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Abstract

In this thesis, a framework for measuring the similarity between several images
in the form of a distance measure, namely SqN, is presented and discussed. The
design of SqN naturally fits into the standard formulation of variational image
registration and generalizes the concept of a distance measure to more than two
images.
Quantifying the similarity of images is an important task in modern image pro-
cessing. In the literature, a variety of approaches to measure the similarity of two
images are discussed. Applications such as dynamic imaging or histological serial
sectioning require the registration of a large number of images. For these cases an
extension to a method for similarity measurement of multiple images is a logical
next step. The literature is still rather modest on this subject.
Especially for the registration of multiple images, a novel distance measure SqN
was developed in this work. The basic idea is to evaluate a feature matrix by its
singular values to align the images. For this reason, SqN is based on the Schatten-
q-Norms, which are computed using the Singular Value Decomposition (SVD).
We derive the distance measure SqN by mainly using three di↵erent geometric
ideas to achieve image alignment. These ideas include rank minimization of the
feature matrix, volume minimization, and correlation maximization. This results
in several special cases, including a close relationship to the Normalized Gradient
Fields distance measure when normalized intensity gradients are used as features
within the feature matrix. Finally, a correlation-based approach generalizes the
introduced ideas and provides a general framework for distance measurement with
SqN. This framework comprises three main points, which we verify by practical
application to medical image registration problems.
First, SqN can register more than two images with comparable quality as is pos-
sible with standard two-image based methods such as the Normalized Gradient
Fields distance measure or the sum of squared di↵erences. Secondly, registration
of comparable quality can be achieved in less time than with the standard methods
mentioned above, which are used in a pairwise registration scenario. Furthermore,
the order of the images has no influence on the registration results due to the use
of the SVD. Finally, the novel distance measure SqN can be applied to real-world
medical image registration problems in practice. Our numerical experiments ha-
ve verified all key points so that SqN is a promising distance measure for actual
application to solve real medical image registration problems.





Zusammenfassung

In dieser Arbeit wird ein Rahmen für die Ähnlichkeitsmessung zwischen mehreren
Bildern in Form eines Distanzmaßes, namentlich SqN, vorgestellt und diskutiert.
Das Design von SqN gliedert sich natürlicherweise in die Standardformulierung
der variationellen Bildregistrierung ein und verallgemeinert so das Konzept eines
Distanzmaßes für mehr als zwei Bilder.
Die Quantifizierung der Ähnlichkeit von Bildern ist eine wichtige Aufgabe in der
modernen Bildverarbeitung. In der Literatur werden eine Vielzahl von Ansätzen
zur Ähnlichkeitsmessung zweier Bilder diskutiert. Anwendungen wie z.B. die dy-
namische Bildgebung oder histologische Serienschnitte erfordern die Registrierung
einer teilweise großen Anzahl von Bildern. Für diese Fälle ist eine Erweiterung
auf eine Methode zur Ähnlichkeitsmessung mehrerer Bilder ein logischer nächster
Schritt. Hierfür ist die Literatur noch vergleichsweise überschaubar.
Speziell für die Registrierung mehrerer Bilder wurde in dieser Arbeit ein neues
Distanzmaß SqN entwickelt. Grundlegende Idee ist die Bewertung einer Feature-
Matrix über ihre Singulärwerte, um die Bilder aneinander auszurichten. Aus die-
sem Grund basiert SqN auf den Schatten-q-Normen, die mit Hilfe der Singulär-
wertzerlegung (SVD) berechnet werden. Wir leiten das Distanzmaß SqN her, in-
dem wir hauptsächlich drei verschiedene geometrische Ideen verwenden, um die
Ausrichtung der Bilder zu erzielen. Diese Ideen umfassen die Rangminimierung
der Feature-Matrix, eine Volumenminimierung sowie eine Korrelationsmaximie-
rung. Daraus ergeben sich verschiedene Sonderfälle, wie unter anderem eine enge
Beziehung zum Normalized Gradient Fields Distanzmaß, wenn normalisierte In-
tensitätsgradienten als Features innerhalb der Feature-Matrix verwendet werden.
Letztlich verallgemeinert ein korrelationsbasierter Ansatz die eingeführten Ideen
und bildet einen allgemeinen Rahmen für die Distanzmessung mit SqN. Dieser
Rahmen umfasst drei Hauptpunkte, die wir durch praktische Anwendung auf me-
dizinische Bildregistrierungsprobleme verifizieren.
Erstens ist SqN in der Lage, mehr als zwei Bilder in vergleichbarer Qualität zu
registrieren, wie dies mit standardmäßigen zwei-Bild basierten Methoden wie dem
Normalized Gradient Fields Distanzmaß oder der Summe der quadrierten Di↵e-
renzen möglich ist. Zweitens kann die Registrierung in vergleichbarer Qualität in
kürzerer Zeit erreicht werden als mit den erwähnten Standardmethoden, welche
in einem paarweisen Registrierungsszenario verwendet werden. Außerdem hat die
Reihenfolge der Bilder aufgrund der Verwendung der SVD keinen Einfluss auf
die Registrierungsergebnisse. Schließlich kann das neuartige Distanzmaß SqN auf
reale medizinische Bildregistrierungsprobleme in der Praxis angewendet werden.
Alle Schlüsselpunkte konnten mithilfe der numerischen Experimente nachgewie-
sen werden, sodass SqN ein vielversprechendes Distanzmaß für die tatsächliche
Anwendung zur Lösung realer Bildregistrierungsprobleme ist.
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1. INTRODUCTION 1

1 Introduction to Image Registration of
Multiple Images

Image registration is an inverse problem that is typically phrased as an optimiza-
tion problem, where the objective function is based on a regularizer and a data
fidelity term [32], [99]. In summary, image registration is about the comparison of
images of di↵erent scenes, time points, or modalities. In this thesis, we suggest a
novel data fidelity term called SqN, which is particularly suited for the registration
of multiple images. This novel data fidelity term naturally fits into the class of
distance measures used for variational image registration. In this first introduc-
tion chapter, we motivate the use of SqN for the registration of multiple images
over standard two-image based measures. For this purpose, we briefly introduce
the medical applications we use to demonstrate the image registration potential
of SqN. Furthermore, we embed the new distance measure into existing, related
literature. This chapter is concluded by an overview of the contributions and the
outline of this work.

1.1 Registration of Multiple Images

Image registration is an essential component of image processing and is studied
extensively [81], [90], [128]. Especially for the alignment of two images, image
registration is a well-studied problem, see e.g. [81], [90], [99], [100], [128], [150].
Typically, the images show the same object or scenery, where one of the images
usually is fixed. Thus, the moving image is to be aligned to the fixed image.
Following Modersitzki [100], the registration problem is about

”[finding] a reasonable transformation such that a transformed version
of a template image is similar to a reference image.”

This general definition allows for more than two images and is not restricted to a
pixel-basis for matching. Because of its generality, we use this definition as a basis
for this work.
An essential question of the variational construct is, what similarity of images is
or how it is measured. The choice of a suitable distance measure is vital for the
registration problem because it directly a↵ects the alignment of the images [55]. A
wide variety of distance measures for two images have been proposed and explored
to the fullest extent possible; see, e.g., [21], [47], [143]. More or less, every measure
known from the relevant literature uses the image’s gray values for either direct
comparison or to compute certain features that can be compared. The idea is to
have a data fidelity term that can measure the similarity or dissimilarity of im-
ages or its features and fulfills specific properties that are needed for optimization.
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According to [115], standard measures can be hierarchically organized concerning
their assumed relationship between the images. These categories include – but are
not limited to – functional relationships, a�ne relationships, as also statistical re-
lationships. Also, distance measures are categorized as monomodal or multimodal.
Concerning the latter distinction, some familiar examples are the sum of squared
di↵erences (SSD) or the normalized cross-correlation (NCC) on the monomodal
side. These have proven to be very well-suited in a wide variety of applications,
in which only the same modality is used. Medical applications comprise follow-
up examination [112] or histological tissue reconstruction [86], [135], to name a
few. On the multimodal side, there are measures like mutual information (MI)
or normalized gradient fields (NGF). As these are not only based on the intensity
information of the image data, they are almost always used for multimodal appli-
cations [80], [142], [144]. However, the use-cases of these measures are not limited
to multimodal cases. They have also proven to be very useful for monomodal cases
as well as for the registration of dynamic imaging [76], [86], [112]. Mostly, dynamic
imaging comprises multiple timeframes of the same modality while consisting of
some change over time. In medical dynamic imaging, most of the time, this is due
to contrast agent uptake.

The standard measures are designed to compare a reference and a template image.
In this thesis, we formulate the novel singular value based distance measure called
SqN following the problem definition and nomenclature of Modersitzki [100]. The
acronym SqN originates from the used Schatten-q-Norms. The design of SqN
naturally fits into the standard variational image registration problem formulation
of Modersitzki [99], [100], and generalizes the concept of distance measurement.
For this purpose, we take advantage of the generality of the image registration
problem formulation by Modersitzki [100]. The formulation does neither specify
if the reference and template images need to be explicit or implicit nor specifies
if any of the images is fixed. With SqN we take advantage of these freedoms and
generalize the distance measure concept to more than two images. For SqN we
don’t need to choose a specific reference image as all images are intended to be
transformed. Furthermore, the formulation maintains the opportunity to choose
for various image features for distance measurement. With such a generalization
of distance measurement, we can take advantage of image-relationships over more
than just two neighboring images. The versatile design allows to solve medical
image registration problems comprising more than two images, overcoming the
need to register in a pairwise manner.
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1.2 Medical Applications

In the field of medical image processing, many applications cover multiple images.
Among the vast field of medical applications we choose two exciting applications
to demonstrate the potential of SqNẆe show results for motion correction in dy-
namic contrast-enhanced magnetic resonance imaging (DCE-MRI) as well as for
histological serial sectioning.

Motion Correction in DCE-MRI

Dynamic contrast-enhanced magnetic resonance imaging is an evolving factor for
examination of kidney malfunction [62], [63]. It is an in vivo imaging technique for
the measurement of several clinically relevant parameters of the kidneys function.
The potential of this imaging method is to replace methods for which patients
need to be exposed to radiation as in, e.g., nuclear imaging methods like Positron
Emission Tomography (PET) [63]. Still, without reproducible results and high
accuracy of concentration measurement, the clinical use is not reasonable [97].
Figure 1 illustrates a promising registration result of a DCE-MRI data set of a
human kidney for 2D images over time.

Axial Unregistered SqN

Figure 1: Visualization of a part of 4D (x,y,z,t) DCE-MRI data. A representative
axial slice (x,y) at a representative time t is shown on the left. The profile (x,t)
is shown for unregistered (center) and for registered data using SqN (right). De-
tails are outlined in Sec 4. Data courtesy of Jarle Rørvik, Haukeland University
Hospital, Bergen, Norway.

