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CHAPTER 1

General introduction
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1.1 Medical image registration

Image registration is the process of aligning two or more images to achieve pointwise
spatial correspondence [1]. It is sometimes also called fusion,matching orwarping. This
is a fundamental step for many tasks in medical image analysis as it links previously
unrelated data and enables joint processing of those data. By aligning images from
different modalities, complementary information can be fused or propagated from one
modality to another. For example, morphological information from a CT image can
be fused with functional information from a PET image [2, 3]. Furthermore, image
registration can be used to track the progression of the disease overtime, such as it is
done with MR images of patients with multiple sclerosis [4], for which an MRI scan
of the brain is taken every few months. Another application of image registration is
atlas-based segmentation, which aims to transfer label information from one or more
atlases to a new image for which no labels are known [5]. Despite ever-improving
segmentation methods [6], registration continues to be used for this purpose, especially
for the creation of noisy labels for the training process of segmentation networks [7].
Image registration is also an important tool for many further applications and has been
an active field of research for decades [8, 9].

This thesis focuses on the registration of exactly two images. The first image is
referred to as fixed image F . This image remains unmodified during the registration
process. The second image is referred to as moving imageM and is adapted to match
the fixed image by applying a transformation 𝜙. The goal of image registration is to
find a reasonable transformation 𝜙, such that the transformed moving imageM(𝜙)
becomes similar to the fixed image F . In the past, various approaches and tailored
solutions have been proposed to a wide range of problems and applications. The
requirements of similarity of the images and reasonability of the deformation field
are often explicitly formulated in a cost function using a distance measure D and a
regularizerR [1, 10–17]. All those approaches require to solve an optimization problem
for each image pair, which is a complex and computationally demanding task: this
often leads to long processing times. A lot of research has been done to speed-up this
process, with more efficient algorithms or better implementation on CPU [18, 19] and
GPU [20, 21].

A new approach to solve the optimization problem is to use neural networks. These
replace the iterative optimization for each new image pair with a single forward pass
through the network.

1.2 Deep-learning-based image registration

Artificial intelligence (AI) has received a lot of attention in recent years and has long
been present in our everyday lives. Through pioneering achievements in machine learn-
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ing, AI is gradually revolutionizing all areas of life; and medicine is no exception [22].
Deep neural networks enable completely autonomous processing of medical image data
or serve as support for clinicians. While deep learning has become a methodology of
choice in many areas like segmentation or classification, image registration is often still
based on conventional methods. One main factor is the lack of ground-truth – needed
to train the neural networks – which stems from the large variability of plausible
deformations.

To better understand this problem, it is helpful to look at different image analysis
tasks like segmentation or classification. For classification tasks, a medical expert
typically inspects an image or parts of an image and then classifies it with one discrete
label. Segmentation tasks require slightly more annotations: one discrete label per
voxel is necessary to divide the image into different classes (e.g. organ vs. non-organ).
However, during the annotation process, only the border between both classes needs
to be drawn, which reduces the annotation effort immensely. In both cases, a medical
expert can solve those tasks, albeit with a certain variability between different experts.
In contrast, an image registration ground-truth needs to establish a 3D displacement
vector for every point of the fixed image, resulting in three continuous labels per voxel.
This displacement vector connects the fixed with the moving image and therefore, the
solution of the registration problem lies neither in the fixed nor in the moving image,
but between them. Due to the absence of dense ground-truth, the registration problem
is much less specified than, for example, image classification or segmentation. As a
consequence, in mathematical terms, image registration is a so-called ill-posed [23],
which roughly means that there is no clear solution.

Nevertheless, several methods – including this thesis – presented in recent years
aim to mimic the process of conventional image registration methods by learning a
registration function in the form of a convolutional neural network, that predict spatial
deformations warping a moving image to a fixed image. Hereby, the methods replace
the costly iterative optimization of conventional registration methods for each image
pair with one optimization during the training of the convolutional neural network.

As there are no ground-truth deformation fields annotated by a medical expert
available to train the registration network, previous works have presented different
approaches to mitigate this issue. They can be classified as supervised [24–27], unsu-
pervised [28–31], and weakly-supervised [32–35] registration approaches.

Supervised methods use ground-truth deformation fields for training. These fields
can either be randomly generated or produced by classic image registration methods.
The main limitation of these approaches is that their accuracy is bounded by the
performance of existing algorithms or simulations.

In contrast, unsupervised methods do not require any ground-truth data. The
learning process is driven by image similarity measures or – more generally – by
evaluating the cost function of classic variational image registration methods. An
important milestone for the development of these methods was the introduction of the
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spatial transformer networks [36] for differentiable warping of moving images during
training.

Weakly-supervised methods also do not rely on ground-truth deformation fields
but training is still supervised with prior information. The labels of the moving image
are transformed by the deformation field and compared within the loss function with
the fixed labels. All anatomical labels are only required during training.

In the last years, deep-Learning-based image registration has been a very active area
of research and it has been shown to be equivalent or even superior to conventional
approaches in many examples. Nevertheless, deep-learning-based image registration
is still a new field and in the clinical settings, conventional image registration is the
dominant technology for most applications. In this work, we will explore a primary
application from oncology where image registration is an enabling technology: tumor
follow-up assessment.

1.3 Application: Efficient Tumor Follow-Up Analysis

Cancer is the second leading cause of death [37] and with an estimated number of
17.5 million new cases of cancer diagnosed in 2015 [38], it affects the lives of many
people. For this reason, it is highly relevant to investigate approaches that support
cancer diagnosis, treatment, and follow-up analysis. Medical images are taken at every
stage of the diagnosis and treatment of cancer and have to be read by a radiologist. The
radiologist locates, measures, and classifies suspicious lesions. In addition, changes
must be assessed in comparison to previous images of the same patient. It must be
checked for new lesions and other findings. However, due to the therapy, additional
changes like reduction of weight might occur which complicates the comparison. For
this purpose, the radiologist typically navigates manually through the slices of three-
dimensional images to find corresponding lesions and then measures changes in lesion
size and appearance [39]. Image registration can assist the radiologist by automat-
ically providing the locations in one image that corresponds to a specific location
in the other image. Just by taking over this tedious task through automation, the
radiologist can use their time more efficiently. Furthermore, image registration can
be used to highlight changes through the use of difference images or to propagate le-
sions measurements from previous images to the current image. These results can then
be used by other automatic decision support methods to provide more accurate outputs.

1.4 Outline of the thesis

The first part of the thesis presents our contributions to the development of deep-
learning-based image registration approaches. The first three chapters present the
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algorithms we have developed. The fourth chapter compares the approaches of different
groups within the Learn2Reg image registration challenge.

CHAPTER 2 describes a method for a memory-efficient weakly-supervised deep-learning
model for multi-modal image registration. The method combines three 2D networks
into a 2.5D registration network.

CHAPTER 3 presents a multilevel approach for deep learning-based image registration.

CHAPTER 4 describes a method that incorporates multiple anatomical constraints as
anatomical priors into the registration network applied on CT lung registration.

CHAPTER 5 presents the results of the Learn2Reg challenge and compares several con-
ventional and deep-learning-based registration methods.

The second part of the thesis presents steps towards efficient tumor follow-up analysis:

CHAPTER 6 describes a pipeline that automates the segmentation and measurement of
matching lesions, given a point annotation in the baseline lesion. The pipeline is based
on a registration approach to locate corresponding image regions and a convolutional
neural network to segment the lesion in the follow-up image.

CHAPTER 7 presents the reader study, which investigates whether the assessment time for
follow-up lesion segmentations is reduced by AI-assisted workflow while maintaining
the same quality of segmentations.

Finally, CHAPTER 8 summarizes the presented methods and findings and discusses the
results as well as future directions.
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CHAPTER 2

2.5D Convolutional Transformer Networks

for Multi-Modal Registration

BASED ON: A. Hering, S. Kuckertz, S. Heldmann, and M. P. Heinrich. “Memory-efficient 2.5 D con-

volutional transformer networks for multi-modal deformable registration with weak label su-

pervision applied to whole-heart CT and MRI scans,” International journal of computer assisted

radiology and surgery, vol. 14 (2019), pp. 1901–1912.
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Abstract

PURPOSE Despite its potential for improvements through supervision, deep-learning-
based registration approaches are difficult to train for large deformations in 3D scans
due to excessive memory requirements.

METHODS We propose a new 2.5D convolutional transformer architecture that enables
us to learn a memory-efficient weakly-supervised deep-learning model for multi-modal
image registration. Furthermore, we firstly integrate a volume change control term into
the loss function of a deep-learning-based registration method to penalize occurring
foldings inside the deformation field.

RESULTS Our approach succeeds at learning large deformations across multi-modal
images. We evaluate our approach on 100 pair-wise registrations of CT and MRI whole
heart scans and demonstrate considerably higher Dice Scores (of 0.74 ) compared to
a state-of-the-art unsupervised discrete registration framework (deeds with Dice of
0.71 ).

CONCLUSION Our proposed memory-efficient registration method performs better
than state-of-the-art conventional registration methods. By using a volume change
control term in the loss function, the number of occurring foldings can be considerably
reduced on new registration cases.
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2.1 Introduction

Image registration aims to align two or more images to achieve point-wise spatial
correspondence. This is a fundamental step for many medical image analysis tasks and
has been a very active field of research for decades [40]. Typically, image registration is
phrased as an optimization problem w.r.t. a spatial mapping that minimizes a suitable
cost function by applying iterative optimization schemes. However, this iterative
optimization is time-consuming. Due to substantially increased computational power
and availability of image data over the last years, learning-based image registration
methods have emerged as an alternative to energy-optimization approaches [41, 42].

We present a non-iterative weakly-supervised deep-learning-based method for
multi-modal deformable image registration. The nonlinear alignment of CT and MR
is a particularly demanding type of registration. The complexity of this task is two-
folded: First, a nonlinear deformation field has to be established between a pair of
images to correct changes due to time, deformation and motion. Second, due to the
different scanner modalities, the same anatomical structure has a different appearance
in the images. We learn a registration function in the form of a convolutional neural
network (CNN) to predict spatial deformations that warp a moving image to a fixed
image. During training, the weights of the network are optimized with a loss function
that reflects an established distance measure and regularizer of conventional image
registration [43]. Additionally, we incorporate modality independent prior information
in form of segmentation masks of anatomical structures into our loss function. This
weakly-supervised approach successfully combines the strengths of prior informa-
tion (segmentation labels) with an energy-based distance measure. We evaluate our
approach on the difficult task of inter-patient CT-MR whole heart registration.

Together with [33] our previous work [44] was the first deep-learning-based image
registration method that is not optimized only using label-based information (cf. [32]),
but additionally includes an image intensity based distance measure. The presented
method is the first to tackle multi-modal alignment with this dual objective. Due to
different intensity representations of the same anatomical structures, classical distance
measures like Sum-of-Squared-Differences cannot be used to define the similarity of
images with different modalities. We therefore make use of an edge-based distance
measure, the Normalized Gradient Field [45]. Moreover, we develop a network archi-
tecture which is adapted to the task of multi-modal registration by using two separate
modality dependent convolution layers at the beginning of our network to extract
low-level image features.

Even though computational power has increased dramatically over the past years,
volumetric image registration is still a computationally demanding and memory con-
suming task. Therefore, we propose a memory-efficient 2.5D registration method
which trains three independent 2D networks from orthogonal planes and combines
the slice-wise results into one 3D deformation field. This provides the possibility of
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either using larger networks with more trainable parameters or a larger batch size.
Especially for small sized data sets, our 2.5D method can increase the variability of the
mini-batches during training by randomly selecting slices from different patients and
therefore helps to generalize better. Due to the fact that our 2.5D method only needs
680MB for a batch size of one, it is possible to train the network on a relatively small
GPU.

2.1.1 Related Work

DEEP-LEARNING-BASED IMAGE REGISTRATION Compared to other fields relatively little
research has yet been undertaken in deep-learning-based image registration [22] and
most of this research has been published since 2017. These methods mostly aim to learn
a function in form of a CNN that predicts a spatial deformation, which warps a so-called
moving image to a fixed image. Based on how networks are trained, we categorize
these approaches into supervised [42], unsupervised [41, 46, 47] and weakly-supervised
[32, 33] methods.

Supervised methods use ground-truth deformation fields for training. These defor-
mation fields can either be randomly generated or produced by classic image registration
methods. The main limitation of these approaches is that their accuracy is limited by
the performance of existing algorithms or simulations.

In contrast, unsupervised methods do not require any ground-truth data. The
learning process is driven by image similarity measures or more general by evaluating
the cost function of classic variational image registration methods. An important
milestone for the development of these methods was the introduction of the spatial
transformer networks [36] for differentiable warping of moving images during training.

Weakly-supervised methods also do not rely on ground-truth deformation fields
but training is still supervised with prior information. The labels of the moving image
are transformed by the deformation field and compared within the loss function with
the fixed labels. All anatomical labels are only required during training.

2.5D CONVOLUTIONAL NETWORKS The idea of 2.5D methods is not new and has been
used, e.g., in the context of segmentation of 3D organs. Here, two types of solutions for
volumetric organ segmentation have been proposed. The first ones aim at training 3D
networks directly. However, this is computationally expensive and according to [48]
less stable in many cases. Therefore, the second group of methods train 2D networks
from three orthogonal planes and combines the segmentation results [48–50]. A simple
way to combine the results is applying a 3D isotropic Gaussian filtering to propagate
the 2D slice-based probabilities to 3D by taking local 3D neighborhoods into account
[49]. In [50], the output of the last layer of three otherwise independent CNNs are
concatenated to obtain a joint output, which is fed into a softmax classifier. However, the
memory-reduction and the ability to parallelize are not optimized because all networks



2.5D Convolutional Transformer Networks for Multi-Modal Registration 17

have to be trained together. Whereas in [48], three 2D segmentation networks on
different viewpoints are optimized individually. Subsequently, they use the validation
set to train a so-called Volumetric Fusion Net to combine the results of the 2D networks.

2.2 Methods

In [44], we have presented a 2D deep-learning-based registration approach for slice-
wise 3D registration. This approach is not sufficient for full 3D registration because
the existing deformations are mostly three-dimensional. However, training of a real
3D network needs a lot more memory. To tackle the issue of three-dimensional de-
formation without expanding the network architecture to 3D, we combine three 2D
networks to a 2.5D registration network. Therefore, we train three independent 2D
registration networks on the axial, coronal and sagittal slices of the images. During
inference, these networks are applied independently yielding three layered 3D de-
formation fields with one zero component. The final deformation field is created by
averaging the respective non-zero components of the deformation fields. In the follow-
ing, we describe our 2D deep-learning-based registration, which is a modified version
of [44]. Subsequently, we formally describe the composition of the 3D deformation field.

2.2.1 Deep Deformable 2D Image Registration

Let F ,M ∶ ℝ2 → ℝ denote the fixed image and moving image, respectively, and let
𝛺 ⊂ ℝ2 be a domain modeling the field of view of F . We aim to compute a deformation
y ∶ 𝛺→ ℝ2 that aligns the fixed image F and the moving imageM on the field of view
𝛺 such that F(x) andM(y(x)) are similar for x ∈ 𝛺. Inspired by recent unsupervised
image registration methods (e.g. [41, 42]), we do not employ iterative optimization as
in classic registration, but rather train a CNN that takes images F andM as input and
yields the deformation y as output (cf. Figure 2.1). Thus, in the context of CNNs, we can
consider y as a function of input images F ,M and trainable CNN model parameters
𝜃 to be learned, i.e. y(x) ≡ y(𝜃;F ,M, x). During training, the CNN parameters 𝜃 are
optimized so that the deformation field y minimizes the loss function

L(F ,M, bF , bM, y) = D(F ,M(y)) + 𝛼R(y) + 𝛽B(bF , bM(y)) + 𝛾V(y) (2.1)

with a distance measureD that quantifies the similarity of fixed image F and deformed
moving imageM(y), a regularizer R that forces smoothness of the deformation, a
second distance measure B that quantifies the similarity of fixed segmentation bF and
warped moving segmentation bM(y) and a volume change control term V to penalize
foldings. The parameters 𝛼, 𝛽, 𝛾 ≥ 0 are weighting factors. Note that the segmentations
are only used to evaluate the loss function and not used as network input and are
therefore only required during training.
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Figure 2.1: Illustration of the training process. For convenience, there is only one output

deformation field shown instead of three. While application after the training only flows

represented by red-dotted lines and red parts are required.

2.2.2 Loss Function

The challenge in multi-modal image registration is that corresponding structures have
different appearance. That is, intensities of identical objects are different in images
with different modalities. Consequently, classical intensity-based distance measures
such as Sum-of-Squared-Differences cannot be used. However, this suggests the use
of edge-based distance measures like Normalized Gradient Field (NGF)[45] distance
measure

D(F ,M(y)) = 1
2 ∫ 𝛺

1 −
⟨∇M(y(x)), ∇F(x)⟩2𝜀1,𝜀2
‖∇M(y(x))‖2𝜀1‖∇F(x)‖2𝜀2

dx,

with ⟨f, g⟩𝜀1,𝜀2 ∶= ∑2
j=1 fjgj + 𝜀1𝜀2, ∥f∥𝜀i ∶=

√
⟨f, f⟩𝜀i,𝜀i , i = 1, 2 and so-called modality

specific edge parameters 𝜀1, 𝜀2 > 0. Here we follow the work of [45, 51] which has
shown that the NGF distance measure is reliable for multi-modal image registration.
Furthermore, we use the second order curvature regularizer [52]

R(y) = 1
2 ∫ 𝛺

2
∑
j=1

‖𝛥yj‖2 dx.

to obtain smooth deformation fields. However, it cannot be guaranteed that physically
implausible deformations as large volume changes or even foldings happen. Conse-
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quently, we extend our loss function with an additional so-called volume change control
term V that measures the change of volume as induced by the transformation y

V(y) = ∫ 𝛺
𝜓(det ∇y(x))dx,

with a weighting function

𝜓(t) = (t − 1)
2

t
for t > 0 and 𝜓(t) = ∞ else.

Local volume shrinkage and expansion are symmetrically penalized, due to the sym-
metry of 𝜓. Additionally, if the Jacobian becomes negative at any point and therefore
foldings occur, the volume change control term penalize it by setting the loss value
to infinity. Note that since the loss function is evaluated on 2D images, the deforma-
tion field is 2D too and therefore only area changes can be measured. The similarity
of the segmentation masks is measured using a sum of squared differences of the
one-hot-representation of the segmentations

B(y) = 1
2 ∫ 𝛺

∥bM(y(x)) − bF(x))∥2dx.

2.2.3 Architecture and Training

In this section, we describe our particular architecture in our experiments, which is
illustrated in Figure 2.2. Our network architecture basically follows the structure of a
U-Net [53], taking a pair of fixed and moving images as input. In our experiments, the
resolution size of the input images is 160 × 160 × 160, but the architecture is not limited
or adapted to a particular size. The CNN generates a dense displacement vector field
with the same grid resolution as the input images which is used to warp the moving to
the fixed image.

In contrast to the standard U-Net architecture, we start with two separate processing
streams for the moving and fixed image. In previous work for mono-modal registration,
both streams use shared weights (cf. [44]). However, for our purpose of multi-modal
registration, we adapt our network architecture by utilizing individual convolution
weights for the first layers in order to learn modality specific features. We apply 2D
convolution kernels in both the encoder and decoder stage using a kernel size of 3 on
all levels. Each convolution is followed by a batch normalization and a ReLU layer. To
reduce the spatial resolution of the feature maps in the encoder path, max pooling layers
with a stride of 2 are used. Similar to the image pyramid used in conventional image
registration, the successive layers of the encoder operate over coarser representations
of the input. In the decoder path, we alternate between transposed convolutions,
convolutions and concatenating skip connections.
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Figure 2.2: Proposed U-Net based architecture of our CNN. Each blue box represents a multi-

channel feature map whose width corresponds to the number of channels which is denoted

above or below the box.

2.2.4 From 2D to 3D Deformations

A main contribution of this work is in estimating 3D deformations from 2D networks.
Given 3D imagesM,F ∶ ℝ3 → ℝ, we use above 2D CNN model y2D ∶ ℝ2 → ℝ2,
x ↦ y2D(x) ≡ y2D(𝜃;F2D,M2D, x) where F2D,M2D ∶ ℝ2 → ℝ are 2D input images
for the computation of a 2D deformation. To this end, we train our model for the
registration of 2D axial, coronal and sagittal slices yielding three different sets of
parameters 𝜃1, 𝜃2, 𝜃3. To be more precise, we define three deformations yℓ ∶ ℝ2 → ℝ,
ℓ = 1, 2, 3 by fixing either x1, x2 or x3 coordinate of the 3D input images, i.e., we set

y1(x1, x2, x3) ∶=
⎛
⎜⎜
⎝

0
y2D1 (𝜃1;F(x1, ⋅, ⋅),M(x1, ⋅, ⋅), x2, x3)
y2D2 (𝜃1;F(x1, ⋅, ⋅),M(x1, ⋅, ⋅), x2, x3)

⎞
⎟⎟
⎠

y2(x1, x2, x3) ∶=
⎛
⎜⎜
⎝

y2D1 (𝜃2;F(⋅, x2, ⋅),M(⋅, x2, ⋅), x1, x3)
0

y2D2 (𝜃2;F(⋅, x2, ⋅),M(⋅, x2, ⋅), x1, x3)

⎞
⎟⎟
⎠

y3(x1, x2, x3) ∶=
⎛
⎜⎜
⎝

y2D1 (𝜃3;F(⋅, ⋅, x3),M(⋅, ⋅, x3), x1, x2)
y2D2 (𝜃3;F(⋅, ⋅, x3),M(⋅, ⋅, x3), x1, x2)

0

⎞
⎟⎟
⎠
.

The parameters 𝜃1, 𝜃2, 𝜃3 are then computed by training with the 2D slices obtained
from the 3D fixed and moving images. Finally, the spatial transformations for axial,
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coronal and sagittal registration are averaged into a single 3D vector field

y2.5D(x1, x2, x3) ∶=
1
2
(y1(x1, x2, x3) + y2(x1, x2, x3) + y3(x1, x2, x3)).

Note that only two 2D transformations contribute per dimension.

2.3 Materials

2.3.1 Dataset

We perform our experiments on the Multi-Modality Whole Heart Segmentation (MM-
WHS) dataset [54]. It contains 20 CT and 20 MR whole heart images. The CT data were
acquired at Shanghai Shuguang Hospital, China, using routine cardiac CT angiography.
The images cover the whole heart from the upper abdominal to the aortic arch with am
inplane resolution of 0.78×0.78 and a average slice thickness of 1.6mm. The MR images
were acquired at St Thomas hospital and Royal Brompton Hospital, London, UK with
about 2.0mmacquisition resolution at each direction and reconstructed (resampled) into
about 1.0mm. The dataset includes segmentations for the following seven structures:

• left ventricle (LV)

• right ventricle (RV)

• left atrium (LA)

• right atrium (RA)

• myocardium (Myo)

• ascending aorta (AA)

• pulmonary artery (PA)

One exemplary scan pair and its segmentation masks are shown in Figure 2.3. Since
the CT and MR images are not associated, each CT image could be registered to each
MR image. However, evaluation is performed as a k-fold cross-validation with k = 4,
leaving out five CT and MR images for testing. This results to 225 and 25 registration
pairs during training and testing, respectively.

2.3.2 Preprocessing

In this work, we focus on nonlinear deformations, for that reason we perform a linear
pre-alignment of fixed and moving image as preprocessing. We choose the CT images
as moving image and the MR images as fixed image. The centers of gravity of each
label are used as landmarks to solve an linear equation system to obtain a affine
transformation matrix. We subsequently warp and resample the MR image on the
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(a)M (b) bM (c)M and bM

(d)F (e) bF (f)F and bF

Figure 2.3: Exemplary CT (upper row) and MR (lower row) scans with segmentation masks: left

ventricle (LV) , right ventricle (RV) , left atrium (LA) , right atrium (RA) , myocardium

(Myo) , ascending aorta (AA) , pulmonary artery (PA) .
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field of view and resolution of the CT image which yields a pre-registered MR image.
Additionally, we resample the images on a resolution of 160 × 160 × 160 and normalize
the image intensities to a range of [0, 1].

2.4 Experiments and Results

We evaluate our method by computing the volume overlap of the segmentation masks
using the Dice Score and the Average Surface Distance (ASD). If a deformation field
represents accurate correspondences, the segmentation of the fixed image bF and the
warped segmentation of the moving image bM(y) should overlap well. Furthermore,
the registration should not generate deformations with foldings. Therefore we evalu-
ated the Jacobian Determinant of the 3D deformation fields as it is a local measure for
volume change and in particular for (local) change of topology. If det ∇y > 1 a volume
expansion occurrs, if det ∇y < 1 the volume decreases and for det ∇y ≤ 0 there is a
folding.

2.4.1 Architecture Adaption for multi-modal Registration

In this experiment, we investigate the need for adaption of the architecture used
in [44] for multi-modal image registration. For mono-modal image registration, it
is helpful to use the same shared weights for both processing streams to compute
the same first feature maps out of the input image (siamese architecture). However,
due to different intensities, this assumption may not be valid for multi-modal image
registration. For that reason we train a network with and without shared weights for
the first convolution layer. The rest of the architecture remains unchanged. Using
shared weights (siamese) yields to a Dice Score of 0.72 and an ASD of 3.16mm on the
first fold of the cross-validation, whereas using individual weights achieves a Dice
Score of 0.78 and an ASD of 2.62mm, which shows the advantage of a non-siamese
architecture for multi-modal image registration with CNNs.

2.4.2 Comparison of 2D to 2.5D Registration

We use the following experiment to evaluate the performance improvement by using a
2.5D registration network instead of a 2D network used in [44]. For this purpose we
generate three independent 3D deformation fields for each image through the slice-wise
computation and concatenation of 160 2D deformation fields for each direction (axial,
coronal and sagittal). Due to the concatenation, each 3D deformation field has one zero
component. For the 2D registration we independently apply these three deformation
fields to the segmentation of our moving image, compute the Dice Scores and average
the three resulting values for each label. For our 2.5D registration, we combine the
three deformation fields by averaging the two non-zero components point-wise for
each direction. The resulting 3D deformation field is also applied to the segmentation
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bM bF bM(y2D) bM(y2.5D)

Figure 2.4: Example segmentations bM and bF of moving and fixed input images and the

result of a 2D registration [55] in the direction of slicing and our proposed 2.5D registration.
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Figure 2.5: Comparison of Dice overlap and Average Surface Distance for all test images and

each anatomical label (average of all labels , left ventricle (LV) , right ventricle (RV) , left

atrium (LA) , right atrium (RA) , myocardium (Myo) , ascending aorta (AA) , pulmonary

artery (PA) ). For each one the distributions of Dice coefficients after an affine pre-alignment,

a deeds registration, our proposed 2D and after our proposed 2.5D registration are shown.

of our moving image, yielding one 2.5D Dice Score for each label.
Comparing the resulting 2D and 2.5D Dice Scores, we see an increase of 4 percentage
points by combining the information of the three deformation fields to one (cf. Table 2.1
and Figure 2.5 for a label-wise comparison). Figure 2.4 shows that the concatenated
2D deformation fields are not able to compensate deformations in the through-plane
direction, which yields a situation where labeled structures which are not present in
the moving but in the fixed image can not be mapped correctly by these deformations.
In contrast to that our 2.5D registration is able to correctly transform these structures,
because the combination of the three deformation fields contains information about
deformations in all directions. Both the 2D and 2.5D registration can be performed
slice- or image-wise, yielding the same registration results. This enables the control
between a short runtime and low memory usage (c.f. Table 2.1).
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2.4.3 Comparison of 2.5D to 3D Registration

In this experiment, we evaluate the performance of our 2.5D registration network
compared to a state-of-the-art 3D registration network. For this propose, we expand
our proposed U-Net based architecture from 2D to 3D which is comparable to the
network used in [33] combined with the 3D version of our loss function. However,
some parameters have to be adapted to have the same impact in 3D. The most important
parameter is the edge parameter of the NGF image similarity. Since we sum the
gradients over all dimensions, this parameter has to be increased to achieve a similar
gradient field. Additionally, we slightly increased the impact of the regularization term
and the boundary term by increasing 𝛼 and 𝛽.
Comparing the resulting Dice Scores and Surface Distances, nearly no differences
are visible. However, the 3D method shows slightly less foldings (0.1 % to 0.68 % - cf.
Table 2.1).

2.4.4 Comparison to state-of-the-art Registration

We compare our method to the state-of-the-art 3D unsupervised iterative registration
framework deeds [56] with the use of the self-similarity context metric (SSC) as param-
eterized for CT-MR registration in [57]. It has won the first place in a comprehensive
abdominal registration comparison [58] and was ranked second in a recent MR-US
registration challenge [59]. By employing a densely sampled discretized search space
for displacement vectors, the method can capture large deformations robustly. The
default parameters for displacement range and quantization as well as the multi-level
grid settings were applied. Figure 2.5 presents the Dice Scores for each label and for
the average over all labels as a boxplot and in Table 2.1 the average Dice Scores are
shown. Our proposed method achieves slightly better average Dice Scores compared to
the deeds method (0.74 to 0.71 ) by considerably shorter execution times (0.19 s to 16 s).
To give an indication of the registration results, we show a checkerboard between the
fixed image and moving image and between fixed image and the warped image after
deeds registration and our proposed registration for two different patients in Figure
2.6. Finally, Figure 2.7 shows the same checkerboard overview with the corresponding
segmentation masks.

2.4.5 Parameter and Regularity Analysis

To investigate the effect of each term in the loss function, we train our model with
different settings of weighting parameters. Therefore, we set some parameters to zero
and fix the others to their empirically determined optimal values (𝛼 = 1, 𝛽 = 10 and
𝛾 = 0.2). To reduce training time, we perform this experiment only on one fold of
the cross-validation. Table 2.2 illustrates the results of this experiment showing that
either the curvature regularizer or the volume change penalty is necessary to obtain
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M F M, F M(ydeeds), F M(yprop), F

Figure 2.6: Example moving and fixed input imagesM and F , checkerboard of fixed and

moving images, checkerboard of fixed and warped images after deeds registration and after

our proposed 2.5D registration.

bM, bF bM(ydeeds), bF bM(yprop), bF

Figure 2.7: Example overlay of fixed and moving segmentations bF and bM, overlay of fixed

and warped segmentations after deeds registration and after our proposed 2.5D registration.

