variants produce
much smaller values with a mean distance of 1 177 and 1 842.

Grid Resolution. The use of interpolation allows us to extend our model to non-
parametric deformations. The next logical step is the application to full resolution grids

123

Chapter 5. Meta-Learning for Image Registration

Figure 5.18.: MSE and distance function f for the experiments from Table 5.4. Left:
The error between the deformation grids is smaller for the models with
coarser grids, but these were also trained for twice as long. Right: Looking
at the distance, a similar picture emerges, again the coarser grids and longer
training times produce better results.

and images. We focus on large deformation consisting of an affine and non-parametric
part. It quickly turns out that new problems arise from this step. The size of the full
resolution grids forces us to use smaller batch sizes and training is slower: a 4-layer model
on full resolution grids takes over 18 hours to train 300 epochs. This is not only due to
the larger number of weights whose gradient needs to be determined but also because
generating new samples for the batches takes more time. However, by using a coarser
grid and images, it is possible to train a 6-layer model with twice as many epochs in 14
hours.

To converge quickly and reliably, our model requires many training samples. For
smaller models, we can provide these through larger batch sizes. The model applied to
grids with full resolution does not provide good solutions yet. Coarse resolution inputs
initially lead to better solutions (Figure 5.18) and allow the use of larger models and
batch sizes. As a result, we can run more experiments in less time with the goal of
improving the model’s performance for large deformations in the non-parametric setting.
During our experiments, we found that a large number of epochs together with a very
large batch size leads to better results, see Table 5.4. It would be interesting to see if
good results are also possible at full resolution. Unfortunately, within the time frame
of this thesis, a more thorough investigation was not possible. The training times in
Table 5.4 show that it takes up to twice as long to train a model on full resolution grids.
This is also due to the implementation used to generate the training examples. In the
non-parametric case, we use a B-spline fit with randomly selected support points. This
can lead to no solution being found and new points having to be selected. In the case of
fully resolved grids with a larger number of support points, this case is more likely to
occur. In addition, for small batch sizes, more runs are required to reach the specified
number of samples per epoch. To identify possible weaknesses in our model, we use the
lower resolution inputs as they allow us to test different hyperparameter configurations

124

5.5. Non-parametric Image Registration

Table 5.4.: Experimental settings for the results displayed in Figure 5.18. Given are
important parameters concerning the model size (Layers, Grid Size) and
memory consumption. Grid Size denotes the size of the input vector, in
parenthesis the size of the sequence inside the model is given. For the full
model, we reduce the size by 4 using the Fuse Layer. The input size is
calculated for a batch size of 55 to enable a fair comparison. MB denotes the
memory requirements in megabytes during training.

Model Layers Grid Size Model Size (MB) Input Size (MB) Epochs Time (train)
full 4 32768 (8192) 1024.501 13.75 300 18:23:08
coarse (1) 3 2048 (1042) 48.094 0.8593 600 18:45:10
coarse (2) 6 2048 (1042) 98.192 0.8593 600 14:33:07
coarse (3) 6 2048 (1042) 98.192 0.8593 600 12:21:46

more quickly.

Large Deformations. Even smaller grids and longer training times do not lead to
successful compensations of large deformations in the non-parametric environment. In
order to better determine the reasons for inadequate results, we examine the global and
local parts of the transformation separately. We consider the ability of the model to
solve three tasks: the compensation of global deformations (Affine), local deformations
(Nonpara), and finally the combination of both components into large non-parametric
deformations (Large). First, we use our non-parametric model to solve the tasks Affine
and Nonpara (Table 5.5). Our goal is to be able to compensate for large non-parametric
deformations with a single model. Therefore, we start with our non-parametric model,
which operates on the deformation grids.

Figure 5.19 shows the resulting mean square errors between the predicted grids and
the ground truth. For the two tasks Affine and Nonpara, our model is able to provide
good solutions. Visual inspection of some examples in the test data set also confirms this
result (Figure 5.20). Unfortunately, large deformations (Large) cannot be compensated
with the same accuracy. For both parameter configurations, the mean error and median
are 0.03. Thus, although the full-resolution problem (Figure 5.20) cannot currently
be solved satisfactorily, we conclude from the low-resolution problem that it is worth
investigating if a combination of affine and non-parametric estimates could solve the
global non-parametric problem. A possible solution could consist of combining our affine
model (Section 5.4) and the non-parametric model.

We conclude by comparing our model’s performance on Nonpara and Large with the two
benchmark methods. In FAIR we use the provided multi-scale approach with two levels
adapted to the low resolution images in both tasks. The default implementation includes
an affine pre-registration of the images alongside the strategies to increase robustness
such as filtering or regularized interpolation. We again chose the L-BFGS optimizer and
set the regularizer weight γ to 10−5. In the case of elastix, the grid search resulted in the
best-performing parameter setting: adaptive stochastic gradient descent solver, the mean

125

Chapter 5. Meta-Learning for Image Registration

Table 5.5.: Parameter settings and training times for the non-parametric image
registration. We investigate large deformations in a threefold manner: Our
model is applied to purely affine deformations with no local components
(Affine), non-parametric local deformations with no affine part (Nonpara), and
large deformations consisting of both an affine and non-parametric component
(Large). For each scenario, we list the two different parameter settings that
achieve the best performance on the test set.

Task Layers Batch Size Learning Rate Epochs Time (train)
Affine (1) 6 2500 10−3 2000 20:28:26
Affine (2) 6 2500 5 · 10−4 2000 21:21:40
Nonpara (1) 6 2500 10−3 1000 65:52:09
Nonpara (2) 6 1250 10−3 1000 66:10:02
Large (1) 6 2500 10−3 1000 65:42:19
Large (2) 6 2000 10−3 2000 66:17:45

Figure 5.19.: Results for our experiments in Table 5.5. Displayed is the MSE on the
deformation grids. Right: Errors for the single components Affine and
Nonpara. Both tasks can be solved sufficiently if we separate them and apply
the model to each problem individually. Left: Given the same amount of
time it took to complete the individual tasks, the same model struggles
to complete the combined task with a similar level of accuracy. Given the
complexity of the deformations, the results that our model has already
achieved are a promising start to pursue the approach further in the future.

126

5.5. Non-parametric Image Registration

(a) Affine

(b) Nonpara

(c) Large

Figure 5.20.: Overlay of the transformed template image (blue) with the reference image
(red) for randomly chosen samples of the Brain data set. At points of high
correspondence, the two add up to a greyscale image. (a) For the task of
affine deformations, the non-parametric model achieves good results, as
can be seen from the few blue or red spots in the overlayed images. (b) A
similar picture emerges for transformations with only local (non-parametric)
changes. However, it can be seen that very large changes, as in the case
of the bottom left, cause difficulties. (c) When combining both types of
transformation — i.e., creating large deformations with global and local
components — the problem becomes much more difficult. Although an
optimal solution has not yet been found, our model shows great potential
for large deformations.

127

Chapter 5. Meta-Learning for Image Registration

Figure 5.21.: MSE between the deformation grids for our best model (learn) and the
two benchmark toolboxes (FAIR, elastix) on the Large task (left) and
the Nonpara task with only local deformations (right). Our method
displays considerably better performance than both FAIR and elastix. We
constitute that to the fact, that the combination of global and strong local
deformations hinders a successful affine pre-registration, suggested by the
failed registrations displayed in Figure 5.22.

squares (MS) distance measure, and again a coarse-to-fine approach on two levels. We
extended the method to non-parametric deformations by the successive execution of an
affine registration and the default B-spline based non-parametric deformation.

Both approaches have major problems with the Large data set. Particularly noticeable
are the high errors between the ground truth and predicted grid for both FAIR and
elastix. The reason for this is probably a failure of the pre-registration as suggested by
the examples with the largest errors (Figure 5.22).

The comparison with the benchmark methods once again emphasizes that the task
of dealing with large deformations is a very demanding one. It should be noted that
both classical methods are not designed to be used without considerable fine-tuning
of the parameter settings. Especially for the complex deformations in the Large task,
an intensive examination of individual examples is recommended. In particular, the
regularization weight γ should be checked individually for each image pair, given the large
variability in the strength of local deformations. The application of classical variational
methods to reduce such variable deformations requires a high degree of expertise on
the part of the user. Since this elaborate process also requires a deep understanding
of both toolboxes and our trained model already produces superior results, we propose
to use the outputs of the network as initial estimates. In this way, the complexity of
the deformations is reduced and the classical methods do not have to compensate for
the affine parts anymore. If the distribution of transformations is known or can be
inferred from examples with minimum and maximum deformations, using our network
as a pre-registration can probably support classical methods.