DCE-MRI sequences are four-dimensional datasets. The data is acquired as a
time series in three dimensions to capture the uptake of the non-radioactive,
Gadolinium-based contrast agent [63]. For an accurate analysis, however, an exact
point-to-point correspondence is crucial. In order to achieve such correspondences,
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motion correction is inevitable [62], [63], [120]. Motion correction of DCE-MRI cer-
tainly is a challenging task as there are intensity changes due to contrast agent
uptake, noise, and various movements of tissue. Our results in Sec. 4 show that
SqN is well suited to correct for motion in a multi-modal scenario, which is why
we use DCE-MRI sequences to demonstrate the potential of SqN. We show in
Sec. 4, that SqN is able to correct for motion while maintaining the tracer dynam-
ics. Nevertheless, once achieved a proper motion correction, DCE-MRI is superior
to di↵erent diagnostics due to its high sensitivity [82]. When corrected for motion,
DCE-MRI has the potential to become an essential tool in clinical use for kidney
malfunction examination [62].
The current trend in image processing is clearly towards the use of neural net-
works [36], [59], [67], [78]. Not only are neural network based methods for image
processing very advanced by now, concerning computation times they often out-
perform conventional methods [36], [78]. Recently proposed methods for image
registration have also shown that the image registration results are of comparable
quality; see e.g. [57]–[59], [78]. All critical mathematical and numerical methods
can be used, like e.g. variational energy-functionals comprising distance measure
and regularization and even multi-level methods. Eventhough the learning process
is slow and may take up to several days, the evaluation is super-fast [36]. Once the
network is trained, a full 3D image registration is done within fractions of a sec-
ond, which is a clear advantage, compared to conventional methods. Registration
of multiple images using neural networks may be interesting for time-critical appli-
cations or for processing large data sets in less time than it would be possible with
conventional registration methods. Because of that, we show numerical results for
a proof-of-concept experiment on motion-correction using SqN for registration of
multiple images within a recently proposed approach by Kuckertz et al. [77] at
the end of Section 4.

Registration and Fusion of Histological Serial Sectioning

The registration of histological serial sectioning is about the reconstruction of
three-dimensional tissue and the possibility of improved examination across sec-
tions. Following [85], [86], the digital pathology extends the examination possi-
bilities of traditional histology. Three-dimensional reconstruction is needed for
the virtual examination of tissue across slices. In order to reconstruct a series
of histological sections to its original volume, image registration is needed [85].
Furthermore, a series of histological sections is likely to be examined in various
stainings and modalities [83], [114], [125], [135]. For a detailed analysis of biopsy
sections, a fusion of three-dimensional volumes of di↵erent modalities is essential
to correlate molecular and microscopic levels of tissue [83], [114], [125], [135].
The potential of SqN lies in the multi-modality. Because of that, we choose the
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reconstruction and fusion of histological serial sectioning. In Sec. 4 we show the
potential of SqN by reconstruction and fusion of multiple modalities. Just aligning
pairs of images may lead to cumulated errors like the banana-e↵ect or z-drift [34],
[123], [130], [131], [138]. We aditionally show, that the use of SqN for image
registration practically avoids such errors. Figure 2 illustrates a promising profile
view of a registration of histological serial sectioning of a monkey brain using our
novel distance measure SqN.

Single Section Unregistered SqN

Figure 2: Visualization of a stack of histological serial sectioning (x,y,z). Illustrated
on the left is a representative histological section (x,y) of a monkey brain. The
profile (x,z) is shown for unregistered data (center) and registered data using SqN
(right). Details on the numerical results are outlined in Sec 4. Data courtesy of
O. Schmitt, University of Rostock, Germany; see [123] for experimental details.

All measures mentioned above are defined for registration of two images, but appli-
cations like dynamic imaging or serial sectioning involve the analysis of sequences
of many images. The single images of these applications have an intrinsic relation
that needs special treatment. A two-image distance measure only captures the re-
lation between two single frames at a time or may be used for comparison of single
frames to an average image. Especially in dynamic imaging, intensity fluctuations
occur due to contrast agent uptake. Sometimes, data is also corrupted, or there
are gaps between particular time windows [62], [63], [85], [130]. In histological
serial sectioning, there are, for example, drift-away e↵ects during 3D tissue recon-
struction due to an accumulation of small errors resulting in an odd, unwanted
shape; e.g., z-drift or banana-e↵ects [130], [138]. All these problems benefit from
a distance measurement over more than two images, as can be seen in Section 4.
Intensity fluctuations can be compensated, and the 3D volume for reconstruction
cannot deform in odd, unexpected ways. Furthermore, most approaches select a
reference frame for the use of two-image distances; see, e.g., [85], [101], [142]. This
determines the ordering of the images and favors accumulation errors like a z-drift
or unwanted changes of intensities in dynamic imaging.
In Section 4, we demonstrate that our novel data fidelity term SqN can resolve
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the mentioned issues due to the use of intrinsic structure with help of singular
values. By design, information is spread over all considered images in an automatic,
global way. This unique design allows for registration without choosing a specific
reference image. Moreover, it allows registration without any specific order of
images. It is possible to register just two images or even a large number of images.
Due to its use of singular values of specific, deterministic features, special cases
can be built. The well-studied normalized gradient fields (NGF) [47] distance
measure is amongst these special cases. Therefore, it can also be understood as an
extension or generalization of two-image distance measures like NGF. This allows
flexible applicability and straightforward geometrical interpretability due to the
connections to well-studied distance measures.

1.3 Related Literature

There is a wide variety of di↵erent approaches and also a sheer amount of applica-
tions of image registration. Consequently, we focus on an overview of the literature
that is related to our work. To find general access to the topic of image registra-
tion, we refer to [37], [38], [99], [100]. A non-representative selection of survey
articles, that reflect the evolution of image registration over the last decades, are
[11], [61], [90], [91], [95], [104], [122], [128], [150].

Related Frameworks and Data Fidelity Terms

Since this work deals with our novel distance measure SqN, we give an overview
of related registration frameworks and distance measures, respectively. A pinnacle
in the development of image registration for images from di↵erent sceneries or
modalities is the discovery of distance measures capable of comparing images not
only by their pixel-wise intensity value equality, like, for example, the sum of
squared di↵erences (SSD) does. An example is mutual information (MI) [21], [143].
Mutual information originates in information theory. It minimizes the entropy of
the joint distribution of the sequence of intensity values of both images. Another
example is the normalized gradient fields (NGF) distance measure [47], [100]. This
approach is based on intensity gradients to align corresponding edges. This is
achieved by aligning the directions of locally normalized intensity gradients. Both
MI and NGF are measures designed for multi-modal image registration. Our novel
distance measure SqN is based on ideas similar to those of NGF, but generalizes the
capability of comparing two images. Furthermore it is straightforward to interpret
as it is deterministic and based on geometric ideas comparable to the idea of
deterministic measures like NGF or the normalized cross correlation (NCC).
Measures like SSD, MI or NGF and its variants are designed to register two im-
ages, but many applications comprise more than two images. Time-dependent
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data, like in dynamic imaging scenarios or several tissue slices in histological serial
sectioning, are compelling examples amongst many. In a pairwise manner, such
measures are also used for registration of multiple images in practice [63], [76],
[85]. Nevertheless, they are accompanied by the necessity to select a reference
image all other images are aligned to. The particular choice of a reference has
been shown to produce inconsistent results, depending on the chosen reference
[70], [98]. With SqN we overcome this necessity. Besides SqN, several develop-
ments comprise extensions of SSD, MI as well as NGF [4], [7]–[9], [70], [98], [111].
Many of these extensions have emerged from di↵erent fields of applications. An
exemplary application is the generation of anatomical atlases, which is a very well-
studied field. Many authors understand the process of finding anatomical atlases
as an averaging over many di↵erent shapes. Shape analysis is distantly related to
distance measures for registration of multiple images. The shape analysis of the
human brain is a notable example in this context. Not only have landmark-based
registration approaches been developed for an examination of the brain anatomy;
see, e.g., [28], [39], [49], [110], [119]. Physical principles are also well-studied, e.g.,
with elasticity concepts from continuum mechanics [119], which are also closely
related to elastic regularization techniques; see, e.g., [13], [109], [118]. Alongside
this physical point of view, methods have evolved that use the well-known princi-
pal component analysis (PCA) [17], [28], [127], which includes both the analysis of
geometric transformations [17] as well as using eigenanalysis for displacement com-
putation [127]. Besides, the analysis of principal components is the examination
of whole shape spaces using the correlation of specific shapes within these spaces
as well as the use of entropy minimizing methods related to MI [18], [24], [72], [96],
[132], which is mostly done on a statistical basis. Altogether, these methods have
one crucial point in common. They need a distance measure capable of comparing
multiple data sets and use the information across these. Summarizing, our novel
distance measure combines ideas from well-studied fields, which makes it very ver-
satile for application in di↵erent areas. Nevertheless, not only shape analysis and
atlas generation is related to the construction of our novel distance measure for
multiple images.

Application-driven Techniques for Image Registration

Application-driven approaches have evolved a high potential for the use of infor-
mation across many data sets and in particular images. A recurring term in the
context of multiple-image registration is groupwise; see, e.g., [23], [41], [42], [68]–
[70], [73], [93], [106], [129], [139], [140], [147], [148], [151]. Note that the term group
may not always refer to the common algebraic term. Sometimes it is derived from
the literal groups of images that are registered. Although, some authors build a
group structure using multiple images, which is a very exciting field of mathemat-
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ical research. Many of the groupwise approaches are motivated by registration of
medical image data, such as functional magnetic resonance imaging (fMRI), dy-
namic contrast-enhanced magnetic resonance imaging (DCE-MRI), dynamic se-
quences from computer tomography (CT) or even positron emission tomography
(PET), to name a few. The recent groupwise approaches comprise the use of
extensions of mutual information [129], [132], [151], correlation-based approaches
[41], [42] and even principal component analysis-based dissimilarity measures [50],
[68]–[70]. Especially noteworthy is, that many of the groupwise approaches have
a very similar construction of a data matrix which is used for computing distance
energies. In order to bring all images together into one mathematical structure,
many authors make use of an array structure in which the images are organized in
columns. Although it has di↵erent names, it basically is the same structure from
which principal component analysis [43], [50], [68]–[70], singular value decomposi-
tion [111] and also correlation matrices can be derived [41], [42]. For SqN we use
a similar structure but generalize it for a greater versatility.
The use of intrinsic information using such array-structures is mostly based on
geometrical ideas, like on linear dependency of the images or image gradients, re-
spectively. The hustle and bustle of the methods using neural networks and deep
learning has become greater and greater within the last decade. These methods
are also able to learn intrinsic structures of given data, even if this might be not
understandable for humans. Many novel approaches have shown, that a combina-
tion of traditional measures and regularizers with neural networks are superior in
specific tasks, when having enough data for learning and evaluation [57]–[59], [78].
Furthermore, groupwise approaches are developed for use with neural networks
[19], [126]. Beyond medical imaging, applications of non-medical nature like e.g.
stereo vision [89], optical flow and tracking for e.g. autonomous driving [12], [65],
[108] or even satellite image registration [74] that use image registration, which
may profit from an approach like SqN, are worth mentioning.