The color overlays show the fixed image in red and the (registered) moving image in blue. Due

to the addition of RGB values, aligned structures appear gray or white.
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Method Dice Score ASD Foldings Memory Runtime
Affine pre-alignment 0.55 6.17 mm 0% - -
Prop. 2D slice-wise 0.70 3.96 mm 0.01% 734 MB 0.77 s

Deeds 0.71 3.82 mm 0 % - 16 s
U-Net 3D 0.74 3.46 mm 0.10% 1820 MB 0.18 s

Prop. 2.5D image-wise 0.74 3.37 mm 0.68% 1840 MB 0.19 s
Prop. 2.5D slice-wise 0.74 3.37 mm 0.68% 730 MB 2.35 s

Table 2.1: Dice Score, Average Surface Distance (ASD) and foldings of different registration

methods are shown evaluated using a cross-validation: after preprocessing (cf. 2.3.2), after

our proposed 2D registration (cf. 2.4.2, on GPU), after a deeds registration (cf. 2.4.4, on (multi-

core) CPU), after a 3D deep-learning-based registration (cf. 2.4.3) and after our proposed 2.5D

registration (cf. 2.4.2, both on GPU). Additionally the runtime and GPU memory usage for

registration of one unseen image pair are shown. The 2D and 2.5D CNN registration can be

performed slice- or image-wise.

reasonable registration results. Using only the NGF image similarity yields not only a
higher number of foldings but also lower Dice Scores due to the point-wiseminimization
without consideration of the underlying structures. Furthermore, the experiment shows
that using global semantic information during training supports the alignment of those
structures during the registration of new scan pairs. To give an indication of the
regularity of our deformation fields, we show resulting 2.5D and 3D deformation fields
in Figure 2.8 as an orthogonal view. Combining the three 2D deformation fields to
a 2.5D deformation results in a good but slightly less smooth approximation of the
3D deformation field. Furthermore, we analyze volume changes using the Jacobian
Determinant for which no unique optimal distribution exists. However, assuming
that the volume of most tissue stays nearly the same, a mean of approximately one is
expected. Moreover, we expect some voxels with a increasing (det ∇y > 1) or decreasing
(det ∇y < 1) volume. For example in the lung due to respiratory motion or in the heart
due to heart contraction. Those volume changes should not be too large and especially
no foldings should occur. In Figure 2.9, we visualize the distribution of the Jacobian
Determinant values for both approaches for the first fold of our cross-validation,
showing that our expectations were met in both of them.

2.5 Discussion and Conclusion

We have presented a new 2.5D weakly-supervised deep-learning-based method for
multi-modal image registration that replaces iterative optimization steps with deep
CNN layers. We demonstrated that two independent processing streams for extracting
the low-level image features are important to overcome the difficulties of multi-modal
images. Later on, a similar network architecture as for mono-modal image registration
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(a) 3D sagittal (b) 3D coronal (c) 3D axial

(d) 2.5D sagittal (e) 2.5D coronal (f) 2.5D axial

Figure 2.8: Comparison of 3D (first row) and 2.5D (second row) in-plane deformation fields of

an example sagittal (first column), coronal (second column) and axial (third column) slice.
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Figure 2.9: Quantitative visualization of the Jacobian Determinant representing the voxel-wise

volume change. The histograms for our proposed 2.5D approach and for the 3D registration

are shown.
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Method Dice Score Surface Distance Foldings
Affine pre-alignment 0.57 5.54 mm 0%
full loss function 0.78 2.62 mm 0.52%

NGF only (𝛼 = 𝛽 = 𝛾 = 0) 0.45 6.10 mm 47.1%
no VCC (𝛾 = 0) 0.70 3.67 mm 23.1%

no boundary (𝛽 = 0) 0.63 4.47 mm 0.38%
no curv (𝛼 = 0) 0.76 2.78 mm 0.53%

Table 2.2: The quantitative effect of variations of the terms within the loss functionL = D + 𝛼 ⋅
R + 𝛽 ⋅ B + 𝛾 ⋅ V is shown by setting parameters to zero and fixing the others to their

empirically determined optimal values (𝛼 = 1, 𝛽 = 10 and 𝛾 = 0.2). Besides the resulting Dice
coefficient, the Surface Distance and the percentage of voxels in which foldings (det ∇y ≤ 0)
occur is depicted for the first fold of the cross-validation.

can be used. Additionally, we showed that estimating 3D deformations from 2D net-
works by simply averaging the deformation fields yields sufficient results which can be
used for propagating segmentation mask from one modality to another. Although no
3D regularity is required during the training, the 2D regularity conditions (curvature
regularizer and volume change control) are sufficient to ensure sufficient smoothness
in the combined 3D deformation field. Our 2.5D framework is more memory-efficient
than usual 3D methods because deformation fields can be computed slice-wise. This
provides the possibility of using larger networks with more learnable parameters and
higher batch sizes. Our proposed 2.5D registration method only needs 720MB for a
training with a batch size of one. Therefore, the training on a NVIDIA GTX 1080 with
8 GB GPU-memory can process a batch of 200 2D-slices in parallel, while the same
network for 3D-processing is limited to a batch size of 1 on this card (using 5160 MB).
Especially for small dataset sizes, our 2.5D method can increase the variability of the
mini-batches during training by randomly selecting slices from different patients. As
demonstrated in previous studies (e.g. [60]) the increased variability of patches from
different locations/subjects within one mini-batch greatly improves convergence of
deep-learning models. Another advantage of our memory-efficient method is the possi-
bility of training on relatively small GPUs for example directly in the clinic. Moreover,
registering a new pair can be performed slice-wise and therefore only requires 730
MB GPU memory, whereas the 3D network needs 1.82 GB. Alternatively to our 2.5D
approach, a patch-based approach like [41, 47] could be used to reduce the required
memory which has its advantages and disadvantages. In contrast to our approach,
it uses a direct 3D input. However, like in [47] only for a limited number of grid
points deformation vectors are computed which are combined afterwards by B-spline
interpolation. As a consequence, deformations smaller than the grid spacing can not
be represented appropriately. Decreasing the grid spacing results in higher memory
requirements attenuating the benefit of patch-based registration approaches.
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Our approach advances the state-of-the-art in CNN-based deformable registration
by firstly integrating a volume change control term into the loss function to explicitly
penalize foldings in the deformation fields. We showed that using this additional term
in the loss function significantly reduce the percentage of voxels in which foldings
occur. Moreover, we combine the complementary strengths of global semantic informa-
tion (weakly-supervised learning with segmentation labels) and local distance metrics
borrowed from conventional medical image registration that supports the alignment
of surrounding structures. Despite the increased focus on the alignment of the seg-
mentation masks, it has be shown that the remaining image regions were transformed
in a meaningful way. Particularly, the use of a multi-modal distance measurement is
important for this aspect. In further experiments without a distance measure, it was
observed that the result have deteriorated with regard to the Dice Score and additionally
the remaining image regions were visually not well aligned. Additionally, we showed
that using only a distance measure leads also to worse results demonstrating that
regularization is unavoidable to obtain reasonable registration results. The results of
our method demonstrate high Dice Scores (of 0.74), computation times of less than
0.2 second per 3D scan pair and compare favourably to the state-of-the-art unsuper-
vised deeds approach (0.71) [56], which has won the first place in a comprehensive
abdominal registration comparison [58]. We also tried to compare our results with the
label-driven approach of [32], which is publicly available. Unfortunately, we were only
able to achieve a slight improvement of the Dice coefficient compared to the affine
pre-alignment.

Our method has two benefits over conventional registration methods. First, in contrast
to conventional methods, our deep-learning-based registration method only performs
an iterative optimization during the training of the network. After the network pa-
rameters have been learned, a registration is performed with a single forward-pass
through the combined networks and without further optimization. This results in a
very fast registration algorithm with less then 0.2 s for a 3D registration. Second, our
method allows integrating label information in form of a penalty term into the loss
function, which is only required during the training process and not during inference.
In contrast, for conventional registration method such additional information has to be
available for each new registration case. However, it increases the registration accuracy
considerably.

Another natural idea for future improvement is replacing the simple average of the
three 2D deformations into a single 3D vector field by training an additional fusion
network. For that purpose, the three 2D networks would be still trained individually
and afterwards a fusion network could be trained to combine the 2D deformation fields
to a smooth 3D deformation field (for example by using the same loss function as before
but in 3D). Hereby, only one network has to be trained at the same time but a smoother
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deformation field could be reached in the end.
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Abstract

We present a novel multilevel approach for deep learning based image registration.
Recently published deep learning based registration methods have shown promising
results for a wide range of tasks. However, these algorithms are still limited to rela-
tively small deformations. Our method addresses this shortcoming by introducing a
multilevel framework, which computes deformation fields on different scales, similar
to conventional methods. Thereby, a coarse-level alignment is obtained first, which is
subsequently improved on finer levels. We demonstrate our method on the complex
task of inhale-to-exhale lung registration. We show that the use of a deep learning
multilevel approach leads to significantly better registration results.



mlVIRNET: Multilevel Variational Image Registration Network 35

3.1 Introduction

Image registration is the process of aligning two or more images to achieve point-wise
spatial correspondence. This is a fundamental step for many medical image analysis
tasks and has been an active field of research for decades. Since recently, deep learning
based approaches have been successfully employed for image registration [33, 42,
44, 47, 55, 61]. They have shown promising results in a wide range of application.
However, capturing large motion and deformation with deep learning based registration
is still an open challenge. In common iterative image registration approaches, this
is typically addressed with a multilevel coarse-to-fine registration strategy [11, 14,
62]. Starting on a coarse grid with smoothed and down-sampled versions of the input
images a deformation field is computed which is subsequently prolongated on the
next finer level as a initial guess. Hereby, a coarse level alignment is obtained first
that typically captures the large motion components and which is later improved on
finer levels for the alignment of more local details. Most of the recently presented
deep learning based approaches also make use of a multilevel strategy as they are
based on the U-Net architecture [33, 42, 44, 55]. Thereby, the first half of the ”U” is
used to generate features on different scales starting at the highest resolution and
reducing the resolution through pooling operations. In this procedure, however, only
feature maps on different levels are calculated but neither different image resolutions
are used nor deformation fields are computed. Only a few approaches implement a
multi-resolution or hierarchical strategy in the sense of multilevel strategies associated
with conventional methods. In [63] the authors proposed an architecture which is
divided into a global and a local network, which are optimized together. In [61] a
multilevel strategy is incorporated into the training of a U-Net. Here, a CNN is grown
and trained progressively level-by-level. In [47] a patch based approach is presented,
where multiple CNNs (ConvNets) are combined additive into a larger architecture for
performing coarse-to-fine image registration of patches. The results from the patches
are then combined into a deformation field warping the whole image. In this work,
we address this challenge and present a multilevel strategy for deep learning based
image registration to advance state-of-the-art approaches. The contribution of this
paper includes:

• We present deep learning based multilevel registration that is able to compensate
and handle large deformations by computing deformation fields on different
scales and functionally compose them.

• Our method is a theoretically sound and a direct transference of coarse-to-fine
registration from conventional, iterative registration schemes to the deep learning
based methods.

• We do not rely on patches. We take the whole image information into account
and always consider the full field of view on all levels.
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• A robust and fast registration method for the complex task of inhale-to-exhale
registration validated on a large dataset of 270 thoracic CT scan pairs of the multi-
center COPDGene study and on the publicly available DIR-Lab dataset [64].

3.2 Method

Our deep learning based framework for deformable image registration consists of two
main building blocks. The first one is the specific design of the convolutional neural
network and the loss function. In general, several architectures together with different
distance measures, regularizer and penalty terms can be used. However, we focus on a
U-Net based architecture, combined with a loss function that has shown good results
for the task of pulmonary registration [65]. The second main building block is the
embedding into a multilevel approach from coarse to fine. In the following, we give a
brief outline of the variational setup, then we describe our particular architecture and
loss function and, finally, we present its embedding into a multilevel approach.

3.2.1 Variational Registration Approach:

Following [66], let F ,M ∶ ℝ3 → ℝ denote the fixed image and moving image, respec-
tively, and let𝛺 ⊂ ℝ3 be a domain modeling the field of view ofF . We aim to compute a
deformation y ∶ 𝛺→ ℝ3 that aligns the fixed image F and the moving imageM on the
field of view 𝛺 such that F(x) andM(y(x)) are similar for x ∈ 𝛺. The deformation is
defined as a mimimizer of a suitable cost function that typically takes the form

J (F ,M, y) = D(F ,M(y)) + 𝛼R(y) (3.1)

with so-called distance measure D that quantifies the similarity of fixed image F and
deformed moving imageM(y) and so-called a regularizerR that forces smoothness
of the deformation typically by penalizing of spatial derivatives. Typical examples
for the distance measure are, e.g., the squared L2 norm of the difference image (SSD),
cross correlation (CC) or mutual information (MI). In our experiments, we follow the
approach of [65] using the edge based normalized gradient fields distance measure
(NGF) and second order curvature regularization.

3.2.2 Deep Learning based Image Registration

In contrast to conventional registration [66], we do not employ iterative optimization
during inference of new unseen images but use a convolutional neural network (CNN)
that takes images F andM as input and yields the deformation y as output. Thus,
in the context of CNNs we can consider y as a function of a trainable CNN model
parameter vector 𝜃 ∈ ℝP and input images F ,M, i.e. y(x) ≡ y(𝜃;F ,M, x). In an
unsupervised learning approach, we set up a loss function L that depends on F ,M
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and y, and then 𝜃 is learned by training, i.e., minimizing the expected value of L among
a set of representative input images w.r.t. 𝜃. A natural choice would L = J . However,
in our particular application, we have additional information available during training
and we perform a weakly supervised approach. To this end, we define our loss function
as suggested in [55]

L(F ,M, bF , bM, y) = J (F ,M, y) + 𝛽
2
∥bF − bM(y)∥2L2 (3.2)

with binary segmentation masks bF and b
M(y) of the fixed and warped moving image,

respectively. Note that these segmentations are only used to evaluate the loss function
for training and their are not used as network input.

3.2.3 Single Level Architecture

Our CNN y ≡ y(𝜃,M,F) is based on a U-Net which takes the concatenated 3D moving
and fixed image as input and predicts a 3D dense displacement field. The network
consists of three resolution levels starting with 16 filters in the first layer, which are
doubled after each downsampling step. We apply 3D convolutions in both encoder and
decoder stage with a kernel size of 3 followed by a batch normalization and a ReLU
layer. For downsampling the feature maps during the encoder path, an 2×2×2 average
pooling operation with a stride of 2 is used. Transposed convolutions upsample and
halve the feature maps in the decoder path. At the final layer, a 1 × 1 × 1 convolution is
used to map each 16 component feature vector to a three dimensional displacement
vector.

3.2.4 Multilevel Deep Learning based Registration

Multilevel continuation and scale space techniques have been proven very efficient
in conventional variational registration approaches to avoid local minima, to reduce
topological changes or foldings and to speed up runtimes [11, 14, 62, 67]. However,
beside carrying over these properties, our major motivation here is, to overcome the
limitation of deep learning based registration to small and local deformations.

We follow the ideas of standard multilevel registration and compute coarse grid
solutions that are prolongated and refined on the subsequent finer level. To this end,
first we create image pyramids Fℓ,Mℓ for ℓ = 1,⋯, L with coarsest level L. We start
on finest level ℓ = 1 and subsequently halve image size and resolution from level to
level. Registration starts on coarsest level L and we compute deformation yL from
images FL andML as network input. On all finer levels ℓ < L, we incorporate the
deformations from all preceding coarse levels as initial guess. Therefore, we combine
them by functional composition and warp the moving image at current level. Let Xℓ
denote the cell-centered image grid on level ℓ, we compute the warped movingMℓ(Yℓ)



38 Chapter 3

Algorithm 1: Multilevel Deep Learning Registration
IN :Fixed image F , moving imageM, image grid X
OUT:Corse-to-fine deformations yL, ..., y1, transformed grid

Y = y1 ○ ⋯ ○ yL(X)
1 Create image pyramid Fℓ,Mℓ for ℓ = 1, 2, ..., L with finest level ℓ = 1 and L

coarsest.
2 On coarsest level Compute deformation yL = CNN(FL,ML)
3 for ℓ = L − 1, L − 2, ..., 1 do
4 Compute transformed grid Yℓ = yℓ+1 ○ ... ○ yL(Xℓ)
5 Compute deformation yℓ = CNN(Fℓ,Mℓ(Yℓ))
6 end

with
Yℓ ∶= yℓ+1 ○ yℓ+2 ○ ⋯ ○ yL(Xℓ)

and use it together with fixed imageFℓ as network input, yielding the deformation field
yℓ on the current level. The final output deformation y is then given by composition of
the whole sequence of coarse-to-fine solutions, i.e., y = y1 ○ y2 ○ ⋯ ○ yL. To evaluate
deformations and images at non-grid grid points, we use trilinear interpolation. Our
scheme is summarized in Algorithm 1.

In our experiments we use in particular a three level scheme (L = 3). and we create
image pyramid with three reduced resolution images generated from the original 3D
images by applying a low-pass filter with a stride of two, four and eight. During training,
the three networks are learned progressively. First, the network on the coarsest level is
trained for a fixed amount of epochs. Afterwards, the parameters of the middle network
are learned while the coarsest network stays fixed and is only used to produce the
initial deformation field. The same procedure is repeated on the finest level. The same
architecture is used on all levels. The convolution parameters on the coarsest level are
initialized with Xavier uniform [68]. Whereas, all other networks are using the learned
parameters of the previous network as initialization. Note that the receptive field in
voxel is the same for all used networks, however, due to to the decreased resolution on
the coarse levels, the receptive field in mm is much higher.

3.3 Experiments and Results

We demonstrate our deep learning based registration method by registration of inhale-
to-exhale lung CT scans. We use data from 500 patients for training and a disjoint set of
50 patients for validation from the COPDGene study, a large multi-center clinical trial
with over 10.000 subjects with chronic obstructive pulmonary disease (COPD) [69]. The
dataset was acquired across 21 imaging centers using a variety of scanner makes and
models. Each patient had received two breath-hold 3D CT scans, one on full inspiration
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Figure 3.1: Comparison of Dice overlaps for all test images and each anatomical label (average

of all labels , upper left lobe (ULL) , lower left lobe (LLL) , upper right lobe (URL) , lower

right lobe (LRL) , middle right lobe (MRL) ). For each one the distributions of Dice coefficients

before registration, after single level dl registration, multilevel dl registration without pretrained

CNNs and after multilevel registration with pretrained CNNs.

(200mAs) and one at the end of normal expiration (50mAs). For all scans segmentations
of the lobes are available, which were computed automatically and manually corrected
and verified by trained human analysts. The original images have sizes in the range
of 512 × 512 × {430,⋯, 901} voxels. Due to memory and time limitations, we create
low-resolution images by resampling to a fixed size of 160 × 160 × 160 voxels. The low-
resolution images are then used during training for the computation of the deformation
field and for evaluating of the loss function. Note that, our method is generally not
limited to any fixed input size. Although we use images with 1603 voxels, the computed
deformation field are defined on full field-of-view and can be evaluated on grids with
arbitrary resolution by using trilinear interpolation. Consequently, we use original
full-resolution images for the evaluation of our method.

Multilevel vs. Single Level

First, we evaluate our multilevel approach on a disjoint subset of 270 patients from the
COPDGene study. We compare our proposed method against a single level approach
with only one U-Net using the images on finest level as inputs. We train both ap-
proaches for 75 epochs with the same hyper-parameters. For the multilevel approach,
the epochs are split equally at each level. We also evaluate the effect on how the
network parameter are initialized. Therefore, we compare a Xavier initialization for
all convolution parameters of all three networks against our proposed progressive
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learning strategy. Therefore, only the convolution parameters on the coarsest level are
initialized with Xavier initialization and the training of subsequent network is started
with the learned parameters form the network of the previous level.

We evaluate our method by measuring the overlap of the lobe masks. The un-
derlying assumption is, that if a deformation yields accurate spatial correspondences,
then lobe segmentations of the fixed and the warped lobe segmentation of the moving
image should overlap well. Figure 3.1 shows the Dice scores for each label and the
average over all labels as a box-plot. Our proposed multilevel approach increase the
Dice Score from 63.5 % to 92.1 %. In contrast, the single level method archive a Dice
Score of 88.3 %. Furthermore, the multilevel approach produced less foldings (0.3 % to
2.1 %). Figure 3.2 shows representative qualitative results for of two scan pairs before
registration and after our single level and multilevel registration. In both cases the
respiratory motion was successfully recovered. Although the single level registration
produces reasonable Dice scores, it does not well align the inner structures. This is
also reflected by the landmark errors in the following section. Comparing the results
of the pretrained initialization to the random initialization, an improvement of about
2 % in terms of the Dice Score could be reached.

3.3.1 Comparison with state-of-the-art

Additionally, we evaluate our method and compare it to others on the public available
DIR-Lab dataset [64]. It is a collection of ten inspiration-expiration cases with 300
expert-annotated landmarks in the lung. The landmarks are used for evaluating our
deformable registration method. The mean (and standard deviation) for all ten scans
for the deep learning based multi-resolution approaches of Eppenhof [61] and de Vos
(DLIR) [47], the single VIRNET and our proposed method are listed in Table 3.1. The
overall average landmark error is 2.19mm with a standard deviation of 1.62mm. In
contrast to the other methods, our mlVIRNET is more robust against outliers and can
better handle large initial landmark distances without training on this specific dataset.

3.4 Discussion and Conclusion

We presented an end-to-end multilevel framework for deep learning based image reg-
istration which is able to compensate and handle large deformations by computing
deformation fields on different scales. Our method takes the whole image information
into account and predicts a dense 3D deformation field. We validated our framework
on the challenging task of large motion inhale-to-exhale registration using large image
data of the multi-center COPDGene study. We have shown that our proposed method
archives better results than the comparable single level variant. In particular with
regard to the alignment of inner lung structures and the presence of foldings. Only less
than 0.3 % voxel positions of the images showed a folding. Additionally, we demon-
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(a) before (b) single level (c) multilevel

Figure 3.2: Visualization of two inspiration-expiration registration results: The first two rows

show coronal views before and after single and multilevel registration, the last two rows sagittal

views, respectively. The color overlays show the inhale scan in orange and the exhale in blue;

due to addition of RGB values, aligned structures appear gray or white. In both cases the

respiratory motion was successfully recovered. However, the single level registration does not

well align the inner structures.
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Scan Initial Eppenhof [61] DLIR [47] single VIRNET mlVIRNET

Case 1 3.89(2.78) 2.18(1.05) 1.27(1.16) 1.73(0.83) 1.33(0.73)
Case 2 4.34(3.90) 2.06(0.96) 1.20(1.12) 2.38(1.11) 1.33(0.69)
Case 3 6.94(4.05) 2.11(1.04) 1.48(1.26) 3.01(1.86) 1.48(0.94)
Case 4 9.83(4.85) 3.13(1.60) 2.09(1.93) 4.28(2.37) 1.85(1.37)
Case 5 7.48(5.50) 2.92(1.70) 1.95(2.10) 3.17(2.2) 1.84(1.39)
Case 6 10.89(6.96) 4.20(2.00) 5.16(7.09) 4.85(3.04) 3.57(2.15)
Case 7 11.03(7.42) 4.12(2.97) 3.05(3.01) 3.67(1.82) 2.61(1.63)
Case 8 14.99(9.00) 9.43(6.28) 6.48(5.37) 5.75(3.93) 2.62(1.52)
Case 9 7.92(3.97) 3.82(1.69) 2.10(1.66) 4.90(2.25) 2.70(1.46)
Case 10 7.30(6.34) 2.87(1.96) 2.09(2.24) 3.49(2.21) 2.63(1.93)

Total 8.46(6.58) 3.68(3.32) 2.64(4.32) 3.72(2.45) 2.19(1.62)

Table 3.1: Mean (standard deviation) of the registration error in mm determined on DIR-Lab

4D-CT data. From left to right: initial landmark error, the multi-resolution approaches of [61]

and [47] and the single level VIRNET and the proposed multilevel VIRNET.

strated that using the network parameter of the previous level as initialization, yields
to better registration results. Moreover, we demonstrated the transferability of our
approach to new datasets by evaluating our learned method on the publicly available
DIR-Lab dataset and showing a lower landmark error than other deep learning based
registration methods.
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Abstract

Deep-learning-based registration methods emerged as a fast alternative to conventional
registration methods. However, these methods often still cannot achieve the same
performance as conventional registration methods because they are either limited to
small deformation or they fail to handle a superposition of large and small deformations
without producing implausible deformation fields with foldings inside.

In this paper, we identify important strategies of conventional registration methods
for lung registration and successfully developed the deep-learning counterpart. We
employ a Gaussian-pyramid-based multilevel framework that can solve the image
registration optimization in a coarse-to-fine fashion. Furthermore, we prevent foldings
of the deformation field and restrict the determinant of the Jacobian to physiologically
meaningful values by combining a volume change penalty with a curvature regularizer
in the loss function. Keypoint correspondences are integrated to focus on the alignment
of smaller structures.

We perform an extensive evaluation to assess the accuracy, the robustness, the plau-
sibility of the estimated deformation fields, and the transferability of our registration
approach. We show that it achieves state-of-the-art results on the COPDGene dataset
compared to conventional registration method with much shorter execution time. In
our experiments on the DIR-Lab exhale to inhale lung registration, we demonstrate
substantial improvements (TRE below 1.2mm) over other deep learning methods. Our
algorithm is publicly available at https://grand-challenge.org/algorithms/deep-learning-
based-ct-lung-registration/.
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4.1 Introduction

Image registration is the process of aligning two or more images to achieve point-wise
spatial correspondence. This is a fundamental step for many medical image analysis
tasks and has been an active field of research for decades [8, 9]. Various approaches and
tailored solutions have been proposed to a wide range of problems and applications.
Typically, image registration is phrased as an optimization problem with respect to
a spatial mapping that minimizes a suitable cost function and common approaches
estimate solutions by applying iterative optimization schemes. Unfortunately, solving
such an optimization problem is computationally demanding and consequently slow.

While deep learning has become the methodology of choice in many areas, rel-
atively few deep-learning-based image registration algorithms have been proposed.
One reason for this is the lack of ground truth and the large variability of plausi-
ble deformations that can align corresponding anatomies. Therefore, the problem is
much less supervised than for example image classification or segmentation. Never-
theless, several methods have been presented in the last years which aim to mimic
the process of conventional image registration methods by training a neural network
to predict the non-linear deformation function given two new unseen images. As a
trained neural networks can process images in real time, this has immense potential
for time-sensitive applications such as image guidance in radiotherapy, tracking, or
shape analysis through multi-atlas registration.

In this paper, we target the challenging task of lung registration. The complexity
of this registration task is manifold, as the occurring motion is a superposition of
respiratory and cardiac motion. Moreover, the sliding motion between the lung and rib
cage during breathing – more precisely between pleura visceralis and pleura parietalis –
is an additional challenge. The scale of the motion within the lungs can often be larger
than the structures (vessels and airways) that are used to guide the optimization process.
This may cause a registration algorithm to get trapped in a local minimum [70, 71].
This makes the problem even more difficult.Therefore, a registration method needs to
be able to estimate a displacement field that accounts for substantial breathing motion
but also aligns small structures like individual pulmonary blood vessels precisely.

4.2 Related Work

Most deep-learning-based approaches aim to learn a registration function in form of a
convolutional neural network to predict spatial deformations warping a moving image
to a fixed image. All these works have contributed improving deep-learning-based
image registration and have been applied to different registration applications including
brain MR [28, 33, 72], cardiac MR [73], cardiac MR-CT [35], prostate MR-US [63], thorax-
abdomen CT [74], thorax CT [26, 29, 34, 55, 61, 75] and CT-CBCT registration [76].
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Existing approaches can be classified as supervised, unsupervised, and weakly-supervised
techniques based on how much supervision is available.

Supervised methods use ground-truth deformation fields for training. The ground
truth can be generated in different ways. In [24] and [25] the network is trained
on synthetic random transformations. A drawback is that the randomly generated
ground truth is artificial and may not be able to reproduce all possible deformations.
Alternatively, conventional registration methods can be used to produce deformations
by registering images [26, 27] or other image features like landmarks or segmenta-
tions [42]. Another way to create a ground truth is to combine simulations with
existing algorithms [77]. Consequently, the performances of all these approaches is
upper bounded by the quality of the initial registration algorithm or the realism of the
synthetic deformations.

In contrast, unsupervised methods – also called self-supervised methods – do not
require any ground truth. The idea is to use the cost function of conventional image
registration (similarity measure and regularization term) as the loss function to train
the neural network. An important milestone for the development of these methods was
the introduction of the spatial transformer network [36] to differentiably warp images.
This differentiable warping has actually been part of most conventional registration
methods for a long time (e.g. [1, 19, 78]). The concept of an unsupervised deep-learning-
based registration method was first introduced with the DIRNet [73] for 2D image
registration using the normalized cross-correlation image similarity measure as loss
function. In [79] the approach has been extended by adding diffusion regularization
to the loss function forcing smooth deformations. The method has successfully been
demonstrated for registration of 3D brain subvolumes. The idea of unsupervised deep-
learning-based image registration has been further evolved in several works [28–31,
55].

Weakly-supervisedmethods do not rely on ground-truth deformation fields either but
training is still supervised with prior information. In [63] and [32], a set of anatomical
labels is used in the loss function. The labels of the moving image are warped by
the deformation field and compared with the fixed labels. All anatomical labels are
only required during training. In [33] and [34, 35], the complementary strengths of
global semantic information and local distance metrics were combined to improve the
registration accuracy.

In conventional registration approaches, multilevel continuation and scale-space
techniques have been proven very efficient to avoid local minima during the optimiza-
tion process of the cost function, to reduce topological changes or foldings, and to
speed up runtimes [11, 14, 62, 67] – explaining the popularity of multi-level strategies
in conventional registration methods. As a lot of deep-learning-based registration
methods are build on top of U-Net (e.g. [33, 42, 44, 55]), they are also multi-leveled in
their nature. The first half of the ”U” (the encoder) generates features on different scales
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starting at the highest resolution and reducing the resolution through pooling opera-
tions. In this procedure, however, only feature maps on different levels are calculated
but neither are different image resolutions used nor deformation fields computed. Only
a few approaches implement a multi-resolution or hierarchical strategy in the sense
of multilevel strategies associated with conventional methods. In [63], the authors
proposed an architecture that is divided into a global and a local network, which are
optimized together. In [61], a multilevel strategy is incorporated into the training of
a U-Net, by growing and training progressively level-by-level. In [29], a patch-based
approach is presented, where multiple CNNs (ConvNets) are combined additively into
a larger architecture for performing coarse-to-fine image registration of patches. The
results from the patches are then combined into a deformation field warping the whole
image. Another patch-based multilevel approach is presented in [80]. The multilevel
framework consists of a CoarseNet and a FineNet which are trained jointly. During
training, the estimated deformation field of the CoarseNet and the FineNet are not
combined but the moving patch is transformed twice. During inference, if the mean
absolute differences between the deformed image patch and the fixed image exceeds
a predefined threshold, FineNet is applied again. This leads to a variable number of
deformation field patches, which are combined additively. Although previous deep-
learning-based registration works (e.g. [26, 29, 61]) contributes many efforts to improve
the registration accuracy for lung registration, there is still a misalignment of smaller
structures in the lung, which leads to a high target registration error of landmarks.

Contribution

We previously introduced an end-to-end deep-learning multilevel registration method
that can handle large deformations by computing deformation fields on different scales
and functionally composing them [34]. This initial study, despite its limited evaluation,
proved that it is a valid strategy to improve the alignment of vessels and airways
– though a gap regarding the target registration error of landmarks with the best
conventional registration methods remained. Building on this previous work, and
addressing its limitations, we were able to further close that gap.