We consider the results in Figure 5.21 to be an indicator that learning-based methods
with their nonlinear updates can support classical image registration approaches with an
unsolved problem: the dependence of the methods on robust initial estimates.

128

5.5. Non-parametric Image Registration

FAIR (Large) FAIR (Nonpara)

elastix (Large) elastix (Nonpara)

learn (Large) learn (Nonpara)

Figure 5.22.: Example results of all three methods for the two tasks Nonpara and Large.
In the case of large non-parametric deformations with affine components,
the two classical approaches give inadequate results. On the left, a good
result (far left) and the result with the largest error between the grids
(center left) are shown as examples. It is clear that the methods do not
produce satisfactory solutions when the affine parts are not well balanced.
The small regularization weight allows strong decomposition effects but is
necessary to allow strong local deformations (center right).

129

Chapter 5. Meta-Learning for Image Registration

5.5.2. Summary and Discussion
Having successfully applied our model to affine deformations, we looked at extending the
methodology to the non-parametric case. The design of the Scale Layer was particularly
important. The size of the inputs made it necessary to reduce them considerably using the
Fuse Layer. To reconstruct regular, dense grids from the model outputs, various methods
were tested, from linear interpolation to trainable convolution kernels. To do this, we
created large non-parametric deformations and applied them to simply structured 2D
Gaussian distributions. Two conclusions can be drawn: First, it is possible to compensate
for strong non-parametric deformations with our model. Second, these problems can be
solved most efficiently by using coarser resolution grids and images in combination with
linear downscaling and upscaling to keep the number of parameters in the model small.

We extended our model with a layer that linearly interpolates the outputs to create
dense grids. We also decided to work with coarser resolutions as this allowed more
experiments to be run in less time. We then investigated the ability of our model to
solve large deformations consisting of a global affine and a local non-parametric part.
Such deformation could not be satisfactorily compensated for by the model. However, it
was shown that, with few exceptions, the individual components separately produced
registrations of high accuracy. Considering that trying to solve such large deformations
with a single model is an ambitious goal, this is a respectable achievement. These results
offer a promising perspective, which we leave for future work.

5.6. Conclusion
The second part of this thesis dealt with the application of neural networks in image
registration. The focus was on merging two different approaches: the classical
variational methods in the form of iterative update schemes and neural networks,
which usually register two images in only one step. Our aim was to combine the
advantages of both approaches by embedding the iterative update scheme in a neural
network: accuracy and speed.

The development of a suitable model has been the starting point in Section 5.2. At the
heart of our model is an iterative update scheme that follows the methodology of classical
methods. The update is no longer the gradient of the distance function multiplied by a
variable step size but calculated by a neural network using the gradient as input. The
network consists of projection layers and LSTM layers, which we chose for their hidden
state functionality. These allow information from previous steps to be included in the
computation of the update. To compute the gradients for the internal optimization
problem, we use the autograd functionality of PyTorch. This means that in addition
to our model, the inputs must also be part of the graph, which increases the memory
requirements of our method.

Since we aimed to elevate the performance of classical iterative methods using a
learning-based method, we decided to adopt a supervised learning approach. Ground
truth is hard to come by in an image registration setting if it exists at all. We avoided

130

5.6. Conclusion

this problem by creating our own ground truth by adopting the idea for ground truth
creation proposed in [Dos+15]. In Section 5.3, we provided two methods to randomly
generate feasible affine and non-parametric deformations.

Using the artificial ground truths, we were able to train the model using a supervised
approach. Initially, we focused on affine deformations because they have a global
effect, are controlled by a few parameters, and represent a simpler problem (Section 5.4).
To compensate for large deformations, not only the model but also the optimization
strategy for adjusting the weights was crucial. First, we experimented with different
forms of scheduling. It turned out that common scheduling methods did not have a
positive effect on the training, so we discarded scheduling as a whole. In a second
step, we established stepwise training of the individual layers, as this method proved to
be advantageous [HGH19] in image registration. The successive training of each layer
allowed the model to register more accurately with the same parameter configuration, as
shown by the smaller errors between the grids and the smaller SSD distance between the
images.

Deep supervision is used in multi-layer networks to incorporate information from
different resolutions or levels into the loss calculation. Based on this, we tested a loss
variant that used all steps of the iterative scheme for the calculation. However, the
Trajectory Loss did not improve accuracy and was discarded. Our final model was
composed of the architecture in Section 5.2, successive training of each layer, and a
quadratic mean error on the deformation fields loss function (Deform Loss).

Finally, we tested our model on one synthetic and two real data sets and compared
the results with two established toolboxes for classical registration methods: FAIR and
elastix. Our model (learn) approximated 5 steps of an iterative procedure and then the
predictions were passed as initial estimates to a simple L-BFGS procedure (plain). For
two data sets, this combined approach (comb) was able to match the performance of the
established methods while producing fewer outliers. Furthermore, a multi-level variant of
our model was able to achieve almost perfect results on the synthetic data, outperforming
the most accurate method in the elastix toolbox.

As an outlook, the interesting class of non-parametric deformations was examined
in the last Section 5.5 of this chapter. First, we focused on redesigning our projection
layers, as fully-resolved grids already require a lot of memory in the two-dimensional
case. The best option proved to be linear interpolation to control the size of the inputs
and outputs. In this way, we were able to keep the number of weights from becoming
too large, while still allowing the prediction of dense regular grids.

When applied to a synthetic example in the form of two-dimensional Gaussian
distributions, our model was able to successfully compensate for strong non-parametric
deformation. In a further step, we tested the capabilities of the model on large
deformations consisting of an affine and a non-parametric part. Some limitations had
to be accepted. The input resolution was reduced from 128 × 128 to 32 × 32 to allow
for large batch sizes and long training times. The original deformations are not fully
compensated by our network. Looking at the individual components, the model was
quite capable of producing accurate registration results.

The approach taken in this thesis, combining classical and learning-based methods,

131

Chapter 5. Meta-Learning for Image Registration

has produced promising results. To realize its full potential, further work can address
the conceptual weaknesses identified.

Predicting dense displacement fields using the outputs from the LSTM layer is difficult.
Instead, one could adapt approaches like in [San+19] and use the outputs as parameters
of a set of basis functions that generate the deformation grids.

The LSTM layer was not designed for image data. A change to convolutional
LSTM [Shi+15] could help to better meet the requirements of image registration and
exploit the native spatial dimensions of images. Alternatively, the current model can be
adapted in the style of [Dos+21] by passing the grids as a sequence of patches.

The implementation in double precision format costs a lot of memory. It ensures
a smooth transition between the learning procedure and the classical optimization
(Section 5.4), but it is not mandatory in the imprecise learning procedure. In order to
reduce the memory requirements of the models, it can be investigated whether the single
precision format leads to a loss of accuracy.

Predicting large deformations with a single non-parametric model was very ambitious.
A combined model consisting of a subnetwork to compensate the affine parts and another
subnetwork to predict the local deformations is a possible solution.

132

6. Discussion
In this thesis, we investigated different applications of neural networks in the fields
of medical data analysis and image registration. In the first part, we developed new
models to analyze mass-spectrometry imaging data. This includes several pioneering
works [Kle+19; Kan+23] for the classification of different tumor types, which differ
significantly from the current mostly linear methods (Chapter 3).

MALDI-MSI. Mass spectrometry imaging, especially MALDI-MSI, is becoming an
indispensable tool in personalized medicine. In contrast to the acquisition method itself
less attention has been paid to data processing and the literature is dominated by classical
machine learning algorithms. This motivated us to apply neural networks to this data, as
they have been very successful in many areas of computer vision. The models presented
in Chapter 2 were used to develop new methods in the field of mass-spectrometry imaging.
Our methods allow precise classification of tumor subtypes (Chapter 3, Section 3.5) as
well as discrimination of different tumor types (Section 3.6, Section 3.7). In doing so,
they achieved a higher level of accuracy than established approaches.

• We searched for suitable architectures (Section 3.5). We also investigated several
feature extraction methods and were finally able to distinguish ovarian cancer
subtypes in a first pilot study. Our method consisted of a flat CNN model applied
directly to the unprocessed spectra. The stability of the prediction was increased
by eliminating tissue samples with few associated spectra and applying majority
voting to obtain predictions for individual patients. In our experiments, CNN
achieved the best results compared to classical methods such as SVM.