1.4 Contributions and Outline

This work introduces the novel distance measurement framework SqN for image
registration of multiple images. First, we introduce the general image registration
problem and a variational framework for solving it. We give a pertinent overview
of state-of-the-art distance measures and regularizers for image registration of two
images. This is accompanied by a comprehensive review of relevant optimization
methods and numerical methods.
The central part of this work is the introduction of the distance measurement
framework SqN for the registration of multiple images. This central part starts by
extending state-of-the-art methods in a straightforward, sequential way and contin-
ues with a brief discussion of reasons to consider di↵erent methods. Subsequently,
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we start the novelty part of this work by introducing the distance measurement
framework with concomitant analysis of properties and numerical behavior. This
comprises di↵erent, geometrically motivated approaches that we merge into one
general framework. Here, we analyze the versatility and potential of the novel
framework. Furthermore, brief error analysis and pertinent analysis of the numer-
ical derivative follow.
With SqN we introduce a distance measurement framework that is capable of reg-
istering multiple images in a quality comparable to standard methods in less time.
Furthermore, we deploy a versatility that allows application of SqN in medical
real-world applications seamlessly. Finally, we demonstrate the potential of the
framework and validate the theses. For this purpose, we present numerical results
for medical image registration applications. We focus on the di↵erent, above in-
troduced applications. We address these applications with our specially developed
Python-based toolbox Groupwise Registration Algorithms and Tools (GReAT) as
well as with an extension of the freely available MATLAB-based toolbox Flexible
Algorithms for Image Registration (FAIR) [100].
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2 Variational Image Registration for
Two Images

For the formulation of the image registration problem, we follow Modersitzki [100],
using a general, variational framework. This framework is built upon an optimiza-
tion problem consisting of a data fidelity and a regularization term, which are
combined are the objective function. The objective function is to be minimized,
as it describes the energy of the problem. The distance measure is small when the
images are similar. An optimization problem only based on a distance measure is
ill-posed in the sense of Hadamard [48]. Small changes of the input data may lead
to significant changes in the output data, the problem is not convex and thus the
solution is not unique, and the deformation can be non-continuous [99]. This is
resolved by using regularization [32]. In Section 2.3 and Section 2.4 we summarize
di↵erent choices for both parts.

We choose the variational construct because of its generality. The versatile de-
scription of the registration problem as a combination of image similarity and
regularity serves as a basis to fit our novel distance measurement approach into
a well-studied standard approach. For the computation of a solution, we follow
the discretize-then-optimize approach proposed by Haber and Modersitzki [45],
as it is successfully used for di↵erent medical image registration applications [76],
[85], [112]. The discretize-then-optimize approach is summarized in Section 2.2.
We focus on using di↵erentiable distances and regularizers, such that we can use
standard optimization methods. For the computation of analytic derivatives, we
discretize the used terms and use iterative optimization schemes like Gauß-Newton
and L-BFGS; see Section 3.6 and Section 2.7.

In this section, we outline the variational framework following [100]. For this pur-
pose, we summarize the mathematical preliminaries and define the image registra-
tion problem for two images, followed by an outline of discretization methods and
a summary of optimization strategies. The chapter is mainly based on textbooks
like [99], [100], [103] and references therein.

2.1 The Image Registration Problem

For the definition of the image registration problem (IRP), we first define images
and transformations to have a proper notation. In this work, we understand images
as mappings ⌦ ⇢ Rd

! G with domain ⌦ and d 2 N the dimension of the space.
Typically, d 2 {2, 3} for spatial dimensions. Here, we also use d = 4 for an
additional time dimension. The target domain G can represent binary- or gray-
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values and can also be a tensor for more abstract constructs. As we mainly focus
on the registration of gray-valued images, G ⇢ R is su�cient as a target domain.
In Section 5, we briefly discuss the other cases.

Definition 1 (Image (cf. [99, p. 14])). Let d 2 N. Then

I : ⌦ ⇢ Rd
! R

is called image, if

1. I is compactly supported,

2. I(x) < 1 for all x 2 Rd,

3.
R
Rd I

k(x) < 1 for k > 0.

⌦ is called image domain. We denote the set of all images by

Img := {I : Rd
! R | I is an image}.

In this work, we focus on connected, rectangular domains for images. With this
definition, we can evaluate an image at every point in the image domain. Knowing
how an image is defined, we can define how to transform images in order to be
able to compare them. This we can accomplish this with a transformation.

Definition 2 (Transformation (cf. [99, p. 77])). Let d 2 N. A vector field

y : Rd
! Rd

is called transformation. For a given transformation y, the mapping u : Rd
! Rd

is called the displacement.

We follow [99] and split the transformation y into an identity part and the dis-
placement u as

y(x) = x+ u(x).

The deformations can be subdivided into parametric and non-parametric deforma-
tions. We use parametric transformations for pre-registration, as these transform
each point of an image in the same way [99], [100]. In many cases, this does not
allow for a point-to-point correspondence, as often non-linear deformations occur.
This phenomenon we also explore in our medical applications in Section 4.
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Parametric and Non-Parametric Deformations

Generally, a parametric approach restricts the number of parameters for determin-
ing of the deformations y to a finite number. A special case is to determine y by
solving an a�ne linear equation system

y(x) := Ax+ b.

Here, a point x 2 Rd with d 2 N is a�ne linearly transformed by application
of a linear transformation matrix A 2 Rd⇥d and a translation vector b 2 Rd.
This model can be parameterized by the d

2 parameters determined by the entries
of A and the d parameters determined by the entries of b, which gives overall
d
2 + d parameters. Therefore, there is a finite number of parameters to describe

the transformation y. In order to generate physically explainable systems, A is
required to fulfill det(A) 6= 0, such that A is invertible. If A is not invertible, the
singularities of A cause problems in the transformed image. The translation vector
b contains real numbers to translate the coordinates of the points of the template
image.
The parametric model allows for translation, rotation, scaling, and shearing in two
and three spatial dimensions. This is especially useful to preserve point-to-point
relations. A special group of these transformations are called rigid transformations.
These are angle- and length-preserving, which means that A>

A = AA
> = Id.

Non-parametric transformations have an unspecified number of unknowns, which
is a di↵erence compared to the parametric transformations. This is due to the fact
that every point x is individually transformed by y(x), as y is not parameterized
by a finite number of parameters. The individual deformation allows us to model
non-linear transformations, which is especially useful in medical applications, to
capture changes in tissue or di↵erent kinds of motion of organs on the one hand.
On the other hand, this comes with the need to optimize with respect to all image-
points rather than with respect to a finite number of parameters.

We can now use these two definitions to define the classical image registration
problem [99].

Problem 1 (Image Registration Problem (IRP, cf. [99, p. 78])). Given a reference
image R and a template image T , the image registration problem aims to find a
reasonable transformation y such that T and R are as similar as possible.

This linguistic description can be formalized, following [99], [100]. Let T �y denote
the transformed image T � y : Rd

! R with T � y(x) = T (y(x)). Further, let
D : Img⇥ Img ! R be a similarity measure that quantifies the dissimilarity of the
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images T � y and R. The goal is to minimize D with respect to y. As outlined
before, this problem is ill-posed, and we add a regularization S : ⌦y ! R, which
assures smoothness of the solution. Here, ⌦y is the space of transformations.
The influence of the regularizer is controlled with a regularization parameter ↵ 2

R>0. With this, the image registration model is to determine a minimizer of the
functional J : Img ⇥ Img ⇥ ⌦y ⇥ R>0 ! R as [99]

J (T ,R, y,↵) = D(T � y,R) + ↵S(y) �! inf (1)

This joint functional describing the image registration problem was introduced for
image registration by Fischer and Modersitzki [30] and is the basis for our gen-
eralization in Sec. 3. Note that the functional has a minimizing element due to
the regularization, which in general has no explicit analytic expression. We there-
fore use numerical optimization methods. Following, we discuss two fundamental
directions.

2.2 Optimization Strategies

Since we have defined the image registration problem we take as a basis, we shortly
summarize two possible ways of minimizing a joint functional like Eq. (1). The lit-
erature indicates two paths, namely Optimize-then-Discretize as well as Discretize-
then-Optimize [22], [46], [99].
The Optimize-then-Discretize approach makes use of the tools of the calculus of
variations. The registration problem is modeled as a system of partial di↵erential
equations. A vanishing first variation, also known as Euler-Lagrange-Equations, is
used to compute of a minimizing element of (1). For this approach, the system is
discretized after solving for optimality, typically using finite elements or finite dif-
ferences; see e.g. [20], [56], [99]. The approach has the advantage that well-known
techniques from solving PDEs can be used [99]. A drawback is that only small
steps towards a solution can be made, such that the convergence is rather slow
[99]. We do not use this way, as we cannot use standard optimization methods for
solving the registration problem [46].

The second way to a solution – which is used in this work – is to use the Discretize-
then-Optimize approach. With this approach, we first discretize the registration
problem and optimize the discrete approximation afterwards; see e.g. [45], [46],
[100]. This has the following advantages [46]:

• Multi-level approaches are straightforward to use due to discretization before
optimization.

• We can use Newton-type methods for solving the IRP, which converge with
up to quadratic rates.
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• Stopping criteria for numerical optimization can be used.

For this work, the only notable disadvantage is that the approximation’s quality to
the continuous solution depends on the used discretization scheme [44]. Depending
on the used grid-type for discretization, di↵erent boundary conditions need to be
handled; see e.g. [46], [100]. When needed, we mention these in the specific sections
of this work. A detailed discussion on the implications by using this approach can
be found in [46], [100]. Therefore, we follow this approach.
In Section 2 and Section 2.1 we discuss the need for two-image registration. Subse-
quently, in Section 2.7 we review the optimization methods we use for computation
of our numerical results for the medical applications presented in Section 4.

2.3 Distance Measures

In this section, we start to enlighten the topic of measuring the similarity of im-
ages, starting for two images in order to generalize to an arbitrary number of
images. The summarized data fidelity terms give geometric ideas of what image
similarity means. We use these ideas for generalization in order to introduce our
novel distance measure SqN. Accompanying, in the following section, we elaborate
regularizers for two images as we use them to regularize our deformation fields.
For the following sections, we follow original literature like [10], [29], [37], [47],
[55], [81], [99], [100], [128] and references therein.
We focus on distance measures that are at least one time continuously di↵erentiable
since we use optimization methods that use derivatives.