Our key contributions are as follow:

• We present multiple anatomical constraints to incorporate anatomical priors
into the registration framework to obtain more realistic results. We integrate
the lung lobe mask to consider the global context. Moreover, the keypoint
correspondences are used to increase the alignment of airways and vessels.

• We introduce a novel constraining method to control volume change and there-
fore avoid foldings inside the deformation field. While the idea of volume change
control is not new in conventional registration, we firstly present a suitable
version for deep-learning-based image registration.
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Figure 4.1: Schematic representation of the training process. In the loss function, we com-

pare the fixed image, pulmonary lobes mask and keypoints to the deformed moving image,

pulmonary lobes mask and keypoints, respectively. To enforce smoothness and to prevent

foldings, a regularizer and a volume change penalty are integrated into the loss function. During

inference, only the fixed and moving image is required to estimate the deformation field. For

a better visualization, we have placed the windowed CT image in the background of the used

keypoints. Best viewed in colors.

• We perform comprehensive experiments on three different datasets – the multi-
center COPDGene study [69] and the DIR-Lab challenge dataset [64, 81], and the
EMPIRE10 challenge dataset [82] – to assess the accuracy, plausibility, robustness,
transferability of our method. We achieve comparable results as state-of-the-art
registration approaches.

4.3 Method

4.3.1 Variational Registration Approach

Let F ,M ∶ ℝ3 → ℝ denote the fixed image and moving image, respectively, and let
𝛺 ⊂ ℝ3 be a domain modeling the field of view of F . Registration methods aim to
compute a deformation y ∶ 𝛺 → ℝ3 that aligns the fixed image F and the moving
imageM on the field of view 𝛺 such that F(x) andM(y(x)) are similar for x ∈ 𝛺.
The deformation is defined as a minimizer of a suitable cost function that typically
takes the form

J (F ,M, y) = D(F ,M(y)) + 𝛼R(y) (4.1)

with so-called distance measure D that quantifies the similarity of fixed image F and
deformed moving imageM(y) and so-called regularizerR that forces smoothness of
the deformation typically by penalizing spatial derivatives. Typical examples for the
distance measure are the squared L2 norm of the difference image (SSD), normalized
cross correlation (NCC), or mutual information (MI). The cost function can be ex-
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tended by additional penalty terms to force desired properties or incorporate additional
knowledge in form of anatomical constraints [65]. As illustrated in Figure 4.1, our
method inputs both the fixed and moving image into the network that predicts the
dense displacement field. The loss function uses all available information: input images,
segmentation masks and keypoints, with additional regularization – in the form of a
smoothness prior and a volume consistency constraint – to prevent foldings.

4.3.2 Loss Function

NORMALIZED GRADIENT FIELD DISTANCEMEASURE One of the main challenges of lung
registration are the varying intensity changes occurring due to the altered density
of lung tissue during breathing. This leads to a violation of the intensity constancy
assumption between corresponding points, on which the classic sum of squared dif-
ferences (SSD) distance measure is built. However, the lung exhibits a rich structure
of bronchi, fissures, and especially vessels that can be exploited for the registration,
more suited to distance measure that focus on image edges rather than intensities. We
follow the approach of [65] and [34] using the normalized gradient fields (NGF) [83]
distance measure

D(F ,M(y)) = ∫ 𝛺
1 − ⟨∇M(y(x)), ∇F(x)⟩

2
𝜖

‖∇M(y(x))‖2𝜖‖∇F(x)‖2𝜖
dx,

with ⟨f, g⟩𝜖 ∶= ∑3
j=1(fjgj + 𝜖2), ∥f∥𝜖 ∶=

√
⟨f, f⟩𝜖. The edge hyper-parameter 𝜖 > 0 is

used to suppress small image noise, without affecting image edges. Therefore, a good
strategy is to choose its value relative to the average gradient. In [83], the following
automatic choice is suggested:

𝜖 = 𝜈
V ∫ 𝛺

∥∇I(x)∥dx,

where 𝜈 is the estimated noise level in the image and V is the volume of the domain 𝛺.
For CT images, a value in the range of [0.1, 10] is mostly a good choice.

Since we focus on accurate registration inside the lungs and to avoid misalignment
artifacts due to sliding motion at the pleura, we restrict 𝛺 to the support of the lung
mask of the fixed image.

CURVATURE REGULARIZER Smooth deformation fields are enforced by the second order
curvature regularizer [84] given by

R(y) = ∫ 𝛺

3
∑
j=1

‖𝛥yj(x)‖2 dx. (4.2)
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(a) Interior point method from [65] (b) Log-barrier extension from [85]

(c) Our proposed penalty

Figure 4.2: A graphical illustration of both standard log-barrier (a), the proposed log-barrier

extension (b) and examples of penalty functions (c). The solid curves in colors show the approx-

imations for several t values of functions ̃𝜓t(z) and 𝜓t(z) respectively.

VOLUME CHANGE CONTROL Although the curvature regularization from Equation (4.2)
prefers smooth deformation, foldings may still happen, which is obviously physically
impossible. More formally, foldings happen when the Jacobian determinant of the de-
formation field becomes negative. To avoid any foldings, we therefore aim to minimize
the distance measure D and the regularizer R while keeping the Jacobian determi-
nant positive, for every voxel in 𝛺. Formally, this can be written as a constrained
optimization problem:

min
y

D(F ,M(y)) + 𝛼R(y)

s.t. det∇y(x) > 0 ∀x ∈ 𝛺.
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To achieve this, [65] introduced a Volume Change Control (VCC) that could be integrated
in their overall objective:

V(y) = ∫ 𝛺
𝜓(det∇y(x))dx, (4.3)

where

𝜓(z) =
⎧⎪⎪⎨⎪⎪⎩

(z−1)2
z if z > 0

+∞ otherwise.
(4.4)

For the sake of simplicity, the input to 𝜓 in equation 4.3 is substituted with z =
det∇y(x) in equation 4.4. Notice that 𝜓(z) is minimized when z = 1 (see Figure 4.2 (a)).
Therefore, the regularizing effects of the VCC are twofold: i) prevents the formation of
foldings, by keeping the determinants positive, ii) limits both shrinkage and expansions
by biasing the optimization to keep the same volume.

The method that [65] used falls into the category of interior-point methods. Such
methods became very popular in constrained optimization [86] as they do not require
the expansive primal-dual updates of traditional Lagrangian optimization: the infinity
penalty acts as a ”barrier”, preventing the optimization to go out of bounds.

To be used, interior-points methods require a feasible starting point: all constraints
need to be strictly satisfied before starting the optimization procedure. This is usually
done in a pre-optimization step (called Phase I) before the actual optimization of Phase
II is performed. We can see it as finding a valid initial guess, and then refining it.

In the context of deep neural networks, standard Lagrangian methods are not
feasible due to their expensive primal-dual updates, which requires to retrain a neural
network (from scratch) at each iteration. Interior-point methods are also not applicable,
as solving phase I requires to solve a constrained optimization problem in the first
place.

[87] proposed a parametric log-barrier extension (illustrated in Figure 4.2 (b)), that
does not require an initial feasible solution:

̃𝜓t(z) =
⎧⎪⎪⎨⎪⎪⎩

− 1t log(z) if z ≥ 1
t2

−tz − 1
t log (

1
t2 ) +

1
t otherwise.

(4.5)

t is a hyper-parameter, controlling the slope of the barrier. By starting with a small
initial value, and increasing it as the training progresses, one is able to ”raise” the
barrier, closing it eventually.

We propose to keep the property of equation (4.4) to symmetrically penalizes local
shrinkage and expansion and make it applicable for neural networks by using the
barrier formulation of equation (4.5) for z < twith t → 0 over time (illustrated in Figure
4.2 (c)):
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𝜓t(z) =
⎧⎪⎪⎨⎪⎪⎩

(z−1)2
z if z ≥ t

(1 − 1
t2 ) z +

2(1−t)
t otherwise,

(4.6)

with t > 0 which is a hyper-parameter controlling the slope of the linear barrier for
z < t. This barrier can be raised during the training by decreasing the value of t to
penalize foldings more strongly. Note that the linear part for z < t is chosen such that
𝜓 is continuously differentiable provided t > 0. In our experiments, we set t = 0.2 for
the first level of our multilevel architecture and decrease it by the factor of 2 for any
further level. For z ≥ t, we symmetrically penalize local shrinkage and expansion, i.e.,
𝜓(z) = 𝜓(1/z).

MASK ALIGNMENT Several recent publications (e.g. [33, 35]) have shown that adding
further information in the form of segmentation masks into the loss function can guide
the network during the training process. Since the segmentation masks are used in the
loss function, they are only required during training and not for registration of unseen
images. We integrate segmentation masks by using the SSD loss

B(y) = 1
2 ∫ 𝛺

∥bM(y(x)) − bF(x)∥2dx, (4.7)

where bF ∶ 𝛺 → [0, 1]k and bM ∶ 𝛺 → [0, 1]k denote functions of F andM
that are the one-hot representation of the segmentation mask, with k the number of
different labels. For lung registration, we use segmentation of the lungs into the five
pulmonary lobes (k = 5). During training, we use linear interpolation to warp the
one-hot segmentation masks since this results in a smoother loss function at the border
of the segmentation. With nearest neighbor interpolation, the loss of each voxel can
either be one or zero. Linear interpolation allows for probabilistic loss values between
zero and one.

KEYPOINT LOSS For conventional image registration, previous work (e.g. [65, 71, 88])
has shown that the integration of sparse keypoints during the optimization of the
deformation field yields better registration results. In contrast to conventional registra-
tion approaches, keypoints can be integrated into the loss function and are therefore,
similar to the segmentation masks for the mask penalty, only needed for training but
not during inference. In general, there are several ways to integrate the keypoints into
an intensity-based registration approach (e.g. [89], [65], [90]). We choose to integrate
the keypoint information through a least-squares penalty into our model by directly
comparing the transformed keypoint of the fixed image with the corresponding moving
keypoint:

K(y) = 1
∣K∣

∣K∣
∑
i=1
∥ki
M
− y (ki

F
)∥2
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with the moving keypoint ki
M

and the warped fixed keypoint y (ki
F
) for all ∣K∣ key-

points. In general, manually annotated landmarks or automatically generated keypoints
can be integrated with this loss function. However, since manual annotation of land-
marks is time-consuming, we use the keypoint detection algorithm described in [65] to
generate a large number of corresponding keypoints.

The final loss is given by

L(F ,M, y) = D(F ,M(y)) + 𝛼R(y) + 𝛽B(y) + 𝛾V(y) + 𝛿K(y). (4.8)

The hyper-parameters 𝛼, 𝛽, 𝛾 and 𝛿 have to be chosen manually. However, our exper-
iments showed that a change in the magnitude leads to only slight changes in the
results.

4.3.3 Baseline Architecture

Our CNN is based on a U-Net [53] which takes the concatenated 3D moving and fixed
image as input and predicts a 3D dense displacement field with the same resolution as
the input images. The U-Net consists of three levels starting with 16 filters in the first
layer, which are doubled after each downsampling step. We apply 3D convolutions
in both encoder and decoder path with a kernel size of 3 followed by an instance
normalization and a ReLU layer. In the encoder path, the feature map downsampling
steps use 2 × 2 × 2 average pooling with a stride of 2. In the decoder path, the
upsampling steps use transposed convolution with 2 × 2 × 2 filters and half the
number of filters than the previous step. The final layer uses a 1x1x1 convolution filter
to map each 16-component feature vector to a three-dimensional displacement.

4.3.4 Multilevel Architecture

In conventional image registration, multilevel continuation has been proven very
efficient to avoid local minima, to reduce topological changes or foldings, and to speed
up runtimes [11, 14, 62, 67]. Recent deep-learning-based approaches [29, 34, 80, 91,
92] have shown that, besides carrying over these properties, a multilevel scheme helps
overcome the limitations of deep-learning-based registration approaches to properly
deal with small and local deformations.

As in our previous work [34], we follow the ideas of standard multilevel registration
and compute coarse grid solutions that are prolongated and refined on the subsequent
finer level. Our multilevel framework is illustrated in Figure 4.3 with L = 3 levels. The
registration starts on the coarsest level L where the deformation ỹL is computed from
the input images that have been Gaussian-smoothed and downsampled by a factor
of 2L−1. On all finer levels ℓ < L, we incorporate the deformations from all preceding
coarse levels as an initial guess by combining them by functional composition and
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Figure 4.3: Overall scheme of the proposed multilevel framework, where F indicates the

fixed image,M the moving image, y the deformation field andM(y) the warped image.

Each CNNs is trained separately for a fixed amount of epochs and the weights stay fixed

afterwards. The deformation fields from all preceding coarse levels are used as an initial guess

by combining them by functional composition and warp the moving image on the highest

resolution. Subsequently, the warped moving image is downsampled to the current image level.

The dotted lines illustrate the initialization of the network weights with the learned parameters

of the previous level.

warping the moving image. Subsequently, the fixed and warped moving images are
downsampled.

The number of used levels is a hyper parameter which should be chosen depending
on the task and the used data. The maximal number of levels that can be used is
limited by the GPU memory and the image size. Since the images are downsampled
with a factor of two in the multilevel setting and additionally the image features are
downsampled three-times in the U-Net, the number may be chosen at most so that the
image size is divisible by 23+(L−1). Our experiments (c.f. section 4.4.9) have shown
that a three-level scheme works best in our application and fits on a 12GB GPU. In
our experiments, we use in particular a three-level scheme (L = 3, Figure 4.1). The
three networks are trained progressively. First, the network on the coarsest level is
trained for a fixed amount of epochs. Afterwards, the parameters of the middle network
are learned while the coarsest network stays fixed and is only used to produce the
initial deformation field. The same procedure is repeated on the finest level. The same
architecture is used on all levels. The network parameters on the coarsest level are
initialized with Xavier uniform [68], whereas all other networks are initialized with
the learned parameters of the previous network. Note that the receptive field in voxels
is the same for all networks, however, due to the decreased resolution on the coarse
levels, the receptive field in mm is much larger.
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4.4 Experiments

We perform several experiments to assess the accuracy, plausibility, robustness, transfer-
ability, and speed of our weakly-supervised deep-learning-based registration approach.

4.4.1 Data

We train and validate our method on the data from the COPDGene study [69]. To prove
the robustness and transferability of our method and to compare our method with
other registration approaches, we evaluate our registration approach on the publicly
available DIR-Lab dataset [64, 81] and on the EMPIRE10 challenge as well. On the
COPDGene dataset, the evaluation is based on the lobe segmentation masks, and on
both of the other datasets, annotated landmarks are available on which we evaluate
the target registration error.

COPDGENE DATASET Training, validation, and testing data were acquired from the
COPDGene study, a large multi-center clinical trial with over 10,000 subjects with
chronic obstructive pulmonary disease (COPD) [69]. The COPDGene study includes
clinical information, blood samples, and chest CT scans. The image dataset was ac-
quired across 21 imaging centers using a variety of scanner makes and models. Each
patient had received two breath-hold 3D CT scans, one on full inspiration (200mAs)
and one at the end of normal expiration (50mAs). About five years later, follow-up
images were acquired from about 6000 subjects. In our study, we use the inspiration
and expiration scans of 1000 patients. We split these patients into 750, 50, 200 patients
for training, validation, and testing, respectively. The original images have sizes in the
range of 512 × 512 × {341,⋯, 974} voxels. The in-plane resolution of the axial slices
varied between 0.5mm to 0.97mm per voxel with a slice thickness of 0.45mm to 0.7mm.
The human lungs are sub dived into five lobes that are separated by visceral pleura
called pulmonary fissure. An exemplary inspiration scan and expiration scan of one
patient with the lobe segmentation overlay is shown in Figure 4.4. For all scans segmen-
tations of the lobes are available, which were computed automatically and manually
corrected and verified by trained human analysts.

DIR-LAB CHALLENGE This dataset consists of ten thoracic 4D CT images acquired as
part of the radiotherapy planning process for the treatment of thoracic malignancies.
In our study we are only using the inspiration and expiration phase of the 4D image,
i.e., two of the ten images per 4D scan. The in-plane resolution of the 512 × 512 axial
slices varied between 0.97mm to 1.16mm per voxel with a slice thickness of 2.5mm.
Each scan pair contains 300 manually annotated corresponding landmarks in the lung
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a) Inspiration b) Expiration

Figure 4.4: The Image shows a) an inspiration scan and b) and expiration scan of the lungs

subdivided into upper left lobe, lower left lobe, upper right lobe, lower right lobe and

middle right lobe.

on which we evaluate the target registration error.

EMPIRE10 CHALLENGE The EMPIRE10 challenge [82] consists of 30 scan pairs from
six different categories: breathhold inspiration scan pairs, breathhold inspiration and
expiration scan pairs, 4D data scan pairs, ovine data scan pairs, contrast-noncontrast
scan pairs and artificially warped scan pairs. Further information on each category
can be found in the challenge paper [82]. Each scan pair contains 100 annotated
corresponding landmarks.

4.4.2 Preprocessing

In this work, we focus on non-rigid, non-linear deformations and for that reason we
perform a linear prealignment of fixed and moving image as preprocessing. For all
methods, the same preprocessing is used. We subsequently warp and resample the
moving image on the field of view and resolution of the fixed image, which yields a pre-
registered moving image ̂M. Lung regions are automatically cropped for each CT and
resized to volumes of dimension 192×160×192 as the network input. However, although
the deformation field is computed from low-resolution input, during inference, the
output deformation field is up-sampled to the original image resolution using trilinear
interpolation and the overall evaluation is performed at full resolution of the original
images. We do not perform any further preprocessing like normalization on the images,
because the CT images are already in a standardized range (Hounsfield units). On the
training data, we use the keypoint detection algorithm described in [65] to automatically
compute keypoints inside the lung. These keypoints can be considered noisy labels
with residual errors of 1-2mm.
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4.4.3 Implementation Details

We implemente our method in PyTorch. Each network was trained for 25 epochs on an
NVIDIA Titan Xp using an ADAM optimizer with a learning rate of 10−3. The training
of all three networks takes about 20 hours. We empirically chose the loss weighting
parameters 𝛼 = 10, 𝛽 = 1, 𝛾 = 0.01. For the coarsest level, the keypoint weighting
parameter 𝛿 was set to zero such that the network can focus on the coarse alignment of
larger structures. In the subsequent levels, we chose 𝛿 = 107. For the edge parameter
of the NGF distance measure, we chose 𝜖 = 1.

4.4.4 Accuracy

We evaluate our method by using the propagated lobe segmentation and the fixed lobe
segmentation. If a deformation field represents accurate correspondences, the lobe
segmentation of the fixed image bF and the warped lobe segmentation of the moving
image bM(y) should overlap well. In contrast to a lung segmentation overlap, the
lobe segmentation overlap provides information about inner lung structures. A good
alignment of the lobes was shown to be indicative of good alignment of the fissures,
which the evaluation of registration quality in [82] has shown to be indicative of the
overall performance of different registration approaches.
We measure the overlap of the lobes with the Dice coefficient

DSC = ∣X ∩ Y∣
∣X∣ + ∣Y∣

where X is the propagated segmentation bM(y) and Y is the segmentation of the fixed
image bF . Moreover, we evaluate the average symmetric surface distance

ASD = 1
∣Xs∣ + ∣Ys∣

⎛
⎝
∑
x∈XS

d(x, YS) + ∑
y∈YS

d(y,XS)
⎞
⎠
,

where d is the surface distance

d(x, Ys) = min
y∈Y

d(x, y)

where x and y are points on the surface of the propagated segmentation surface Xs and
the fixed segmentation surface Ys. Additionally, we calculate the symmetric Hausdorff
distance

HD = max{dH(Xs, YS), dH(Ys, Xs)},

where
dH(Xs, Ys) = max

x∈Xs
min
y∈Ys

d(x, y).
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We compare our proposed method to the conventional approach of [65] that is currently
ranked first in the EMPIRE10 challenge [82] (https://empire10.grand-challenge.org/Home/).
This method performs a discrete keypoint detection and matching which are integrated
into a dense continuous optimization framework. Additionally to the keypoint penalty,
the method uses an NGF distance measure, curvature regularizer, a volume change
penalty, and a mask alignment of the lung segmentations. Note that the lung segmen-
tation has to be available for each pair of images to be registered. This is in contrast
to our method, which also uses a boundary loss (equation 4.7), but this requires the
masks to be only available during training, not during testing.

4.4.5 Robustness

To analyze the robustness of our method, we evaluate the 30% lowest Dice Scores of all
cases. This gives a good overview of the hardest cases and how good our method can
register those.

4.4.6 Plausibility of the Deformation Field

Besides accurately and robustly transferring anatomical annotations, medical image
registration should also provide plausible deformations and therefore should not gen-
erate deformations with foldings. Hence, we evaluate the Jacobian determinant as it
is a local measure for volume change and in particular for (local) change of topology.
If det(∇y) > 1 a volume expansion occurred and if det(∇y) < 1 the volume decreased
and for det(∇y) ≤ 0 there is a folding.

4.4.7 Applicability

In a clinical setting, the registration of two scan pairs has to be available quickly in
order not to slow down the routine workflow. In other situations such as screenings, the
large number of required registration demands efficient deformable image registration
methods. In both cases, the runtime of the algorithms is a crucial factor. For the
conventional registration method, we measured the time of the registration without
the time needed to load and warp the images. For the network, we measure the time of
one forward pass through the cascade of networks. Both measurements were run on
the same system with an Intel(R) Core(TM) i7-770K CPU and an Nvidia Titan XP GPU.

4.4.8 Transferability and Comparison to state-of-the-art

To show the transferability of our method to other datasets and to compare our method
to other registrationmethods, we apply our trained network as-is to the ten images pairs
of the DIR-Lab 4DCT. To evaluate the registration accuracy, the target registration error
of the landmarks was computed.Moreover, we evaluate the impact of the dataset used
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Rühaak [65] ours
Dice 0.92 ± 0.05∗∗∗ 0.95 ± 0.03
ASD 1.97 ± 1.24mm∗∗∗ 1.72 ± 0.89mm
HD 27.24 ± 13.70mm∗ 26.84 ± 14.27mm

Dice30 0.86 ± 0.03 ∗∗∗ 0.93 ± 0.01
Foldings 0% 0.06%

Runtime CPU 160s ∗∗∗ 32s
Runtime GPU - 0.75s
GPU memory - 4GB

Table 4.1: Registration results of [65] and our method on the COPDGene dataset. We per-

formed a one-sited Wilcoxon signed-rank test to test if improvements to the method of [65]

are statistically significance. Significance levels are defined as * p < 0.05, ** p< 0.01 and ***

p< 0.001.

to train the registration network. Therefore, we train the widely used Voxelmorph [33]
framework using the COPDGene data. We adapt the public implementation slightly by
choosing a higher regularization weight (𝜆 = 2) to obtain smooth deformation fields
Furthermore, we applied our trained model on the 30 scan pairs of the EMPIRE10
challenge and submitted the displacement fields to the organizers who performed the
evaluation which includes a lung boundaries, fissures, landmarks and singularities
(foldings).

4.4.9 Ablation Study

In an ablation study, we study the impact of the components of the proposed method.
We investigate the influence of the number of levels in the multilevel framework on
the accuracy and plausibility of the registration results. For all experiments, the overall
number of epochs was 75. Furthermore, we explore the additional penalty terms in
our loss function by setting the weighting parameters in the loss function to zero and
compare it with the proposed loss function.

4.5 Results

The results of our experiments on the COPDGene dataset are summarized in Table 4.1.
We performed a one-sidedWilcoxon signed-rank test that show that the improvement to
the method of [65] is statistically significant for the Dice score, average surface distance
(ASD) and Hausdorff distance(HD) and the runtime on the CPU. In the following
subsections, we describe the results of each experiment in more detail.



62 Chapter 4

Af
fin
e

Rü
ha
ak

ou
rs

Af
fin
e

Rü
ha
ak

ou
rs

Af
fin
e

Rü
ha
ak

ou
rs

Af
fin
e

Rü
ha
ak

ou
rs

Af
fin
e

Rü
ha
ak

ou
rs

Af
fin
e

Rü
ha
ak

ou
rs

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Di
ce

 se
gm

en
ta
tio

n 
ov

er
la
p

Af
fin
e

Rü
ha
ak

ou
rs

Af
fin
e

Rü
ha
ak

ou
rs

Af
fin
e

Rü
ha
ak

ou
rs

Af
fin
e

Rü
ha
ak

ou
rs

Af
fin
e

Rü
ha
ak

ou
rs

Af
fin
e

Rü
ha
ak

ou
rs

0

2

4

6

8

10

12

14

Av
er
ag

e 
Su

rfa
ce

 D
ist

an
ce

Af
fin
e

Rü
ha
ak

ou
rs

Af
fin
e

Rü
ha
ak

ou
rs

Af
fin
e

Rü
ha
ak

ou
rs

Af
fin
e

Rü
ha
ak

ou
rs

Af
fin
e

Rü
ha
ak

ou
rs

Af
fin
e

Rü
ha
ak

ou
rs

10

20

30

40

50

60

70

Ha
us
do

rff
 D
ist

an
ce

Figure 4.5: Comparison of the Dice overlaps, average surface distance and Hausdorff distance

for all test images and each anatomical label ( average of all labels, upper left lobe, lower

left lobe, upper right lobe, lower right lobe and middle right lobe). For each one the

distributions of the Dice coefficients after affine pre-alignment, after conventional method

of [65] and after our proposed registration are shown.
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4.5.1 Accuracy

Our proposed method achieves on average significant better Dice Scores than the
conventional registration method (0.95 vs. 0.92) with a smaller standard deviation
(0.026 vs. 0.046). Also for the symmetric average surface and the Hausdorff distance
our method achieves better results (1.72 ± 0.89mm vs. 1.97±1.24 and 26.84 ± 14.27 vs.
27.24 ± 13.70mm, respectively). The distribution of the Dice Scores, of the average
surface distance, and of the Hausdorff Distance of both methods are shown in Figures
4.5.

4.5.2 Robustness

On the 30% of cases with the lowest Dice Scores, our method achieves an average Dice
Score of 0.93 ± 0.01 within a range of [0.85, 0.94]. Compared to the method of [65]
with an average Dice Score of 0.86 ± 0.03 within a range of [0.78, 0.90], our method
propagates the lobes more robustly.

4.5.3 Plausibility

For our proposed methods, on average fewer than 0.1% voxel positions of the defor-
mation field showed a negative Jacobian determinant and therefore a folding. The
full elimination of foldings as in the conventional registration methods of [65] is not
guaranteed. However, the percentage of foldings is within acceptable ranges. Figure
4.6 shows four exemplary Jacobian determinant colormaps overlaid on the fixed image.
The volume changes are smooth and mostly around 1 (yellow overlay). Due to large
motion in the upper right case, some foldings (dark red overlay) occur on the left
inferior border.

4.5.4 Applicability

The proposed method needs for registration of an image pair on average 0.75 seconds
when executed on a GPU and 32 seconds on the CPU. In contrast, the conventional
method takes on average 160 seconds executed on a CPU. Moreover, for the execution,
only 4GB of GPU memory are required and therefore our method could also be used
on standard computers with less powerful GPUs. The prediction is instantaneous and
requires no further manual tuning of parameters. This makes our proposed method
very applicable for clinical tasks.

4.5.5 Qualitative Results

To illustrate the registration results, we show the difference images F −M(y) of four
exemplary cases in Figure 4.8. In all cases, the respiratory motion was successfully
recovered and most inner structures are well aligned. The first row shows one example
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-1.0 -0.5 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Figure 4.6: Example Jacobian determinant colormaps overlaid on coronal slices of the fixed

images. The volume changes are smooth and mostly around 1 (yellow overlay). Due to large

motion in the upper right case, some foldings (dark red overlay) occur on the left inferior border.
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of a more accurately registered image pairs in terms of the average Dice Score (after
affine: 0.85, after: 0.96) and keypoint distance (after affine: 8.51mm, after: 0.99mm).
The last row shows the worse case regarding the Dice Score. In this case, the average
Dice Score improved from 0.69 to 0.85 and the keypoint distance could be reduced from
13.57mm to 1.9mm, showing also for the cases with large deformations, our registration
methods works robustly. Even with masking the distance measure only to the region
inside the lung, the surrounding tissue is mostly well aligned. During training, the
model learned to align edges and because no lung mask is given during inference, it
also aligns edges outside the lung.

4.5.6 Ablation Study

We provide an ablation study to further verify the efficiency of proposed components of
our method. Results of this ablation experiment on the COPDGene data are presented
in Table 4.2. The multi-level experiment shows that increasing the number of level from
L = 1 to L = 2 and L = 3 results in a increasing Dice Score from 0.927 to 0.939 to 0.946, a
decreasing TRE fron 3.95mm to 2.22mm to 2.00mm, and decreasing number of foldings
from 0.1% to 0.09% to 0.06%. The mask alignment loss not only improve the alignment of
the pulmonary lobes resulting in a higher Dice Score (0.93 vs 0.946) but also enhance the
TRE from 2.16mm to 2.00mm. By integrating our volume change loss, the percentage
of foldings can be reduced from 0.3% to 0.06%. Furthermore, it also improve the TRE
from 2.16mm to 2.00mm. To further enhance the alignment of smaller structures as
vessels and smaller airways, we incorporate keypoint correspondences into the loss
function. This decrease the TRE from 4.59mm to 2.00mm. However, the percentage
of foldings slightly increase from 0% to 0.06%. Figure 4.7 shows a comparison of the
target registration errors of the DIR-Lab 4DCT dataset of all compared settings and
after affine registration and the initial errors.