• In Section 3.6, we extended our methodology to include the two network architectures
of Residual Networks and Recurrent Networks. Both achieve good results for
sequential data and since MALDI-MSI uses a time of flight detection, a sequential
structure of the resulting data can be assumed. In the classification of two types
of amyloidosis, the two new architectures performed better than the previously
best-performing CNN model. It also showed that the classical methods, such as
LDA or SVM, were not able to accurately classify the two types of amyloidosis,
even with feature extraction. Furthermore, we discussed that many studies in the
field of MALDI-MSI do not cleanly separate their training and test data and in
this way falsely overstate the accuracy of their methods.

• In the following Section 3.7, we addressed the problem of noise caused by spectra
that carry little or no information. In the case of the pancreatic tumor classification

133

Chapter 6. Discussion

data set, we identified over 2000 such spectra, representing 13% of all spectra.
We also investigated the suitability of the Transformer architecture for use in
MALDI-MSI. The Transformer model together with a residual model gave the
best results. The accuracy of both models exceeded that of traditional univariate
methods, demonstrating once again the advantage of multivariate neural networks
over the univariate methods widely used in MALDI-MSI.

During this thesis, several challenges were identified and solved. The use of neural
networks in MALDI-MSI is an under-researched topic. As a result, there is little work
on which to base the methodology. Apart from [Beh+17], we were the first to apply
neuronal networks directly to the m/z spectra in MALDI-MSI. The search for suitable
models has therefore been a major part of this work and is still ongoing. The spectra
in MALDI-MSI are very large 1D data, which in practice are greatly reduced in size in
order to work effectively with them. Furthermore, the ratio of feature size to the number
of samples in the data sets is unbalanced. As a result, we had to find ways to avoid
severe overfitting when developing the models. In addition, noise from various sources is
a problem when applying machine learning techniques to MALDI-MSI data. We were
able to remove one of these sources by introducing a filter to determine the information
content of the spectra.

We have successfully demonstrated that it is possible to apply neuronal networks to
the full m/z range of MALDI-MSI spectra without resorting to extensive dimension
reduction or feature extraction methods such as PCA or NMF. Despite these successes of
our methodology, there are still many opportunities to make the use of neural networks
in MALDI-MSI more effective.

Image Registration. There are currently two competing approaches to image registra-
tion. On the one hand, there are the classical variational approaches, which achieve
very high accuracies but are often complex and computationally expensive. Furthermore,
the robustness of the optimization is a concern, variational methods depend on good
initial estimates. The other is neural networks, which are fast but less accurate and have
problems with large deformations consisting of global affine and local non-parametric
components. In Chapter 5, a model was designed to combine both approaches by
integrating the iterative nature of variational methods into the methodological framework
of neural networks. We applied the model to large deformations, which are especially
difficult to compensate for.

• The model was introduced in Section 5.2. We replaced the update step of an iterative
method with a neural network. We chose the LSTM layer as the architecture because
it has a hidden state that can be propagated through several layers. In this way,
information about previous steps is included in the calculation of the current update.
We also showed the parallels of our methodology with bi-level optimization and
meta-learning methods. Furthermore, we explained advanced strategies such as a
multi-level model or the successive training of individual layers. Our supervised
learning approach depends on ground truth data, which is commonly not available

134

in image registration. Our solution to this problem was to do our own artificial
deformations (Section 5.3).

• As a first step, we used the new model to compensate for large affine deformations
(Section 5.4). Many experiments were carried out to find a suitable frame structure
for our model. We tried different scheduling techniques, but these did not improve
the training. More successful was the successive training of each layer. This method,
which we call freezing, reduces the mean error by up to 20%. Our form of deep
supervision, Trajectory Deform Loss, did not improve the results compared to the
mean square error between the deformation grids. Finally, we tested the ability of
the affine model to produce robust initial values for simply constructed classical
methods. Our approach helps a simple L-BFGS method to achieve a similar level
of accuracy as the highly optimized classical methods of the FAIR and elastix
toolboxes. It should be emphasized that the initial values of our network helped to
significantly reduce the number of outliers. Particularly good results were obtained
when a multi-level variant of the network was used.

• In the context of medical imaging, non-parametric deformations are much more
common. Therefore, extending our network to the non-parametric case was the
topic of Section 5.5. As the central component of our model is the LSTM layer,
we first had to look at ways of efficiently reducing the size of the grids in order to
reduce the memory requirements. The key step was to project the model outputs
back into the deformation space. Care had to be taken to ensure that the predicted
grids were dense and regular. The latter was best achieved by a simple interpolation
in the last layer. To reduce memory requirements, a coarser resolution of the inputs
proved to be the most appropriate. When applied to large deformations with
an affine and non-parametric component, the network could only achieve average
accuracies. However, when the global and local parts are processed separately, our
model achieves promising results even in the non-parametric setting.

First, we had to embed the existing framework of iterative optimization from the FAIR
toolbox into a neural network. The FAIR toolbox uses fixed derivative operators for
determining the gradients. As a consequence, the operators would have to be defined
in advance for each distance measure and regularizer, at the expense of flexibility.
To overcome this problem, we decided to use the autograd function of the PyTorch
framework. In doing so, we had to accept that the memory requirements of the method
would increase.

Another goal was that the model should not simply be a better optimizer to minimize
the distance between the images, but that it should find a good fitting registration.
Therefore, we decided not to use the distance measure directly, but to use a supervised
approach that penalizes the difference in the deformation grids. As a consequence, we
had to build a generator that randomly constructs deformations.

For the class of non-parametric deformations, our model could demonstrate its potential
in a small proof-of-concept study. For a single model, it is particularly difficult to

135

Chapter 6. Discussion

compensate for large deformations with global and local components. Therefore, a
combination of an upstream affine and a downstream non-parametric registration model
is often used. We have shown that an approach borrowing from iterative optimization
with trainable updates could be a solution. This assumption still needs to be validated
in competition with existing methods. Moving towards these hybrid methods is a strong
current trend [FHH22; Xu+21; Jia+21; San+19; Qiu+22] of research in this area.

Future Work. All of the methods presented in this thesis have much potential for further
development. Although we have succeeded in applying neural networks to MALDI-MSI,
interesting questions remain:

• In addition to classification in the diagnostic setting, MALDI-MSI is also used to
identify new potential biomarkers. An extension of our methodology in the form
of Class Activation Maps (CAM) [Zho+16] could be used by experts to find new
markers in the labeled areas of the spectra.

• In Section 3.5, we investigated exploiting spatial information within the patient
sample by combining multiple spectra. While ultimately not satisfying, we believe
that additional spatial information, for example in the form of an additional m/z
image, could be beneficial. A two-part network combining image information and
spectral data would be possible.

• The application of the Transformer architecture in Section 3.7 was only possible with
simultaneous dimension reduction in the form of pooling operations. This potential
loss of information could be counteracted by using Sparse Transformers [Chi+19]
with a specially designed attention pattern.

We also see considerable remaining potential in our model for combining iterative methods
and neural networks in the field of image registration:

• The dense nature of the LSTM layer proved to be a good starting point for further
development in our experiments. In particular, the lack of scalability in the non-
parametric setting proved to be a problem. Alternative network forms such as
convolutional LSTMs [Shi+15] or a combination of CNNs and LSTMs [Don+15]
are possible solutions, which we discussed briefly in Chapter 2.

• Furthermore, an extension of the loss function via an external regularizer or auxiliary
terms to the images of corresponding segmentations [Her+19] could be used.

• In order to be able to assess the potential of the method more precisely, a more
intensive evaluation is recommended, especially with regard to fully resolved input
data and in contrast to existing established [Bal+19] and related [Qiu+22; San+19]
methods. Also interesting is the behavior when using alternative distance functions
or mixed training data consisting of different objects from different modalities.

136

With this work, we hope to help establish neural networks as an important component
of MALDI-MSI for diagnostic purposes. We are convinced that the fusion of these
disciplines can permanently change the work of molecular pathology in the future. In
addition, we have demonstrated the potential of intersectional models from the fields
of variational and learning-based image registration, and hope that future studies will
continue this direction of research.

137

Bibliography
[Ale+10] Theodore Alexandrov et al. “Spatial segmentation of imaging mass spectro-

metry data with edge-preserving image denoising and clustering.” In: Journal
of proteome research 9.12 (2010), pp. 6535–6546.

[Ami94] Yali Amit. “A nonlinear variational problem for image matching.” In: SIAM
Journal on Scientific Computing 15.1 (1994), pp. 207–224.

[And+13] Yukio Ando et al. “Guideline of transthyretin-related hereditary amyloidosis
for clinicians.” In: Orphanet journal of rare diseases 8.1 (2013), pp. 1–18.

[And+16] Marcin Andrychowicz et al. “Learning to learn by gradient descent by
gradient descent.” In: International Conference Advances in Neural Informa-
tion Processing Systems. 2016, pp. 3981–3989.