Sum of Squared Di↵erences

A straightforward way of comparing images is the so-called Sum of Squared Di↵er-
ences (SSD). Although the time of the first use may not be determined, a linearized
version was already used as a standard in the early days of digital image processing
in [65], [89] for optical flow estimation. It compares the images gray values in a
point-wise manner. The idea is, that the compared images are similar, if their
di↵erence vanishes [99]:

D
SSD(R, T ; y) :=

1

2

Z

⌦

(T (y(x))�R(x))2 dx. (2)

The advantages of this measure are the straightforward evaluation and its robust-
ness to noise. The main disadvantage of SSD is that it directly compares the gray
values. Therefore, it is not suited for comparing images showing corresponding
structures with di↵erent gray values, e.g., MRI compared to CT.
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Normalized Cross Correlation

The normalized cross correlation is another standard measure in image registration
[94]. It originates from comparing the reference image with a translated version
of the template image [100]. The cross correlation is derived from expanding the
square-form (T (x)�R(x))2 and ignoring the squares [100]:

D
CC(R, T ; y) :=

Z

⌦

T (y(x))R(x) dx = hT (y(x)), R(x)i. (3)

In order to achieve scaling-invariance, the cross correlation is typically normalized
and then used for registration [100]:

D
NCC(R, T ; y) :=

hT (y(x)), R(x)i

kT (y(x))k kR(x)k
(4)

with the induced norms kxk =
p

hx, xi. Again, following the later introduced
discretization method, this measure is straightforward to evaluate. Furthermore,
fluctuations in gray value intensities are compensated by normalizing the images
and is robust against noise. However, this measure cannot – just as SSD – compare
images from modalities that show corresponding structures with di↵erent gray
values. In Section 3 we show, that this measure is a special case of SqN.

Normalized Gradient Fields

The so-called Normalized Gradient Fields (NGF) distance measure is able to com-
pare images from di↵erent modalities with di↵erences in gray values for corre-
sponding structures. The assumption for NGF is, that intensity changes appear at
corresponding locations in the images [100]. Therefore, the spatial image gradients
can be used to compare the intensity changes. However, the simple comparison
of the intensity changes also takes the amount of the changes itself into account,
which can di↵er for di↵erent modalities. In order to leave this out, a normaliza-
tion of the gradients can be done. This leads to the formulation of Haber and
Modersitzki [47], [100]:

D
NGF(R, T ; y) :=

Z

⌦

1�

✓
hrT (y(x)),rR(x)i

krT (y(x))k⌘ krR(x)k⌘

◆2

dx (5)

with kTk⌘ :=
p

krTk2 + ⌘2 a regularized, induced norm. Here, the so-called edge
parameter ⌘ 2 R discriminates edge information from background noise [100] and
therefore plays an important role in parameter tuning for the optimization process.
We can also notice this in the numerical results of this work in Sec. 4.
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2.4 Regularization

A crucial point of regularization is the ill-posedness – defined by Hadamard [48] –
of the registration problem. Using a regularizer should resolve the ill-posed prob-
lem – in a best-case scenario – to have a well-posed problem. Regularization is
needed to define a unique and numerically stable solution of the registration prob-
lem [99]. Our work focuses on the presentation of a distance measuring method.
Therefore, we restrict the presented regularization methods to well-known methods
that have proven to be well-suited for solving image registration problems in the
past. In this section, we briefly summarize two regularizers from standard image
registration literature; e.g., [31], [47], [55], [99], [100] we also use for our numerical
experiments in Section 4. We focus on curvature regularization [29] as well as
elastic regularization [10], [99] as these provide a su�cient degree of smoothness
and are available in standard toolboxes like FAIR [100]. Furthermore, past results
have shown, that these are well-suited for image registration; see, e.g., [7], [59],
[76], [78], [100], [101], [112]. Using the regularization parameter ↵ 2 R>0, we can
balance how strongly the prior knowledge of the regularizer can a↵ect the solution
of the registration problem. This is a critical parameter for the optimization pro-
cess since it determines the regularization energy weighting. Thus it has a direct
impact on the ill-posedness. We explicitly do not claim a more in-depth analy-
sis, as the summarized concepts have been investigated in detail in the literature
referred to above and the references therein.

Curvature Regularization

Mainly, we use the curvature regularizer, introduced for image registration by Fis-
cher and Modersitzki [29], since the deformations are typically smoother compared
to the registration using other regularizers [29], [100]. In their work [29], they state
that two key points are supporting the use of this approach. Firstly, it can be seen
as an approximation to the curvature of the components of the deformation grid,
which favors non-oscillating solutions. Secondly, the non-trivial kernel contains
a�ne linear transformations. Concerning the non-trivial kernel, they further state
that there is no need for a�ne linear pre-registration to be successful. Note that
the curvature regularizer, by definition, does not penalize a�ne linear transforma-
tions.
This regularization term is a sum of the spatial second derivatives of the displace-
ment fields components [29], [100]:

S
curv(u) :=

1

2

Z

⌦

dX

j=1

(�uj)
2 dx (6)

where S
curv : Rd

! R with displacement field u : Rd
! Rd and spatial dimension
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d 2 N. Here, � is the Laplace operator, which is defined for a twice-di↵erentiable,
real-valued function f as �f = @

2
1f1 + @

2
2f2 + . . .+ @

2
dfd. The displacement field u

is typically characterized as the identity-free transformation grid u = y� Id [100].

Elastic Regularization

The motivation of the elastic regularizer is somewhat di↵erent than for the curva-
ture regularizer. For this approach, a tangible, physical motivation exists and was
already introduced in an early version by Fischler and Elschläger in 1973 [33] and
finally by Broit for image registration in 1981 [10]. It measures the energy of de-
formations of an elastic material [100]. For an in-depth introduction to this topic
and the physical motivation, see e.g., [40], [99], [100]. The regularizer is nothing
more than a linearized elastic potential of the displacement field [10], [99]:

S
elas(u) :=

Z

⌦

µ

4

dX

i,j=1

�
@xiuj + @xjui

�2
+

�

2
(div u)2 dx (7)

where S
elas : Rd

! R with displacement field u : Rd
! Rd and spatial dimension

d 2 N. The divergence div is given by div f = @1f + @2f + . . . + @df for a
di↵erentiable, real-valued function f . Further, µ � 0 and � � 0 are the so-called
Lamé constants, which are material dependent. This o↵ers a variety of options for
mimicing di↵erent materials within the registration process.

2.5 Singular Values and Schatten-Norms

In this work, the main contribution is the use of singular values and Schatten-
Norms for distance measurement between images. Therefore, we first recall the
Singular Value Decomposition, show a relevant property and finally define the
Schatten-Norms, named after American mathematician Robert Schatten.

Theorem 1 (Singular Value Decomposition; cf. [136, Thm. 2.4.1]). Let A 2 Rn⇥K

be a matrix. Then there exist orthogonal matrices

U = [u1|u2| . . . |un] 2 Rn⇥n and V = [v1|v2| . . . |vK ] 2 RK⇥K

such that
A = U⌃V >

.

Here, ⌃ = diag(�1, �2, . . . , �p) with p = min{n,K}. Note, that the so-called
singular values �i are in descending order �1 � �2 � · · · � �K � 0.

Proof. see [136, Thm. 2.4.1]
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We use the following Corollary to show properties of our novel distance measure
SqN in Section 3.

Corollary 1 (cf. [136, Cor. 2.4.3]). Let A 2 Rn⇥K be a matrix. Then,

kAk2 = �1 and kAk
2
F = �

2
1 + · · ·+ �

2
p,

with p = min{n,K}.

Proof. see [136, Cor. 2.4.3]

Using the SVD, we define the Schatten-q-Norms in Definition 3, which are highly
relevant for defining our novel distance measure SqN.

Definition 3 (Schatten-q-Norm [6]). Let A 2 Rn⇥K be a matrix and S 2 RK the
vector of singular values �i, i = 1, 2, . . . , K. Here, n, K 2 N. Further, let q be in
R�0 [ {+1}.
Then, the Schatten-q-Norm is defined as the q-Norm of the vector of singular
values �i:

kAk
q
S,q := kSk

q
q =

X

i

�
q
i .

For the particular choice of 0  q < 1, the triangle inequality is no longer fulfilled;
hence, the Schatten-q-Norms are just quasinorms. A quasinorm fulfills all other
norm axioms except the triangle inequality. The triangle inequality is weakened
and thus needs an additional scaling parameter c > 0 such that kx+ yk  c(kxk+
kyk). Note, that we show in our medical applications in Section 4, that q < 1 is
no problem in practice. Besides, in Section 3 we figure out, that there are smarter
choices of q for application in image registration.
Two exciting properties of the Schatten-Norms — which we use in Sec. 3.4 — are
the equality to the Frobenius Norm for q = 2 and for that case the notation using
the trace.

Lemma 1 (Equality of Frobenius- and Schatten-Norm [66]). For q = 2 and arbi-
trary A 2 Rn⇥m it holds

kAk
2
S,2 = kAk

2
F = tr(A >

A).

Proof. First, we rewrite the Forbenius norm as trace of A and use that A is real-
valued:

kAk
2
F =

nX

i=1

mX

j=1

|aij|
2 =

nX

i=1

mX

j=1

aij · aij = tr(A >
A)
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To resolve this trace expression, we now use the singular value decomposition
A = U⌃V >:

tr(A >
A) = tr

�
(U⌃V >) >(U⌃V >)

�
= tr

�
V ⌃ > ⌃V >

�
= tr

�
⌃ > ⌃

�
=
X

k

�
2
k.

The second last step is possible because of the invariance to cyclic permutations
of the trace. Since the last expression is the sum of singular values of A, we have
the definition of the Schatten-2-Norm

P
k �

2
k(A) = kAk

2
S,2. See also Corollary 1

and its proof.

2.6 Discretization and Numerical Preliminaries

As outlined in Section 2.7, we follow the discretize-then-optimize approach and
now present discretization details. We first discretize the distance measures and
regularizers and then optimize numerically. For this purpose, we discuss discretiza-
tion preliminaries. We first outline what grids and interpolation methods we use.
Second, we investigate discretization strategies for the distance and regularization
equations. The specific notations we use in this chapter help us formulate our
novel distance measure SqN straightforwardly. This chapter is mainly based on
standard literature like [51], [99], [100], and references therein.

Grids and Interpolation

Following [100], we start by defining the image domain, which is to discretize using
a grid. The grids we work with within this thesis, consist of equidistant points on
a domain ⌦ [100]

⌦ := (!1,!2)⇥ . . . ,⇥(!2d�1,!2d) ⇢ Rd
.