4.5.7 Transferability and Comparison to state-of-the-art

In Table 4.4, quantitative results on the DIR-Lab 4DCT dataset of deep-learning-based
and conventional registration methods are reported. On average the target registration
error (TRE) of our method was 1.14 ± 0.76mm and is therefore better as the currently
best deep-learning-based method of [80]. In cases 6, 8, and 10 which have a large
initial landmark error, our method achieves much better registration results. Training
Voxelmorph on the large COPDGene dataset results in a lower TRE than when trained
by leave-one-out on the DIR-Lab dataset (1.71mm vs 3.65mm). The best conventional
registration method of [65] has still a lower TRE, however, it needs about 5 minutes
to compute the deformation field, whereas our method only needs less than a second.
A detailed evaluation of all ten cases for different deep-learning-based registration
methods is given in Table 4.5. On the EMPIRE10 challenge data, our method achieves a
target registration error of 1.01mm on all cases and a TRE of 0.91mm if ovine data is



66 Chapter 4

no
m
ask

align.
no

V
C
C

no
keypointloss

single
Level

2-Level
proposed

𝛽=
0

𝛾=
0

𝛿=
0

L
=
1

L
=
2

settings
D
ice

0.93
±
0.02

∗
∗
∗

0.95
±
0.02

0.95
±
0.02

0.93
±
0.02

∗
∗
∗

0.94
±
0.02

0.95
±
0.03

T
R
E
K
P
[m

m
]

2.23
±
1.45

∗
∗
∗

2.16
±
1.34

∗
∗
∗

4.59
±
2.70

∗
∗
∗

3.95
±
1.98

∗
∗
∗

2.22
±
1.43

∗
∗
∗

2.00
±
1.28

Foldings
0.04

±
0.06%

0.30
±
0.17%

∗
∗
∗

0.00
±
0.00%

0.10
±
0.14%

∗
∗

0.09
±
0.09%

∗
∗

0.06
±
0.03%

T
R
E
4D

C
T
[m

m
]

1.26
±
0.82

∗
∗
∗

1.22
±
0.84

∗
∗
∗

1.72
±
2.31

∗
∗
∗

1.76
±
1.11

∗
∗
∗

1.26
±
0.81

∗
∗
∗

1.14
±
0.76

T
a
b
le
4
.2
:
R
e
su
lts

o
f
th
e
a
b
la
tio

n
stu

d
y.
T
o
d
e
m
o
n
stra

te
th
e
im

p
a
ct
o
f
th
e
e
a
ch

lo
ss

fu
n
ctio

n
te
rm

,e
a
ch

p
e
n
a
lty

w
e
ig
h
t
w
a
s
se
t
to

ze
ro

o
n
ce

w
h
ile

th
e

re
m
a
in
in
g
p
a
ra
m
e
te
rs

w
e
re

fi
x
e
d
to

th
e
ir
e
m
p
irica

lly
d
e
te
rm

in
e
d
o
p
tim

a
l
va
lu
e
s.
T
h
e
re
g
istra

tio
n
p
e
rfo

rm
a
n
ce

is
e
va
lu
a
te
d
u
sin

g
th
e
D
ice

sco
re
,
th
e

ta
rg
e
t
re
g
istra

tio
n
e
rro

r
o
f
th
e
k
e
yp
o
in
t
(T
R
E
K
P
),
a
n
d
th
e
p
e
rce

n
ta
g
e
o
f
fo
ld
in
g
s
o
n
th
e
C
O
P
D
G
e
n
e
d
a
ta
se
t.
M
o
re
o
ve
r
th
e
ta
rg
e
t
re
g
istra

tio
n
e
rro

r
o
n

th
e
D
IR
-L
a
b
d
a
ta
se
t
is
co
m
p
a
re
d
.
W
e
p
e
rfo

rm
e
d
a
o
n
e
-sid

e
d
W
ilco

x
o
n
sig

n
e
d
-ra

n
k
te
st
to

te
st
if
im

p
ro
v
e
m
e
n
ts
to

a
ll
o
th
e
r
se
ttin

g
s
a
re

sta
tistica

lly

sig
n
ifi
ca
n
t.
W
e
u
se
d
a
B
o
n
fe
rro

n
i
co
rre

ctio
n
d
u
e
to

m
u
ltip

le
s
te
stin

g
.
S
ig
n
ifi
ca
n
ce

le
v
e
ls
a
re

d
e
fi
n
e
d
a
s
*
p<

0.05
,
*
*
p<

0.01
a
n
d
*
*
*
p<

0.001
.



CNN-based Lung CT Registration with Multiple Anatomical Constraints 67

0 1 2 3 4 5
TRE (mm)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

di
st

rib
ut

io
n VIRNet

noVCC
noKP
noMask
singleLevel
2-Level
affine
initial

Figure 4.7: Cumulative distribution of target registration error (TRE) in millimeters for all vari-

ations of our loss function, after affine registration and initially on all landmark pairs of the

DIR-Lab 4DCT dataset. In addition, the dotted lines visualize the 75th percentiles of the TRE,

which are 1.40mm (our VIRNet), 1.51mm (noVCC), 1.64mm (noKP), 1.54mm (noMask), 2.22mm

(singleLevel), 1.54mm (twoLevel), 4.46mm (affine), 12.55mm (initial)

Lung B. Fissures Landmarks Singularities
Rühaak 0.00 0.09 0.63 0.00
ours 0.07 0.09 1.01 0.02

Table 4.3: Results of the EMPIRE10 challenge for the method of [65] and our proposed method.

The average score over all 30 cases for the lung boundaries, fissure alignment, landmark error

and singularities is shown. Detailed results can be found on the challenge website.

excluded. A summary of the results is shown in Table 4.3 and a more detailed evaluation
on the challenge website 1.

4.6 Discussion

This paper presents a coarse-to-fine multilevel framework for deep-learning-based
image registration that can compensate for and handle large deformations using com-
puting deformation fields on different scales. Our method shares many elements
with the conventional registration method of [65]. We have identified key strategies
of this method and successfully developed a deep-learning counterpart. The advan-
tage of our deep learning approach is that the expensive annotation and detection
of the lobe masks and keypoints is only necessary as training data. This important
knowledge is then embedded in our model and therefore the inference is cheap and fast.

1https://empire10.grand-challenge.org/mevis_virnet/

https://empire10.grand-challenge.org/mevis_virnet/
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Method mean TRE (mm) Foldings Runtime
initial 8.46 ± 6.58 - -

Schmidt [94] 1.38 ± 0.87 - 83min
Deeds [56] 1.6 ± 1.7 0% 20min

Conventional MRF [70] 1.43 ± 1.3 - 7.97min
Berendsen [95] 1.36 ± 0.99 0% -
Rühaak [65] 0.94 ± 1.06 0% 5min
Sentker [26] 2.5 ± 1.16 - few seconds

Voxelmorph [33]∗ 3.65 ± 2.47 - -
Voxelmorph [33]∗∗ 1.71 ± 2.86 - -

de Vos [29] 2.64 ± 4.32 - 0.63s
Deep Learning Eppenhof [61] 2.43 ± 1.81 0.42% 0.56s

mlvirnet [34] 2.19 ± 1.62 - -
Hansen [93] 1.97 ± 1.42 - -
Jiang [91] 1.66 ± 1.44 < 0.1% 1.4s

LungRegNet [80] 1.59 ± 1.58 - 1min
GraphNet [96] 1.39 ± 1.29 0.02% 2s

ours 1.14 ± 0.76 < 0.0005% 0.75s

Table 4.4: Target registration error values for different conventional and deep learning-based

methods on DIR-Lab 4D-CT dataset. All results were extracted from the original papers, besides

Voxelmorph* which was reported in [93] and Voxelmorph** which we trained on the COPDGene

data. Since the runtime was not measured with the same hardware, it cannot directly be

compared. However, it gives an impression of the speed.
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Fixed F MovingM WarpedM(y) F-M F-M(y)

Figure 4.8: Example coronal slices extracted from four exemplary cases. Input imagesF and

M, the warped moving imageM(y), the difference imageF −M (fourth column) and the

difference imageF −M(y) after registration with the proposed method (fifth column). In all

cases the respiratory motion was successfully recovered and most inner structures are well

aligned. Due to altered density of lung tissue during breathing, intensity changes occur and

therefore higher values in the difference images are reached without registration errors.

We employ a Gaussian-pyramid-based multilevel framework that can solve the
image registration optimization in a coarse-to-fine fashion. To prevent foldings of
the deformation field and restrict the determinant of the Jacobian to physiologically
meaningful values, we combine the curvature regularizer with a volume change penalty
in the loss function. Furthermore, we also integrate weak keypoint correspondences
into the loss function to focus more on the alignment of smaller structures. The
keypoints are computed automatically and can be considered as noisy labels with
residual errors of 1 − 2mm. However, we showed that the use of these noisy labels
is nevertheless advantageous and leads to a better alignment of vessels and smaller
airways and therefore also results in a better target registration error on the DIR-Lab
dataset.
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We validated our framework on the challenging task of large motion inspiration-
to-expiration registration using image data from the multi-center COPDGene study.
To assess the accuracy of our network, we performed an extensive evaluation of 200
pulmonary CT scan pairs from the large-scale COPDGene study and demonstrated
that our method can perform accurate registration between two affine pre-aligned
images. Especially for the task of lobe propagation, we could show that our method
performs better than conventional approaches. It achieves higher Dice scores and
lower surface and Hausdorff distances (0.95, 1.72 mm, and 26.8 mm) compared to
conventional registration (0.92, 1.97 mm, and 27.2 mm, respectively). This better
performance can be explained by the use of the mask-alignment loss. As demonstrated
in previous studies (e.g. [33, 35]), the combination of the complementary strength of
global semantic information (weakly-supervised learning with segmentation labels)
and local distance metrics improves the registration performance during inference. In
contrast to conventional registration methods, such additional information only needs
to be available in the training dataset.

Furthermore, we have evaluated the proposed method using the DIR-Lab and EM-
PIRE10 dataset and showed that we achieve excellent TRE of 1.14 mm and 1.01 mm,
respectively. Note that our network was not trained on those datasets. This is strong
evidence that our network can generalize well. Although previous works (e.g. [26,
29, 61, 91]) contribute much to improving the registration accuracy, there is still a
misalignment of smaller structures, which leads to a high TRE. To focus more on
the alignment of vessels, [80] introduced a preprocessing step to enhance the vessels
in the input images by segmenting vascular structures and increasing the intensity
value inside the vessel mask. In their paper, they demonstrated the efficiency of this
preprocessing step. Since this step is performed on the input images, it is also required
during application. To avoid this problem and thus not increase the execution time, we
integrate additional information on smaller structures using the keypoint loss. The
advantage of this procedure is that the keypoints, as well as the masks of the boundary
loss, are only needed during training. Nevertheless, the best conventional registration
methods still achieve lower TRE than our method. One reason for this might be that
convectional registration methods mostly work on the original image data. In contrast,
for the deep-learning approaches, the input images have to be downsampled due to
memory restrictions on the GPU. Especially for smaller structures and small errors
(we are speaking about a TRE difference of 0.2-0.4mm), it is easily imaginable that
this resolution is not high enough. Moreover, the training data used also influence
the performance. Our network was trained on inspiration-expiration scan pairs from
humans. In the EMPIRE10 dataset, a variety of lung registration tasks including ovine
lung registration has to be performed. Although our method does not register the
ovine data perfectly, we achieve a TRE of 1.69 mm on the ovine data which shows
that our method is capable of generalizing well. We would assume that with a wider
variety in training data, the performance of deep-learning-based registration methods
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can further improve. We showed this effect when training the Voxelmorph network.
By using the larger COPDGene dataset to train the Voxelmorph network, the target
registration error on the DIR-Lab dataset improved from 3.65 mm to 1.71 mm com-
pared to a leave-one-out training on the DIR-Lab dataset. This illustrates the large
impact of the training dataset. Since Voxelmorph and our framework are very similar,
this experiment also shows that the addition of more loss functions and a multilevel
approach is beneficial.

Besides accurately transferring anatomical annotations, medical image registration
should also provide plausible transformations and therefore should not generate defor-
mations with foldings. In conventional registration methods, this is achieved by using
a regularizer in the cost function. Recently deep-learning-based methods like [61]
and [91] also integrated a regularizer into their loss functions to enforce a smooth
deformation field resulting in an acceptable amount of foldings (0.42% and 0.1% of
foldings). In our work, we additionally use a volume change control which penalizes
occurring foldings more severely than the regularizer does, resulting in on average
fewer than 0.1% and 0.0005% voxel positions in the deformation field with folding on
the COPDGene and DIR-Lab dataset, respectively. Without the volume change control
penalty, the deformation fields produced by our method show on average 0.30% of
voxel positions with foldings, which is comparable to the values of other deep learning
registration methods. This shows that the addition of the volume change control
mitigated the occurrence of foldings. The higher number of foldings on the COPDGene
dataset can be explained by the noise difference between the expiration and inspiration
scan due to different doses during acquisition (see Fig 4.8 for some example images).
The full elimination of foldings as in some conventional registration methods is not
guaranteed. Another way to reduce the number of foldings was presented in the works
of [97], [31], and [98] who are using the scaling and squaring algorithm [99] to integrate
the predicted stationary velocity field. With a sufficient number of integration steps,
these methods should theoretically guarantee diffeomorphic transformation. However,
in the presented works they reported ”nearly no non-negative Jacobian voxels” [97]
and 0.023% to 0.151% of voxels with a negative Jacobian determinant [98]. As discussed
in [98], this has two major factors. First, the velocity field could be not sufficiently
smooth. This can be solved by increasing the regularization weight. However, this often
yields a drop in the registration accuracy. Secondly, the number of chosen integration
steps was too small. Increasing this can reduce the number of foldings which occur
but increase the computational cost as well. In summary, the scaling and squaring
approach and the volume-change-control penalty presented achieve similar results
preventing foldings. Besides, our approach regulates volume changes.

In our experiments, we focused on the complex task of CT lung registration, as the
registration results can be evaluated more accurately than only with an overlap of a
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larger structure. However, our method could also be trained for a different task or on a
different modality. Except for keypoint detection, no component is lung-specific and
the keypoint loss can be used with landmarks in different organs.
In future studies, we will investigate the impact of instance optimization to fine-tune
the deformation field for those image pairs for which the registration result is not yet
satisfactory.

4.7 Conclusion

This paper presents a deep-learning-based registration approach for deformable image
registration, targeting in particular the challenging task of lung registration. We
introduce a keypoint matching term and a volume change penalty to increase the
alignment of smaller structures and to prevent foldings and restrict the deformation
field to physiologically meaningful values. Our multi-level registration framework
equipped with these components achieves state-of-the-art registration accuracy on the
COPDGene and DIR-Lab datasets with a very short execution time.
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Abstract

Image registration is a fundamental medical image analysis task, and a wide variety of
approaches have been proposed. However, only a few studies have comprehensively
compared medical image registration approaches on a wide range of clinically relevant
tasks, in part because of the lack of availability of such diverse data. This limits the de-
velopment of registration methods, the adoption of research advances into practice, and
a fair benchmark across competing approaches. The Learn2Reg challenge addresses
these limitations by providing a multi-task medical image registration benchmark
for comprehensive characterisation of deformable registration algorithms. A con-
tinuous evaluation will be possible at https://learn2reg.grand-challenge.org.
Learn2Reg covers a wide range of anatomies (brain, abdomen, and thorax), modalities
(ultrasound, CT, MR), availability of annotations, as well as intra- and inter-patient
registration evaluation. We established an easily accessible framework for training
and validation of 3D registration methods, which enabled the compilation of results of
over 65 individual method submissions from more than 20 unique teams. We used a
complementary set of metrics, including robustness, accuracy, plausibility, and runtime,
enabling unique insight into the current state-of-the-art of medical image registration.
This paper describes datasets, tasks, evaluation methods and results of the challenge,
and the results of further analysis of transferability to new datasets, the importance of
label supervision, and resulting bias.

https://learn2reg.grand-challenge.org
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5.1 Introduction

Image registration is a fundamental task in medical image analysis and has been an
active field of research for decades [8, 9, 100, 101]. Most studies that compared reg-
istration methods were focused on specific tasks or algorithmic aspects, and did not
comprehensively characterise current approaches. With the recent success of deep
learning strategies in image analysis, the degree and dependency of algorithms on
(partially) labelled training data is often a crucial aspect in current research. The
Learn2Reg challenge aims to gain insight into which methodological components and
supervision strategies are best suited for a wide range of clinically useful 3D image
registration tasks, and sets a new benchmark to evaluate and distinguish strengths and
weaknesses of task-tailored solutions. Learn2Reg covers a wide range of anatomies
(brain, abdomen and thorax), modalities (ultrasound, CT, MRI, populations) and aux-
iliary annotations (e.g. segmentation, keypoints). The challenge also includes both
intra- and inter-patient registration tasks. Due to this broad range, it serves as a unique
benchmark to evaluate the current state-of-the-art with respect to various qualities
of registration algorithms: accuracy, robustness, plausibility and speed. Furthermore,
no other medical image registration challenge has thoroughly analysed the benefits
and shortcomings of learning- and optimisation-based strategies. To engage a wider
participation from new research groups, Learn2Reg removes entry barriers by pro-
viding pre-processed and pre-aligned images with additional annotations, as well as
evaluation scripts and code for all evaluation metrics.

This overview ranks and scores results from over 65 entries from more than 20
teams throughout 2020 and 2021. We perform additional experiments to analyse the
robustness towards cross-dataset transfer, the influence of the bias induced by only
labelling certain anatomical regions, and direct comparisons of the supervision level of
selected methods.

5.1.1 Related Work

In the following a brief overview of important related work on comparing (bio)-medical
image registration, and its fundamental methodological choices that differentiate the
wide range of metrics, optimisation, and supervision is given. General guidelines for
setting up a fair and unbiased challenge have been recently thoroughly discussed in
literature [102]. These criteria were adhered to in Learn2Reg and externally reviewed
and confirmed by the MICCAI challenge team.

Challenges There have previously been four prominent challenges for (bio)-medical
image registration. Three challenges were single-task focused challenges: EMPIRE10
(lung CT), CuRIOUS (intra-operative US and MRI), and ANHIR (histology). Each
attracted at least 10 participating teams and used various metrics for quantifying the
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performance. The EMPIRE10 challenge provided the most comprehensive evaluation
including distances of manual landmark pairs, fissure segmentations, and Jacobian
determinant values of the deformation field. This challenge also required (original)
participants to perform live registrations during the MICCAI workshop in Beijing
and therefore employed a time constraint on the computations. The Continuous
Registration Challenge co-organised with Workshop of Biomedical Image Registration
(WBIR) 2018 aimed at combining multiple tasks from previous benchmarks (lung CT
and inter-patient brain MRI). It addressed assessing registration quality as a service
but is limited to algorithms that can be incorporated into the SimpleElastix framework
and therefore had limited participation.

Benchmark Papers Several papers have compared multiple registration algorithms
for a given dataset. In contrast to challenges, these benchmark papers did not have
(at least originally) an open workshop format that enabled wide-spread participation.
Nevertheless, their findings provided meaningful insights. Starting from RIRE [103],
which compared rigid-body alignment of head MRI (T1, T2), PET and CT, there have
been several brain registration benchmarks -most notably the evaluation of 14 nonlinear
iterative registration algorithms [104]. Fewer studies analyzed abdominal registration,
and included the evaluation of six affine and non-linear algorithms on inter-patient
registration of the ”beyond the cranial vault” dataset [105]. This study revealed large
performance gaps and motivated our inclusion of this dataset to study the potential
benefit of supervised (learning-based) algorithms. The DIR-Lab datasets [81] have
been widely used to benchmark intra-patient CT lung motion estimation and provide
a leaderboard for state-of-the-art comparison. All landmarks are publicly available,
which makes the dataset prone to overfitting on the test data.

Survey Papers and Baseline Methods Surveys on conventional medical image
registration [9, 100] have comprehensively reviewed typical categories of approaches
including similarity metric, regulariser, and optimiser criteria. Due to the strong
increase in the number of deep-learning-based registration paper in the last few years,
several new surveys have been published (e.g. [101]) extending the typical categories
with deep-learning specific categories like supervision-type and network architecture.
Moreover, the training data and thus the registered body region and image modality are
more important for deep-learning-based methods and get more into the focus of those
survey papers. While few papers have evaluated their proposed registration method
on more than two different registration tasks, there is a variety of public methods
SyN [106], Elastix [16], NiftyReg [20] and deeds [70], and Voxelmorph [107] that are
commonly used as baseline or comparison methods. When comparing only among
deep-learning based methods simply re-training specific architectures on new data
may be insufficient. Hence the use of a challenge benchmark that incorporates several
generally applicable baselines is essential for a fair evaluation.



Learn2Reg: comprehensive multi-task medical image registration challenge 79

5.1.2 Contributions

Learn2Reg provides both datasets and an easily accessible benchmark for the first
comprehensive evaluation of awide-range ofmethods for inter- and intra-patient, mono-
and multimodal medical registration. We introduce a complementary set of metrics,
including robustness, accuracy, plausibility and speed, that follows the principles
defined by the BIAS group [102] and could become a de-facto benchmark for new
algorithms. Further analysis of label bias (for supervised methods), domain transfer
and statistical testing of significant differences across algorithms and types of methods
highlight the complementary strength and weaknesses of learning vs. non-learning-
based approaches.

5.2 Material and Methods

5.2.1 Challenge Organisation

The Learn2Reg challenge is organised by Alessa Hering (Fraunhofer MEVIS, Germany
and Radboudumc Nijmegen, The Netherlands), Lasse Hansen (Institute of Medical
Informatics, Universität zu Lübeck, Germany), Adrian Dalca (Computer Science and
Artificial Intelligence Lab, MIT, USA) and Mattias Heinrich (Institute of Medical Infor-
matics, Universität zu Lübeck, Germany) and is associated with the MICCAI 2020 and
MICCAI 2021. The Learn2Reg challenge consists of two phases (mainly organised on
grand-challenge.org).

• Phase 1 - Validation Phase: The participants downloaded the training and valida-
tion scan pairs for each task described in section 5.2.2. The participants trained a
registration network or tuned hyperparameters on the training scan pairs in their
own facilities. The developed algorithms were used to register the scan pairs of
the validation dataset. The resulting displacement fields on the validation dataset
were submitted and evaluated using grand-challenge.org. Challenge participants
were allowed to create five submissions per day to this phase. The results are
continuously published on grand-challenge1.

• Phase 2 - Test phase: Within one week after the test data release, the participants
had to send either the generated displacement fields to the organisers or a Docker
container containing the algorithm. A Docker submission was preferred and
made more attractive by evaluating the runtime of the algorithm.

To remove entry barriers for new participants with expertise in deep learning but not
necessarily registration, the organisers provided pre-preprocessed data (resample, crop,
pre-align, etc.). A detailed description of the used preprocessing is given in section
5.2.2. Furthermore, the python evaluation code for voxel displacement fields as well

1https://learn2reg.grand-challenge.org/evaluation/challenge/leaderboard/



80 Chapter 5

Table 5.1: Overview of all six Learn2Reg tasks adressing the imminent challenges of medcial

image registration: multi-modal scans●, few/noisy annotations●, partial visibility●, small

datasets●, large deformations●, small structures●, unsupervised registration● and

missing correspondences●.

as a example dockerfile were provided. Members of the organizers’ institutes could
participate in the challenge but were not eligible for awards. A continuous evaluation
for validation and test data will be possible at grand-challenge.org2.

5.2.2 Tasks

Learn2Reg consists of six clinically relevant complementary tasks (datasets). Table 1
summarises the dataset details, and we discuss them in detail below.

2https://learn2reg.grand-challenge.org
https://learn2reg-test.grand-challenge.org
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CuRIOUS EASY-RESECT [108] is a simplified sub-set of the original RESECT dataset [109],
previously used in the MICCAI CuRIOUS challenges [110]. The dataset contains 22
training and 10 testing subjects with low-grade brain gliomas, intended to help to de-
velop MR vs. US registration algorithms to correct tissue shift in brain tumor resection.
For the Learn2Reg challenge, we included T1w and T2-FLAIR MR scans, and spatially
tracked intra-operative ultrasound volumes. All scans were acquired for routine clinical
care of brain tumor resection procedures at St Olavs University Hospital (Trondheim,
Norway). Matching anatomical landmarks were annotated between T2-FLAIR MR and
3D ultrasound volumes [109] to enable evaluation of the registration accuracy. During
pre-processing, for each subject, the T1w scan is rigidly registered to the T2-FLAIR
scan, and both scans are resampled to the same coordinate space as the 3D ultrasound
volume yielding fixed voxel dimensions for all scans (256×256×288) at an isotropic
resolution of approximately 0.5 mm.

HippocampusMR This dataset consists of 394 MR scans of the hippocampus region
acquired in 90 healthy adults and 105 adults with a non-affective psychotic disorder
taken from the Psychiatric Genotype/Phenotype Project data repository at Vanderbilt
University Medical Center (VUMC). The hippocampus head and tail were manually
traced in all scans. Previous to the Learn2Reg challenge, the dataset was used as part
of the Medical Segmentation Decathlon [111].

Abdomen CT-CT This task tackles inter-patient registration of abdominal CT scans,
which enables statistical modelling of variations of abdominal organs for abnormality
detection, and can provide a canonical atlas space for further investigations. The
dataset contains 50 abdominal CT scans (30 for training, 20 for testing) with 13 man-
ually labelled anatomical structures: spleen, right kidney, left kidney, gall bladder,
esophagus, liver, stomach, aorta, inferior vena cava, portal and splenic vein, pancreas,
left adrenal gland and right adrenal gland [105]. The images were registered affinely in
a groupwise manner and resampled to the same voxel resolution and spatial dimensions
(192×160×256).

Abdomen MR-CT The dataset was compiled from public studies of the cancer
imaging archive (TCIA) that contained paired scans of both MRI and CT from the
same patients. In particular, 16 MRI and CT scans from the following studies, TCGA-
KIRC, TCGA-KIRP, and TCGA-LIHC, are included in Learn2Reg - that cover routine
diagnostic scans and follow-up imaging for kidney surgery (donation). The data has
been reorientated, resampled to an isotropic resolution of 2 mm, and cropped and
padded to achieve voxel dimensions of 192x160x192. We have also manually traced
3D segmentation masks for the liver, spleen, left and right kidney. All scans were
pre-aligned using a groupwise affine registration based on the deeds-linear algorithm.
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Additional unpaired and segmented training data from two further challenges: BCV-CT
(see 5.2.2) and CHAOS-MR were provided for pre-training.

OASIS The task employed 416 3D whole-brain MR scans from the Open access series
of imaging studies (OASIS) [112], a cross-sectional MRI data study with a wide range of
participants from young, middle-aged, nondemented, and demented older adults. We
performed standard brain MR pre-processing including skull-stripping, normalisation,
pre-alignment, and resampling [113]. Semi-automatic labels with manual corrections
of 35 cortical and subcortical brain structures were generated using FreeSurfer [114].

Lung CT The aim of the lung CT task was the registration of expiration to inspiration
CT scans of the lung. The data consists of 20 training [115] and 10 test scan pairs [116].
The scans were acquired at the Department of Radiology at the Radboud University
Medical Center, Nijmegen, The Netherlands. All pairs were affinely pre-registered and
resampled to an image size of 192×192×208. Lung segmentation masks and keypoints
were provided as additional training information.

5.2.3 Challenge Design

To provide a comprehensive evaluation of the registration performance, we consider a
number of complementary metrics (see section 5.2.3) that assess the accuracy, robust-
ness, plausibility, and speed of the algorithms. For final task ranks, we further consider
the significance of differences in results. The detailed ranking scheme is described in
section 5.2.3.

METRICS

DSC The Dice similarity coefficient (DSC) measures the overlap of two sets of seg-
mentation labels (on the fixed and warped moving scan).

DSC30 To assess robustness, the DSC30 metric considers the 30th percentile in DSC
scores over all cases. For the Abdomen CT-MR task, this robustness metric is replaced
with a standard DSC on additional anatomical labels, that were not available during
training (DSC9).

HD95 The Hausdorff distance (HD) indicates the maximum distance in a metric
space (here: Euclidean space, distance specified in millimeters (mm)) between two sets
of surfaces (segmentation labels on the fixed and warped moving scan). For a robust
score, we consider the 95th percentile instead of the maximum distance (HD95).
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TRE The target registration error (TRE) is defined as the euclidean distance (in
millimeters (mm)) between corresponding landmarks in the fixed and warped moving
scan.

TRE30 Similar to the DSC30 score the TRE30 metric collects the 30th percentile of
largest landmark distances.

SDlogJ The plausibility (smoothness) of a displacement field is captured using the
standard deviation of the logarithm of the Jacobian determinant (SDlogJ) of the dis-
placement field ([117, 118]).

RT In addition, we are able to measure the test-time registration runtime (RT) on the
same hardware (CPU: Xeon Silver 4210R, GPU: Quadro RTX 8000), when methods are
submitted as a docker container. Start and stop times are the loading of the first scan
and writing of the displacement field to disk, respectively.

RANKING SCHEME We ranks methods using statistically significantly different results.
For each metric applied in a task, methods are compared against each other (Wilcoxon
signed rank test with p<0.05), ranked based on the number of ”won” comparisons and
finally mapped to a numerical metric rank score between 0.1 and 1 (with possible score
sharing). A task rank score is then obtained as the geometric mean of individual metric
rank scores. All methods for which no metric is available (not submitted to the task,
no Docker container submitted) share the lowest possible metric rank score of 0.1.

5.3 Challenge Entries

In phase 1, performed using the grand-challenge.org platform, 17 teams submitted
displacement fields in 2020 and 22 teams in 2021. In phase 2, two teams submitted
displacement fields in 2020 and eight teams submitted their algorithms as docker images.
In 2021, three teams submitted displacement fields and 12 teams submitted a docker.
Only algorithms that participated in both phases of at least one year were included
in this paper. Below is a brief description of each of the 21 algorithms. Table 5.2
provides a summary of important information for each algorithm. For a more detailed
description of the algorithms, please refer to the respective articles, in the proceedings
of the MICCAI Learn2Reg workshops [119].

3Idiots ∎ [120] employ a hybrid similarity loss consisting of intensity (SSD), statisti-
cal (MI), and label-based (Dice + L1) penalties. A Voxelmorph model with an increased
number of feature channels and halved output resolution is trained in a patch-wise
manner and applied to the OASIS task.
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Bailiang∎ [121] addressed OASIS and is based on the DeepRegNet framework from
Project-MONAI. The input of the encoder is the concatenation of fixed and moving im-
ages. A dense vector field (DVF) is predicted from summing over different level decoders
and integrated using scaling and squaring. The loss function is composed of LNCC,
MIND-SCC, Dice, and a diffusion regulariser. https://github.com/BailiangJ/
learn2reg2021_task3

ConvexAdam ∎ [122] propose a decoupling of deep learning for semantic feature
extraction, using an nnUNet, and a very fast and accurate conventional optimisation.
They combine a single-level dense discretised displacement correlation with large
capture range and convex global optimisation with a local gradient-based instance
refinement using the Adam optimiser. The method is applied to all six tasks and uses
diffusion regularisation, an inverse-consistency constraint, and MIND similarity, which
is applicable for multi-modal and same-modality intra-patient alignment. The method
extends the input features to learned label-supervised representations for inter-patient
tasks: Abdomen CT-CT, Hippocampus, and OASIS brain. https://github.com/
multimodallearning/convexAdam

corrField ∎ A fast implementation (from [96]) of the corrField method [123] is
introduced as a non-learning based unsupervised baseline. The method estimates
sparse correspondences on image-based Förstner keypoints with exact message passing
on a minimum spanning tree. MIND-SSC features are used for the similarity term.
https://grand-challenge.org/algorithms/corrfield/

Driver∎ [124] use a dual-encoder U-net backbone with separated multi-scale feature
extractors that comprises Deformation Field Integration (DFI) and non-rigid feature
fusion (NFF) module. It produces multi-scale sub-fields that progressively align fixed
and moving features. The DFI module integrates sub-fields through up-sampling,
re-weighing, and warping operations. The NFF dynamically fuses features of three
pathways based on attention mechanisms. The overall framework comprises a rigid
transform network and MI or LNCC similarity, weak label-supervision and regularisa-
tion.