[AÖ17] Jonas Adler and Ozan Öktem. “Solving ill-posed inverse problems using
iterative deep neural networks.” In: Inverse Problems 33.12 (2017), p. 124007.

[ATS+09] Brian B Avants, Nick Tustison, Gang Song, et al. “Advanced normalization
tools (ANTS).” In: Insight j 2.365 (2009), pp. 1–35.

[AW15] Michaela Aichler and Axel Walch. “MALDI Imaging mass spectrometry:
current frontiers and perspectives in pathology research and practice.” In:
Laboratory investigation 95.4 (2015), pp. 422–431.

[Bal+19] Guha Balakrishnan et al. “Voxelmorph: a learning framework for deformable
medical image registration.” In: IEEE transactions on medical imaging 38.8
(2019), pp. 1788–1800.

[BBH20] Max Blendowski, Nassim Bouteldja, and Mattias P Heinrich. “Multimodal
3D medical image registration guided by shape encoder–decoder networks.”
In: International journal of computer assisted radiology and surgery 15.2
(2020), pp. 269–276.

[BCB15] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural machine
translation by jointly learning to align and translate.” In: International
Conference on Learning Representations. 2015.

[Beh+17] Jens Behrmann et al. “Deep learning for tumor classification in imaging
mass spectrometry.” In: Bioinformatics 34.7 (Nov. 2017), pp. 1215–1223.

[Ben10] Merrill D Benson. “LECT2 amyloidosis.” In: Kidney international 77.9
(2010), pp. 757–759.

139

Bibliography

[BFS93] Yoshua Bengio, Paolo Frasconi, and Patrice Simard. “The problem of
learning long-term dependencies in recurrent networks.” In: IEEE Internatio-
nal Conference on Neural Networks. 1993, pp. 1183–1188.

[BH19] Max Blendowski and Mattias P Heinrich. “Combining MRF-based deform-
able registration and deep binary 3D-CNN descriptors for large lung motion
estimation in COPD patients.” In: International journal of computer assisted
radiology and surgery 14.1 (2019), pp. 43–52.

[BHH21] Max Blendowski, Lasse Hansen, and Mattias P Heinrich. “Weakly-supervised
learning of multi-modal features for regularised iterative descent in 3D image
registration.” In: Medical image analysis 67 (2021), p. 101822.

[BMR13] Martin Burger, Jan Modersitzki, and Lars Ruthotto. “A hyperelastic
regularization energy for image registration.” In: SIAM Journal on Scientific
Computing 35.1 (2013), B132–B148.

[BN06] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and
machine learning. Vol. 4. 4. Springer, 2006.

[Bos+19] Tobias Boskamp et al. “Using the chemical noise background in MALDI
mass spectrometry imaging for mass alignment and calibration.” In: Analyti-
cal chemistry 92.1 (2019), pp. 1301–1308.

[Bra+18] Freddie Bray et al. “Global cancer statistics 2018: GLOBOCAN estimates
of incidence and mortality worldwide for 36 cancers in 185 countries.” In:
CA: a cancer journal for clinicians 68.6 (2018), pp. 394–424.

[Bre+19] Kai Brehmer et al. “Variational Registration of Multiple Images with the
SVD Based SqN Distance Measure.” In: International Conference on Scale
Space and Variational Methods in Computer Vision. 2019, pp. 251–262.

[Bro+20] Tom Brown et al. “Language models are few-shot learners.” In: Advances
in neural information processing systems 33 (2020), pp. 1877–1901.

[Can+11] Emmanuel J Candès et al. “Robust principal component analysis?” In:
Journal of the ACM 58.3 (2011), pp. 1–37.

[Cao+17] Xiaohuan Cao et al. “Deformable image registration based on similarity-
steered CNN regression.” In: International Conference on Medical Image
Computing and Computer-Assisted Intervention. 2017, pp. 300–308.

[Cas+17] R Casadonte et al. “MALDI IMS and cancer tissue microarrays.” In:
Advances in cancer research 134 (2017), pp. 173–200.

[CC11] Rita Casadonte and Richard M Caprioli. “Proteomic analysis of formalin-
fixed paraffin-embedded tissue by MALDI imaging mass spectrometry.” In:
Nature protocols 6.11 (2011), pp. 1695–1709.

[CDS01] Scott Shaobing Chen, David L Donoho, and Michael A Saunders. “Atomic
decomposition by basis pursuit.” In: SIAM review 43.1 (2001), pp. 129–159.

140

Bibliography

[CFG97] Richard M Caprioli, Terry B Farmer, and Jocelyn Gile. “Molecular imaging
of biological samples: localization of peptides and proteins using MALDI-
TOF MS.” In: Analytical chemistry 69.23 (1997), pp. 4751–4760.

[Cha+06] Pierre Chaurand et al. “New developments in profiling and imaging of
proteins from tissue sections by MALDI mass spectrometry.” In: Journal of
proteome research 5.11 (2006), pp. 2889–2900.

[Chi+19] Rewon Child et al. Generating long sequences with sparse transformers.
Tech. rep. OpenAI, 2019.

[Cho+15] Jan K Chorowski et al. “Attention-Based Models for Speech Recognition.”
In: Advances in Neural Information Processing Systems 28. Ed. by C. Cortes
et al. Curran Associates, Inc., 2015, pp. 577–585.

[Cor+19] Yovany Cordero Hernandez et al. “Targeted feature extraction in MALDI
mass spectrometry imaging to discriminate proteomic profiles of breast
and ovarian cancer.” In: Proteomics–Clinical Applications 13.1 (2019),
p. 1700168.

[CV18] Zhaowei Cai and Nuno Vasconcelos. “Cascade r-cnn: Delving into high
quality object detection.” In: IEEE Conference on Computer Vision and
Pattern Recognition. 2018, pp. 6154–6162.

[DBS10] Sören-Oliver Deininger, Michael Becker, and Detlev Suckau. “Tutorial:
multivariate statistical treatment of imaging data for clinical biomarker
discovery.” In: Mass Spectrometry Imaging (2010), pp. 385–403.

[Déf+22] Alexandre Défossez et al. “A Simple Convergence Proof of Adam and
Adagrad.” In: Transactions on Machine Learning Research (2022).

[Dei+11] Sören-Oliver Deininger et al. “Normalization in MALDI-TOF imaging
datasets of proteins: practical considerations.” In: Analytical and bioanalytical
chemistry 401.1 (2011), pp. 167–181.

[Del+16] Daniel Delitto et al. “Nicotine Reduces Survival via Augmentation of
Paracrine HGF–MET Signaling in the Pancreatic Cancer Microenvironment.”
In: Clinical Cancer Research 22.7 (2016), pp. 1787–1799.

[Den+09] Jia Deng et al. “Imagenet: A large-scale hierarchical image database.”
In: IEEE Conference on Computer Vision and Pattern Recognition. 2009,
pp. 248–255.

[Des22] Heather Desaire. “How (Not) to Generate a Highly Predictive Biomarker
Panel Using Machine Learning.” In: Journal of Proteome Research (2022).

[Dev+18] Jacob Devlin et al. Bert: Pre-training of deep bidirectional transformers for
language understanding. Tech. rep. Google AI Language, 2018.

[DGM98] Paul Dupuis, Ulf Grenander, and Michael I Miller. “Variational problems
on flows of diffeomorphisms for image matching.” In: Quarterly of applied
mathematics (1998), pp. 587–600.

141

Bibliography

[DHS11] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive subgradient methods
for online learning and stochastic optimization.” In: Journal of machine
learning research 12.7 (2011).

[Don+15] Jeffrey Donahue et al. “Long-term recurrent convolutional networks for
visual recognition and description.” In: IEEE Conference on Computer
Vision and Pattern Recognition. 2015, pp. 2625–2634.

[Dos+15] Alexey Dosovitskiy et al. “Flownet: Learning optical flow with convolutional
networks.” In: IEEE International Conference on Computer Vision. 2015,
pp. 2758–2766.

[Dos+21] Alexey Dosovitskiy et al. “An Image is Worth 16x16 Words: Transformers
for Image Recognition at Scale.” In: International Conference on Learning
Representations. 2021.

[Doz16] Timothy Dozat. “Incorporating Nesterov Momentum into Adam.” In: Interna-
tional Conference on Learning Representations. Workshop Track. 2016.

[DR04] Marc Droske and Martin Rumpf. “A variational approach to nonrigid
morphological image registration.” In: SIAM Journal on Applied Mathematics
64.2 (2004), pp. 668–687.

[DS96] John E Dennis Jr and Robert B Schnabel. Numerical methods for unconstrain-
ed optimization and nonlinear equations. SIAM, 1996.

