Supporting COVID-19 quarantine decisions with a statistical risk assessment model

Sonja Jäckle, Elias Röger, Volker Dicken, Benjamin Geisler, Jakob Schumacher, Max Westphal

¹ Fraunhofer Institute for Digital Medicine MEVIS, Lübeck, Germany; sonja.jaeckle@mevis.fraunhofer.de, www.mevis.fraunhofer.de

Federal Ministry of Education and Research

SPONSORED BY THE

German health offices

- Have to monitor all infected persons and have to report the COVID-19 cases to the Robert-Koch Insitute (RKI)
- Have to find all contact persons of COVID-19 and has to decide about quarantines

Timeline of monitoring contact persons

Risk assessment for quarantine decisions

- "Under which conditions can a group quarantine be released (earlier) such that the probability of overlooking an infection is low?"
- Restriction: All made test of contact persons are negative.
- Question: "How likely is it that there occurred no further infections?"

Statistical model

- Mathematical use case:
 - M Persons were in contact with one infected person
 - N, $N \leq M$ Persons were tested negative
 - $K \leq M$ Number of unknown infected persons

• How likely is it that there occurred no further infections (K = 0), given that N out of M persons are tested negative?

Statistical model

■ Probability calculation via Bayesian formula → posterior distribution

 $p_0 \coloneqq P(K = 0 | N \text{ out of } M \text{ tested negative})$

 $\frac{P(N \text{ out of } M \text{ tested negative} | K = 0) \cdot P(K = 0)}{P(K = 0)}$

P(*N* out of *M* tested negative)

• What do we need?

- Prior distribution P(K), which describes the probability of an infection
- Likelihood P(N out of M tested negative|K), which describes the probability of the negative test results under the condition that K persons were infected

Scenario-dependent prior distribution

Modeling of a beta-binomial distribution for a specific setting

 $K|\alpha,\beta,M\sim \mathrm{BB}(M,\alpha,\beta)$

- Informations are needed, such as
 - Probability for an infection: P(K > 0)
 - Conditional mean: E(K|K > 0)
- Determination of Beta-binomial distribution via optimization, e.g. L-FBGS (Byrd et al)

(en.wikipedia.org/wiki/Beta-binomial_distribution)

Likelihood

- Day specific test sensitivity is considered for negative testing probability
- Division of N into n day specific groups:

 N_d persons are tested on d-th day with K_d infected persons (d = 1, ..., n)

Consideration as an urn model, where K persons are randomly drawn: Multivariate hyper-geometric distribution

Example: school classes

 Literature research:
→ 2 studies about infection probability (Heavey et al, Macartney et al)
→ RKI report about average infection numbers in outbreaks

Prior modelling:

$$P(K > 0) = \frac{3}{21} \approx 0.14,$$
$$E(K|K > 0) = 4.8$$

A school class dataset (Berlin-Reinickendorf health office)

Case number	Date of last contact	PCR test date	PCR test result
1	August 10, 2020		
2	August 10, 2020		
3	August 10, 2020		
4	August 10, 2020	August 18, 2020	negative
5	August 10, 2020	August 19, 2020	negative
6	August 10, 2020	August 19, 2020	negative
7	August 10, 2020	August 19, 2020	negative
8	August 10, 2020	August 20, 2020	negative
9	August 10, 2020	August 19, 2020	negative
10	August 10, 2020	August 19, 2020	negative
11	August 10, 2020	August 19, 2020	negative
12	August 10, 2020	August 19, 2020	negative
13	August 10, 2020	August 19, 2020	negative
14	August 10, 2020	August 19, 2020	negative
15	August 10, 2020	August 19, 2020	negative

A school class dataset (Berlin-Reinickendorf health office)

- Calculated probability that no transmission occured: $p_0 = 98\%$
- With rule $p_0 > 0.9$: **Quarantine cancellation**
- Feedback of the health office: No further infections were reported

Summary & Discussion

- A first statistical model as risk assessment for quarantine decisions
 - → Can be specified for any group event situation
 - → Has the potential to facilitate the daily work in health offices
- Future work:

Evaluation of using the statistical model for quarantine decisions

M $N_1 \qquad K_1 \qquad K$ $N_2 \qquad K_2 \qquad \cdots \qquad K_n$ $N_n \qquad K_n$

Contact: Sonja Jäckle, sonja.jaeckle@mevis.fraunhofer.de

12