Epicure ∎ [125] addresses the lung CT task using a conventional iterative-based
registration approach based on Elastix toolbox optimizing the object function that is
composed of the NCC similarity and a bending energy penalty term.

Estienne ∎ [126, 127] addressed Abdomen CT-CT and Hippocampus with label-
supervision. The method combines a diffeomorphic symmetric spatial transformer
network with a embedding merging step, that eases the learning by subtracting the
embeddings of separately encoded fixed and moving scans and thereby leveraging

https://github.com/BailiangJ/learn2reg2021_task3
https://github.com/BailiangJ/learn2reg2021_task3
https://github.com/multimodallearning/convexAdam
https://github.com/multimodallearning/convexAdam
https://grand-challenge.org/algorithms/corrfield/
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the prior knowledge that swapped inputs should yield negated velocity fields. They
extend the label-based pre-training by including additional public datasets with at least
partial overlap in segmentation classes, using segmentation masks produced by a CNN.
https://github.com/TheoEst/abdominal_registration

Gunnarsson ∎ [128] propose an end-to-end learning-based 3D registration method
inspired by the PWC-Net [129]. The method estimates and refines a displacement field
from a cost volume at each level of a CNN downsampling pyramid and is supervised by a
similarity (NCC) and/or segmentation (Dice) loss, as well as a smoothness penalty. The
network is trained and evaluated on scan pairs from three tasks of the 2020 challenge
(Lung CT, Abdomen CT-CT and Hippocampus MR) using the same weights for all tasks.
https://github.com/ngunnar/learning-a-deformable-registration-pyramid

Imperial ∎ Imperial uses Image-and-Spatial Transformer Networks (ISTN) as the
backbone of their method. In the ISTN, the fixed and moving images are first separately
processed by the ITN to generate a segmentation mask and a feature map of the input
image. Subsequently, both feature maps are used by the STN to predict the displacement
field. The loss function consists of a structural-guided and image similarity and a
regularisation loss. https://github.com/biomedia-mira/istn

Joutard ∎ Joutard addresses the Abdomen CT-CT task with a weakly supervised
deep learning approach. A CNN extracts features from the fixed and moving image,
which are concatenated with their spatial image coordinates. The feature distributions
for each spatial location are then matched between the two images which yield a
correspondence matrix from which the average displacement can be derived. The
network is supervised by a segmentation (Dice) and a regularisation (L2 norm on
gradients) loss.

LapIRN ∎ [92, 130] propose an image registration method based on Laplacian pyra-
mid registration networks to overcome the large inter-and intra-variations of anatom-
ical structures in the input scans. In 2021, [130] extended their approach by adding
a conditional module that enables the input of the regularisation hyperparameter so
that the different solutions for different hyperparameter values can be captured by
a single convolutional neural network. This fast method won the on-site challenge
in both years with robust results across all tasks. https://github.com/cwmok/
Conditional_LapIRN

LaTIM ∎ [131] is an iterative technique exploiting vector-valued directional image
representations: smooth edge-based fields oriented towards the main image edges
(closely related to vector field convolution for active contour segmentation). The

https://github.com/TheoEst/abdominal_registration
https://github.com/ngunnar/learning- a- deformable- registration- pyramid
https://github.com/biomedia-mira/istn
https://github.com/cwmok/Conditional_LapIRN
https://github.com/cwmok/Conditional_LapIRN
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method is implemented within the Elastix framework and shows improvements com-
pared to directly using intensities.

Lifshitz∎ [132] propose a novel solution of learning-based lung CT registration that
comprises a 3D extension of ARFlowwithmulti-resolutionwarping, dense displacement
correlation, and flow estimation. To address edge-preservation of sliding motion an
unrolling of the total variation (L1) regularisation loss computation using variable
substitution is proposed and shown to stabilise gradients during training.

lWM∎ The method of lWM submitted to the Hippocampus MR task uses sequential
deformation field composition, while the solution for the OASIS task uses an image
pyramid separately applied to both input images and a U-Net with residual blocks. The
objective function includes MIND, Dice, inverse consistency and diffusion losses.

MEVIS ∎ The submission of MEVIS [133] solves all tasks by classical iterative meth-
ods and build on cost functions and losses made up from several terms that are selected
for the specific task. The methods use a coarse-to-fine multi-level iterative registra-
tion scheme where a Gaussian image pyramid is generated for both images to obtain
downsampled and smoothed images. Then, a registration is performed on the lowest
resolution level and the resulting deformation field serves as the starting point for the
following registration on the next highest level. This proceeds to the finest level with
quasi-Newton L-BFGS optimization at each level. For the Hippocampus task, a deep
learning approach with a weakly supervised trained U-Net was applied using the same
cost function as in the iterative approach.

Multi-brain∎ [134] use groupwise, fully unsupervised registration techniques based
on Bayesian modelling and Gauss-Newton optimisation, which learns priors over
image intensities and spatial tissue classes. The method requires no pre-processing
of the imaging data and does not utilise label information. The method is applied
to Abdomen CT-MR, OASIS, and Lung CT. https://github.com/WTCN-computational-
anatomy-group/mb.

NiftyReg∎ [20] is applied as conventional baseline for all tasks without label super-
vision using NCC for CuRIOUS and otherwise MIND as similarity metric. Both bending
and Jacobian regularisation penalties are applied and the number of pyramid levels is
restricted to yield competitive run times (on multi-core CPU). https://github.com/KCL-
BMEIS/niftyreg

PDD-Net ∎ The PDD-Net (probabilistic dense displacement network) [74, 135] uses
a compact deformable convolutional network to extract image features and compute a
six-dimensional dissimilarity tensor (three spatial + three displacement dimensions).
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A smooth displacement field is obtained from the dissimilarities by interleaved (and
twice repeated) steps of mean field inference over spatial dimensions and approximated
min-convolutions over displacement dimensions. The method is adapted to four of
the six challenge tasks (CuRIOUS, Hippocampus MR, Abdomen CT-CT, and Lung CT).
https://github.com/multimodallearning/pdd_net

PIMed∎ PIMED use a multi-slice segmentation network and train a two-stage regis-
tration network for Abdomen CT-MR and Abdomen CT-CT and a residual VoxelMorph
model for OASIS. For lung CT they apply a conventional method, with geodesic density
regression and adaptation of intensities to lung tissue density [136].

Winter∎ Winter address all three tasks from 2021 by employing a traditional method
for lung CT and a attention-based DL registration for Abdomen CT-MR and OASIS brain.
Improvements are found by a two-step approach that firstly aligns provided ROI masks.
The algorithms achieve intermediate ranks for the considered tasks without using
any label supervision. The smoothness complexity is large for abdominal registration.
https://github.com/WinterPan2017/ADLReg

5.4 Additional Experiments

Label Bias Previous publications on learning-based registration have already dis-
cussed the possibility of introducing a bias towards anatomies that are used both for
training and evaluation [33]. While this bias is intrinsic to all segmentation approaches,
registration is often used as a more generalistic tool in clinical applications that may
require accurate alignment of structures that are not defined a priori. To study the effect
of adding additional anatomical labels to the evaluation that were not present during
method development and training, we extended both abdomen tasks. For the inter-
patient CT-CT registration we included the duodenum with the manual annotations
provided by [137], for the intra-patient MR-CT task we extended the predominantly
large organs by five smaller ones: gallbladder, stomach, aorta, portal vein, pancreas
(semi-automatically generated using a specifically trained nnUNet).

Unsupervised Registration The top-performing methods are all modular in their
use of segmentation labels for supervision. As analysed in the label bias experiment,
there is a risk of over-fitting registration performance to the chosen subset of manually
annotated anatomies. We, hence, compared the unsupervised counterparts of the
following methods: LapIRN and ConvexAdam. ConvexAdam already uses an unsuper-
vised method for all three intra-patient tasks, and LapIRN for CuRIOUS and Lung CT.
Therefore the additional comparisons are restricted to the abdomen and brain.

https://github.com/multimodallearning/pdd_net
https://github.com/WinterPan2017/ADLReg
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Transferability A robust registration method should work well for all scan pairs
regardless of acquisition parameters and thus on every comparable dataset. A frequently
mentioned limitation of deep-learning-basedmethods is that they reach higher accuracy
on the dataset they are trained on and show a considerable loss of accuracy on other
data. As in [138, 139], we evaluate the transferability of the methods submitted to the
lung CT-CT task by registering the DIR-Lab 4DCT [81] scan pairs. The DIR-Lab scans
are preprocessed in the same way as the scans of the lung CT-CT task. The evaluation
is based on the target registration error of the landmarks and the smoothness of the
deformation field. Furthermore, this experiment allows comparison to a variety of
other lung registration methods, as the DIR-Lab data set is often used as a benchmark
(please note that the reduced resolution leads to a general deterioration of TRE of
around 0.2-0.3mm).

5.5 Results

5.5.1 Challenge Outcome

In this section, we will first present and discuss each task separately and subsequently
the eight methods that are included in the overall ranking being submitted to at least
four of the six tasks. Tables 5.3 to 5.8 give the numerical results and the scores for each
algorithm for each task averaged over the number of scan pairs that were registered for
that task. The algorithms are listed in order of their final placement per task. Figure
5.1 shows boxplots illustrating the distribution of the accuracy (TRE and Dice) of the
different methods for each task. Furthermore, for selected task (Abdomen MR-CT,
OASIS, and Lung CT), a bubble chart combines the accuracy, smoothness, and runtime
metric.

CuRIOUS The registration to be carried out for this task was difficult for several
reasons. First of all, it is a multimodal registration between MR and US images and the
US images are typically noisier than the MR images. Furthermore, the pre-operative
MR scans show a larger region of the brain whereas the intra-operative US volume was
obtained to cover the entire tumor region after craniotomy but before dura opening.
Due to these difficulties, only four methods were submitted to this task in addition to
the three baseline methods. For two of these methods, some cases caused negative
outliers and the average TRE was worse than the initial TRE (c.f. Table 5.3). Only
the two baseline methods corrField and PDD-Net as well as the ConvexAdam method
registered all scan pairs satisfactorily.

Hippocampus MR Due to its small volumetric size and reasonably large training
dataset with only two anatomical labels, Hippocampus MR appeared to be a good entry-
level task for learning-based registration approaches. It was also the only task that
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Table 5.3: CuRIOUS

TRE↓ TRE30↓ SDLogJ↓ RT↓ Rank↑

Initial 6.38 12.00

corrField ∎ 2.84 5.29 0.00 2.70 0.85
PDD-Net ∎ 3.08 6.28 0.00 8.21 0.83

ConvexAdam ∎ 3.31 5.82 0.00 1.33 0.77
NiftyReg ∎ 4.09 7.85 0.00 23.1 0.56
LapIRN ∎ 5.67 11.1 0.00 34.8 0.49
MEVIS ∎ 6.55 10.4 0.00 57.8 0.42

Gunnarsson ∎ 7.1 10.1 0.14 42.2 0.19

Table 5.4: Abdomen CT-CT

DSC↑ DSC30↑ HD95↓ SDLogJ↓ RT↓ Rank↑

Initial 0.28 0.04 21.78

ConvexAdam ∎ 0.69 0.45 11.03 0.06 2.75 0.94
LapIRN ∎ 0.67 0.47 12.51 0.12 3.80 0.82
Estienne ∎ 0.69 0.51 11.77 0.18 8.23 0.67
MEVIS ∎ 0.51 0.24 18.21 0.14 3.49 0.60

corrField ∎ 0.49 0.24 17.22 0.28 5.40 0.53
PIMed ∎ 0.49 0.23 15.75 0.05 0.49

PDD-Net ∎ 0.49 0.24 17.75 0.41 6.06 0.44
Joutard ∎ 0.40 0.13 17.25 0.05 3.67 0.42

NiftyReg ∎ 0.45 0.20 20.70 0.36 17.1 0.36
Gunnarsson ∎ 0.43 0.17 18.55 0.13 31.5 0.33

Table 5.5: OASIS

DSC↑ DSC30↑ HD95↓ SDLogJ↓ RT↓ Rank↑

Initial 0.56 0.27 3.86

LapIRN ∎ 0.82 0.66 1.67 0.07 1.21 0.92
ConvexAdam ∎ 0.81 0.64 1.63 0.07 3.10 0.82

lWM ∎ 0.79 0.61 1.84 0.05 2.55 0.79
Driver ∎ 0.80 0.62 1.77 0.08 2.02 0.75
PIMed ∎ 0.78 0.58 1.86 0.06 3.47 0.71
3Idiots ∎ 0.80 0.63 1.82 0.08 1.46 0.70
Winter ∎ 0.77 0.57 2.16 0.08 2.56 0.55
MEVIS ∎ 0.77 0.57 2.09 0.07 10.4 0.51

Multi-brain ∎ 0.78 0.59 1.92 0.57 0.38
corrField ∎ 0.74 0.51 2.36 0.08 5.14 0.37
Thorley ∎ 0.77 0.60 2.21 0.31 0.37
NiftyReg ∎ 0.73 0.51 2.37 0.06 5.00 0.36
Bailiang ∎ 0.67 0.42 2.74 0.04 1.38 0.33
LaTIM ∎ 0.74 0.52 2.31 0.08 0.32

Imperial ∎ 0.76 0.57 2.43 0.19 2610 0.29
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Table 5.6: Hippocampus MR

DSC↑ DSC30↑ HD95↓ SDLogJ↓ RT↓ Rank↑

Initial 0.55 0.36 3.91

LapIRN ∎ 0.88 0.86 1.30 0.05 1.03 0.93
MEVIS ∎ 0.85 0.84 1.55 0.05 0.59 0.78

ConvexAdam ∎ 0.84 0.83 1.85 0.07 0.48 0.75
lWM ∎ 0.79 0.76 2.20 0.08 0.80 0.63

Estienne ∎ 0.85 0.84 1.51 0.09 1.46 0.62
PDD-Net ∎ 0.78 0.76 2.23 0.07 0.35 0.58
NiftyReg ∎ 0.76 0.72 2.72 0.09 4.75 0.37
corrField ∎ 0.72 0.68 2.89 0.05 1.20 0.34

Gunnarsson ∎ 0.74 0.67 2.82 0.16 22.0 0.25

Table 5.7: Abdomen MR-CT

DSC↑ DSC9↑ HD95↓ SDLogJ↓ RT↓ Rank↑

Initial 0.33 0.22 48.65

ConvexAdam ∎ 0.75 0.73 24.92 0.09 1.30 0.82
corrField ∎ 0.76 0.73 23.35 0.10 2.13 0.81
LapIRN ∎ 0.76 0.69 22.81 0.12 1.50 0.77
PIMed ∎ 0.78 0.68 21.99 0.07 59.2 0.75
MEVIS ∎ 0.71 0.65 27.94 0.15 14.7 0.67
Driver ∎ 0.76 0.55 27.02 0.13 1.95 0.63

NiftyReg ∎ 0.65 0.55 33.09 0.12 11.0 0.55
LaTIM ∎ 0.54 0.49 41.17 0.13 0.39
Winter ∎ 0.55 0.41 35.51 0.85 2.79 0.31

Imperial ∎ 0.51 0.41 48.60 0.11 278 0.30
Multi-brain ∎ 0.54 0.44 38.21 0.48 0.30

Table 5.8: Lung CT

TRE↓ TRE30↓ SDLogJ↓ RT↓ Rank↑

Initial 10.24 16.80

corrField ∎ 1.75 2.48 0.05 2.91 0.87
ConvexAdam ∎ 1.79 2.70 0.06 1.82 0.81

MEVIS ∎ 1.68 2.37 0.08 95.4 0.78
LapIRN ∎ 1.98 2.95 0.06 10.3 0.73

PDD-Net ∎ 2.46 3.81 0.04 4.22 0.62
LaTIM ∎ 1.83 2.50 0.05 0.62
Lifshitz ∎ 2.26 3.01 0.07 2.90 0.61
Imperial ∎ 1.81 2.54 0.11 300 0.57
PIMed ∎ 2.34 3.27 0.04 623 0.55

NiftyReg ∎ 2.70 5.28 0.10 42.2 0.51
Driver ∎ 2.66 3.50 0.10 2.66 0.44
Winter ∎ 7.41 10.11 0.09 12.0 0.40
Epicure ∎ 6.55 10.29 0.07 0.29

Multi-brain ∎ 6.61 8.75 0.08 0.27
Gunnarsson ∎ 9.00 11.27 0.12 30.9 0.21
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Figure 5.1: Boxplots and (selected) bubble charts visualising the results for the six challenge

tasks. While the boxplots show the main accuracy metric (DSC and TRE, respectively), the

bubble charts combine the accuracy, smoothness and runtime metric (a larger bubble means a

faster runtime). Arrows (↑,↓) indicate the favourable direction of metrics. Comparison methods

are color coded: ConvexAdam∎, LapIRN∎, MEVIS∎, corrField∎, NiftyReg∎, PDD-Net∎,
PIMed ∎, Gunnarsson ∎, lWM ∎, Estienne ∎, Joutard ∎, Driver ∎, LaTIM ∎, Winter ∎,
Imperial∎, Multi-brain∎, 3Idiots∎, Thorley∎, Bailiang∎, Epicure∎, and Lifshitz∎. Methods

are sorted according to final rank scores.
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Table 5.9: Overall rank scores of methods submitted to four or more tasks.

Cu-
RI-
OUS

Hip-
pocam-
pus
MR

Ab-
domen
CT-
CT

Ab-
domen
MR-
CT

OA-
SIS

Lung
CT

Over-
all

Intra-
Pa-
tient

Inter-
Pa-
tient

ConvexAdam ∎ 0.77 0.75 0.94 0.82 0.82 0.81 0.82 0.80 0.83
LapIRN ∎ 0.49 0.93 0.82 0.77 0.92 0.73 0.76 0.65 0.89
MEVIS ∎ 0.42 0.78 0.60 0.67 0.51 0.78 0.61 0.61 0.62

corrField ∎ 0.85 0.34 0.53 0.81 0.37 0.87 0.59 0.84 0.41
NiftyReg ∎ 0.56 0.37 0.36 0.55 0.36 0.51 0.44 0.54 0.36

PIMed ∎ 0.49 0.75 0.71 0.55 0.35 0.39 0.33
PDD-Net ∎ 0.83 0.58 0.44 0.62 0.34 0.37 0.32

Gunnarsson ∎ 0.19 0.25 0.33 0.21 0.19 0.16 0.22

enabled sub-second run times. There was a performance gap between most supervised
and unsupervised methods (NiftyReg, PDD-Net, and corrField). LapIRN reaches the
first rank and MEVIS comes second, which notably used a fully-convolutional solution
(without optimisation) only for this task. There is only a very small difference in the
results between overall and robustness Dice (of the 30% most difficult instances), which
highlights the fact that the problem is well-balanced and it requires fewer specific
model adaptations.

Abdomen CT-CT Considering the abdomen for inter-patient registration is more
challenging than the brain, due to larger anatomical shape differences that require
large, complex deformation estimation. Due to the small size of many organs and
large initial misalignments, previous work has often reported accuracies of around
40% DSC or less for DL methods [140]. Here, learning-based approaches can leverage
anatomical segmentation priors and reach substantial improvement over previous
state-of-the-art (as reported in [105]). Estienne, LapIRN, and ConvexAdam achieved
67-69% Dice overlap (across 8 individual labels) nearly 20% points higher Dice scores
than all other participants with less than 10 seconds runtimes each and reasonably
smooth displacement fields (SDLogJ < 0.2). Unsupervised methods have the advantage
of being independent of label bias and reach up to 49% overlap (corrField and PDD-Net).

Abdomen MR-CT Multimodal nonlinear registration remains a challenging task
in particular for abdominal scans where significant deformations can occur between
scans as evident from low initial overlap of DSC-9=22% or DSC-4=33% (for 9 or 4
anatomical labels respectively). However, the provided initialisation masks can already
lead to DSC-4>60% overlap using a similarity transform. The multimodal metrics,
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MIND [141] and NGF [142] were used by the majority of participants, including the
two top-performing methods ConvexAdam and corrField. Those methods also capture
larger motion robustly using dense discrete correlation. LapIRN and PIMed (3rd and
4th rank) added a Dice loss, where it became obvious that focusing on the supervision
with only 4 organs may lead to over-fitting on those structures and a lower accuracy
for further anatomies. The provided additional labeled unpaired datasets (30 BCV CT
scans and 30 CHAOS MRI scans [143]) have not yielded the desired advantages due to
subtle differences in appearance.

OASIS TheOASIS inter-subject brain task attracted themost learning-based solutions.
The results are summarised in Table 5.5 and visualised in Figure 5.1 showing that most
of these methods achieve very similar results in terms of Dice Score for the cases
with the highest scores (Dice of 80-90%). The differences are primarily in the more
difficult cases and thus in the DSC30 score, where the LapIRN, convexAdam, and the
methods of Driver and 3idiots methods perform slightly better than for example PIMed
and Winter. The conventional methods of MEVIS and corrField achieve mid-ranked
accuracies but have a higher runtime. Figure 5.2 shows an example sagittal slice of
the fixed image overlayed with the false-negative segmented voxels (green) and false-
positive segmented voxels (yellow) for initial moving segmentation and the propagated
segmentations by the methods of Imperial, PIMed, and LapIR. All methods were able
to align the small structures of the brain with only very small visible differences.

Lung CT The complexity of this registration task is manifold. First, the fields of view
of the fixed and moving scan differ largely since the lungs in the expiration scan are not
fully visible. Second, the scale of the motion within the lungs can often be larger than
the anatomical structures (vessels and airways) themeselves. Therefore, a registration
method needs to estimate large displacements that account for substantial breathing
motion and also align small structures like individual pulmonary blood vessels precisely.
To measure the accuracy manual landmarks are used that are typically located at the
boundary or bifurcation of vessels, airways, and parenchyma. This task was carried
out in both years because in 2020 only the MEVIS team, which uses automatically
computed keypoints as additional metric, achieved a TRE of less than 2mm (1.72mm),
while other teams performed considerably worse (e.g. LapIRN 3.24mm and PDD-
Net 2.46mm). In 2021, keypoint correspondences were provided for training and the
submissions improved with six teams achieving a TRE of less than 2mm. Especially
for the deep-learning-based methods LapIRN and Imperial this is a remarkable result,
because they were only trained on a small dataset of 20 scan pairs. In contrast to other
lung registration challenges like EMPIRE or DIR-Lab, the TRE is relatively high. This
can be explained, in part, by the low resolution of the scans that were chosen in the
preprocessing. Figure 5.2 visualises the difference images of an example coronal slices
for the methods of Driver, convexAdam, and MEVIS overlayed with the landmarks.
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Overall Ranking ConvexAdam was among the top 3 on each task (winning Ab-
domen CT-CT and Abdomen CT-MR) and ranked first overall among the eight methods
that were applied to four or more tasks - highlighting the importance of effective
optimisation and versatility of using learned semantic or hand-crafted MIND features
depending on the application. LapIRN reached the overall second rank and yielded
the best result for Hippocampus and OASIS. This demonstrates that a well-designed
convolutional feed-forward network (instance optimisation was used only for CuRIOUS
and Lung CT) can outperform conventional approaches in particular for inter-patient
tasks. MEVIS achieved the third place overall, with top ranks in particular for Lung CT
and Hippocampus based on a combination of NGF metric, curvature regularisation,
and L-BFGS optimisation with additional learning components only employed for the
brain task. CorrField uses no label supervision at all, but relies on highly optimised
graph-based registration, and comes fourth overall winning two individual tasks: CuRI-
OUS and LungCT. It is the best method for intra-patient registration. PIMed’s method
achieves strong performance on Abdomen MR-CT and OASIS and generalises well to
Abdomen CT-CT.

5.5.2 Additional Experiments

Label Bias and Unsupervised Registration When evaluating the influence of su-
pervision with anatomical labels, we found a clear distinction between intra-patient
registration (Abdomen MR-CT) and inter-patient registration (Abdomen CT-CT, Hip-
pocampus and OASIS). The former shows nearly no advantage of including such
information and it is therefore possible to avoid a risk of overfitting towards certain
anatomies. The latter, however, shows a clear deterioration in accuracy when excluding
all or some of the structures from training that were used for evaluation. CorrField,
which is unsupervised and achieves the highest scores for intra-patient registration
trails nearly all learning-based methods on the remaining inter-patient tasks. LapIRN
trained without Dice loss (i.e. without anatomical knowledge) improves upon those
results and achieves very strong results for OASIS and Abdomen CT-CT (ranks would
be third and fourth respectively). This demonstrates that in particular a large train-
ing database and an advanced deep learning architecture (LapIRN uses multi-level
Res-Nets, multiple warps and multi-resolution loss functions) can narrow the gap
between supervised and unsupervised approaches. We evaluated ConvexAdam (that
decouples feature extraction from optimisation) for Abdomen CT-CT in three settings:
1) all 13 labels in training with 8 (7 identical) in test (DSC=69%), 2) 4 labels in training
with 8 (thereof 3 identical) in test (DSC=55%) and 3) no labels in training (DSC=45%).
This shows that partial supervision clearly leads to improvement of those identical
anatomies but can also help to align nearby structures: esophagus which was excluded
improved by 16% points (likely through the guidance of liver and aorta) and pancreas
overlap was increased by 12% points (possibly by including portal vein and adrenal
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Figure 5.2: Exemplary qualitative results for selected methods and tasks. Top row: Overlay of

coronal abdominal MR (gray) and warped CT (color) slices. Middle row: False-negative (green)

and false-positive (yellow) voxels of propagated segmentation labels on saggital slices of the

OASIS dataset. Bottom row: Coronal slices of difference images between exhale and warped

inhale lung CT scans (including exhale (blue circle) and warped inhale (red cross) landmarks).
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gland). As mentioned in Sec. 5.5.1 training on 4 and evaluating on 9 abdominal organs
for MR-CT fusion results in a moderate performance gap between supervised and
unsupervised methods (the latter being about 10% better on this metric).

Transferability In this experiment, we were able to show that the three best meth-
ods of the lung registration task also perform very well on the DIR-Lab dataset (MEVIS
1.22 mm, convexAdam 1.31 mm, and corrField 1.34 mm) without any further hyperpa-
rameter adaptations. Since the inspiration and expiration images of the DIR-Lab dataset
are extracted from a 4DCT dataset with shallow breathing, the registration task is easier
than the Learn2Reg lung CT task. Therefore, the methods reach a lower TRE on the
DIR-Lab dataset compared to the Learn2Reg lung task (improved TRE of 0.46 mm,
0.48 mm, and 0.41 mm for MEVIS, convexAdam, and corrField, respectively). Due
to the performed preprocessing and the reduced resolutions, the Learn2Reg methods
achieve slightly worse results than state-of-the-art methods evaluated on the DIR-Lab
dataset. For example, method of MEVIS included in a registration pipeline registering
the original images reaches a TRE of 0.94 mm [65]. LapIRN achieves similar results on
both datasets (Learn2Reg lung CT 1.98 mm and DIR-Lab 1.98 mm) showing that the
best deep-learning-based methods can also be successfully applied to other datasets
without retraining. However, no performance improvement can be observed on the
easier dataset mainly due to the limited training data size.

5.6 Discussion

In the following, we will discuss specific aspects of the challenge.

Comparison of Learning- vs Optimisation-based Registration We argue that
Learn2Reg has helped to demystify common beliefs of fundamental differences be-
tween learning- and optimisation registration. First and foremost, there is virtually no
difference in computational speed. GPU-acceleration brings down computation cost of
optimisation-based methods to a few seconds for 3D registration, i.e. the extraction of
features using CNNs often outweighs optimisation times. Furthermore, we see a clear
trend that learning based on segmentation labels is primarily beneficial for inter-subject
registration. For Abdomen CT-CT for instance large improvements of 20%points in
Dice overlap compared to previous work [105] could be achieved when incorporating
Dice losses. All three highest ranked approaches employ a combination of DL and
optimisation: LapIRN primarily uses a deep network, but add instance optimisation
for Lung CT, MEVIS mainly use conventional optimisation but a DL network for Hip-
pocampus MR, and ConvexAdam combine discrete optimisation with U-Net-based
semantic features for inter-patient tasks. Our current challenge design did not consider
any computational constraints (GPU memory, inference time on CPU), which might
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limit the practical impact for some applications and should be considered in future
studies.

Algorithmic Design Choices There are no direct ablation studies possible for the
used architectures and loss functions since each method differs in multiple aspects
(see Table 5.2), but some general trends are visible nonetheless. Most approaches
use a combination of contrast-invariant intensity metrics (LNCC, NGF and MIND)
as well as a Dice loss for tasks where anatomical labels are available. To address
larger motion (all tasks expect brain) DL registration methods employ multi-scale (and
residual) architectures, multiple warps or often dense correlation layers. Two-stream
approaches that process both input scans independently are commonplace to deal with
multimodality or contrast variations (lung CT).

Plausibility of Transformations We analysed the smoothness of transformations
with respect to the log-standard deviation of Jacobian determinants for all experiments.
While this measure is far from perfect, it enabled a ranking of different solutions to the
inherently ambiguous nonlinear registration task that may achieve similar accuracy
with large differences in complexity (the common assumption being: the smoother
transform is then preferable). As visualised in the bubble-charts in Figure 5.1 there is a
tendency that more accurate solutions are also smoother, which indicates that enforcing
regularity is an effective means of avoiding overfitting and improves robustness. Some
notable exceptions can be found for lung CT, where Imperial appears to suffer from
too low regularisation while PDD-Net and PIMed may have reduced accuracy in
exchange for overly smooth fields. A potential explanation for the positive correlation
of smoothness and accuracy could be the hypothesis that accurate methods are able to
establish strong (correct) correspondences at relevant anatomies and extrapolate as
smooth as possible in uncertain areas. That means putting emphasis on either surfaces
(e.g. based on segmentation estimates) or geometric keypoints (for lung scans) can be
beneficial.

Comparison to Baselines We evaluated two conventional methods, NiftyReg [20]
and corrField [123] (using the GPU implementation of [96]), and two learning-based
approaches, PDD-Net [74] and the original version of VoxelMorph [33] as baselines.
The latter two were only applied to a subset of tasks. NiftyReg achieves reasonable
accuracies across all tasks but falls behind supervised methods on inter-patient tasks.
The original VoxelMorph variant reaches an average Dice overlap of 76.88%±2.17 %
for OASIS (7th-10th place based on DSC alone) and a TRE of 7.51±3.43 mm for lung
CT (13th place). When trained on a large additional lung dataset [138] a TRE of
1.71±2.86 mm was achieved for the additional DIR-Lab lung experiment for which
the best performing methods in this challenge achieved 1.3 mm. PDD-Net achieved a
second rank for CuRIOUS and fifth place for Lung CT, but lower scores for inter-patient
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registration. CorrField achieved the best scores overall for CuRIOUS and LungCT and
second place for Abdomen MR-CT (each task without supervision), making it stand out
as the best performing intra-patient approach. This demonstrates that conventional
methods are still very competitive for datasets without strong label supervision.