[Du+16] Xiaogang Du et al. “A parallel nonrigid registration algorithm based on
B-spline for medical images.” In: Computational and mathematical methods
in medicine 2016 (2016).

[EN08] Ellen C Ebert and Michael Nagar. “Gastrointestinal manifestations of
amyloidosis.” In: Official journal of the American College of Gastroenterology
103.3 (2008), pp. 776–787.

[EY36] Carl Eckart and Gale Young. “The approximation of one matrix by another
of lower rank.” In: Psychometrika 1.3 (1936), pp. 211–218.

[FAL17] Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-agnostic meta-
learning for fast adaptation of deep networks.” In: International Conference
on Machine Learning. 2017, pp. 1126–1135.

[Fat+15] Mirek Fatyga et al. “A voxel-by-voxel comparison of deformable vector
fields obtained by three deformable image registration algorithms applied
to 4DCT lung studies.” In: Frontiers in oncology 5 (2015), p. 17.

[FHH22] Fenja Falta, Lasse Hansen, and Mattias P Heinrich. “Learning Iterative
Optimisation for Deformable Image Registration of Lung CT with Recurrent
Convolutional Networks.” In: International Conference on Medical Image
Computing and Computer-Assisted Intervention. 2022, pp. 301–309.

[FM02] Bernd Fischer and Jan Modersitzki. “Fast diffusion registration.” In: Contem-
porary Mathematics 313 (2002), pp. 117–128.

142

Bibliography

[FM03] Bernd Fischer and Jan Modersitzki. “Curvature based image registration.”
In: Journal of Mathematical Imaging and Vision 18.1 (2003), pp. 81–85.

[Fra+18] L Franceschi et al. “Bilevel Programming for Hyperparameter Optimization
and Meta-Learning.” In: International Conference on Machine Learning.
2018, pp. 1563–1572.

[Fuc+20] Fabian Fuchs et al. “Se (3)-transformers: 3d roto-translation equivariant
attention networks.” In: Advances in Neural Information Processing Systems
33 (2020), pp. 1970–1981.

[Gal+16] Manuel Galli et al. “Machine learning approaches in MALDI-MSI: clinical
applications.” In: Expert review of proteomics 13.7 (2016), pp. 685–696.

[Gap+11] Susan M Gapstur et al. “Association of alcohol intake with pancreatic
cancer mortality in never smokers.” In: Archives of internal medicine 171.5
(2011), pp. 444–451.

[GB10] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training
deep feedforward neural networks.” In: International Conference on Artificial
Intelligence and Statistics. 2010, pp. 249–256.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016.

[Geh+17] Jonas Gehring et al. “Convolutional Sequence to Sequence Learning.” In:
International Conference on Machine Learning. 2017, pp. 1243–1252.

[Ger+15] Morie A Gertz et al. “Diagnosis, prognosis, and therapy of transthyretin
amyloidosis.” In: Journal of the American College of Cardiology 66.21 (2015),
pp. 2451–2466.

[GMH13] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. “Speech
recognition with deep recurrent neural networks.” In: IEEE International
Conference on Acoustics, Speech and Signal Processing. 2013, pp. 6645–6649.

[Goo+14] Ian Goodfellow et al. “Generative adversarial nets.” In: Advances in neural
information processing systems 27 (2014).

[Goo+20] Ian Goodfellow et al. “Generative adversarial networks.” In: Communications
of the ACM 63.11 (2020), pp. 139–144.

[Gra13] Alex Graves. Generating sequences with recurrent neural networks. Tech. rep.
arXiv:1308.0850, 2013.

[GRM06] Feng Gan, Guihua Ruan, and Jinyuan Mo. “Baseline correction by improved
iterative polynomial fitting with automatic threshold.” In: Chemometrics
and Intelligent Laboratory Systems 82.1-2 (2006), pp. 59–65.

[Gro13] Jürgen H. Gross. Massenspektrometrie. Springer Spectrum, 2013.
[Had02] Jacques Hadamard. “Sur les problèmes aux dérivées partielles et leur

signification physique.” In: Princeton university bulletin (1902), pp. 49–52.

143

Bibliography

[Haz13] Bouke PC Hazenberg. “Amyloidosis: a clinical overview.” In: Rheumatic
Disease Clinics 39.2 (2013), pp. 323–345.

[HDI+11] Dominic Holland, Anders M Dale, Alzheimer’s Disease Neuroimaging
Initiative, et al. “Nonlinear registration of longitudinal images and measure-
ment of change in regions of interest.” In: Medical image analysis 15.4 (2011),
pp. 489–497.

[He+16] Kaiming He et al. “Deep Residual Learning for Image Recognition.” In:
IEEE Conference on Computer Vision and Pattern Recognition. 2016.

[He+17] Kaiming He et al. “Mask R-CNN.” In: IEEE International Conference on
Computer Vision. 2017, pp. 2961–2969.

[Hei+12] Mattias P Heinrich et al. “MIND: Modality independent neighbourhood
descriptor for multi-modal deformable registration.” In: Medical image
analysis 16.7 (2012), pp. 1423–1435.

[Hei19] Mattias P Heinrich. “Closing the gap between deep and conventional
image registration using probabilistic dense displacement networks.” In:
International Conference on Medical Image Computing and Computer-
Assisted Intervention. 2019, pp. 50–58.

[Her+19] Alessa Hering et al. “Enhancing label-driven deep deformable image registra-
tion with local distance metrics for state-of-the-art cardiac motion tracking.”
In: Bildverarbeitung für die Medizin 2019. Springer, 2019, pp. 309–314.

[Her+22] Alessa Hering et al. “Learn2Reg: comprehensive multi-task medical image
registration challenge, dataset and evaluation in the era of deep learning.”
In: IEEE Transactions on Medical Imaging (2022).

[HG09] Haibo He and Edwardo A Garcia. “Learning from imbalanced data.” In:
IEEE Transactions on knowledge and data engineering 21.9 (2009), pp. 1263–
1284.

[HGH19] Alessa Hering, Bram van Ginneken, and Stefan Heldmann. “mlVIRNET:
Multilevel variational image registration network.” In: International Confe-
rence on Medical Image Computing and Computer-Assisted Intervention.
2019, pp. 257–265.

[Hil+01] Derek LG Hill et al. “Medical image registration.” In: Physics in medicine
& biology 46.3 (2001), R1.

[Hin12] Tijmen Tieleman; Geoffry Hinton. Lecture 6.5 - RMSProp: Neural Networks
for Machine Learning. Tech. rep. University of Toronto, 2012.

[HKY20] Grant Haskins, Uwe Kruger, and Pingkun Yan. “Deep learning in medical
image registration: a survey.” In: Machine Vision and Applications 31.1
(2020), pp. 1–18.

[HM05] Eldad Haber and Jan Modersitzki. “Beyond mutual information: A simple
and robust alternative.” In: Bildverarbeitung für die Medizin 2005. Springer,
2005, pp. 350–354.

144

Bibliography

[HM06] Eldad Haber and Jan Modersitzki. “Intensity gradient based registration
and fusion of multi-modal images.” In: International Conference on Medical
Image Computing and Computer-Assisted Intervention. 2006, pp. 726–733.

[Hoo+21] Andrew Hoopes et al. “HyperMorph: Amortized Hyperparameter Learning
for Image Registration.” In: International Conference Information Processing
in Medical Imaging. Springer. 2021, pp. 3–17.

[Hos+21] Timothy Hospedales et al. “Meta-learning in Neural Networks: A Survey.”
In: IEEE transactions on pattern analysis and machine intelligence 44.9
(2021), pp. 5149–5169.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory.” In:
Neural computation 9.8 (1997), pp. 1735–1780.

[HSS18] Jie Hu, Li Shen, and Gang Sun. “Squeeze-and-excitation networks.” In:
IEEE Conference on Computer Vision and Pattern Recognition. 2018,
pp. 7132–7141.

[Hu+18] Yipeng Hu et al. “Weakly-supervised convolutional neural networks for
multimodal image registration.” In: Medical image analysis 49 (2018), pp. 1–
13.

[HXY15] Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional LSTM-CRF Models for
Sequence Tagging. Tech. rep. arXiv:1508.01991, 2015.

[HYC01] Sepp Hochreiter, A Steven Younger, and Peter R Conwell. “Learning to
learn using gradient descent.” In: International Conference on Artificial
Neural Networks. 2001, pp. 87–94.

[Ing+17] Paolo Inglese et al. “Deep learning and 3D-DESI imaging reveal the hidden
metabolic heterogeneity of cancer.” In: Chemical science 8.5 (2017), pp. 3500–
3511.