Here, d 2 N denotes the spatial dimension. For d = 2 the domain is rectangular,
for d = 3 and higher it is cuboid, respectively. In the literature, di↵erent types of
grids are used for discretization. Primarily, these grids di↵er in the definition of
the used cells, meaning the grid point locations within the discretization domain
di↵er. We focus on cell-centered grids since these are well-suited for our use-
case, see [100] for a discussion on di↵erent grids. The domain ⌦ is divided into
m̄ := (m1,m2, . . . ,md) cells, we denote the total number of cells by m =

Q
k mk.

The edge lengths of the cells are denoted by h := (h1, h2, . . . , hd). A cell-centered
grid is defined as a collection of points [100]

xj :=

✓
!1 + h1

✓
i1 �

1

2

◆
, . . . ,!2d�1 + hd

✓
id �

1

2

◆◆
, (8)
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where i is a set of index vectors i = (i1, . . . , id) with il = 1, . . . ,ml for l = 1, . . . , d.
We arrange the grid points as a vector using a lexicographic ordering with indices

k := i1 +
dX

l=2

(il � 1)
l�1Y

r=1

mr

for each grid point. For d = 3, we then have k = i1 +m1(i2 � 1) +m1m2(i3 � 1),
respectively. In practice, this means, we start collecting all points corresponding
to the first spatial dimension and continue with the remaining dimensions in the
same manner. It is now straightforward to recover a single grid point by

xk =
�
xk . . . , xk+(d�1)m

�
2 Rd

.

Using these definitions we can discretize images in a vectorized manner

I(x) := (I(xk))k=1,...,m 2 Rm
, (9)

where I : Rdm
! Rm maps the set of coordinates to a vector of discrete intensities.

Furthermore, we use the cell-centered grids as a starting guess for the deformation
grids y in optimization. Here, it is not important if we use cell-centered grids or
other forms. It is possible to convert the single grid forms into the other forms via
grid-transformation-operators, which make them equivalent and only numerical
details as e.g., the handling of boundary conditions may be more straightforward
with a specific type of grid, but can be handled with all types of grids [100]. The
here employed vectorized notations are used for defining the feature matrices in
Sec. 3.
In order to compute deformed versions of the images, we need to be able to eval-
uate the images on any point of the given continuous domain. It is not su�cient
to only know the values at the grid points since these are moved through trans-
formation. For transferring the discrete data to a continuous representation, we
use image interpolation. Since interpolation is not a crucial part of this work, we
restrict ourselves to standard interpolation methods. Due to its di↵erentiability
properties, we mainly use cubic spline interpolation, as outlined in [25], [100], [121].
This interpolation model is well-suited for variational image registration since it
is twice continuously di↵erentiable and straightforward to compute. Furthermore,
we can compute image intensity gradients using the derivatives of the polynomial
basis functions. Although the computation of spline-based interpolants is more
complicated than with linear- or next-neighbor-interpolation methods, for natural
images, the interpolation quality and the di↵erentiability is superior to methods
like linear- or next-neighbor-interpolation [134]. In order to achieve the superior
quality of spline interpolation, we have to handle a few drawbacks. The di↵eren-
tiability comes with a ringing-behavior [25], [134]. Due to the twice-continuously-
di↵erentiable transitions between the single splines, an issue is overshooting at
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inflexion points or non-smooth points [25], [134]. As interpolation is not the main
issue of this work, we stay with natural boundary conditions. Thus, the numerical
handling is straightforward, since no explicit conditions need to be handled. For
a detailed discussion, we refer to appropriate literature; see e.g., [25], [100], [121],
[134].

Discretization of Regularization- and Distanceterms

As reviewed above, we use finite di↵erence schemes for the discretization of di↵er-
ential operators on a grid in order to discretize the (IRP) as well as Problem 2,
we introduce in Sec. 3. Furthermore, we discretize integrals using the midpoint
rule. The midpoint rule gives us a second-order accuracy, which we need for appli-
cation with second-order optimization methods [51], [100], [105]. Furthermore, it
is straightforward to handle and to implement. Assuming a domain ⌦ ⇢ Rd and
hd = h1 · · · · · hd with h = (h1, . . . , hd), the midpoint rules equation is [51]

Z

⌦

f(x) dx = hd
nX

k

f(xk) +O(khk22),

Here, xk is a cell-centered grid point with k = 1, . . . , n and n is the number of
grid-cells. Furthermore, f is a smooth function and ⌦ is bounded by definition.
The error-behavior is described by O(khk22), meaning, h

Pn
k f(xk) converges toR

⌦ f(x) dx for h ! 0. We take this error-behavior as a basis for our discretization
and a multi-level-approach we use in optimization, where we refine the resolution of
our discretization on each level. In this section, we outline the needs for discretizing
the distance measures and regularizers.
The idea of the finite-di↵erence-schemes is to approximate a derivative for a func-
tion y : R ! R on an equidistant grid using e.g. central di↵erences [100]:

@y(xi) =
y
�
xi +

h
2

�
� y

�
xi �

h
2

�

h
+O(h2), (10)

where xi is a cell-centered point and h again denotes the cells edge lenghts, as in-
troduced above. Also y is a smooth function, such that the approximation exists.
This second-order approximation of the derivative on a cell-centered grid has a
drawback, however. We discretize on a nodal grid, in order to obtain these di↵er-
ences, following the approach outline in [100]. It holds @y(xi) ⇡

1
h(y(x

n
i )�y(xn

i�1))
[100], from which we derive the 1D derivative operator [100]

@
h
m :=

0

B@
�1 1

. . . . . .
�1 1

1

CA 2 Rm⇥m+1
.
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Using the abbreviation y
n
i := y

�
xi +

h
2

�
, we can summarize (10) to

@y = @
h
my

n +O(h2).

It is worth noting that the long stencil @y(xi) ⇡
1
2h (y(xi+1)� y(xi�1)) returns

zero derivatives for high oscillatory functions [100]. This means, high frequency
components are in the kernel, which is why we use the short stencil, like suggested
in [100]. It is straightforward to extend the 1D-di↵erential operator to higher
dimensions by utilizing the well-known Kronecker product as can be seen in e.g.,
[100].
Since both regularizers, we are interested in, are L2-norm-based, we follow [100] to
give a general discretization rule using the midpoint quadrature rule to discretize
the integrals

S(u) =

Z

⌦

hBu,Bui dx = hdkBu
h
k
2 +O

�
khk

2
�
, (11)

where hd =
Qd

j=1 hj and u
h is the discretization of u = y � Id. Furthermore, B

the discretization of B and is either the curvature operator or the elastic operator,
respectively. Using the first-order stencil from (10), it is straightforward to build
the discretized elastic operator on a staggered grid as introduced in [100]. In
order to build the discretized curvature operator, we set the second-order stencils,
regardless of the boundary conditions, to

@
2
u(xi) =

u (xi+1)� 2u(xi) + u (xi�1)

h2
+O(h2),

which is dependent on the direction of derivation. For details on the derivation of
the discretized operators and the boundary conditions, we refer to [100].

We are now ready to discretize the distance measures introduced in Sections 2.1
and 3. For this part, we rely on [99], [100] for discretization of DNCC and D

NGF.
We leave out the discretization of SSD since this is straightforward and can be
found in [100]. Here, we summarize the discretization of NCC and NGF – that
can also be found in [100] – to familiarize the notation of our used discretization
strategy. Furthermore, the discretization of NCC and NGF plays a role in the
discretization and error estimation of SqN. Using the midpoint quadrature rule
and the cell-centered grid, reviewed above, we discretize the gradients using the
discussed finite di↵erence scheme.
We discretize the integrals for the Normalized Cross-Correlation (4) using the
mid-point quadrature rule. The denominator is a product of the norms of the
discretized images, while the nominator is an inner product [100]

D
NCC(T (y(xc)), R(xc)) =

hT (y(xc)), R(xc)i

kT (y(xc))k2kR(xc)k2
,
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where it is assumed, that T , T (y) and R are not completely zero [100]. Otherwise,
the norms used in the denominator need to be regularized. Due to the discretiza-
tion of integrals in the nominator as well as in the denominator, the factor of the
mid-point rule hd cancels out.
For the Normalized Gradient Fields from (5), we utilize the finite-di↵erences from
(10) to approximate the gradients. Just as shown in [100, Sec. 7.4.2] the Kronecker
product can be used for higher dimensionality of the finite di↵erence matrices. We
then abbreviate the discretized gradient images by @T (y(xc)) and @R(xc). These
are again vectorized because of the approximation on the cell-centered grid x

c, such
that we obtain @T, @R 2 Rd·n. Here, the components of the derivatives of the spa-
tial directions are stacked, such that @I = (@d1I 2 Rn

, @d2I 2 Rn
, @d3I 2 Rn

, . . . ) >
2

Rd·n. The computations are considered pointwise. Therefore, exemplarily for 3D,
we obtain (@I)k = ((@d1I)k, (@d2I)k, (@d3I)k)

>
2 R3 at each grid point and [100]

D
NGF(T (y(xc)), R(xc)) = hd

nX

k=1

(1� r
2
k),

where

rk :=
h(@T (y(xc)))k, (@R(xc))ki

k(@T (y(xc)))kk✏, k(@R(xc))kk✏

and kxk✏ =
p
kxk2 + ✏2, just as in (5). Note that the computations in NGF di↵er

from those in NCC, where the normalization is done globally instead of pointwise
[47], [100]. The di↵erence between global and pointwise normalization of gradients
is discussed in Section 3.2.

2.7 Numerical Optimization

In this section, we shortly outline the numerical optimization schemes we use in
this thesis. First, we summarize Newton’s Method. Second, building on Newton’s
Method, we summarize the two Newton-type methods L-BFGS and Gauß-Newton,
which we use for our medical applications in Section 4. These give us the advantage
of avoiding an explicit computation of a full Hessian of the objective function by
rather iteratively approximate it. The explicit computation of a Hessian might be
infeasible, as we point out with practical examples throughout this section. This
short summarizing section is the basis for the specific extension of the examined
methods at the end of Section 3 for the optimization of our novel method. This
section is mainly based on original literature, see, e.g., [3], [103], [116].