Reducing Entry Barriers By pre-processing each dataset to the same dimensions
and isotropic resolution and providing anatomical annotations for training data wide
participation was achieved from research groups across the world. The OASIS inter-
subject brain task attracted the most learning-based solutions, which highlights the
importance of large, labeled training datasets for deep-learning-based registration and
mirrors the focus of recent research. Lung CT intra-patient registration was addressed
by the same number but more diverse set of methods, including conventional, fully
deep-learning-based, and hybrid approaches. Therefore, we assert that new application
areas have been opened for many participants. While adoptions of metrics, fine-tuning,
and supervision appeared to be important for methods that were applied across multiple
tasks, the consistent performance of the three top-performing groups demonstrates
that Learn2Reg enabled effective multi-task solutions. Some aspects of medical image
registration, including affine or rigid pre-alignment, dealing with differences in field-
of-view of voxel resolutions, and the processing of very high-resolution scans have
been omitted due to our challenge design and could be addressed in future.

Limitations of the Challenge Design We have identified a number of limitations
that should be addressed in future studies. First, for computational reasons the training
of algorithms was performed offline by participants. This could introduce a bias when
additional data is used by certain teams that is not accessible to others and prevents
the use of larger (central) datasets that cannot be made public due to privacy concerns.
Enabling docker-based training or fine-tuning of models directly at grand-challenge.org
would be desirable. Second, the amount of available annotated training data varied
across tasks and made in particular intra-patient tasks harder for learning-based ap-
proaches. Decoupling anatomical feature learning from patient-wise optimisation could
be a next step, e.g. by providing training data for airway and fissure segmentation for
lung CT. Third, the accuracy evaluation is in general limited by inter-observer noise and
the difficulty of assessing registration accuracy based on segmentation overlap, which
disregards the plausibility of correspondences along the surface or within the structure.
Since this problem is inherent to any registration evaluation, we cannot offer any better
solution than aiming for further manual annotation efforts. Fourth, the provision of
all segmentation classes for training that were used for testing is in our opinion the
most problematic limitation of this challenge. This was due to the fact, that for 3 out
of 4 tasks with segmentation labels these annotations were already publicly available
prior to Learn2Reg and we considered it in-transparent (and biased) to simply not point
participants to their availability. While this would not be considered a problem at all
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for segmentation tasks (cf. the Medical Decathlon), image registration generally aims
to recover deformations for the entire field-of-view. We aimed to mitigate the influence
of over-fitting towards labelled anatomies by performing additional experiments for
partial supervision.

Impact and Clinical Adoption With regard to the five-year-old survey on medical
image registration by [100], we can reflect that the shift from surface-based regis-
tration to intensity-based approaches has somewhat been reverted with a majority
of approaches employing segmentation-based overlap or keypoints as driving force.
The establishing of different learning-based strategies, including hybrid approaches
that decouple semantic feature extraction from optimisation or combine feed-forward
networks with instance optimisation, can be seen as an important new trend. To assess
the likelihood of adopting registration in clinical practice, we are encouraged to see
that a number of previous obstacles have been successfully addressed by participants
of Learn2Reg. First, robustness against variations in scanner protocol and patient
characteristics was shown to be very high for top-ranking methods that tackled both
multi-centric MRI studies (OASIS) as well as the transferability issue for lung CT. Sec-
ond, run times have been considerably reduced to a few seconds, which will enable
clinicians to interact with those algorithmic solutions by adjusting hyper-parameters,
e.g. the strength of regularisation penalties in near realtime (this holds only true for
deep-learning-based methods if they are either decoupled or trained with conditioning
cf. [130]). Third, it became clear that highly nonrigid transformations are as well solved
as rigid alignment, opening up the promise for clinical applications in image-guided
surgery, radiotherapy. In fact, it appears as if rigid/pre-alignment remains an active
problem in particular for DL solutions.

5.7 Conclusion

The Learn2Reg challenge was the first to evaluate a wide-range of methods for various
inter- and intra-patient as well as mono- and multimodal medical image registration
tasks. The main goal of this challenge was to provide a standardised benchmark on
complementary tasks with clinical impact and a platform for comparison of conven-
tional and learning-based medical image registration methods. We established a lower
entry barrier for training and validation of 3D registration, which helped us compile
results of over 65 individual method submissions from more than 20 unique teams.
Although registration is highly dependent on the task, three methods (convexAdam,
LapIRN, MEVIS) and a baseline method (corrField) were shown to work robustly on
all tasks with only minor adjustments to the hyperparameters. Furthermore, several
teams (Estienne, PIMed, Driver, 3idiots, Multi-brain LaTIM, Lifshitz and Imperial) have
submitted tailored solutions to individual tasks and achieve very good results with it.
For the conventional methods convexAdam, MEVIS, and corrField, it was also shown
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that they can be applied directly to new data sets without loss of accuracy. Further-
more, we demystified the common belief that conventional registration methods have
to be much slower than deep-learning-based methods. Nevertheless, with LapIRN a
deep-learning-based registration method achieves state-of-the-art registration results
within seconds. We could not identify any architecture that was advantageous over
others. However, it was found that for deep-learning-based methods using a Dice loss
for inter-patient registration is particularly useful and instance optimisation helped
increasing the accuracy for intra-patient registration. With the Learn2Reg challenge,
we have created a dataset for benchmarking future registration papers. Furthermore,
the dataset has the potential to allow the development of dataset-independent and
self-configuring registration methods.
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Abstract

In follow-up CT examinations of cancer patients, therapy success is evaluated by
estimating the change in tumor size. This process is time-consuming and error-prone.
We present a pipeline that automates the segmentation and measurement of matching
lesions, given a point annotation in the baseline lesion. First, a region around the point
annotation is extracted, in which a deep-learning-based segmentation of the lesion is
performed. Afterward, a registration algorithm finds the corresponding image region
in the follow-up scan and the convolutional neural network segments lesions inside
this region. In the final step, the corresponding lesion is selected. We evaluate our
pipeline on clinical follow-up data comprising 125 soft-tissue lesions from 43 patients
with metastatic melanoma. Our pipeline succeeded for 96 % of the baseline and 80%
of the follow-up lesions, showing that we have laid the foundation for an efficient
quantitative follow-up assessment in clinical routine.
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6.1 Introduction

Measurement of metastatic tumors on longitudinal computer tomography (CT) scans
is essential to evaluate the efficacy of cancer treatment. The current guideline of
metastatic tumor evaluation on CT scans is called response evaluation criteria in solid
tumors (RECIST) [144]. Manual measurement of the tumors for the RECIST criteria is
often time-consuming and error-prone. However, the diameter-based RECIST criteria
also undergo continuous changes. Automated approaches might significantly speed up
response evaluation and help to handle the ever-growing mass of image-based staging
and follow-up evaluations [145].

Furthermore, radiomics is currently one of the most important topics in radiology.
High-throughput extraction of quantitative features resulting in the conversion of
medical images into minable data and the subsequent analysis promise new insights
into therapy response and hold the potential to revolutionize medical image-based
evaluation techniques [146]. Both fields have a huge clinical impact due to rising
demand for fast and reliable therapy response evaluations. They, however, share a
common bottleneck: automated lesion segmentation. Only if this obstacle is overcome,
clinicians will use the mentioned techniques accordingly in a daily manner.

Metastatic malignant melanoma is the perfect entity to implement a pipeline for
full-body lesion segmentation. Besides lung and liver, metastatic lesions of melanoma
can be found in almost every organ or tissue, such as lymph nodes, adrenal glands,
cerebrum, bone, spleen, and soft tissue [147]. Whole-body cross-sectional imaging is
part of the standard diagnostic work-up for staging, response assessment, and follow-up
in patients with advanced melanoma according to current international guidelines.
Malignant melanoma has been increasing fast in the last decades and represents a
public health matter in several countries due to its high mortality rates [148].

Among melanoma metastases, soft-tissue lesions provide a particular hurdle. They
can arise in a variety of locations (cutaneous, subcutaneous, muscular, retroperitoneal)
and shapes (round, multilobular, well defined, invasive), are often primarily small and, if
not surrounded by fatty tissue, extremely hard to distinguish. A sufficient segmentation
pipeline for soft-tissue metastases in malignant melanoma patients would therefore
provide a valuable foundation for further steps towards a full-body lesion segmentation
pipeline, that could be transferred to other entities.

To the best of our knowledge, no work has been presented until now that tackles
the problem of soft-tissue lesion segmentation in longitudinal CT image series. Lesion
segmentation in other anatomical regions, however, has been studied extensively. For
example, promising results have been accomplished for liver [149] and kidney lesions
[150] in challenges. Currently, the most general and successful available approach is
the nnU-Net framework of [6], which has shown impressive results for several organ
segmentation tasks such as liver, spleen, kidney, pancreas, heart, or aorta segmentation
and also outperforms most methods segmenting different lesion types such as pancreas,
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Figure 6.1: Schematic representation of the proposed pipeline for lesion tracking and segmen-

tation.

liver, lung, kidney, or Multiple sclerosis (MS) lesions. nnU-Net [6], initially based on U-
Net [53], automatically configures itself, including pre-processing, network architecture,
training and post-processing—making it an ideal baseline to build a lesion tracking
pipeline.

However, as the lesion segmentation experiments in [6] focus only on segmenting
lesions in one organ in one scan, it cannot be used “as is” and requires some modifi-
cations. Only few works have been presented on lesion tracking [151] and on lesion
tracking and segmentation in longitudinal image scans (e.g. [152–154]. In this work,
we tackle the problem of longitudinal tracking and segmentation of soft-tissue lesions
in whole-body CT scans.

6.2 Method

In our proposed pipeline, soft-tissue lesions are first identified by a radiologist with
one click inside the lesion in the baseline CT scan. This step is introduced to avoid
annotation of false positive lesions. We then apply our algorithm to automatically
segment and measure the diameter in the baseline and follow-up image. This is done by
(1) extracting the region of interest (ROI) around the point annotation of the radiologist
and applying our CNN to segment the lesion; (2) registering the baseline to the follow-
up image; (3) propagating the region of interest to the follow-up image to constrain
the search region and applying the CNN on the propagated region of interest in the
follow-up image; and (4) selecting the corresponding lesion in the output of the CNN.
Figure 6.1 shows an overview of our proposed algorithm. In the following, we describe
each step in more detail.
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6.2.1 Lesion segmentation

To generate the training data, we select for each lesion a bounding box around the
point annotation of the radiologist with a size of 100 mm, which is clamped by the
image region. Then, we use the nnU-Net framework of [6] to train a 3d full resolution
model which consists of a U-Net-like [53] architecture. The main settings are shown
in Table 6.1 in the appendix. The trained network is applied to segment the lesion in
the baseline and follow-up image on the test dataset.

6.2.2 Registration

Propagation of lesion segmentations into follow-up images of the same patient allows
for a higher degree of automation because the location and approximate appearance
of the lesions are already known. In this scenario, registration algorithms can be
employed to find the corresponding image region [153]. For metastatic melanoma,
typically full-body or thorax-abdomen CT scans are acquired, which can easily exceed
image sizes of 512 × 512 × 1000, which can be a challenge in terms of memory usage
and runtime. The registration has to align the global structures but at the same time be
locally accurate enough so that the lesion propagation is precise enough. Therefore, we
adopted a three-step approach to automatically register the baseline to the follow-up
image, which consists of the following steps: (1) a translational alignment; (2) a rigid
registration; and (3) a deformable registration. Hereby, the registration pipeline starts
with robust methods with fewer degrees of freedom and moves on to more precise, but
less robust methods, which require better starting points due to their higher degrees of
freedom.

(1) Translational alignment The translational prealigment is based on a brute force
grid search method named FASTA (Fast Translation Alignment), which evaluates a
difference measure (here Sum-of-Squared-Distances (SSD), the squared ℓ2 norm of
the difference image) on a grid of possible translations. Finer grids allow for more
precise translation estimation at the expense of increased computational cost. For faster
processing, the moving image is resampled to a maximal image size of 128 × 128 × 128.
The fixed image is resampled to the same image resolution as the moving image. For
the grid generation, we choose a sampling rate of 3, 3, and 51 in x, y, and z-direction
respectively. Since the CT scans are centered around the body center, only the z-
translation is used for prealignment.

(2) Rigid registration The translational prealignment in z-direction is used as a
starting point for a rigid multi-level registration using the SSD distance measure. The
method uses a Gauss-Newton optimization scheme to solve the optimization problem.
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(3) Deformable registration The final step is the matrix-free deformable registra-
tion of [19]. The deformation is defined as a minimizer of the cost function

min
y
DNGF(F ,M(y)) + 𝛼Rcurv(y), (6.1)

with the normalized gradient field distance measureDNGF [45] that focuses on the align-
ment of image gradients of the fixed image F and the deformed moving imageM(y).
The second-order curvature regularizer Rcurv [84] enforces smooth deformation by
penalizing spatial derivatives. The parameter 𝛼 is a weighting factor. The method
uses the limited-memory Broyden-Fletcher-Goldfarb-Shannon (L-BFGS) optimization
scheme to solve the optimization problem and is embedded in a multi-level scheme.

6.2.3 Lesion tracking

We use the registration to propagate the baseline contour to the follow-up scan. While
this propagated contour may not be accurate enough due to size changes under therapy,
it provides a good initial correspondence. To compensate for registration errors, we
enlarge the search region by 50mm in every direction to ensure that the corresponding
lesion is inside this selected region and to include enough information for the CNN.

6.2.4 Lesion selection

The CNN is not constrained to segment only one lesion inside the selected region in
the follow-up scan. Therefore, we select the lesion whose center is closest to the center
of the propagated lesion. To avoid annotation of wrong lesions close by in the case
of vanishing lesions under therapy, we only accept a lesion annotated by the network
if the Euclidean distance of its center is smaller than 25 mm to the propagated lesion
center.

6.3 Experiments and Results

6.3.1 Dataset

The dataset consists of 206 baseline and follow-up CT scan pairs of patients with
metastatic melanoma (Stage IV, AJCC) treated at the Center for Dermato-Oncology
at the University Hospital Tuebingen, Germany. All patients received either mono
(Nivolumab or Pembrolizumab) or combined (Nivolumab+Ipilimumab) immunotherapy
or targeted therapy (Vemurafenib +Cobimetinib or Dabrafenib+Trametinib) before the
follow-up scan. The patients were split into 163 training and validation cases and 43
test cases with overall 2408 and 125 manual annotated soft-tissue lesions in the baseline
images. Training was performed exclusively on baseline images, whereas testing was
done on both baseline and follow-up scans. Therefore, we selected patients with lower
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lesion counts for the test set in order to obtain a diverse set of lesions while keeping
the annotation effort feasible. For the test cases, 25 of the 125 lesions are gone in the
follow-up image.

6.3.2 Baseline segmentation

To show the advantage of training the network only on a small region of interest
around the lesions, we compare our approach to a network trained on the whole images.
However, for the evaluation, we use the closest lesion to the point annotation for both
approaches, and therefore, false-positive annotations are not taken into account.

Since the network is not forced to segment anything in the region of interest, we
evaluate the percentage of correctly annotated lesions. A lesion counts as correctly
annotated if there is an overlap with the segmentation mask. To evaluate the perfor-
mance of our segmentation network, we use Dice coefficient, average surface distance
(ASD), and Hausdorff distance (HD) if the network segmented the correct lesion. More-
over, we evaluate the Surface Dice [155] with a threshold of 1 mm, which is a good
approximation for the correction effort given an imperfect segmentation mask of a
relatively small structure.

When the nnU-Net is trained only on the small region of interest around the point
annotation, the network segments the correct lesion in 96 %, whereas with training on
the whole image, only 37.6 % of the lesions are annotated. On the correctly annotated
lesions, the network trained on the ROI achieves on average a better Dice Score (0.79 vs.
0.60 ), Surface Dice (0.88 vs. 0.68 ), and average surface distance (1.40mm vs. 1.77mm)
but a slightly worse Hausdorff distance (5.09mm vs. 4.59mm). Note that the number
of included lesions for the calculation differs depending on the training mode. Taking
all lesions into account the advantage increases to 0.76 vs. 0.23 for the Dice Score and
0.85 vs. 0.26 for the Surface Dice. Figure 6.2 summarizes the quantitative results and
Figure. 6.3 shows several visual examples of the results produced by our network.

6.3.3 Registration accuracy

We measure the registration accuracy using the center point matching accuracy as in
[151], which represents the percentage of correctly matched lesions. A match counts
as correct when the Euclidean distance between the center of the propagated baseline
lesion and the center of the manually annotated follow-up lesion is smaller than a
threshold. Since in this application whole-body CT scans are registered and large
volume changes of the lesion happen due to therapy, we set the threshold to 25mm.
For this evaluation, only the lesions which are visible in the follow-up image are taken
into account and therefore the number of lesions reduces to 100.

In 95 of the 100 cases, the Euclidean distance was less than the threshold with a
mean Euclidean distance of 7.66mm. The average absolute offset between the center
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Figure 6.2: Comparison of the evaluation metrics for all baseline lesions (upper row) and follow-

up lesions (lower row) in which the correct lesion was annotated with the underlying training

mode. Therefore, the number of included lesions for the calculations varies depending on the

training mode. For the follow-up lesions, the lesion results by the registration propagated are

shown in yellow. The boxplots show the median line and the mean as a white circle.
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of the propagated baseline lesion and the center of the manually annotated follow-
up lesion is 3.79mm, 3.16mm and 4.49mm in x-, y- and z-direction, respectively. A
histogram of the offset is shown in Figure 6.9 in the appendix.

6.3.4 Follow-up segmentation

We evaluate the follow-up segmentation in the same way as the baseline segmentation.
However, the successful segmentation of the follow-up lesion depends not only on the
segmentation accuracy itself but the whole pipeline. For the cases in which the lesion
was not propagated accurately enough, segmentation by the nnU-Net was not possible.
To evaluate the whole pipeline, those lesions are counted as not correctly annotated
lesions. Furthermore, in the 25 cases in which the lesion was fully regressive in the
follow-up image, we expect the nnU-Net not to annotate anything.

In 80 % of the lesions, our pipeline successfully annotates the lesion in the follow-up
scan with an average Dice Score of 0.80 and an average Surface Dice of 0.89 The lesion
propagated by the registration has an overlap to the manual annotation in 77.5 % with
an average Dice score of 0.51 and a Surface Dice of 0.56 All quantitative results are
summarized in Figure 6.2. All failure cases are visualized in the appendix. In 17 of
the 25 cases in which the lesion has disappeared in the follow-up image, the nnU-Net
correctly not segment anything.

6.4 Discussion and Conclusion

This paper presents a pipeline that automates the segmentation of matching lesions in
follow-up CT examinations of cancer patients, given a one-click point annotation in the
baseline lesion. We have validated our pipeline on the challenging task of whole-body
soft-tissue lesion tracking and segmentation. Our pipeline succeeded for 96 % of the
baseline lesions and for 80 % of the follow-up lesions with an average Dice Score of
0.79 and 0.80 , respectively. Furthermore, our pipeline achieves an average Surface dice
of 0.88 , which shows that the required correction effort is very low.

All failure cases in the follow-up image are visualized in Figure 6.6 and 6.7 in the
appendix showing that the pipeline fails due to different reasons. For some cases, the
registration was not accurate enough and therefore a wrong or no lesion was selected
even though the correct one was segmented. Other lesions are hard to distinguish
from surrounding tissue or they have an untypical shape that might cause problems.
In some cases, the lesion split into two smaller lesions in the follow-up scan after the
patient received therapy and the nnU-Net segmented both, but just one lesion was
selected. In some of these cases, it is also difficult for a radiologist to identify and
segment the lesion correctly. Our pipeline has still some limitations which have to
be addressed before it could be used in the clinic. Lesions can split or merge over
time, however, our pipeline assumes that every lesion in the baseline has zero or
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Baseline Follow-Up Baseline Follow-Up

Figure 6.3: Visual examples of results produced by our method. Each example includes the

baseline and follow-up lesion and therefore consists of two images (left baseline, right follow-

up). On the baseline image, the manual annotation (red curve ) and the nnU-Net annotation

trained on the ROI (blue curve ) and trained on the whole image (pink curve ) are shown. On

the follow-up image, the manual annotation (red curve ), the propagated lesion (yellow curve

) and the results of the presented pipeline (blue curve ) are visualized.



Whole-Body Soft-Tissue Lesion Tracking and Segmentation 113

one corresponding lesion in the follow-up image. This does not always have to be
true. Moreover, lesions that are very close to each other could be wrongly assigned
in the follow-up scan. These problems will be solved in future work by integrating
consistency rules. Besides, our pipeline is not yet capable of detecting new lesions in
the follow-up scan. Furthermore, the current pipeline does not take the appearance
of the baseline lesion into account. There are different approaches to integrate this
information into the model. The transformed baseline image and the corresponding
lesion mask could be used as an additional input for the follow-up model. However,
this would mean that two models have to be trained; one for segmenting the baseline
image and one for the follow-up images. To train the follow-up network, a sufficient
number of lesion annotations has to be available. Unfortunately, we only have the
annotations that we used for the evaluations and therefore this approach is not suitable.
Another approach is a joint-segmentation-registration algorithm as in [156]. We will
explore this approach in future work.

We have trained and evaluated our method on soft-tissue lesions, which are par-
ticularly challenging due to their diverse appearance and location. Our promising
results suggest that we will be able to extend our approach to other lesion types as well.
Additionally, for use in clinical routine, it is sufficient to extract the largest diameter
from the segmentation, so that detailed corrections will not be necessary. With our
work, we have laid the foundation for an efficient automated follow-up assessment
according to the RECIST standard and implementation of automated segmentation for
Radiomics analysis in clinical routine.
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Figure 6.4: Histogram of the image resolution in x-, y- and z-direction.

Figure 6.5: Example coronal slices extracted from three deformation fields to give an impression

of the smoothness.
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Table 6.1: Main settings chosen by the nnUNet framework to train the segmentation

network

Name Description Parameter

net_pool_per_axis number of pooling operations in z,x,y direction 3,5,5

base_num_features number of features after first conv 32

conv_per_stage 2

optimizer SGD

learning rate ≈ 0.00235

max_num_epochs maximal number of epochs 1000

num_batches_per_epoch number of batches used in every epoch 250

batch_size number of images per batch 5

patch_size z,y,z direction 56× 128× 128

normalization_schemes see [6] for details on CT scheme (0,’CT’)
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Baseline Follow-Up Baseline Follow-Up

Figure 6.6: Cases in which our pipeline fails to segment the lesion in the follow-up image. Each

example includes the baseline and follow-up lesion and therefore consists of two images (left

baseline, right follow-up). On the baseline image, the manual annotation (red curve ) and

the nnU-Net annotation trained on the ROI (blue curve ) are shown. On the follow-up image,

the manual annotation (red curve ), the propagated lesion (yellow curve ) and the results

of the presented pipeline (blue curve ) are visualized. For these cases, we do not apply the

lesion selection and therefore some lesions seem to be correctly segmented, however, they are

not selected using our criteria. There are different reasons for these failures. In some cases,

the registration was not accurate enough and therefore a wrong or no lesion was segmented.

Some lesions are hard to distinguish from surrounding tissue (e.g. last column), but also an

untypical shape can be a problem.
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Baseline Follow-Up Baseline Follow-Up

Figure 6.7: Cases in which our pipeline fails to segment the lesion in the follow-up image. Each

example includes the baseline and follow-up lesion and therefore consists of two images (left

baseline, right follow-up). On the baseline image, the manual annotation (red curve ) and

the nnU-Net annotation trained on the ROI (blue curve ) are shown. On the follow-up image,

the manual annotation (red curve ), the propagated lesion (yellow curve ) and the results

of the presented pipeline (blue curve ) are visualized. For these cases, we do not apply the

lesion selection and therefore some lesions seem to be correctly segmented, however, they are

not selected using our criteria. There are different reasons for these failures. In some cases,

the registration was not accurate enough and therefore a wrong or no lesion was segmented.

Some lesions are hard to distinguish from surrounding tissue (e.g. last column), but also an

untypical shape can be a problem.
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Figure 6.8: Cumulative distribution of diameter error between the manual segmentation and

the nnU-Net segmentation. Please note, that in clinical routine the diameter would not be

calculated from a segmentation but measured directly which might also introduce some errors.

The dotted lines visualize the 90th percentiles of the error, which are 3.6 mm for all lesions,

4.1 mm for the baseline lesions and 3.6 mm for the follow-up lesions.
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Figure 6.9: Histogram of Euclidean distance and the absolute offset between the center of the

propagated lesion and the center of the manually annotated follow-up lesion..
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Abstract

BACKGROUND Automated registration and segmentation of lesions in follow up CT
scans meets a growing field of application. Limited evidence for AI-assisted lymph
node and soft tissue metastases segmentation exists.

PURPOSE To evaluate the time efficiency, inter-reader variability and quality of an
AI-assisted workflow for registration and segmentation of lymph node and soft tissue
metastases in follow-up CTs.

MATERIALS AND METHODS 1842 lymph node and 2729 soft tissue metastases from 272
stage IV melanoma patients were retrospectively identified. Manual segmentation
served as a reference standard. Results of AI-assisted and manual segmentation by two
radiologists were analyzed with focus on time efficiency, inter-reader variability, Dice
scores, sensitivity, and positive predictive value (PPV).

RESULTS AI-assisted segmentation achieves a significant reduction of user interaction
time compared to manual segmentation (1.6min vs 3.6min). Results show a high
AI-assisted inter-reader agreement (median Dice 1.0 vs 0.82 ). AI-assisted segmentation
achieves similar Dice scores (0.83 −0.84 vs 0.82 ), sensitivity (0.93 −0.96 vs 0.92 −0.93 )
and PPV (0.95 vs 0.96 ) compared to manual segmentation.

CONCLUSION AI-assisted follow up CT registration and segmentation of lymph node
and soft tissue metastases is applicable and significantly reduces the reader’s interaction
time, as well as inter-reader variability with similar segmentation quality compared to
manual segmentation.

SUMMARY AI-assisted follow up CT registration and segmentation of lymph node
and soft tissue metastases is similarly accurate, less variable and more time efficient
compared to manual segmentation.
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7.1 Introduction

To evaluate the efficacy of cancer treatment, measurement of metastatic tumors on
longitudinal computer tomography (CT) scans is essential. Manual measurements
for the diameter-based RECIST (Response Evaluation Criteria In Solid Tumors) crite-
ria [144] are often time-consuming and error-prone. However, those criteria and the
execution of the measurements undergo continuous changes. Lesion segmentation
assistance based on artificial intelligence (AI) might significantly speed up response
evaluation and help to handle the ever-growing mass of image-based staging and
follow-up evaluations [145].

Additionally, radiomics is a promising topic in radiology. The extraction of multiple
quantitative features frommedical images obtained fromCT,MRI, or PET [157] resulting
in the conversion of medical images into minable data and the subsequent analysis
promise new insights into therapy response and hold the potential to revolutionize
medical image-based evaluation techniques [146].

Both fields have a huge clinical impact, however, share a common bottleneck: an
accurate lesion segmentation obtained with minimal manual effort.

U-Nets [53] are one of the current states of the art approaches in deep learning and
an established and preferred method for segmentation [6, 158]. Whilst there are many
successful applications for organs such as the liver [149], only a few studies investigated
the segmentation of lesions, such as lymph nodes [159] and, to our knowledge, no
study has evaluated an application for soft tissue metastases, yet. Soft tissue metastases
are very common in melanoma patients, however, they provide a particular hurdle for
image evaluation, as they can arise in a variety of locations (cutaneous, subcutaneous,
muscular, retroperitoneal) and shapes (round, multilobular, well defined, invasive),
are often primarily small and, if not surrounded by fatty tissue, extremely hard to
distinguish.

The present study evaluates the practical application of a recently introduced U-
Net based pipeline [160] for automated registration and segmentation of soft tissue
metastases in follow up CTs and extends it to lymph node segmentations. The study’s
focus was to test the efficacy and applicability of an AI-assisted segmentation pipeline
for lymph node and soft tissue metastases in follow up CTs of stage IV melanoma
patients. The detection of new metastases was not the scope of the present study. Thus,
the three hypotheses of the study were:

1. Assessment time for follow up lesion segmentation is reduced using an AI-
assisted workflow.

2. The inter-reader variability of the resulting segmentations is reduced with AI-
assistance.

3. The quality of the AI-assisted segmentation is non-inferior to the quality of fully
manual segmentation.
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Total Dataset Training&Validation Testing
Age (years,SD) 63.6 (14.6) 63.4 (14.9) 64.7 (13.2)
Gender (female) 44% 44% 37%

Stage IV (AJCC 8th Edition) 100% 100% 100%
Immunotherapy 72% 73% 67%
Targeted therapy 28% 27% 33%

Number of lesion (total) 4571 4308 263
Lymph node 1842 1705 137
Soft tissue 2729 2603 126

Average number of
lesions (per patient)

7 10 5

Lymph node 3 4 3
Soft tissue 4 6 2
Inhouse CT 81% 78% 86%
External CT 19% 22% 14%

Table 7.1: Demographics of the patient collective.

7.2 Material and Methods

7.2.1 Study Design and Subjects

The Central Malignant Melanoma Registry in Germany (CMMR) was used to retro-
spectively identify patients diagnosed with stage IV melanoma between 2015-01-01
and 2018-12-31, that were first-line treated at the department of dermatology of the
University Hospital Tuebingen, a tertiary referral center for melanoma patients. The
institutional ethics board approved the study protocol. Informed consent was waived
due to the retrospective study design.

Inclusion criteria were: 1.) patients with stage IVmelanoma, 2.) who had undergone
baseline (pretreatment) contrast enhanced CT, 3.) who showed lymph node and/or
soft tissue metastasis at baseline CT, 4.) with available first follow-up CT after therapy
initiation. Inclusion criteria were: 1.) patients with stage IV melanoma, 2.) who had
undergone baseline (pretreatment) contrast enhanced CT, 3.) who showed lymph node
and/or soft tissue metastasis at baseline CT, 4.) with available first follow up CT after
therapy initiation. The study included a training and validation stage for various types
of soft tissue and lymph node metastases in baseline and follow-up CTs, as well as an
interactive testing stage for follow-up CT segmentation of soft tissue and lymph node
metastases in a randomly selected imaging dataset of patients. See Figure 7.1 for a
detailed study workflow and Table 7.1 for patient characteristics.
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Figure 7.1: Study workflow and selection and split of used dataset.

7.2.2 Training and Validation Dataset

Contrast–enhanced baseline and first follow-up CTs were used for training and valida-
tion. The training and validation sets included 4308 lesions (2603 soft tissue and 1705
lymph node lesions) split into 3461 (2081 soft tissue and 1364 lymph node) and 866
(522 soft tissue and 341 lymph node) lesions for training and validation, respectively.
Patients had various numbers of soft tissue and or lymph node lesions. The datasets
included cases from different institutions and were therefore obtained with different
CT scanners with various protocols. Typical CT imaging parameters used in our center
for staging of melanoma patients are reported in Table 7.7 (appendix). All training
and validation segmentations were manually conducted by an experienced resident
radiologist (F.P. 4 years) under supervision of A.O and S.G, two senior radiologists
with extensive experience in oncologic imaging (A.O. 8 years and S.G. 9 years) using
a custom-made image post processing software system (SATORI; Fraunhofer MEVIS,
Bremen).
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Baseline Follow-Up
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AI-based segmentation User-interactionUser-interaction

Figure 7.2: Schema of the proposed pipeline for AI-assisted segmentation of lymph node and

soft tissue metastases in follow-up CT scans.