[IS15] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating
deep network training by reducing internal covariate shift.” In: International
Conference on Machine Learning. 2015, pp. 448–456.

[Jäh05] Bernd Jähne. Digitale Bildverarbeitung. Springer-Verlag, 2005.
[Jia+21] Xi Jia et al. “Learning a model-driven variational network for deformable

image registration.” In: IEEE Transactions on Medical Imaging 41.1 (2021),
pp. 199–212.

[Jon+11] Emrys A Jones et al. “Multiple statistical analysis techniques corroborate
intratumor heterogeneity in imaging mass spectrometry datasets of myxofib-
rosarcoma.” In: PloS one 6.9 (2011), e24913.

[JSZ+15] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. “Spatial transfor-
mer networks.” In: Advances in Neural Information Processing Systems 28
(2015).

145

Bibliography

[Kan+14] Christopher Y Kang et al. “Clinical significance of serum COL6A3 in
pancreatic ductal adenocarcinoma.” In: Journal of Gastrointestinal Surgery
18.1 (2014), pp. 7–15.

[Kan+23] Frederic Kanter et al. “Classification of Pancreatic Ductal Adenocarcinoma
Using MALDI Mass Spectrometry Imaging Combined with Neural Networks.”
In: Cancers 15.3 (2023).

[Kan18] F. Kanter. “Segmentation of Objects in Thermal Camera Images to Improve
Temperature Control in Incubators.” Universität zu Lübeck, 2018.

[KB14] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. Tech. rep. arXiv:1412.6980, 2014.

[KBD17] András P Keszei, Benjamin Berkels, and Thomas M Deserno. “Survey of
non-rigid registration tools in medicine.” In: Journal of digital imaging 30.1
(2017), pp. 102–116.

[Kha+21] Salman Khan et al. “Transformers in vision: A survey.” In: ACM Computing
Surveys (CSUR) (2021).

[Kim+17] Yoon Kim et al. “Structured Attention Networks.” In: International Confe-
rence on Learning Representations. 2017.

[KL22] Frederic Kanter and Jan Lellmann. “A Flexible Meta Learning Model for
Image Registration.” In: International Conference on Medical Imaging with
Deep Learning. 2022, pp. 638–652.

[Kle+10] Stefan Klein* et al. “elastix: a toolbox for intensity-based medical image
registration.” In: IEEE Transactions on Medical Imaging 29.1 (Jan. 2010),
pp. 196–205.

[Kle+14] Oliver Klein et al. “MALDI imaging mass spectrometry: discrimination of
pathophysiological regions in traumatized skeletal muscle by characteristic
peptide signatures.” In: Proteomics 14.20 (2014), pp. 2249–2260.

[Kle+16] Jorg Kleeff et al. “Pancreatic cancer.” In: Nature reviews Disease primers
2.1 (2016), pp. 1–22.

[Kle+19] Oliver Klein et al. “MALDI-imaging for classification of epithelial ovarian
cancer histotypes from a tissue microarray using machine learning methods.”
In: Proteomics–Clinical Applications 13.1 (2019), p. 1700181.

[Kle+20] Oliver Klein et al. “Classification of Inflammatory Bowel Disease from
Formalin-Fixed, Paraffin-Embedded Tissue Biopsies via Imaging Mass
Spectrometry.” In: Proteomics–Clinical Applications 14.6 (2020), p. 1900131.

[Kno+20] Florian Knoll et al. “fastMRI: A Publicly Available Raw k-Space and
DICOM Dataset of Knee Images for Accelerated MR Image Reconstruction
Using Machine Learning.” In: Radiology: Artificial Intelligence 2.1 (2020),
e190007.

146

Bibliography

[Köb+14] Martin Köbel et al. “Ovarian carcinoma histotype determination is highly
reproducible, and is improved through the use of immunohistochemistry.”
In: Histopathology 64.7 (2014), pp. 1004–1013.

[Kön+18] Lars König et al. “A matrix-free approach to parallel and memory-efficient
deformable image registration.” In: SIAM Journal on Scientific Computing
40.3 (2018), B858–B888.

[Kön18] Lars König. “Matrix-free approaches for deformable image registration
with large-scale and real-time applications in medical imaging.” PhD thesis.
Institute of Mathematics and Image Computing, University of Lübeck, 2018.

[Kri+16] Mark Kriegsmann et al. “Reliable entity subtyping in non-small cell lung
cancer by matrix-assisted laser desorption/ionization imaging mass spectro-
metry on formalin-fixed paraffin-embedded tissue specimens.” In: Molecular
& Cellular Proteomics 15.10 (2016), pp. 3081–3089.

[Kri09] Alex Krizhevsky. “Learning Multiple Layers of Features from Tiny Images.”
University of Tront, 2009.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classifica-
tion with deep convolutional neural networks.” In: Advances in neural
information processing systems 25 (2012).

[KW13] Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes.
Tech. rep. arXiv:1312.6114, 2013.

[Lan+09] Thomas Lange et al. “3D ultrasound-CT registration of the liver using
combined landmark-intensity information.” In: International journal of
computer assisted radiology and surgery 4.1 (2009), pp. 79–88.

[LBH15] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning.” In:
Nature 521.7553 (2015), pp. 436–444.

[LeC+12] Yann A LeCun et al. “Efficient backprop.” In: Neural networks: Tricks of
the trade. Springer, 2012, pp. 9–48.

[LeC+21] Jean Le’Clerc Arrastia et al. “Deeply supervised UNet for semantic segmenta-
tion to assist dermatopathological assessment of basal cell carcinoma.” In:
Journal of imaging 7.4 (2021), p. 71.

[LeC+98] Yann LeCun et al. “Gradient-based learning applied to document recognition.”
In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

[Lee+09] Honglak Lee et al. “Unsupervised feature learning for audio classification
using convolutional deep belief networks.” In: International Conference
Advances in Neural Information Processing Systems. 2009, pp. 1096–1104.

[Lei+09] Barbara D Leinweber et al. “Improved MALDI-TOF imaging yields increased
protein signals at high molecular mass.” In: Journal of the American Society
for Mass Spectrometry 20.1 (2009), pp. 89–95.

147

Bibliography

[Leu+19] Johannes Leuschner et al. “Supervised non-negative matrix factorization
methods for MALDI imaging applications.” In: Bioinformatics 35.11 (2019),
pp. 1940–1947.

[LGS99] Thomas Martin Lehmann, Claudia Gonner, and Klaus Spitzer. “Survey:
Interpolation methods in medical image processing.” In: IEEE transactions
on medical imaging 18.11 (1999), pp. 1049–1075.

[LH17] I Loshchilov and F Hutter. “SGDR: Stochastic Gradient Descent with Warm
Restarts.” In: International Conference on Learning Representations. 2017,
pp. 1–16.

[LH19] Ilya Loshchilov and Frank Hutter. “DecoupledWeight Decay Regularization.”
In: International Conference on Learning Representations. 2019.

[Lia+17] Rui Liao et al. “An artificial agent for robust image registration.” In: AAAI
Conference on Artificial Intelligence. 2017.

[Lit+17] Geert Litjens et al. “A survey on deep learning in medical image analysis.”
In: Medical image analysis 42 (2017), pp. 60–88.

[Liu+19] Yinhan Liu et al. RoBERTa: A Robustly Optimized BERT Pretraining
Approach. Tech. rep. arXiv:1907.11692, 2019.

[Liu+20] Liyuan Liu et al. “On the Variance of the Adaptive Learning Rate and
Beyond.” In: International Conference on Learning Representations. 2020.

[LMP01] John Lafferty, Andrew McCallum, and Fernando CN Pereira. Conditional
Random Fields: Probabilistic Models for Segmenting and Labeling Sequence
Data. 2001.

[Lon+16] Rémi Longuespée et al. “MALDI mass spectrometry imaging: A cutting-edge
tool for fundamental and clinical histopathology.” In: Proteomics–Clinical
Applications 10.7 (2016), pp. 701–719.

[LQH16] Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. “Recurrent Neural Network
for Text Classification with Multi-task Learning.” In: International Joint
Conference on Artificial Intelligence. 2016, pp. 2873–2879.

[LS00] Daniel Lee and H Sebastian Seung. “Algorithms for non-negative matrix
factorization.” In: Advances in neural information processing systems 13
(2000).

[LS99] Daniel D Lee and H Sebastian Seung. “Learning the parts of objects by
non-negative matrix factorization.” In: Nature 401.6755 (1999), pp. 788–791.