Newton’s-Method

Following e.g. [100], in this thesis, we use Newton-type methods for optimiza-
tion due to specific convergence behavior [103]. We now summarize the idea of
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Newton’s-Method in order to derive the specific schemes we use. For the spe-
cific optimization schemes, we elaborate specialties concerning the Hessian we use,
e.g., for implementation. To find a descent direction, we use of the first and second
derivative of a two times continuous di↵erentiable function f : Rd

! R. Using a
Taylor approximation of f(xk + pk) we obtain

f(xk + pk) = f(xk) +rf(xk)
>
pk +O(x2), (12)

with xk 2 Rd and descent direction pk 2 Rd which is to be determined. Applying
the first-order necessary condition to (12) while ignoring all higher order terms,
we obtain a system of linear equations, called Newton equation [103]

r
2
f(xk)pk = �rf(xk) (13)

which we solve for the descent direction pk. Here, the Hessian of f needs to be
positive definite in order to obtain a descent direction by solving the system of
linear equations Eq. (13) [103]. This is the case for convex optimization problems.
If the Hessian is not positive definite, other methods may be used where the
Hessian is not used or the Hessian needs to be pre-conditioned [100], [103]. The
reason we use methods from the Newton-family is locally quadratic convergence
we may achieve [100] if the initial guess is close to a minimizer or the Gauß-
Newton matrix is well-posed [103, Thm. 3.5.]. Furthermore, the Hessian does
not need to be explicitly inverted as it is iteratively approximated. The severe
drawback of the particular approach in Eq. (13) is that we need to compute the
Hessian of the objective function in each step in order to solve the linear system
of equations. Concerning the fact that we handle multiple images for registration,
where each image is transformed, the computation of the Hessian will get quickly
very expensive in terms of computation time and memory because of a very high
number of unknowns. Following [55], a simple computation illustrates the issue:
Computing the Hessian r

2
f(xk) 2 Rn·d⇥n·d, where n 2 N is the number of pixels

and d 2 N is the image dimension. Then, for a 2D image with 256 ⇥ 256 = 216

pixels, the Hessian of f has 217 ⇥ 217 entries. Although most of the entries are
zero, the non-zero entries of the matrix are still 2n. This is the case concerning
only one moving image. Now that we have to handle an arbitrary number T 2 N
of moving images, the number of unknowns grows. The Hessian for our specific
problem containing multiple images is r2

f(xk) 2 Rn·d·T⇥n·d·T . Already for T = 3
images of size 256⇥ 256 pixels, we obtain a Hessian of size 251 ⇥ 251 = 2102, which
is currently infeasible to store and recompute in each iteration!

Newton-type Methods

A trade-o↵ for computation of the inverse of the Hessian is to approximate it itera-
tively. Here, we classify the Newton-type methods into two sub-classes [27]. There



2. VARIATIONAL IMAGE REGISTRATION 25

are so-called Quasi-Newton methods and there are least-squares Newton methods
[103]. Both classes have several advantages over the plain Newton method. First,
we do not require to compute the Hessian explicitly. Second, we won’t need as
much memory for saving the approximate Hessian as we would for the exact one.
The only notable drawback is that we won’t obtain the theoretical, local quadratic
convergence of Newton’s-Method in practice. However, at least a super-linear con-
vergence behaviour can be achieved [103, Thm. 6.6.], which is a trade-o↵ between
convergence speed, computation time and storage memory. Since both classes
have successfully been applied for medical imaging problems, for example, in [63],
[76], [101], [112], we specifically focus on the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) method as a Quasi-Newton approach, which approximates the Hessian
in each step by just using gradient information. As an alternative, we discuss
the Gauss-Newton method as a least-squares Newton approach, which can exploit
specific structures of the given optimization problem.

BFGS-Method

The Broyden-Fletcher-Goldfarb-Shanno-Method (BFGS-Method) uses an itera-
tively approximated Hessian within Newton’s method and therefore is a quasi-
newton method. The L-BFGS-Method is a limited-memory version of the BFGS-
Method, which is especially well-suited for our problem as the number of unknowns
for registration of multiple images is rather high. Therefore, we outline the idea
at the end of this section, based on original literature like [27], [55], [103].

The underlying idea is to solve the Newton equation (13), but using an approxi-
mation H instead of the Hessian of the objective f

H(xk)pk = �rf(xk).

When using such an update, we want it to mimic the behaviour of the exact Hessian
in such a way that our approximation is a symmetric positive definite matrix. We
can obtain this behaviour by fulfilling the so-called curvature condition as well as
the so-called secant equation [103]. The latter one is derived by constructing a
quadratic model for the new iterate xk+1 for the line search update, like in (12)

f(xk+1 + p) = f(xk+1) +rf(xk+1)
>
p+

1

2
p
>
H(xk+1)p.

Following [103], applying the first-order necessary condition for both sides of the
equation and requiring this new system to match the gradients of the two latest
steps xk+1 and xk, it is

rf(xk+1)� ↵kH(xk+1)pk = rf(xk)
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obtained, what is rearranged to

H(xk+1)↵kpk = rf(xk+1)�rf(xk). (14)

Shortly, (14) is the so-called secant equation [103]

H(xk+1)sk = gk (15)

where sk = xk+1 � xk = ↵kpk and gk = rf(xk+1)�rf(xk). The secant equation
requires that the symmetric, positive definite Hessian approximation H maps sk

on gk. Indeed, this is only possible if further conditions are imposed. For strongly
convex f , we can multiply (15) with s

>

k from the left and see, that the so-called
curvature condition is fulfilled

s
>

k gk > 0. (16)

To always fulfill (16) and have H(xk+1) unique, H(xk+1) it is chosen in such a way,
that it is the closest solution to the current H(xk) in sense of a weighted Frobenius
norm kH(xk+1)�H(xk)k [103, Chpt. 6.1]. Using these prerequisites, the literature
– e.g. [27], [103] – gives a direct update formula for the Hessian approximation H

with

H(xk+1) = H(xk)�
H(xk)sks>k H(xk)

s
>

k H(xk)sk
+

gkg
>

k

g
>

k sk
. (17)

One advantage of this update formula is that the inverse of H(xk+1) can be com-
puted. With this formula, it can be updated in each step to solve (13), instead of
solving it anew in each iteration. An explicit formula for the computation of the
inverse can be found in standard optimization literature as e.g. [27], [103]. An-
other advantage is that we don’t need to store the matrix H. Instead, the current
update can directly be computed by just using the last si and gi with i = 0, . . . , k
and an initial value H0. A disadvantage compared to Gauß-Newton is that we may
need more iterations to converge using L-BFGS. This is due to more information
that is used to compute the Gauß-Newton approximation.
In Section 3.9, we discuss details on how we handle the extension for multiple
images. There we extend the approximation for H0, or more precisely, the approx-
imation for H�1

0 .

Gauß-Newton

Like for the BFGS method, the Gauß-Newton method avoids the expensive com-
putation of the second-order derivative of the objective function. Di↵erent than
the BFGS method, Gauß-Newton can be understood as a least-squares Newton
method [27]. Its Hessian approximation formula is derived via a nonlinear least-
squares problem. The underlying least-squares-problem is

f(x) = r(x) >
r(x) = kr(x)k22 �! min . (18)
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Here, f again is a su�ciently smooth function as stated before for Newton’s
method. Furthermore, the residual vector r : Rn

! Rm is a concatenation of
m 2 N nonlinear residual functions rj : Rn

! R [103, Chpt. 10]. Moreover, f is a
combination of squared residuals

f(x) =
1

2

mX

j=1

r
2
j (x).

Instead of solving Problem (18) by using simple gradient based methods, like
steepest descent [103, Chpt. 2], Newton’s method is applied. We summarize
the Method, following [103]. First, the problem locally linearized using a Taylor
approximation

kr(xk) + dr(xk)(x� xk)k
2
2 �! min . (19)

Here, dr is the Jacobian with

dr =

✓
@rj

@xi

◆

j=1,...,m
i=1,...,n

.

With m � n and f su�ciently smooth, the gradient of f is expressed as

rf(x) = dr(x) >
r(x)

and analogously the Hessian as

r
2
f(x) = dr(x) > dr(x) +

mX

j=1

rj(x)r
2
rj(x).

If the residuals are small, close to the solution, the second term is typically ne-
glected; cf. [103, Chpt. 10]. This gives the Hessian approximation

r
2
f(x) ⇡ dr(x) > dr(x). (20)

Coming back to the linearization (19), it is checked for the first-order necessary
condition in order to derive the Gauß-Newton method.
Computing the derivative and rearrangement of (19) gives

r(xk) = � d r(xk)(x� xk). (21)

By multiplication of d r(xk) > on each side and solving for x we obtain the Gauß-
Newton update

x = xk �
�
d r(xk)

> d r(xk)
��1

d r(xk)
>
r(xk), (22)



2. VARIATIONAL IMAGE REGISTRATION 28

which is nothing else than solving the Newton equation (13) using the Gauß-
Newton approximation of the Hessian. The quadratic form d r(xk) > d r(xk) is
positive definite and therefore can be inverted. We see that the problem is solved
by the pseudo-inverse – what is to be expected for least-squares problems. Indeed,
the pseudo-inverse inherits the Gauß-Newton approximation of the Hessian. Rep-
resenting our search direction here as pk = x�xk and using the representations of
the gradient and Hessian of f , especially the approximated Hessian, the Newton
system of f is

x = xk �
�
d r(xk)

> d r(xk)
��1

d r(xk)
>
r(xk)

,x� xk = �
�
r

2
f(x)

��1
rf(x)

,r
2
f(x)pk = �rf(x)

(23)

The Gauß-Newton method gives several advantages over the plain Newton’s method
[103]. With the Hessian approximation, we don’t need to compute the individual
Hessians of each residual function rj. Indeed, we just need the gradients to com-
pute the Hessian approximation. Furthermore, if r2

f(x) has full rank and the
gradient of f is nonzero, pk is a descent direction and for zero gradients, xk is a
stationary point [103, Chpt. 10.3]. A drawback is the rather slow convergence
behavior for ill-conditioned r

2
f(x), which results in an ill-conditioned system of

equations.
From our derivation, we can also see that the search direction pk is the solution of
a least-squares problem, which means that we wouldn’t even need to compute the
Hessian approximation explicitly when using standard least-squares methods [103].
Another drawback is that rather large systems of equations need to be solved in
each step. Therefore, we focus on L-BFGS for our applications in Section 4.
At the end of Section 3 we extend the Jacobian used for approximation of H.
For optimization, we rely on standard stopping criteria by Gill, Murray andWright,
derived in detail in [35]. Here, we just give a short summary of the stopping rules:
These comprise five di↵erent stopping rules concerning the rate of change of the
objective function, the rate of change of the respective transformation field, the
rate of change of the gradient of the objective function as well as two fixed values.
The fixed values are a small lower bound (typically machine precision) for the norm
of the objective-gradient as well as a maximum number of iterations. Either the
rate of changes must all be fulfilled or one of the fixed values needs to be fulfilled
in order to stop the optimization process.

2.8 Conclusion

In this section, we have summarized the preliminaries of image registration and nu-
merical optimization. We have summarized the variational framework consisting
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of distance measure and regularizer to build a feasible optimization problem. Fur-
thermore, we have summarized standard distance measures as well as regularizers.
Especially the distance measures with its discretization and the specific notation
lays a basis for our further elaboration on image registration tools for registration
of multiple images. From the given measures, we take geometrical ideas to derive
measures for multiple images.
We have closed this chapter with a brief summary of Newton-type optimization
methods. At the end of Chapter 3, we denote remarks on slight changes for the
optimization of a variational framework for multiple image registration.