7.2.3 Testing Dataset

The testing dataset included 55 CTs of patients referred for the first follow-up CT
after therapy start that were not included in the training and validation dataset. The
patients were randomly selected from the CMMR. For demographic details please refer
to Table 7.1. The lesions were stratified by diameter size in the follow-up scan smaller
than 10mm (n = 58), 10 −20mm (n = 94), and larger than 20mm in diameter (n = 55),
with a mean size of 17.9mm ±15.2mm (range: 5.0 − 140.5mm). 54 lesions showed
complete response.

7.2.4 Automated Segmentation Pipeline

Baseline segmentation was performed manually by a reference reader (FP). The pipeline
then consisted of the following steps: 1.) Extraction of the region of interest (ROI)
around the lesion in the baseline scan; 2.) Registration of the baseline to the follow-up
image; 3.) Propagation of the ROI to the follow-up image to constrain the search region
and apply the trained U-Net to this region; 4.) Selection of the corresponding lesion in
the output of the U-Net. See figure 2 for an overview of the proposed pipeline.

The nnU-Net framework [6] was used to train the U-Net [53]. The user could
accept or correct the proposed segmentation. If the network did not segment a lesion or
segmented a lesion with a diameter smaller than 5mm, an empty mask was stored that
contained the information of the propagated center of gravity of the baseline lesion.
Thus, the corresponding region could be displayed by selecting the lesion. Furthermore,
the lesion was considered to have disappeared under therapy. Extensive technical
details are published in a previous publication [160] and summarized in the appendix.
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7.2.5 Manual and AI-Assisted Segmentation of the Testing Dataset

For each examination, baseline and follow-up CTs were imported into a custom-made
image post processing software system (SATORI; Fraunhofer MEVIS, Bremen) as Digital
Imaging and Communications in Medicine (DICOM) files. Radiologists were able to see
the baseline CT with the already segmented metastases and the follow-up CT in one
shared window (see 7.3). For the manual workflow, masks were created by manually
segmenting the lesions on the follow-up CT images using a cursor to contour the lesions
with optional interpolation. For AI-assisted segmentations, follow-up CT examinations
with lesion masks created by the proposed pipeline were imported into SATORI, and
each mask was manually edited by radiologists. They had the choice to (a) accept the
automated segmentation as perfect and move on to the next metastasis, (b) accept
the automated segmentation as passable and make manual corrections on various
slides using a cursor or (c) dismiss the automated segmentation and perform a manual
segmentation instead. In the case of metastasis showing complete response in follow-up
CTs, the U-Net was supposed to create an empty mask. If a segmentation was falsely
computed, the radiologists had the possibility to reject the proposed mask and save an
empty mask instead. To assess inter-reader agreement and inter-method variability, the
testing set was independently segmented by two radiologists (HA (resident) and MM
(specialist), with 2 years and 7 years of experience in oncologic radiology respectively)
via the following schema: Firstly, they manually segmented the first 50 % of the testing
cohort, followed by the AI-assisted segmentation of the second 50% of the testing
cohort. Two weeks later, they performed AI-assisted segmentation the first 50 % of
the testing cohort followed by the manual segmentation of the second 50% of the
cohort to account for recall bias. The patients were sorted by ID and not by number
of metastases to account for a random selection. HA and MM were blinded to their
previous segmentation results, those of the other reader, and to the reference standard
of the follow-up examinations. The reference standard for the testing cohort was
manual segmentation of the 126 soft tissue metastases and 137 lymph node metastases
by FP under supervision of AO and SG.

7.3 Performance Metrics

7.3.1 Detection Performance

The study evaluated the annotation of lesions in follow up CTs, given a baseline
lesion segmentation. Therefore, lesions could either be present in the follow-up scan
or disappear under therapy. The detection performance was evaluated against the
reference standard with the following categories:

• true positive (TP): lesions both annotated by the reference reader and the evalu-
ated method.
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Figure 7.3: Annotation platform SATORI in the assisted session. All lesions annotated on the

baseline scan are listed on the left. On the baseline scan (left axial CT reconstruction), only

the reference segmentation is shown. For the follow-up study (right axial CT reconstruction),

for all series an automatically computed lesion is imported. The user can accept the lesion or

manually correct it.

• false negative (FN): lesions annotated by the reference reader but marked as
disappeared by the evaluated method.

• false positive (FP): lesion marked as disappeared by the reference reader but
annotated by the evaluated method.

• true negative (TN): lesions marked as disappeared both by the reference reader
and the evaluated method.

Furthermore, the sensitivity (TP/(TP+FN)) for lesions <10mm, 10 −20mm and >20mm
and all lesions as well as the positive predictive value (PPV = TP/(TP+FP) for all lesions
were calculated per method.

7.3.2 Time Efficiency

User interaction time was recorded for manual segmentations and for manual correc-
tions of automated segmentations per patient.

7.3.3 Segmentation Accuracy

Accuracy was evaluated against the reference standard and assessed by using the Dice
similarity coefficient for reference lesions that have not disappeared in the follow-up
scan. The average symmetric surface distance was evaluated for all reference lesions
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detected by both the reader and the reference reader. Measure definitions and formulas
are given in the appendix.

7.3.4 Segmentation agreement

The inter-reader and inter-method variability of the segmentation accuracy were
evaluated using the Dice score.

7.3.5 Statistical Analysis

The statistical analysis targeted two (co-primary) endpoints: processing time (seconds)
and segmentation accuracy (Dice score). Our initial hypotheses were that the assisted
workflow is faster and non-inferior with respect to the Dice score compared to the
manual workflow. We considered an average Dice score loss of up to 0.01 as non-
inferior. In the secondary analysis, we investigate if the agreement of reader improves
with the assisted workflow compared to the manual annotation.

The entire analysis was restricted to two readers. The analysis does not aim to
quantify uncertainty with respect to generalizing to new readers but rather to new
patients only. For both analyses, a Bayesian hierarchical (mixed-effect) generalized
linear model was fit with the statistical software R (version 4.1.2) and the brms package
(version 2.16.3). For the processing time analysis, each patient formed an observation.
For the Dice analysis, the observation unit was a single lesion. The hierarchical data
structure was considered by the statistical model. For the time data, the lognormal
distribution was used to model the positive outcome. For the Dice data a zero-inflated
Beta regression was performed to adequately deal with the Dice score contained in the
unit interval. The brms default (flat or weakly informative) prior distributions were
utilized for all analyses. We quantified uncertainty with 95% posterior highest density
intervals (HDI). In addition, the posterior probability of each research hypothesis is
reported.

7.4 Results

7.4.1 Detection Performance and Sensitivity

The detection performance and sensitivity for manual, AI-assisted and fully automated
segmentation are summarized in Table 7.2 and 7.3. The sensitivity of the fully auto-
mated segmentations was lower for small lesions than for larger lesions. For AI-assisted
segmentations, there were only negligible differences regarding the lesion size. PPV
was highest for manual segmentation (0.96 ) and AI-assisted segmentation (0.95 ), and
slightly lower for fully automated segmentation (0.91 ).
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Method User TP FN FP TN PPV
Manual M1 (MM) 192 17 8 46 0.96

M2 (HA) 191 18 8 46 0.96
Assisted A1 (MM) 198 11 10 44 0.95

A2 (HA) 194 15 11 44 0.95
Automatic 180 29 18 36 0.91

Table 7.2: Detection Performance. Segmentation performed automatically, manual (M) and

AI-assisted (A) by reader 1 (MM) and 2 (HA). TP = true positive, FN = false negative, FP = false

positive, TN = true negative.

Method User all < 10 mm 10 − 20 mm > 20 mm

Manual M1 (MM)
0.92
[0.87, 0.95]

0.85
[0.74, 0.92]

0.94
[0.87, 0.97]

0.96
[0.88, 0.99]

M2 (HA)
0.91
[0.87, 0.94]

0.85
[0.74, 0.92]

0.91
[0.84, 0.96]

0.98
[0.90, 1.0]

Assisted A1 (MM)
0.95
[0.91, 0.97]

0.90
[0.80, 0.95]

0.95
[0.88, 0.98]

1.0
[0.93, 1.0]

A2 (HA)
0.93
[0.88, 0.96]

0.90
[0.80, 0.95]

0.93
[0.85, 0.96]

0.96
[0.88, 0.99]

Automatic
0.86
[0.81, 0.90]

0.78
[0.66, 0.87]

0.87
[0.79, 0.93]

0.93
[0.83, 0.97]

Table 7.3: Sensitivity for segmentation performed automatically, manual (M) and AI-assisted (A)

by reader 1 (MM) and 2 (HA). Data in parentheses are 95% confidence intervals. The results are

differentiated by the diameter of the reference segmentation smaller than 10 mm, 10-20 mm

and larger than 20 mm.

7.4.2 Efficiency

Mean interaction time was 3.6 ± 5.0 min. per patient for manual segmentation and
1.6 ± 1.6 min per patient for AI-assisted segmentation (M1: 3.5 ± 4.8 min; M2: 3.7 ± 5.3
min; A1: 1.7 ± 1.8 min; A2: 1.4 ± 1.4 min).

7.4.3 Segmentation Accuracy

The results are summarized in Table 7.4 and 7.5 and visualized in figure 7.4. With a
median Dice of 0.82, 0.83-0.84, and 0.81 for manual, AI-assisted, and automated seg-
mentation, respectively, all methods achieved comparable results. For small lesions <10
mm, the Dice score was slightly lower than for larger lesions. In figure 7.5, exemplary
segmentation results of all readers are shown.
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Method User all < 10 mm 10 − 20 mm > 20 mm

Manual M1 (MM)
0.82
[0.69, 0.86]

0.79
[0.24, 0.82]

0.81
[0.73, 0.86]

0.85
[0.79, 0.89]

M2 (HA)
0.82
[0.63, 0.87]

0.81
[0.24, 0.86]

0.80
[0.60, 0.85]

0.84
[0.76, 0.90]

Assisted A1 (MM)
0.84
[0.73, 0.89]

0.80
[0.61, 0.86]

0.84
[0.72, 0.88]

0.87
[0.80, 0.91]

A2 (HA)
0.83
[0.72, 0.88]

0.81
[0.63, 0.84]

0.82
[0.71, 0.88]

0.86
[0.79, 0.90]

Automatic
0.81
[0.43, 0.88]

0.78
[0.0, 0.84]

0.80
[0.60, 0.87]

0.84
[0.87, 0.90]

Table 7.4: Segmentation performance. Median Dice and 25%- and 75% quantile in parenthesis.

The results are split by the diameter of the reference segmentation (<10mm, 10-20mm, >

20mm).

7.4.4 Segmentation Agreement

In Table 7.6, the inter-reader and inter-method agreement is summarized using the
Dice score computed between the corresponding segmentation. The median Dice score
of the segmentations generated by manual annotation (M1 to M2) was 0.82 In contrast,
the assisted segmentation (A1 to A2) achieved a significantly higher median Dice score
of 1.0 The inter-method agreement of the automatic segmentation to the respective AI-
assisted segmentations (automatic to A1 and automatic to A2) also achieved a median
Dice score of 1.0 This means that in more than 50% of the lesions, the reader accepted
the segmentation without any further corrections.

7.4.5 Statistical Analysis

There is very strong evidence that the AI-assisted workflow is faster compared to the
manual workflow. The posterior mean effect (assisted - manual) for the two reader
are −133.4 (HA; 95 % HDI: [−400.5,−2.8]) and −112.6 (MM; 95% HDI: [−337.8,−1.6])
seconds, respectively. Both HDI lie below zero, supporting our research hypothesis.
The posterior probability of superiority is estimated to be at least 0.999 for each reader.

Regarding accuracy, there is strong evidence for a non-inferior Dice Score for the as-
sisted workflow compared to the manual workflow. The posterior mean effect (assisted-
manual) for the two reader are 0.008 (HA; 95 % HDI: [−0.005, 0.024]) and 0.011 (MM;
95% HDI: [0.002, 0.027]), respectively. Both HDI lie above the non-inferiority margin of
−0.01, supporting our research hypothesis. The posterior probability of non-inferiority
of the assissted workflow is estimated to be at least 99 % (HA: 0.997 ; MM: 0.999 ).

Inter-reader agreement was measured with the Dice score of annotations by the
two readers after assisted and manual workflow, respectively. Here, the posterior mean
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Method User all < 10 mm 10 − 20 mm > 20 mm

Manual M1 (MM)
0.43
[0.27, 1.]

0.27
[0.22, 0.53]

0.45
[0.28, 0.94]

0.66
[0.37, 1.2]

M2 (HA)
0.50
[0.25, 1.3]

0.22
[0.16, 1.1]

0.50
[0.28, 1.0]

0.81
[0.41, 1.4]

Assisted A1 (MM)
0.39
[0.24, 0.86]

0.28
[0.2, 0.75]

0.46
[0.24, 0.76]

0.47
[0.31, 0.9]

A2 (HA)
0.43
[0.24, 0.88]

0.28
[0.20, 0.64]

0.50
[0.23, 0.79]

0.67
[0.32, 1.2]

Automatic
0.52
[0.27, 1.3]

0.33
[0.22, 0.96]

0.53
[0.24, 1.1]

0.78
[0.40, 2.6]

Table 7.5: Segmentation performance. Median Average Surface Distance and 25%- and 75%

quantile in parenthesis. The results are split by the diameter of the reference segmentation

(<10mm, 10-20mm, > 20mm).

effect (assisted-manual) is 0.050 (95 %-HDI: 0.026 , 0.074 ) in favour of the assisted work-
flow. The HDI lies above zero, supporting the research hypothesis of an improvement
of the inter-reader agreement. Accordingly, the posterior probability of superiority is
estimated to be at least 0.999

7.5 Discussion

The study’s purpose was to evaluate the practical application of an AI-assisted registra-
tion and segmentation pipeline for lymph node and soft tissue metastases in follow-up
CTs. With the proposed pipeline, mean interaction time for lesion segmentation was sig-
nificantly reduced from 3.6min to 1.6min using AI-assisted segmentation. Vorontsov
et al. reported similar effects for the correction of fully automated segmentation of liver
lesions in CTs of patients with colorectal cancer liver metastasis using a CNN [161].
Moltz et al. investigated a simpler algorithm for automatic lesion tracking and seg-
mentation in follow-up CTs for lung nodules, liver metastases and lymph nodes and
reported a reduction of assessment time through lesion tracking, too [153].

Regarding accuracy, there was strong evidence for a non-inferior Dice score for the
assisted workflow compared to the manual workflow. This is in line with a previous
publication evaluating automated lesion tracking and segmentation of lung nodules,
liver metastases and lymph nodes [153]. Both readers achieved their highest Dice
scores in comparison to the reference segmentation using the AI-assisted segmentation
pipeline (0.84 and 0.83 , respectively). This effect was present for all three categories of
lesion size (see Table 7.4). The achieved Dice scores were comparable to results reported
by authors investigating the automated segmentation of liver metastases [162, 163]. The
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Figure 7.4: Notched boxplots of the Dice score for manual segmentations (M1 and M2), AI-

assisted segmentations (A1 and A2) and the fully automated segmentations evaluated against

the reference standard split by the diameter of the reference segmentation (<10mm, 10-20mm,

>20mm). Mean is symbolized by black dots, median by black horizontal lines.

average surface distance was lowest for AI-assisted segmentations (0.39mm-0.43mm).
Compared to manual segmentations, the PPV was virtually equal for both readers using
AI-assisted segmentation (0.96 vs 0.95 ). However, it is possible that there is a bias of
the automated segmentations and thus also the assisted segmentations towards the
reference segmentation, since the network for the automatic segmentation was trained
on annotations of the reference reader (on a separate training data set).

Furthermore, we found that AI-assisted segmentation reduces inter-reader variabil-
ity. The inter-reader agreement for the AI-assisted measurements was significantly
higher than for manual measurements (A1 vs A2 median Dice 1.0 ; M1 vs M2 median
Dice 0.8 (see table 7.6). The reduction of inter-reader variability through AI-assisted
segmentation is a well described effect and was reproduced in several publications [153,
164–166]. Over 50 % of the segmentation propositions were accepted with no further
corrections.

Fully automated segmentation achieved a similar median Dice score compared
to manual segmentation (0.82 vs 0.81 ), but slightly lower compared to AI-assisted
segmentation (0.81 vs 0.84 and 0.81 vs 0.83 for reader 1 and 2, respectively). Lower Dice
scores were especially present for small lesions <10 mm. Vorontsov et al. reported
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Figure 7.5: Exemplary segmentation results for the reference reader (pink), the manual seg-

mentation M1 (green) and M2 (blue), the assisted segmentation A1 (orange) and A2 (red) as

well as the automatic segmentation (yellow). If no assisted segmentation is shown, it is the

same as the automatic segmentation. In the examples shown in the first two rows, there is a

high similarity of annotations between the readers. The examples in the last two rows show a

higher variability.
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Method Reference M1 M2 A1 A2 Automatic

Reference
0.82
[0.69, 0.86]

0.82
[0.63, 0.87]

0.84
[0.73, 0.89]

0.83
[0.72, 0.88]

0.81
[0.43, 0.88]

M1
0.82
[0.69, 0.86]

0.82
[0.66, 0.87]

0.83
[0.71, 0.87]

0.81
[0.66, 0.87]

0.78
[0.07, 0.86]

M2
0.82
[0.63, 0.87]

0.82
[0.66, 0.87]

0.83
[0.64, 0.87]

0.82
[0.58, 0.87]

0.79
[0.00, 0.87]

A1
0.84
[0.73, 0.89]

0.83
[0.71, 0.87]

0.83
[0.64, 0.87]

1.0
[0.86, 1.0]

1.0
[0.68, 1.0]

A2
0.83
[0.72, 0.88]

0.81
[0.66, 0.87]

0.82
[0.58, 0.87]

1.0
[0.86, 1.0]

1.0
[0.64, 1.0]

Automatic
0.81
[0.43, 0.88]

0.78
[0.07, 0.86]

0.79
[0.00, 0.87]

1.0
[0.86, 1.0]

1.0
[0.64, 1.0]

Table 7.6: Inter-reader and inter-method agreement displayed by the Dice score computed

between the segmentations generated with the respective methods. The median and the 25%-

and 75% quantile in parentheses are reported.

similar results [161]. This can be explained by the fact that even a few voxels deviations
account for a large percentage in small lesions and user correction attenuates this effect,
especially in small lesions.

Our results show that AI-assisted and fully automated segmentation perform very
well, whilst only AI-assisted segmentation performs comparable to manual segmenta-
tion in all categories. This can be explained through the pipeline that was used. The
proposed segmentations for AI-assisted and fully automated segmentation were the
same and initially very good, as the numbers for fully automated segmentation show,
most likely because a patch-based segmentation pipeline was used. The registration
algorithm restricts the search region to an assumed region (patch) in which the segmen-
tation algorithm then tried to identify and outline the given lesion. Such a procedure
requires a very precise registration method, otherwise the lesion might not be located
in the selected region. The scope of the algorithm was not to identify new lesions. This
resulted in an initially very high sensitivity and PPV. Readers could then adjust the
already good segmentations and therefore further improve sensitivity, PPV, Dice score
and average surface distance.

Summing up, the implemented pipeline significantly reduced the reader’s interac-
tion time and inter-reader variability, whilst the quality of the resulting segmentations
was not inferior to manual segmentations. This has a huge clinical impact, as several
radiological techniques, such as RECIST-measurements and radiomics analysis heavily
rely on fast and accurate segmentations [144, 146, 157], and new approaches are in
demand to reduce manual effort.
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The study has limitations. The study focused on lymph nodes and soft tissue
lesions in CT only. However, since the segmentation approach is based on machine
learning, other lesion types and imaging modalities could likely be added by providing
a sufficient number of reference segmentation in those modalities. The present study
used manual segmentations by only one experienced reader as a gold standard. The
pipeline focused on the segmentation of lesions in follow up CTs that were already
segmented on baseline CTs. New lesions were not detected, and the applied algorithm
was not trained and tested for that task. A potential solution might be AI-assisted one
click segmentation [167] or a fully automatically detection. An independent evaluation
with additional readers is required to support the generalizability of our results to other
readers. The analysis is conservative in the sense that further training with the assisted
workflow might lead to an additional improvement in one or both outcomes over time.

7.6 Conclusion

Our findings support our research hypothesis of an assisted workflow which is superior
with respect to processing time and non-inferior with respect to accuracy compared to
the manual workflow. An independent evaluation with additional readers is required to
support the generalizability of our results to other readers. The analysis is conservative
in the sense that further training with the assisted workflow might lead to an additional
improvement in one or both outcomes over time.
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Appendix

Reference current 240 mAs
Tube voltage 120 kV
Collimation 128mm × 0.6mm
Rotation time 0.5 s

Pitch 0.6
Image reconstruction Medium smooth kernel

Contrast medium phase Portal venous

Table 7.7: Inhouse standard CT parameters for melanoma whole body staging

Detailed description of the segmentation pipeline:

Registration: The registration must align the global structures but at the same time
be locally accurate enough for a precise lesion propagation. Therefore, we adopted a
three-step approach to automatically register the baseline to the follow-up image: 1.)
Translational alignment; 2.) Rigid registration; 3.) Deformable registration. Hereby,
the registration pipeline starts with robust methods with fewer degrees of freedom
and moves on to more precise, but less robust methods, which require better starting
points due to their higher degrees of freedom.

Lesion segmentation: The registration was used to propagate the baseline mask
to the follow-up scan. While this propagated mask may not be accurate enough due to
size changes under therapy, it provides a good initial correspondence. To compensate
for registration errors, the search region was enlarged by 50 mm in every direction
to ensure that the corresponding lesion is inside the selected region and to include
enough information for the CNN (nnU-Net framework [6]). The CNN was trained
using the lymph node and soft-tissue lesions annotated in the baseline and follow-up
scans of the training dataset. The validation data set was only used to monitor the
training but not to select hyperparameters.

Lesion selection: The CNN was not constrained to segment only one lesion inside
the selected region in the follow-up scan. Therefore, the lesion whose center was
closest to the center of the propagated lesion was selected. To avoid annotation of
wrong close by lesions in the case of complete response, the network accepted only
segmentation of lesions if the Euclidean distance of the center was smaller than 25 mm
to the propagated lesion center.
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Segmentation performance metrics

Dice Score (DSC) between two segmentation masks X and Y:

DSC(X,Y) = 2∣ ∥X ∩ Y∥
∥Y∥ ∥Y∥ (7.1)

Average Symmetric Surface Distance (ASD) between two surfaces XS and and YS of
segmentation masks X and Y:

ASD = 1
∣Xs∣ + ∣Ys∣

⎛
⎝
∑
x∈XS

d(x, YS) + ∑
y∈YS

d(y,XS)
⎞
⎠
,

where d is the surface distance

d(x, Ys) = min
y∈Y

d(x, y)
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This chapter discusses the contributions and advances we have made in the fields of deep-
learning-based image registration and efficient tumor follow-up analysis. We also look
ahead into the future. The chapter is structured as a series of questions and answers.

8.1 Deep-Learning-Based Image Registration

In this section, we discuss the question of whether deep-learning-based registration
methods are the methodology of choice and which registration method is the best.
However, this question cannot be answered that easily, which is why we first discuss
various aspects that are relevant in answering this question.

Why is it so difficult to compare different registration methods?

In the last years, a large number of deep-learning-based registration approaches have
been presented in which the authors mostly showed that their methods achieve at least
state-of-the-art results within shorter execution time than conventional registration
methods (e.g. [25, 33, 42]). Consequently, the question arises whether deep-learning-
based registration methods are now the methodology of choice. The large number of
papers presenting deep-learning-based registration suggests that those methods are
the best registration methods and with that the methodology of choice. However, the
results and comparisons presented in the literature do not allow such a conclusion for
several reasons.

In some papers, the authors did not compare their method to conventional methods
but only to previous deep learning-based methods. This is legitimate if the goal of
the work is to further develop deep learning-based registration methods. However,
this does not allow any statement about the general performance of the developed
algorithm. In most papers, a comparison was made to one of the publicly available
registration toolboxes or algorithms like FAIR [78], Elastix [16], ANTS [106], ITK [168],
NiftyReg [20] or Deeds [56]. Those are mainly not tailored to a specific application
meaning that the user has to find good hyper-parameters which is often difficult and
the result hardly depends on them. Furthermore, not all conventional methods are
publicly available so that it might not be possible to compare the proposed method to
the best available method for this task.

Another difficulty regarding comparability lies in the data used for training and
testing. For deep-learning-based image registration algorithms, the imaging modality
and the body region to be registered are determined with the training data. Thus,
it could only be shown in the respective papers that a certain body region can be
registered well in the chosen modality, depending on the available training data. No
general conclusion can be drawn as to whether these algorithms will also train similarly
well on other training data.
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This issue also holds for conventional registration methods for which the hyper-
parameters are optimized on a training dataset. Furthermore, it is not uncommon
that algorithms are evaluated on private test datasets or a new private training-test
split of a public dataset so that other researchers cannot compare their work against
it. Unfortunately, authors often draw generalized conclusions even though they only
used a single dataset in their experiments and compared their results to only a few
other methods. These issues also hold true for our own work presented in chapter 2 in
which we trained and tested our network on our data split of the Multi-Modality Whole
Heart Segmentation (MM-WHS) dataset [54], compared it against the conventional
Deeds method [56] and claimed that our method ”performs better than state-of-the-art
conventional registration methods”.

To overcome the problem of private data, we used the publicly available DIR-
Lab [81] for the evaluation of our method in chapter 3 and 4. This benchmark dataset
has enabled us to compare to a variety of other registrationmethods without conducting
the experiments ourselves. Nevertheless, the COPDGene dataset [69] that we used
for training and partially for evaluation, is only available to researchers after a formal
request to a review board. However, we have shown in our work in chapter 4 how
strong the effect of the training data can be. We reduced the target registration error
on the DIR-Lab dataset of the Voxelmorph [33] method by half, only by training it on
the COPDGene dataset instead of in a leave-one-out experiment as in [93]. This single
example illustrates nicely that we should question results from the scientific literature
more critically.

Due to the lack of large data sets for training and well-annotated datasets for
validation for medical image registration approaches, only insufficient comparisons can
be made that do not allow a generally valid statement on the best registration method
based on the results in the papers presenting deep-learning-based and conventional
image registration approaches.

In the past, several evaluation projects [103, 169, 170], benchmark datasets [64, 81,
105] and challenges [82, 110, 171, 172] have been presented to simplify the comparison
of registration methods. Those challenges are mainly single-task focused and provide
only the validation dataset. However, in order to fairly compare deep learning-based
methods, a consistent training dataset is also necessary. Furthermore, it is desirable to
evaluate existing algorithms for several tasks and to be able to make a generally valid
statement about the performance.

For that reason, we introduced the Learn2Reg challenge [173] presented in chapter 5
to at least partially overcome the issues. The Learn2Reg challenge provides a multi-
task medical image registration benchmark for the comprehensive characterization of
deformable registration algorithms. We aimed to find an approach that works well on
all (or at least on multiple tasks) that ideally self-configures itself comparable to the
nnU-Net framework [6] for segmentation tasks. Nevertheless, a task-specific evaluation
seems still be interesting to obtain the best registration method for that specific task.
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But despite common training and validation datasets, the evaluation of registration
methods is not straightforward. Due to the lack of ground-truth deformation fields
discussed in chapter 1, the output of different registration approaches cannot directly
be evaluated. Depending on the paper, different auxiliary metrics are used to evaluate
the registration performance which further reduces comparability. This naturally leads
to the question of how best to evaluate a registration method.

How to best evaluate a registration method?

Evaluating the performance of image registration algorithms is a difficult task, be-
cause there is rarely a point-wise correspondence from one image to another available.
Therefore, several auxiliary metrics have been introduced to evaluate the registration
performance.

The evaluation of the registration accuracy is often based on automatic segmen-
tation produced from image registration [170] or on the target registration error of
landmarks annotated by an medical expert [174]. The underlying assumption is that
when a registration method enables an accurate propagation of the segmentation masks
or the landmarks, the method aligns important structures well and therefore produces
meaningful deformation fields. However, when we only focus on the accuracy metric
alone, we might get a wrong impression. For example, a registration method could
perfectly align the landmarks but produce irregular and implausible deformation in
between. Therefore, it is a common practice to also evaluate the plausibility of the
deformation field. Since the registration methods are applied on medical images, the
transformation should not yield to flipping or disappearing of tissue (apart from a few
exceptions such as resections). With the Jacobian Determinant of the deformation
field, local volume changes can be measured. A negative Jacobian Determinant of the
deformation field means a local folding. The number or percentage of voxels with
foldings in the computed deformation field is often reported as a measurement of
the plausibility of the presented results [33, 82]. Although this metric gives a good
impression of the quality of the deformation field, the deformation field can still be
non-smooth despite the absence of foldings. Therefore, several papers additionally
report the standard deviation of the Jacobian Determinant [29, 92, 96].

For clinical applications, the robustness of a registration method is also important,
because the methods need to work well for nearly all patients in different hospitals
and different countries acquired with different scanners. There is, again, no established
measure on how to evaluate robustness and different papers suggest different measures.
In chapter 4, we interpret the term robustness in the sense that we evaluated how our
method performed on datasets on which the network was not trained. Therefore, we
applied our registration network on the publicly available DIR-Lab dataset [81] and
the EMPIRE10 challenge data [82] and showed that our network registers those images
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well. Especially the sheep CT images, which are included in the EMPIRE10 set, are
interesting to look at because sheep and human anatomy differ clearly.

Another important metric is the runtime of the algorithms. In many applications,
registration would not have to be performed in real time, but the images should be
registered without a long waiting time. In addition to these most commonly used
metrics, there are a variety of other metrics like intensity variance, inverse consistency
or transitivity [170] that can be used. In the Learn2Reg challenge, we used a com-
plementary set including robustness, accuracy, plausibility, and speed, that follows
the principles defined by the BIAS group [102] to ensure an evaluation as fair as possible.