[Mae+97] Frederik Maes et al. “Multimodality image registration by maximization
of mutual information.” In: IEEE transactions on Medical Imaging 16.2
(1997), pp. 187–198.

[Mar+15] Martı́n Abadi et al. TensorFlow: Large-Scale Machine Learning on Hetero-
geneous Systems. Software available from tensorflow.org. 2015. url: https:
//www.tensorflow.org/.

148

Bibliography

[MAT18] MATLAB. version 9.4.0 (R2018a). Natick, Massachusetts: The MathWorks
Inc., 2018.

[MB03] Giampaolo Merlini and Vittorio Bellotti. “Molecular mechanisms of amyloi-
dosis.” In: New England Journal of Medicine 349.6 (2003), pp. 583–596.

[MC20] Tony CW Mok and Albert Chung. “Large deformation diffeomorphic image
registration with laplacian pyramid networks.” In: International Conference
on Medical Image Computing and Computer-Assisted Intervention. Springer.
2020, pp. 211–221.

[MC21a] Tony CW Mok and Albert Chung. “Conditional Deep Laplacian Pyramid
Image Registration Network in Learn2Reg Challenge.” In: International
Conference on Medical Image Computing and Computer-Assisted Intervention.
2021, pp. 161–167.

[MC21b] Tony CW Mok and Albert Chung. “Conditional Deformable Image Registra-
tion with Convolutional Neural Network.” In: International Conference
on Medical Image Computing and Computer-Assisted Intervention. 2021,
pp. 35–45.

[McC+05] Gregor McCombie et al. “Spatial and spectral correlations in MALDI mass
spectrometry images by clustering and multivariate analysis.” In: Analytical
chemistry 77.19 (2005), pp. 6118–6124.

[Med+12] Stephan Meding et al. “Tumor classification of six common cancer types
based on proteomic profiling by MALDI imaging.” In: Journal of proteome
research 11.3 (2012), pp. 1996–2003.

[Mei+16] Ivo Meinhold-Heerlein et al. “The new WHO classification of ovarian,
fallopian tube, and primary peritoneal cancer and its clinical implications.”
In: Archives of gynecology and obstetrics 293.4 (2016), pp. 695–700.

[MFP00] Andrew McCallum, Dayne Freitag, and Fernando CN Pereira. “Maximum
entropy Markov models for information extraction and segmentation.” In:
International Conference on Machine Learning. 2000, pp. 591–598.

[MHG+14] Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. “Recurrent models of
visual attention.” In: Advances in neural information processing systems 27
(2014).

[Mit+21] Paul Mittal et al. “Cancer Tissue Classification Using Supervised Machine
Learning Applied to MALDI Mass Spectrometry Imaging.” In: Cancers
13.21 (2021), p. 5388.

[Mod03] Jan Modersitzki. Numerical methods for image registration. OUP Oxford,
2003.

[Mod09] J. Modersitzki. FAIR: Flexible Algorithms for Image Registration. SIAM,
2009.

149

Bibliography

[MSK16] Seiji Mabuchi, Toru Sugiyama, and Tadashi Kimura. “Clear cell carcinoma
of the ovary: molecular insights and future therapeutic perspectives.” In:
Journal of gynecologic oncology 27.3 (2016).

[NKV19] Marc Niethammer, Roland Kwitt, and Francois-Xavier Vialard. “Metric
learning for image registration.” In: IEEE Conference on Computer Vision
and Pattern Recognition. 2019, pp. 8463–8472.

[Nor+07] Jeremy L Norris et al. “Processing MALDI mass spectra to improve mass
spectral direct tissue analysis.” In: International journal of mass spectrometry
260.2-3 (2007), pp. 212–221.

[NW06] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. second.
New York, NY, USA: Springer, 2006.

[NZY21] Zhaoyang Niu, Guoqiang Zhong, and Hui Yu. “A review on the attention
mechanism of deep learning.” In: Neurocomputing 452 (2021), pp. 48–62.

[Ols+10] Sara H Olson et al. “Allergies, obesity, other risk factors and survival
from pancreatic cancer.” In: International journal of cancer 127.10 (2010),
pp. 2412–2419.

[Pap08] Nils Papenberg. “Ein genereller Registrierungsansatz mit Anwendung in der
navigierten Leberchirurgie.” PhD thesis. Institute of Mathematics, University
of Lübeck, 2008.

[Pas+19] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep
Learning Library.” In: Advances in Neural Information Processing Systems
32. Curran Associates, Inc., 2019, pp. 8024–8035.

[PDE18] Jaime Prat, Emanuela D’Angelo, and Iñigo Espinosa. “Ovarian carcinomas:
at least five different diseases with distinct histological features and molecular
genetics.” In: Human pathology 80 (2018), pp. 11–27.

[Ped+11] Fabian Pedregosa et al. “Scikit-learn: Machine learning in Python.” In: the
Journal of machine Learning research 12 (2011), pp. 2825–2830.

[Pel+14] Claudio Pelucchi et al. “Smoking and body mass index and survival in
pancreatic cancer patients.” In: Pancreas 43.1 (2014), pp. 47–52.

[Pli+08] William Plishker et al. “Towards systematic exploration of tradeoffs for
medical image registration on heterogeneous platforms.” In: IEEE Conference
Biomedical Circuits and Systems. 2008, pp. 53–56.

[PO19] Eunbyung Park and Junier B Oliva. “Meta-Curvature.” In: Advances in
Neural Information Processing Systems 32 (2019), pp. 3314–3324.

[Pol+16] Thomas Polzin et al. “Memory efficient LDDMM for lung CT.” In: Internatio-
nal Conference on Medical Image Computing and Computer-Assisted Inter-
vention. 2016, pp. 28–36.

[Qiu+22] Huaqi Qiu et al. “Embedding Gradient-Based Optimization in Image
Registration Networks.” In: International Conference on Medical Image
Computing and Computer-Assisted Intervention. 2022, pp. 56–65.

150

Bibliography

[Qua+16] Anne S Quante et al. “Projections of cancer incidence and cancer-related
deaths in Germany by 2020 and 2030.” In: Cancer medicine 5.9 (2016),
pp. 2649–2656.

[Rah+14] Lola Rahib et al. “Projecting cancer incidence and deaths to 2030: the
unexpected burden of thyroid, liver, and pancreas cancers in the United
States.” In: Cancer research 74.11 (2014), pp. 2913–2921.

[Ram+21] Aditya Ramesh et al. “Zero-Shot Text-to-Image Generation.” In: International
Conference on Machine Learning. 2021, pp. 8821–8831.

[RFB15] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net: Convolutional
networks for biomedical image segmentation.” In: International Conference
on Medical Image Computing and Computer-Assisted Intervention. 2015,
pp. 234–241.

[RHW86] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learning
representations by back-propagating errors.” In: Nature 323.6088 (1986),
pp. 533–536.

[RL11] Michael Rosenzweig and Heather Landau. “Light chain (AL) amyloidosis:
update on diagnosis and management.” In: Journal of Hematology &
Oncology 4.1 (2011), pp. 1–8.

[RM03] Torsten Rohlfing and Calvin R Maurer. “Nonrigid image registration in
shared-memory multiprocessor environments with application to brains,
breasts, and bees.” In: IEEE transactions on information technology in
biomedicine 7.1 (2003), pp. 16–25.

[Roh+17] Marc-Michel Rohé et al. “SVF-Net: learning deformable image registration
using shape matching.” In: International Conference on Medical Image
Computing and Computer-Assisted Intervention. 2017, pp. 266–274.

[Rue+99] Daniel Rueckert et al. “Nonrigid registration using free-form deformations:
application to breast MR images.” In: IEEE transactions on medical imaging
18.8 (1999), pp. 712–721.

[San+19] Robin Sandkühler et al. “Recurrent registration neural networks for deform-
able image registration.” In: Advances in Neural Information Processing
Systems 32 (2019).

[SC08] Ingo Steinwart and Andreas Christmann. Support vector machines. Springer
Science & Business Media, 2008.

[Sch+18] Jo Schlemper et al. “Attention-Gated Networks for Improving Ultrasound
Scan Plane Detection.” In: Medical Imaging with Deep Learning. 2018.

[SDP13] Aristeidis Sotiras, Christos Davatzikos, and Nikos Paragios. “Deformable
medical image registration: A survey.” In: IEEE transactions on medical
imaging 32.7 (2013), pp. 1153–1190.

[Sha+10] Ramtin Shams et al. “A survey of medical image registration on multicore
and the GPU.” In: IEEE signal processing magazine 27.2 (2010), pp. 50–60.

151

Bibliography

[She+19] Zhengyang Shen et al. “Networks for joint affine and non-parametric
image registration.” In: IEEE Conference on Computer Vision and Pattern
Recognition. 2019, pp. 4224–4233.