3. IMAGE REGISTRATION OF MULTIPLE IMAGES 30

3 Image Registration of Multiple Images

In this chapter, we introduce a mathematical framework for the registration of
multiple images. This framework allows for deriving various specific distance mea-
sures. Here, we understand this framework as an extension of the distance measure
concept as we already know it from the two-image registration setting. We will
first introduce the mathematical framework and show a straightforward extension
from two-images to multiple-images by using two-image tools. Second, we define
an image feature array, with which we can take advantage of di↵erent interesting
properties we examine. Third, we specify three central derivations of the here in-
troduced framework. Furthermore, we give a geometrical intuition for each derived
approach and perform an error analysis for the novel distance measure. This is
accompanied by a numerical examination of the critical parameter q. Ultimately,
we give a general distance measurement framework and draw a link to related
work.

3.1 Notation and Extension of Two-Image Methods

We are now ready to extend the registration framework for two images to an
arbitrary number T of images. We keep the variational approach, i.e., we minimize
a joint functional consisting of a distance measure and a regularization. We extend
the image and transformation sets to I = (I1, . . . , IT ) and Y = (y1, . . . , yT ), where
It 2 Img and yt : Rd

! Rd for all t = 1, . . . , T , respectively. We use the suggestive
notation I � Y := (I1 � y1, . . . , IT � yT ).
The most interesting parts are the generalization of the distance measure and the
regularization,

D : ImgT ! R, S : {y : Rd
! Rd

}
T
! R .

These are discussed in Sec. 3.3 and Sec. 3.4.

Problem 2 (Variational Multiple-Images Registration). Given I 2 ImgT , deter-
mine a minimizing element Y 2 {y : Rd

! Rd
}
T of J : ImgT ⇥ {Rd

}
T

! R,
with

J (Y ) := D(I � Y ) + S(Y ).

We now show a straightforward extension utilizing the tools of the two image
registration setting. After that, we introduce our novel multiple images registration
framework following the notation of Problem 2.

Sequential Extension

The extension from an image pair to multiple images might be realized in a se-
quential manner [137]. For that, two-image tools – as described before – are used
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for registration of a stack of image pairs. This sequential approach is certainly a
straightforward way of registering multiple images. Using the variational frame-
work of Problem 2, we are able to define this sequential setting. The distance
measures are the standard pair-wise distances and are summed up in a sequential
manner. Each pair of images is regularized individually [7]:

J
seq(Y ) :=

T�1X

t=1

D(It � yt, It+1 � yt+1) + S(yt+1). (24)

Typically, one of the deformation grids is fixed, e.g. y1 = Id [101], [137].
One of the advantages of this approach is that all similarity measures and regu-
larizers from classical image registration are usable straight away. However, one
drawback is that a summation like in (24) is rather memory consuming [99] to
solve. Therefore, one way of solving is by either fixing the components and solve
sequentially for just one of the components at a time. This is non-linear Gauss-
Seidel type iteration [7], [100] which is rather slow as the computations can not be
done in parallel [136]. Another way is to solve for all components simultaneously,
which needs the same amount of memory but may be faster.
The approaches we introduce for multiple image registration in this Chapter, are
solving for all components at once. Furthermore, the coupling of the di↵erent
components within a pair-wise approach is weak – meaning that it is restricted to
only two images at once – because of the sequential, pair-wise updates. Especially
in applications like the 3D reconstruction of histological serial sections, error prop-
agation can occur due to the pair-wise coupling, which deforms the actual shape of
the volume, looking like a straightened banana or cause a z-shift; see banana-e↵ect
in e.g., [131]. The use of multiple-image based approaches also shows in practice
that we can avoid such an error propagation; see the numerical results in Sec. 4.
Nevertheless, the pair-wise sequential approaches are regularly used in practice
[62], [63], [85], [86] due to the simplicity of the extension from two to multiple
images.
In the following sections, we will elaborate methods to overcome the two-image
sequential manner and use all available information from all given datasets. These
methods comprise the use of image features as well as the singular values of the
image matrix or feature matrix, respectively.

3.2 Features for Image Registration

Everything arranged, we will now combine and extend image features for use
with our novel multiple-images approaches. Here, the features can be, e.g., the
image intensities itself or even normalized gradient fields to fit the multi-modal
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registration case. Since in this work we focus on using singular values to measure
image similarity, we define a feature operator F as

F : ImgT ! Rd·k⇥T
,

where d 2 N is the spatial dimension and k 2 N a feature specific multiplicator.
Specifying F like that, we can use intensity and gradient features within a feature
array. As an example, we show how the feature array looks for gradient features
of T images I = (It)Tt=1:

Fr(I(x)) =

0

@rI1(x) . . . rIT (x)

1

A 2 Rd·k⇥T
.

Here, the parameter k is the spatial dimension, since the gradient is taken in each
spatial direction for each point x 2 Rd. For intensities, the same example would
be Fintensity(I(x)) 2 R1⇥T , since each point maps to a scalar intensity value, for
gray-valued images. Typically in this work, the features are either intensities or
normalized gradients, such that we obtain a feature array – as shown above. In
this work, we will mainly focus on gradient-based features. This concept may be
further generalized, such that other features like SIFT [87], [88] or MIND [53], [54]
can also be used.

Normalization of Features

Another compelling objective of the use of image features for image registration is
normalization. As indicated in the discussion in [47], it is worthwhile to investigate
a normalization strategy of features. In order to overcome a di↵erence in magni-
tudes of intensity gradients of di↵erent modalities, we use two di↵erent strategies.
In Sec. 3.6, we will also investigate the numerical properties of the strategies. As
already seen for NGF in Eq. (5), normalization is used to overcome di↵erences in
magnitudes. Our first normalization strategy is a local normalization, also used for
the NGF distance measure. For this purpose, we take advantage of the di↵erent
directional derivatives, which we normalize in a pointwise manner. Note that we
consider the unnormalized gradients as features in this work. The corresponding,
normalizing norm is denoted by k · k⌘ =

p
h·, ·i+ ⌘2 with ⌘ > 0. The second

approach is to normalize over the whole feature domain in a global, non-pointwise
manner. For ease of presentation, we denote this using the standard L2(⌦)-Norm
k · kL2(⌦).
Both normalizing approaches mentioned have several drawbacks. Considering in-
tensity gradients as image features, the discussion in [47] points out a high sensitiv-
ity to small values. Furthermore, in constant areas of the image, the normalization-
term is non-di↵erentiable, which is why it needs to be regularized by ⌘ > 0. This
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Local normalization Global normalization

kF (I(x))k⌘ =
pP

k |rkI(x)|2 dx+ ⌘2 kF (I)kL2(⌦) :=
qR

⌦ |rI(x)|2 dx

Figure 3: Comparison of global and local normalization divisors for gradient-based
image features F (I) = rI.

introduces an additional parameter that needs to be tuned for optimization. Al-
though a semi-automatic choice of ⌘ is proposed in [47], it is still highly dependent
on the data.
Both approaches have in common that the magnitude of spatially corresponding
features over di↵erent modalities are adjusted. The goal is that the adjustment
makes the di↵erent modalities comparable at the locations of the features. In fact,
with both introduced normalizations, the magnitudes are handled di↵erently. The
local normalization, like it is used for NGF, scales all local features to unit-length.
Here, it is very likely to scale noise with small magnitude also to unit-length, which
can be seen as a di↵erent reason why the normalization needs to be regularized.
In contrast to that, the global normalization approach using the L2(⌦)-Norm does
not change the local magnitude di↵erences. Instead, it scales the magnitudes of
di↵erent images to [�1, 1] while maintaining the same scaling between features
within one image. In this way, the noise is not a significant issue. However, details
with small magnitude remain to have just a small overall influence. Because of
this, we need to find a compromise. Either we want to use also fine details for
exact alignment, but need to care more about the noise level. Alternatively, we do
not want to care about the noise level but need to accept that small details may
not influence an alignment. A comparison for di↵erent choices of ⌘ is visualized
in Figure 4. The locally normalized gradient images show more noise for small
values of ⌘ than the globally normalized images. This means the choice of ⌘ does
not play a major role when using globally normalized gradient features, compared
to the use of the local normalization strategy. However, the globally normalized
gradient features are not as sensible as the locally normalized features. Edges with
low amplitude may not be considered when using globally normalized gradient
features, while they can be considered with a careful choice for locally normalized
gradient features. Figure 4 also shows, the higher the choice of ⌘ is, the more
equal both feature-images get. The choice of the normalization and the choice of
⌘ are highly dependent on the application. Strategies for choosing ⌘, as pointed
out in [47], may be proper guidance for di↵erent applications, but they may also
need manual interaction. A meaningful, fully automatic choice of ⌘ is not within
the scope of this work. Numerical issues and di↵erences for the specific choice of
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global or local normalization are discussed in Section 3.6.

3.3 Extension for Regularization of Multiple Images

We extend the regularization in a suggestive, straightforward way. Since each
image has its respective transformation grid, we use a regularizing term for each
transformation grid y 2 Rd

! Rd. The respective energy for all grids Y =
(y1, . . . , yT ) is a summation of all individual energies

S(Y ) =
TX

t=1

S(yt � Id),

where S is one of the introduced two-image regularizers from Sec. 2.4 and Id the
corresponding regular grid, such that just the displacement field is regularized.
This extension approach is straightforward yet e↵ective since well-known regu-
larizing methods can be combined with multiple images distances. Furthermore,
results for the choice of parameters from past studies using two-image registration
approaches can be considered for use in a more convenient way. The downside of
this choice is that it still has a sequential character to it. Just building the sum of
individual regularization terms may regularize the individual transformation grids
quite well, but there is no coupling across the images. There are di↵erent coupling
strategies available – see, e.g., [1], [26] – that need to be explored in combination
with distance measurement techniques for multiple images. Since, in this work, we
focus on the elaboration of a distance measure framework for multiple images, we
do not elaborate on the regularization part. A brief discussion of di↵erent concepts
can be found in Section 5.

3.4 Schatten-Norms for Global Registration

This section is the heart of this work. We analyze di↵erent multiple image distance
measurement approaches using Schatten-q-Norms. Throughout this chapter, we
show that the di↵erent approaches originate from di↵erent geometrical ideas like
rank-minimization, volume-minimization, or even correlation maximization and,
therefore, also combine di↵erent fields of applications. Moreover, we analyze the
properties of the framework and show compelling details for practical application.
Ultimately, we show that all approaches have a common basis, and though they
are very versatile.