With all these auxiliary metrics, the question arises of how to weigh them. For
example, by directly applying a zero displacement field, meaning that we do not change
anything at all, the smoothness metric and the runtime get good scores while the
accuracy is not increased. In most papers, all the scores are reported side-by-side,
however, in the Learn2Reg challenge, a weighting scheme was required to determine a
winner. To take into account random noise effects, we only ranked a method higher
if the results were statistically significantly better. Although this weighting and the
evaluation, in general, is still far from perfect, it is a first step towards making the eval-
uation fair and transparent. For this purpose, all evaluation criteria were announced in
advance. While the proposed evaluation scheme helped to improve the comparability
of registration algorithms, it is still not perfect. As already described in chapter 5, the
accuracy evaluation is in general limited by inter-observer noise and the difficulty of
assessing registration accuracy based on segmentation overlap, which disregards the
plausibility of correspondences along the surface or within the structure. Furthermore,
the evaluation measures were kept as similar as possible across the tasks to avoid
complicating the evaluation. However, outside of a challenge, one would have to take a
closer look at what the actual purpose of the registration is and adjust the weighting of
the measurements accordingly and select the method that fits best for this purpose. For
example, for atlas-based segmentation or the generation of (noisy) labels for the training
of a segmentation network, we are mostly interested in propagating the segmentation
masks well to the new scan and do not care about foldings in the deformation field.
Robustness will also be important, as ideally a reasonably good segmentation is needed
even for difficult cases. The runtime is probably not all that important. However,
if a lot of images are to be processed or real-time applications are considered, then
registration should not take too long either. Even for the registration of the same body
region, the requirements can be slightly different. For a lung registration to be able
to perform a cursor synchronization, a registration accuracy of approximately 2mm
could be sufficient. However, if the deformation field is used to calculate a difference
image, the registration accuracy should be much higher.

Ultimately, this means that one must first think about the prerequisites and the
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goals of a particular registration application and this, of course, requires certain domain
knowledge. Nevertheless, the Learn2Reg challenge provides already a good selection
of performance measures that follows the principles defined by the BIAS group [102].

What is the best registration method (according to Learn2Reg)?

Due to all the issues mentioned above, it is difficult to make a definitive statement
about the best registration method in general. For this reason, in this section, we focus
the results of the Learn2Reg challenge. Nevertheless, the winners of the single-task
challenge should also at least be mentioned. The registration method of [175] won
ANHIR and [176] performed best on the CuRIOUS dataset. The DIS-CO approach
of [65] takes first place in the EMPIRE10 challenge.

To find the best performing method for several tasks, we evaluated in the Learn2Reg
challenge the eight algorithms that submitted a solution to at least four of the six tasks.
This showed that three methods (convexAdam [122], LapIRN [130], MEVIS [133]) and
a baseline method (corrField [123]) were shown to work robustly on all tasks with only
minor adjustments to the hyperparameters. ConvexAdam was among the top 3 on
each task and ranked first overall highlighting the importance of effective optimization
and versatility of using learned semantic or hand-crafted MIND features depending on
the application. LapIRN reached the overall second rank and yielded the best result
for Hippocampus and OASIS. This demonstrates that a well-designed convolutional
feed-forward network can outperform conventional approaches in particular for inter-
patient tasks. MEVIS achieved third place overall, with top ranks in particular for Lung
CT and Hippocampus based on a combination of NGF metric, curvature regularization,
and L-BFGS optimization.

Furthermore, we evaluated the transferability to new datasets in the challenge by
applying the submitted methods from the lung task to the DIR-Lab dataset[81]. We
found that the conventional methods are directly applicable to this new dataset without
any further hyper-parameter tuning. For the deep-learning-based method LapIRN,
slightly worse results were obtained. One reason for this might be the limited amount
of training data available for the lung task.

The runtime of the methods is evaluated in nearly all papers and is the main
selling point for deep-learning-based image registration methods. They often need less
than a second to register even large three-dimensional images whereas conventional
registration methods typically require several minutes to compute the deformation
field. However, we found that there is virtually no difference in computational speed
for the best-performing methods. GPU acceleration brings down the computation cost
of optimization-based methods to a few seconds for 3D registration. It was also shown
in the work of [18–21] that the runtime of conventional methods can be significantly
reduced by an efficient implementation.
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In summary, the best deep-learning-based registration methods can now keep
up with conventional methods in terms of registration accuracy and the fastest con-
ventional methods are not slower than the deep-learning-based methods. By using
additional information such as segmentation masks during training, deep-learning-
based method can be tailored to one task without this information being available
during inference. This is a great advantage over conventional methods. However, the
transferability of the algorithms to new data sets is not yet considered fully satisfactory.

What’s next with Learn2Reg?

The aim of finding a self-configuring registration framework similar to the nnU-Net
framework [6] could unfortunately not be fulfilled in Learn2Reg 2020 and 2021. More-
over, Learn2Reg has also only been able to provide a limited selection of tasks with
sometimes very limited training data (e.g. for the lung task). Therefore, we will con-
tinue with Learn2Reg in 2022 with new tasks to further address those problems and to
continuously increase the available benchmark datasets. The 2022 version of Learn2Reg
is divided into three tasks.

The first task will again deal with a CT lung registration. This time, however, on a
much larger data set and on follow-up scan pairs. Moreover, the task will be divided
into two phases. In phase 1, participants train or tune their algorithms locally and
submit the algorithms via grand-challenge. The best teams of this phase are invited to
participate in phase 2. In phase 2, the participants submit a training docker that will be
run by the organizers on a larger dataset that includes additional annotations that are
not publicly available. The trained networks will be made available via grand-challenge
to facilitate reproducibility and further use of the algorithms in the research community.

The second task replicates the challenge of 2021 and serves as a continuation of the
benchmark, whereas the last new task explores the possibility of fully automatic self-
configuring methods that learn their hyperparameters based on training and validation
data and require no user interaction.

The third task aims to find a self-configuring registration framework. For this
reason, no further training data is provided. The necessary structure of the data is
given by task 2, so that a framework is expected in a Docker container, which can be
used to train registration networks on several data sets.

What is the future of image registration?

Conventional and deep-learning-based registration each have their advantages and
disadvantages, but there is little difference between them in terms of overall perfor-
mance. Consequently, the logical consequence is to combine both approaches to exploit
the respective advantages. For example, a registration network that was trained with
additional knowledge like segmentation or keypoints could be used to robustly find
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an initial approximation on downsampled images. Subsequently, instance optimiza-
tion [130] or a conventional registration can further align the higher resolution images
to obtain a more accurate registration result.

Furthermore, in the near future, a self-configuring registration framework similar to
the nnU-Net framework will be proposed. The first efforts have already been presented
in [130] and [113]. With such a framework, developments in deep-learning-based
registration will continue to evolve into a data-driven discipline. New methodological
developments will have a smaller impact on performance enhancements compared to
compiling and curating suitable data sets and an accurate data preparation.

8.2 Efficient Tumor Follow-Up Analysis

The second part of the thesis presented steps towards efficient tumor follow-up analysis.
In this section, we discuss the current state of development, how the methodologies
could be further improved, and most importantly what is still missing to use the
proposed pipeline in clinical routine in the future.

How good is our solution?

In the work presented in chapter 6, we evaluated the quality of baseline segmentation,
registration accuracy, and quality of follow-up segmentation. The evaluation in this
chapter refers only to soft-tissue lesions. We showed that the registration accurately
propagates the center of gravity of the lesions from the baseline to the follow scan with
a mean Euclidean distance of 7.66 mm which is comparable to the results of several
methods presented in [151] on the DeepLesion dataset [177]. More importantly, it is in
almost all cases close enough to find the corresponding lesion in the follow-up scan. In
the baseline and follow-up scan our segmentation approach achieves an average Dice
Score compared to the manual annotation of approximately 0.80.

While these technical measures give a first impression of the performance, they
do not yet tell us whether we can add value to the assessment of cancer patients with
the proposed pipeline. As a first step to quantify this, the goal of the reader study
presented in chapter 7 was to compare the workflow of reading follow-up examinations
with and without AI assistance to evaluate the impact of the proposed AI-assisted
workflow. In this reader study, we focused on the segmentation not the diameter which
is required for current guidelines. However, the diameter can be directly computed
out of the segmentation. The three hypotheses of the study were: 1.) Assessment time
for follow-up lesion segmentation is reduced using an AI-assisted workflow 2.) The
inter-reader variability of the resulting segmentation is reduced with AI assistance.
3.) The quality of the AI-assisted segmentation is non-inferior to a fully manual seg-
mentation. All three hypotheses could be verified in this study. The mean interaction
time for lesion segmentation was significantly reduced from 3.5min to 1.5min using



Discussion 149

AI-assisted segmentation compared to fully manual segmentation while maintaining
the same segmentation quality. Furthermore, a reduction of inter-reader variability was
achieved. This is an important result in that the therapy response classification of lesion
according to RECIST can substantially vary from one radiologist to another [178]. In
our study, in more than 50% of the lesions, the readers have accepted the segmentation
without any further corrections and if the correct lesion was annotated only in 11 %
the correction changed the Dice Score more than 0.2.

So far, in the paper in chapter 6 and in the reader study in chapter 7, we have only
performed an evaluation on the segmentation masks. However, the current guideline
of metastatic tumor evaluation on CT scans RECIST [144] is based on the diameter
of lesions. Therefore, the next logical step is to further evaluate the accuracy of the
calculated diameters.

Why did we still use conventional image registration?

For this application, the registration has to align the global structures but at the same
time be locally accurate enough so that the lesion propagation is precise enough.
Therefore, we adopted in chapter 6 a three-step approach to automatically register the
baseline to the follow-up image, which consists of the following steps: (1) a translational
alignment; (2) a rigid registration; and (3) a deformable registration. Hereby, the
registration pipeline starts with robust methods with fewer degrees of freedom and
moves on to more precise, but less robust methods, which require better starting points
due to their higher degrees of freedom. Most of the recently presented deep-learning-
based registration approaches – including the work presented in chapter 2 to 4 – focus
on the deformable registration. Nevertheless, there are a fewworks that presented deep-
learning-based approaches for translational and affine alignment. Those approaches
could be combined into a pipeline to fulfill the needs of the application. Another hurdle
that would need to be addressed by the deep-learning-based approaches is the large
image size. For metastatic melanoma, typically full-body or thorax-abdomen CT scans
are acquired, which can easily exceed image sizes of 512 × 512 × 1000, which can be a
challenge in terms of memory usage. Simply downsampling the images to an image
size that fits on current GPUs has the disadvantage that downsampled images lose too
much information to be locally accurate enough for the lesion propagation. Therefore,
more complex approaches like a multilevel approach that combines the results of the
low-resolution full-image registration with the deformation fields of a batch-based
method using the high-resolution images might be a solution.

In this initial work, the goal was to investigate whether the combination of registra-
tion and subsequent deep-learning-based segmentation of the lesion in the propagated
region of interest is a suitable solution for this application. Furthermore, registration is
not a time-critical component in the pipeline, as it is calculated in advance. For this
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reason, we chose a slightly slower but more robust conventional registration to start
with. However, a deep-learning-based registration approach could be integrated into
this approach in the future.

How can we further improve the results?

In the approach presented in chapters 6 and 7, we use the image registration method
only to propagate the region of interest to find the approximate location of the lesion
in the follow-up scan. However, through the baseline segmentation, we also know
the approximate appearance of the lesion in the follow-up scan [153]. Therefore, it
might be helpful to integrate this information into the segmentation approach of the
follow-up lesion.

There are different conceivable approaches to achieve this. The transformed base-
line image and the corresponding lesion mask could be used as an additional input for
the segmentation network of the follow-up images. This provides a first approximation
of the follow-up segmentation, so that the network only has to correct it. The assump-
tion here is that this is an easier task than completely segmenting it. Furthermore, this
additional information could make it easier to decide which lesion is the correct lesion
in the case of multiple lesions.

The same idea is pursued by a joint-segmentation-registration approach as in [126,
156]. To compensate for original registration errors, the input images are additionally
re-registered locally in a separate decoder path. By learning segmentation and regis-
tration together, the two tasks can benefit from each other, and additionally, several
new loss terms can be integrated into the training procedure. For both approaches,
it would mean that two models have to be trained; one for segmenting the baseline
image and one for the follow-up images. This is in general not a problem as long as
enough training data is available.

As for all data-driven algorithms, it is also important for our approach to have
an appropriate amount of training data available, which is sufficiently diverse. So
far, we trained and evaluated on data from patients with metastatic melanoma (Stage
IV, AJCC) treated at the Center for Dermato-Oncology at the University Hospital
Tübingen, Germany. The number of data seems to be sufficient, but the diversity of
the data is not. In particular, for an appropriate evaluation, it needs data from several
locations. But also the training and thus the resulting segmentation network would
benefit from a higher diversity. A consequent next step is to evaluate our approach on
the DeepLesion [177] dataset to compare it to several other methods like [151, 167].

When will it be ready for clinical routine?

In principle, our developed software component could be integrated into in its current
state by an appropriate company in their reporting software after the necessary ap-
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proval has been obtained. However, we still have to ask ourselves whether this system
will be used by the radiologist. A new system is usually only introduced if it leads to a
direct improvement in patient outcomes or for reasons of cost-effectiveness. Although
the ultimate goal is, of course, to improve patient outcomes, this is a long process
and not easy to show. Due to the rapidly increasing number of imaging procedures
and therefore resulting increasing number of readings that have to be carried out per
radiologist and at the same time the lack of available healthcare personnel, maintaining
the current reading quality by reducing the workload become more and more important.
Therefore, we aim to reduce the reading time of the radiologist per case by providing
software-assistance.

The radiologist’s main task is to define and measure the target lesions to deduce
the progression state. One of the most important aspects from a user’s point of view is
that all necessary information to perform this task is available in one system and is
easy accessible. Often it takes a long time to gather all the necessary information like
”What preliminary examinations are there?” or ”Which structures have already been
measured?”. This step is simplified by storing all images and annotated metastases
in our software. However, the reporting question or clinical information is not yet
integrated. Moreover, the generation of the report from the measured data has also
not yet been implemented, although this would also further facilitate the work. These
are points of connection to the other systems, which would depend very much on the
exact type of use of our software.

There are also other points within the proposed workflow that could be improved
to further enhance cost-effectiveness. In the current version, the radiologist measures
the lesion in the baseline scan by clicking into it. In the future, this step could also be
taken over by the software by automatically detecting them [179–182]. Suggestions for
target lesions are then provided and the radiologist only has to select which ones to
take over. Taken even further, the fully automated selection, annotation, and measure-
ment of baseline lesions could result in all metastases being considered, rather than a
small selection as is currently the case. This would further increase the reproducibility
between readings from different radiologists [183]. However, such a feature is not
indispensable to use the software and requires even more development effort than
automatically tracking lesions into follow-up which is already implemented. With au-
tomatic follow-up tracking of lesions, the radiologist only needs to be able to efficiently
verify the measurements. To do so, all selected target lesions could be for example
displayed in a separated window as 2D slice images with the corresponding diameter.
In general, the clear presentation of the automatically determined information is an
important point that could be further improved.

Another variant to reduce the reading time is that the radiologist trusts the software
to such an extent that in cases where the CNN is sure, he or she checks more quickly or
only examines random samples. This would require that in addition to the segmentation
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result or the diameter, a confidence score is also predicted. We would assume that it
is a matter of habituation to what extent one trusts the software. In the beginning,
radiologists will be more skeptical about the software and correct the diameters more
often. However, as soon as they notice that these changes lead only to little change in
the result or within the inter-reader variability, then acceptance will probably increase.
Especially in patients where no therapy change is induced by the measurement, the
control could be minimized. The capacities freed up could be used for intensive
monitoring of patients who will receive a change in therapy.

The detection of new lesions in the follow-up scan is also not yet possible. However,
newly formed lesions have a direct impact on the progression status, which is why
they are important to detect. Detecting them fully automatically is a difficult task, that
ideally can be solved in the future. As an intermediate step, manual visual detection
can be facilitated by a change map [184] – an overlay that highlights where changes
have occurred between the baseline and the follow-up image.

In addition to the cancer-related reporting, the radiologist must also look at the
scan for other findings. Again, a change map can be helpful to highlight relevant
changes that need to be reported. To create a meaningful change map, an accurate
registration is required to not highlight registration errors as change. Furthermore, it
is necessary to filter for relevant change. There might be real change between the two
time points like a different filling state of the digestive tract, however, those changes
are not relevant for the report.

For all of the above, it is necessary that they can be calculated either very quickly
on the fly or in advance so that the radiologist does not have to wait for the calculation.

In addition to the described extensions, extensive tests must still be carried out. So
far, in the papers in chapter 6 and the reader study in chapter 7, we have only evaluated
the segmentation masks. However, the current guideline of metastatic tumor evaluation
on CT scans RECIST [144] is based on the diameter of lesions. Therefore, the first next
step is to further evaluate the accuracy of the calculated diameters. Furthermore, an
evaluation regarding the fairness of the algorithms is missing so far; does the algorithm
treat patients equally regardless of their sex, ethnicity, etc. Since in the current version
of the presented workflow, the radiologist still checks the lesions visually, this is not
yet as important as with an algorithm that directly provides treatment predictions.
Nevertheless, it is important to be aware of these issues and to investigate them through
studies.
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Deep-Learning-Based Image Registration

The goal of medical image registration is to align anatomical structures of two or more
images by establishing spatial correspondences. This is an important step for many
tasks in medical image analysis as it links previously unrelated data and enables joint
processing of those data. Various approaches and tailored solutions have been proposed
to a wide range of problems and applications. Typically, image registration is phrased as
an optimization problemwith respect to a spatial mapping that minimizes a suitable cost
function and common approaches estimate solutions by applying iterative optimization
schemes. Unfortunately, solving such an optimization problem is computationally
demanding and consequently slow.

Since the availability of image data and computational power has rapidly grown,
learning-based image registration methods have emerged as an alternative to con-
ventional approaches. These methods replace the costly iterative optimization of
conventional registration methods for each pair of images with one optimization dur-
ing training of a convolutional neural network. The first part of this thesis describes
fast and accurate registration methods using deep learning.

In CHAPTER 2 describes a 2.5D convolutional transformer architecture that enables
to learn a memory-efficient weakly-supervised deep-learning model for multi-modal
image registration. The proposed architecture combines three 2D networks to a 2.5D
registration network which are The three networks are independently trained on axial,
coronal, and sagittal slices of the images. During the inference, these networks are
applied independently yielding three layered 3D deformation fields with one zero
component. The final deformation field is created by averaging the respective non-zero
components of the deformation field.

To address the multimodality of the task, the standard UNet architecture was
adapted such that it has two separate processing streams for the moving and fixed
image. The first layers of these streams use individual convolutional weights in order to
learn modality-specific features. The later layers share the weight like in mono-modal
image registration. We showed that our method succeeds at learning large deforma-
tions across multi-modal images.

CHAPTER 3 presents a 3D deep-learning-based multilevel registration that is able
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to compensate and handle large deformations by computing deformation fields on
different scales and functionally composing them. The registration starts on the coarsest
level using the downsampled network inputs to compute the deformation field on this
level. On all finer levels, the deformation fields from all preceding coarse levels are
incorporated as an initial guess. To this end, the deformation fields are functionally
composed and used to warp the moving image at the current level.

We validated our framework on the challenging task of large motion inhale-to-
exhale registration using large image data of the multi-center COPDGene study. We
have shown that our proposed method archives better results than the comparable
single-level variant. In particular concerning the alignment of inner lung structures
and the presence of foldings. Additionally, we demonstrated that using the network
parameter of the previous level as initialization yields better registration results.

CHAPTER 4 identifies important strategies of conventional registration methods
for lung registration and successfully developed the deep-learning counterpart. It
builds on the method present in the previous chapter and extends it by adding multiple
anatomical constraints to incorporate anatomical priors into the registration frame-
work to obtain more realistic results. The lung lobe masks are integrated to consider
the global context. Moreover, the keypoint correspondences are used to increase the
alignment of smaller structures like airways and vessels. Furthermore, a constraining
method was introduced to control volume change and therefore avoid foldings inside
the deformation field. We showed that our registration framework equipped with these
components achieves state-of-the-art registration accuracy on the COPDGene and
DIRLab datasets with a very short execution time.

CHAPTER 5 presents the results of the Learn2Reg challenge. The Learn2Reg challenge
was the first to evaluate a wide range of methods for various inter-and intra-patient
as well as mono- and multimodal medical image registration tasks. The main goal
of this challenge was to provide a standardized benchmark on complementary tasks
with clinical impact and a platform for comparison of conventional and learning-based
medical image registration methods. We established a lower entry barrier for training
and validation of 3D registration, which helped us compile results of over 65 individual
method submissions from more than 20 unique teams.

Tumor Follow-Up Analysis

Measurement of metastatic tumors on longitudinal computer tomography (CT) scans
is essential to evaluate the efficacy of cancer treatment. Manual measurement of the
tumors for the RECIST criteria is often time-consuming and error-prone. However,
the diameter-based RECIST criteria also undergo continuous changes. AI-assisted
approaches might significantly speed up response evaluation and help to handle the
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ever-growing mass of image-based staging and follow-up evaluations.

CHAPTER 6 presents a pipeline that automates the segmentation and measurement of
matching lesions, given a point annotation in the baseline lesion. The point annotation
is used to extract a region of interest in which the CNN is carried out to segment the
lesion. Then, the baseline image is registered to the follow-up image to propagate
the region of interest in the follow-up scan. Subsequently, the CNN is applied to the
propagated region of interest in the follow-up image. In a final step, the corresponding
lesion is selected. We have trained and evaluated our method on soft-tissue lesions
from patients with metastatic melanoma, which are particularly challenging due to
their diverse appearance and location. We showed that our method archives promising
results and therefore laid the foundation for an efficient quantitative follow-up assess-
ment in clinical routine.

The reader study in CHAPTER 7 evaluates the performance, inter-reader variability,
and efficiency of an AI-assisted workflow for segmentation of lymph node and soft
tissue metastases in follow-up CTs by comparing it to a fully manual assessment. This
workflow builds on the pipeline presented in the previous chapter. Our findings support
our research hypothesis of an assisted workflow which is superior with respect to
processing time and non-inferior with respect to accuracy compared to the manual
workflow.
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8.3 Deep-Learning-Based Image Registration

Het doel van medische beeldregistratie is het spatieel uitlijnen van anatomische struc-
turen van twee of meer beelden door het vaststellen van ruimtelijke correspondenties.
Dit is een belangrijke stap voor vele taken in de medische beeldanalyse omdat het
voorheen niet gerelateerde gegevens verbindt en een gezamenlijke verwerking van die
gegevens mogelijk maakt. Verschillende methoden voor registratie zijn voorgesteld
voor een breed scala van problemen en toepassingen. Meestal wordt beeldregistratie
geformuleerd als een optimalisatieprobleem waarbij een geschikte kostenfunctie wordt
geminimaliseerd. Veelgebruikte benaderingen schatten oplossingen door iteratieve
optimalisatieschema’s toe te passen. Jammer genoeg is het oplossen van een dergelijk
optimalisatieprobleem rekenkundig veeleisend en bijgevolg traag.

Het blijkt ook mogelijk om het proces van registratie te leren van voorbeelden
door middel van deep learning. Door de toegenomen computerkracht is dit naar voren
gekomen als een alternatief voor conventionele benaderingen. Deep learning registratie
vervangt de kostbare iteratieve optimalisatie van conventionele registratiemethoden
door één optimalisatie die berekend wordt met een convolutienetwerk (CNN). Het
eerste deel van dit proefschrift beschrijft snelle en nauwkeurige registratiemethoden
met behulp van deep learning.

In HOOFDSTUK 2 wordt een 2.5D convolutionele transformator architectuur beschre-
ven die het mogelijk maakt om een geheugen-efficiënt zwak-supervised deep-learning
model te leren voor multi-modale beeldregistratie. Een 2D deep-learning gebaseerde
beeldregistratie aanpak is in de meeste gevallen niet voldoende voor volledige 3D
registratie omdat de vervormingen meestal drie-dimensionaal zijn. Het trainen van een
3D netwerk heeft echter veel meer geheugen nodig. In dit hoofdstuk hebben we het pro-
bleem van driedimensionale vervormingen aangepakt zonder de netwerkarchitectuur
uit te breiden naar 3D. De voorgestelde architectuur combineert drie 2D netwerken
tot een 2.5D registratie netwerk. De drie netwerken worden onafhankelijk getraind
op axiale, coronale en sagittale doorsneden van de beelden. In de testfaseworden deze
netwerken onafhankelijk toegepast, wat drie gelaagde 3D deformatievelden oplevert
met één nulcomponent. Het uiteindelijke deformatieveld wordt gecreëerd door het
gemiddelde te nemen van de componenten van het deformatieveld die ongelijk aan nul
zijn.
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Om met multimodale beelden om te kunnen gaan hebben we de standaard UNet-
architectuur aangepast. We introduceren twee afzonderlijke verwerkingsstromen voor
het bewegende en het vaste beeld. De eerste lagen van deze stromen gebruiken indivi-
duele convolutionele gewichten om modaliteitspecifieke kenmerken te leren. De latere
lagen delen de parameters. We hebben aangetoond dat onze methode erin slaagt om
grote vervormingen te leren over multimodale beelden.

In dit artikel presenteren we een 3D deep-learning gebaseerde multilevel registratie
die in staat is om grote vervormingen te compenseren en te verwerken door vervor-
mingsvelden op verschillende schalen te berekenen en deze functioneel samen te stellen.
De registratie begint op het grofste niveau en gebruikt de gedownsamplede netwer-
kinputs om het vervormingsveld op dit niveau te berekenen. Op alle fijnere niveaus
worden de vervormingsvelden van alle voorgaande grovere niveaus opgenomen als een
initiële schatting. We hebben ons raamwerk gevalideerd op CT scans van de longen die
gemaakt zijn in volledige inspiratie en volledige expiratie. Door de grote vervormingen
is dit een uitdagende taak. We gebruiken beelden van de multi-center COPDGene studie.
We hebben aangetoond dat onze voorgestelde methode betere resultaten oplevertdan
de vergelijkbare single-level variant.

HOOFDSTUK 4 identificeert belangrijke strategieën van conventionele registratieme-
thoden voor longregistratie en past deze toe in een deep-learning variant. De methode
bouwt voort op het vorige hoofdstuk en breidt deze aanpak uit door meerdere anato-
mische constraints toe te voegen om anatomische priors op te nemen in het registratie
raamwerk. Dit levert meer realistische resultaten op. De maskers van de longkwabben
worden geïntegreerd in de kostfunctie om rekening te houden met de globale context.
Bovendien worden de corresponderende ankerpunten gebruikt om de uitlijning van
kleinere structuren zoals luchtwegen en vaten te verbeteren. Tot slot werd een extra
term toegevoegd die grote volumeveranderingen tegengaat en daardoor komen onre-
alistische vervormingen minder voor.. We hebben laten zien dat onze methodehoge
nauwkeurigheid bereikt op de COPDGene en DIRLab datasets en bovendien zeer snel
werkt.

HOOFDSTUK 5 presenteert de resultaten van de Learn2Reg challenge. De Learn2Reg
challenge was de eerste die een breed scala aan methoden evalueerde voor verschillende
inter- en intra-patiënt en mono- en multimodale medische beeldregistratietaken. Het
belangrijkste doel van deze challenge was om een gestandaardiseerde benchmark te
bieden voor verschillende klinisch belangrijke taken. Met Learn2Reg kunnen conventio-
nele en deep learning beeldregistratiemethoden goed vergeleken worden. De challenge
verlaagt de drempel voor onderzoekers om hun methoden te vergelijken, wat ons heeft
geholpen om de resultaten te verzamelen van meer dan 65 inzendingen van meer dan
20 teams.
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8.4 Tumor follow-up analyse

Metingen van uitgezaaide tumoren op opeenvolgende computertomografie (CT) scans
is belangrijk om te kunnen vaststellen of een behandeling van kanker doeltreffend
is. Radiologen voeren nu manuele metingen uit van de tumoren volgens de RECIST
criteria. Dit is tijdrovend en foutgevoelig. AI-ondersteunde benaderingen zouden de
evaluatie aanzienlijk kunnen versnellen en kunnen helpen om de steeds groeiende
hoeveelheid scans te verwerken.

HOOFDSTUK 6 presenteert een pijplijn die de segmentatie en meting van overeen-
komende laesies automatiseert, waarbij alleen een punt hoeft te worden aangeklikt
in de laesie in de baseline scan. De punt annotatie wordt gebruikt om een regio te
extraheren waarin het CNN wordt uitgevoerd om de laesie te segmenteren. Vervolgens
wordt het basisbeeld geregistreerd op het vervolgbeeld om het interessegebied naar
de vervolgscan te propageren. Daar wordt het CNN toegepast op het gepropageerde
gebied . Wij hebben onze methode getraind en geëvalueerd op weke delen laesies van
patiënten met metastatisch melanoom. We toonden aan dat onze methode veelbelo-
vende resultaten behaalt en dit legt de basis gelegd voor een efficiënte kwantitatieve
follow-up beoordeling in de kliniek.

De reader studie in HOOFDSTUK 7 evalueert de prestaties, inter-reader variabiliteit,
en efficiëntie van een AI-ondersteunde workflow voor segmentatie van lymfeklier en
weke delen metastasen in follow-up CTs door deze te vergelijken met een volledig
handmatige beoordeling. Deze workflow bouwt voort op de pijplijn die in het vorige
hoofdstuk is gepresenteerd. Onze bevindingen ondersteunen onze onderzoekshypothe-
se van een geassisteerde workflow die superieur is met betrekking tot verwerkingstijd
en niet-inferieur met betrekking tot nauwkeurigheid in vergelijking met de handmatige
workflow. Een onafhankelijke evaluatie met extra lezers is nodig om de generaliseer-
baarheid van onze resultaten aan te tonen. De analyse is conservatief in de zin dat
verdere training met de geassisteerde workflow na verloop van tijd tot een extra verbe-
tering van een of beide uitkomsten zou kunnen leiden.





Research Data Managment

Studies described in this thesis use publicly available datasets (1-5) that can be accessed
online after registration or application and proprietary datasets obtained via clinical
cooperation. The primary data used in Chapter 2 and 5 and the secondary data used
in Chapter 2-7 is stored on a regularly backed-up Fraunhofer MEVIS (FME) server
accessible by all FME staff members. The primary data of Chapter 3 and 4 is stored
on a stored on a regularly backed-up Diagnostic Image Analysis Group (DIAG) server
accessible by all DIAG staff members. The primary data of Chapter 6 and 7 is stored
on a stored on a regularly backed-up FME server accessible by all FME staff members
who worked on the the DFG Radiomics Melanom project. The source code used for the
experiments presented in Chapter 2-7 is stored in a private GitLab or SVN repository
accessible by FME staff members.

(1) MM-WHS - Multi-Modality Whole Heart Segmentation Dataset (http://www.
sdspeople.fudan.edu.cn/zhuangxiahai/0/mmwhs/).

(2) DIRLabDataset (https://med.emory.edu/departments/radiation-oncology/
research-laboratories/deformable-image-registration/index.html.

(3) EMPIRE10 Challenge (https://empire10.grand-challenge.org).

(4) COPDGene Dataset (http://www.copdgene.org/).

(5) Learn2Reg Challenge (https://learn2reg.grand-challenge.org/).

http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/mmwhs/
http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/mmwhs/
https://med.emory.edu/departments/radiation-oncology/research-laboratories/deformable-image-registration/index.html
https://med.emory.edu/departments/radiation-oncology/research-laboratories/deformable-image-registration/index.html
https://empire10.grand-challenge.org
http://www.copdgene.org/
https://learn2reg.grand-challenge.org/
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