[Shi+13] Soo J Shin et al. “Unexpected gain of function for the scaffolding protein
plectin due to mislocalization in pancreatic cancer.” In: Proceedings of the
National Academy of Sciences 110.48 (2013), pp. 19414–19419.

[Shi+15] Xingjian Shi et al. “Convolutional LSTM network: A machine learning
approach for precipitation nowcasting.” In: Advances in neural information
processing systems 28 (2015).

[Smi17] Leslie N Smith. “Cyclical learning rates for training neural networks.”
In: IEEE Winter Conference on Applications of Computer Vision. 2017,
pp. 464–472.

[SSP+03] Patrice Y Simard, David Steinkraus, John C Platt, et al. “Best practices
for convolutional neural networks applied to visual document analysis.”
In: International Conference on Document Analysis and Recognition. 2003,
pp. 958–962.

[Sto+01] M Stoeckli et al. “Imaging mass spectrometry: a new technology for the
analysis of protein expression in mammalian tissues.” In: Nature medicine
7.4 (2001), pp. 493–496.

[SVL14] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. “Sequence to sequence
learning with neural networks.” In: International Conference Advances in
Neural Information Processing Systems. 2014, pp. 3104–3112.

[Svo+20] Christos Svoronos et al. “Prognostic value of COL6A3 in pancreatic adeno-
carcinoma.” In: Annals of Hepato-biliary-pancreatic Surgery 24.1 (2020),
p. 52.

[SWS17] Dinggang Shen, Guorong Wu, and Heung-Il Suk. “Deep learning in medical
image analysis.” In: Annual review of biomedical engineering 19 (2017),
pp. 221–248.

[SZ15] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Networks
for Large-Scale Image Recognition.” In: International Conference on Learning
Representations. 2015.

[TBU00] Philippe Thévenaz, Thierry Blu, and Michael Unser. “Image interpolation
and resampling.” In: Handbook of medical imaging, processing and analysis
1.1 (2000), pp. 393–420.

[Tel+21] Akbar Telikani et al. “Evolutionary machine learning: A survey.” In: ACM
Computing Surveys (CSUR) 54.8 (2021), pp. 1–35.

[Thi98] J-P Thirion. “Image matching as a diffusion process: an analogy with
Maxwell’s demons.” In: Medical image analysis 2.3 (1998), pp. 243–260.

[Tho+18] Nathaniel Thomas et al. Tensor field networks: Rotation-and translation-
equivariant neural networks for 3d point clouds. Tech. rep. Google, 2018.

152

Bibliography

[Vas+17] Ashish Vaswani et al. “Attention is All you Need.” In: Advances in Neural
Information Processing Systems 30. Ed. by I. Guyon et al. Curran Associates,
Inc., 2017, pp. 5998–6008.

[VCV20] Nico Verbeeck, Richard M Caprioli, and Raf Van de Plas. “Unsupervised
machine learning for exploratory data analysis in imaging mass spectrometry.”
In: Mass spectrometry reviews 39.3 (2020), pp. 245–291.

[Vel+17] Petar Veličković et al. “Graph Attention Networks.” In: International
Conference on Learning Representations. 2017.

[Ves+14] Kirill A Veselkov et al. “Chemo-informatic strategy for imaging mass
spectrometry-based hyperspectral profiling of lipid signatures in colorectal
cancer.” In: Proceedings of the National Academy of Sciences 111.3 (2014),
pp. 1216–1221.

[VG96] Charles F Van Loan and G Golub. “Matrix computations (Johns Hopkins
studies in mathematical sciences).” In: Matrix Computations 53 (1996).

[Vir+20] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python.” In: Nature Methods 17 (2020), pp. 261–272.

[Vos+17] Bob D de Vos et al. “End-to-end unsupervised deformable image registration
with a convolutional neural network.” In: Deep learning in medical image
analysis and multimodal learning for clinical decision support. Springer,
2017, pp. 204–212.

[WAD11] Jeramie D Watrous, Theodore Alexandrov, and Pieter C Dorrestein. “The
evolving field of imaging mass spectrometry and its impact on future
biological research.” In: Journal of Mass Spectrometry 46.2 (2011), pp. 209–
222.

[Wal+08] Axel Walch et al. “MALDI imaging mass spectrometry for direct tissue
analysis: a new frontier for molecular histology.” In: Histochemistry and cell
biology 130.3 (2008), pp. 421–434.

[Win+17] Martin Winter et al. “MALDI mass spectrometry imaging: a novel tool for
the identification and classification of amyloidosis.” In: Proteomics 17.22
(2017), p. 1700236.

[Wu+21] ZhiyangWu et al. “Discovery of Spatial Peptide Signatures for Neuroblastoma
Risk Assessment by MALDI Mass Spectrometry Imaging.” In: Cancers 13.13
(2021), p. 3184.

[Xu+15] Kelvin Xu et al. “Show, attend and tell: Neural image caption generation
with visual attention.” In: International Conference on Machine Learning.
2015, pp. 2048–2057.

[Xu+21] Junshen Xu et al. “Multi-scale neural odes for 3d medical image registration.”
In: International Conference on Medical Image Computing and Computer-
Assisted Intervention. 2021, pp. 213–223.

153

Bibliography

[Yan+15] Jian Bo Yang et al. “Deep Convolutional Neural Networks on Multichannel
Time Series for Human Activity Recognition.” In: International Conference
on Artificial Intelligence. 2015, pp. 3995–4001.

[Yan+17] Xiao Yang et al. “Quicksilver: Fast predictive image registration–a deep
learning approach.” In: NeuroImage 158 (2017), pp. 378–396.

[Yao+17] Jiawen Yao et al. “Deep Correlational Learning for Survival Prediction
from Multi-modality Data.” In: International Conference Medical Image
Computing and Computer-Assisted Intervention. Springer, 2017, pp. 406–
414.

[Zbo+18] Jure Zbontar et al. fastMRI: An Open Dataset and Benchmarks for Accele-
rated MRI. Tech. rep. arXiv:1811.08839, 2018.

[Zha+19a] Zhiwen Zhang et al. “Upregulation of nucleoprotein AHNAK is associated
with poor outcome of pancreatic ductal adenocarcinoma prognosis via
mediating epithelial-mesenchymal transition.” In: Journal of Cancer 10.16
(2019), p. 3860.

[Zha+19b] Shengyu Zhao et al. “Recursive cascaded networks for unsupervised medical
image registration.” In: IEEE International Conference on Computer Vision.
2019, pp. 10600–10610.

[Zha+20] Wanqiu Zhang et al. “Spatially-Aware Clustering of Ion Images in Mass
Spectrometry Imaging Data Using Deep Learning.” In: bioRxiv (2020).

[Zhe+14] Yi Zheng et al. “Time Series Classification Using Multi-Channels Deep
Convolutional Neural Networks.” In: International Conference Web-Age
Information Management. 2014, pp. 298–310.

[Zho+16] Bolei Zhou et al. “Learning Deep Features for Discriminative Localization.”
In: IEEE Conference on Computer Vision and Pattern Recognition. 2016,
pp. 2921–2929.

154

	List of Peer-Reviewed Publications
	Introduction
	Motivation
	Contributions and Outline

	Deep Learning Fundamentals
	Neural Networks
	Activation Functions
	Layer Architectures
	Training

	Sequence Modeling
	Long-range Dependencies
	LSTM

	Transformer Networks
	Attention
	Transformer Architecture

	Meta-Learning

	Deep Learning for MALDI Mass Spectrometry Imaging
	Deep Learning with Applications to MALDI Mass Spectrometry Imaging
	MALDI-Time of Flight
	Related Work
	Model Design
	Preprocessing
	Feature Extraction

	Linear Methods
	Ovarian Cancer
	Data
	Experiments and Results
	Summary and Discussion

	Amyloidosis
	Data
	Experiments and Results
	Leaking Information
	Summary and Discussion

	Pancreas
	Data
	Experiments and Results
	Summary and Discussion

	Conclusion

	Meta-Learning for Image Registration
	Image Registration Fundamentals
	Image Registration
	Discretization
	Numerical Optimization
	Benchmark Toolboxes
	Neural Networks for Image Registration

	Meta-Learning for Image Registration
	Related Work
	Registration Model
	Loss
	Scheduling
	Gradient Calculation
	Advanced Strategies

	Data
	Affine Image Registration
	Experiments and Results
	Summary and Discussion

	Non-parametric Image Registration
	Experiments and Results
	Summary and Discussion

	Conclusion

	Discussion
	Bibliography