Rank Minimization by Linear Dependence of Image Features

We start analyzing the first of three presented approaches for distance measure-
ment of multiple images by exploiting the linear dependence of images features.
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(a) Visualization of a 2D (x,y) section from a 4D (x,y,z,t) DCE-MRI dataset of a human

kidney. Data courtesy of Jarle Rørvik, Haukeland University Hospital, Bergen, Norway.
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(b) Gradients for ⌘ = 10
�4

�8

�6

�4

�2

0

2

4

6

8

·10
�3

�1

�0.5

0

0.5

1

1.5

(c) Gradients for ⌘ = 10
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(d) Gradients for ⌘ = 10
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(e) Gradients for ⌘ = 10
4

Figure 4: Illustrated are the accumulated gradient images of a human kidney from
DCE-MRI for di↵erent ⌘. The images are illustrated as the sum of the components
of the gradient. The original 2D slice from the 4D dataset is shown in Fig. 4a.
Here, on the left, the globally normalized gradients are illustrated. The images on
the right illustrate the respective locally normalized gradients.
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The main idea originates in color image regularization, as first introduced by
Möllenho↵ et al. in [102]. There, the Schatten-q-Norms are used in a TV-like
regularization scheme. Here, we build a new similarity measure using singular
values of the feature matrix F (I) obtained with the help of the Schatten-q-Norms
from Definition 3.
The idea is to create a similarity of images by forcing a linear dependency of the
columns of the feature matrix F (I). We control this by manipulating the rank
of F (I). For example, by choosing q = 0 and assuming 00 = 0, we obtain the
rank-function itself from the Schatten-Norm:

kF (I)kS,0 =
KX

i=1

�
0
i =

#{�i 6=0}X

i=1

i = rank(F (I)).

The number of non-zero singular values determines the rank of F . Therefore we
use kF (I)kS,q as a similarity measure in order to manipulate rank(F (I)) [7]–[9].

Definition 4 (The Image Similarity Measure SqNrank). Let I 2 ImgT be a tuple
of images and F (I) a corresponding feature array and q > 0. Then, the image
similarity measure SqNrank is defined as

SqNrank(F (I)) = SqN(F (I1), . . . , F (IT )) := kF (I)kS,q =

 
TX

t=1

�t(F (I))q
! 1

q

.

(25)
Here, �t, t = 1, . . . , T are the non-zero singular values of the feature array F (I).
Note, SqNrank is the name, where the term rank is just an identifier-term.

However, one of the approaches drawbacks is F (I) = 0, for which all singular values
become zero. For example, we obtain this by shifting all images out of the domain,
such that I and, therefore, F (I) is the all-zero matrix. This particular case is a
non-desired global minimum. It is not desired because all image information is
dismissed. Nevertheless, with a careful choice of q and the use of a pre-registration
scheme, we show in Section 4 that this approach works, and for this particular
measure, we instead desire a local minimum. In the following sections, we discuss
approaches that resolve this problem.

Alignment by Volume Minimization

Closely related to SqNrank is a volume minimization approach as studied in e.g.,
[7], [41]. The assumption for such volume minimizing approaches is that the
columns of the feature array F span a parallelotope. The spanned volume of this
parallelotope is minimal if all the edges collapse and lie on the same line. Building
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a correlation matrix C(I) = F (I) >
F (I), we determine the spanned volume of

the parallelotope by computing the determinant det(C(I)) [41], [136]. Since C(I)
is quadratic, symmetric, and positive semi-definite, we take the logarithm of the
determinant without changing convexity and monotonicity properties. Finally, we
obtain the volume minimizing distance measure by

Dvol(I) := log(det(C(I))) = log

 
TY

t=1

�
2
t (F (I))

!
= 2

TX

t=1

log(�t(F (I))). (26)

This approach has several drawbacks which are also already discussed in [47].
Nevertheless, we briefly summarize them here and discuss an issue using the loga-
rithm. An illustration of this problem is given in [7] by considering the volume of
two vectors vol(v1, v2) = kv1kkv2k sin↵, where v1 6= 0 and ↵ is an angle. This is
minimal if both vectors are linear dependent, which is the case for v2 = 0. Also the
zero-solution discussed for SqNrank is a problem. Furthermore, if the parallelotope
spanning vectors collapse, some of the singular values vanish. This leads to issues
using the logarithm. Because of this, it is worthwhile to think about regulariza-
tion strategies for vanishing singular values. In [47] it is suggested to overcome
this problem by maximization of a correlation instead of a volume minimization.
For this case the sinus-function is replaced by a | cos | and is maximal i↵ and only
i↵ v2 = ±v1 [7], [47].

Alignment using Correlation of Features

Another way of defining a similarity measure is to use the correlation of normalized
features kF (Ik)k = 1, where the norm for normalizing the features is either the
L2-Norm or the ⌘-Norm as shown in Sec. 3.2. Building a correlation matrix C(I) 2
RT⇥T , we obtain the following properties; cf. [7]:

Ckk = 1, Cjk = hF (Ij), F (Ik)i = cos �jk, (27)

where �jk denotes the angle between the j-th and the k-th feature. The idea
of maximizing this correlation is well-known from the two-image setting, namely
by the Normalized Cross Correlation (NCC) defined in Eq. 4. The best case
scenario is a 2-by-2 matrix filled with ±1, the worst case the 2-by-2 identity matrix.
This is straightforwardly extended to multiple images, such that the best case is
C(I) 2 {±1}T⇥T and the worst case C(I) = Id. Hence, an appropriate way of
similarity measurement is to take the distance between the correlation matrix and
the worst case scenario, the identity matrix using a suitable matrix norm k · kM

[7]:
Dcorr(I) := kC(I)� IdkM . (28)
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In our case, we combine Eq. (28) with the Schatten-Norms from Definition 3 as
many other norms are only special cases of the Schatten-Norms for particular
choices of q

DSqN(I) = kC(I)� IdkS,q =

 
TX

k=1

(�2
k(F (I))� 1)q

! 1
q

(29)

for which we will investigate some special cases and their properties. Especially
interesting for the numerical results of this work are the cases for the parameter
q = 2 and q = 1. On the one hand, SqNfor q = 2 can be rephrased, such that we
may use C or also F . On the other hand, SqNfor q = 1 has interesting properties,
which we discuss in the following. Furthermore, our numerical results in Sec. 4
show better numbers for these two cases.
Alternatives are, e.g., the Frobenius Norm, which is a special case of the Schatten-
Norms as indicated in Thm. 1. Besides that, the L1-Norm and the L1-Norm are
alternatives. Using the Schatten-Norms allows us to maintain a generality that
covers many choices like the Frobenius Norm, the Nuclear Norm, or a Maximum-
Norm. In Sec. 3.6, we show numerical results for di↵erent choices of q that cover
some of the mentioned special cases.
The Schatten-2-Norm is the quadratic mean of the correlation among the image
features [7]. In fact, for q = 2 we have

DSqN(T ) = kC(T )� Idk2S,2 =
X

i 6=j

|Cij|
2
.

Theorem 2. For a correlation matrix C = F
>
F 2 RT⇥T with normalized feature

arrays F 2 Rn⇥T it holds

kC � Idk2S,2 = kFk
4
S,4 � T.

Proof. With Corollary 1 we can rephrase:

kC � Idk2S,2 = tr((C � Id) >(C � Id))

Using the linearity of the trace and the fact that the diagonal Cii = 1 with i 2

{1, 2, . . . , T}, we have

tr(C >
C)� tr(C >)� tr(C) + tr(Id) = tr(C >

C)� T.

Again with Corollary 1, we obtain

tr(C >
C)� T = kCk

2
S,2 � T = kF

>
Fk

2
S,2 � T = kFk

4
S,4 � T.
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Using the formulation of Eq. (29), we have a maximization problem for achieving
maximum similarity. Therefore, we rephrase (29) to obtain an equation that can
be minimized in order to obtain maximum similarity of images:

DSqN(T ) = �kC(T )kS,q. (30)

From Thm. 2, we can see that T can be canceled out and does not play an essential
role during optimization. Based on Eq. (30), we define a weighted version.

Weighted Correlation of Features

Not only the close relationship to the rank-minimization and volume-minimization
approaches is a positive argument to use this approach. We further extend the
novel approach using a weighting matrix W 2 RT⇥T . For example, such a weight-
ing matrix allows controlling how many images are considered for similarity com-
putation. This extension opens up even more possibilities for registration. It even
allows registration in a pairwise manner, comparing two images and a groupwise
manner more or less globally, comparing more than two images. Therefore, we
can use one unified approach and only need to choose how many images should be
used for comparison and features appropriate for the application.
According to Equation (29), by appending W 2 RT⇥T to the equation, we obtain

DSqN(W, I) = �kW � C(I)kS,q. (31)

Note, that the product indicated by � is the Hadamard-Product multiplying the
elements of both matrices element-wise. Choosing W as a matrix consisting of all
ones, we obtain the SqN approach defined in Eq. (30).
Choosing e.g.

W =

0

BBB@

1 1 0 . . .

0 1 1
...

. . .
0 1

1

CCCA

by elementwise multiplication with C we obtain a bi-diagonal matrix. This matrix
consists of all ones on the main diagonal and hF (Ij), F (Ik)i on the first superdiag-
onal, where j = 1, . . . , T � 1 and k = j + 1. Concludingly, this gives a pairwise
registration approach. The only di↵erence here is that none of the images is fixed,
as it is for the standard two-image approaches. Furthermore, the number of im-
ages considered for similarity computation may be varied for di↵erent slices or time
points or even on di↵erent levels, when using a multi-level approach. It is also con-
ceivable that di↵erent weightings like a standard distribution or a linear decay may
be useful in di↵erent applications. We refer also to the discussion (Sec. 5).
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3.5 General Framework and Important Properties

We are now ready to give a final, comprehensive definition for our novel framework
now that we have studied di↵erent ways of defining a distance measure for image
registration of multiple images.

Definition 5 (SqN Distance Measure). Given a tuple of images I 2 ImgT , T 2 N
and q > 0, the function

DSqN(I) = �kW � C(I)kS,q

is called SqN distance measure. Here, W 2 RT⇥T is a specific weight ma-
trix and C(I) = F (I) >

F (I) is the correlation-matrix of features F (I) 2 Rn⇥T .
Note, that � denotes the Hadamard product.

Typically, we choose W = 11 >, where 1 2 RT is a vector of all ones. With Defi-
nition 5, we have a versatile framework for measuring image similarity of multiple
images that merges all introduced ideas into one equation. Using W , we can con-
trol how many images are considered for comparison. This also comprises a specific
weighting that can control the influence of specific features. Furthermore, due to a
free choice of image-features, we can control how the images are compared to each
other. The given examples include intensity images as well as gradient features
which are di↵erently normalized. Note that the features need to be normalized in
order to fulfill the needs of the correlation matrix. A discussion on the normal-
ization is found in Sec. 3.2. Compared to the two-images methods introduced in
Sec. 2.1, we do not need to choose a specific reference image. Due to the use of the
Schatten-Norms – or, more precisely, the singular values of the correlation matrix
– the ordering of images does not play a role for the registration. This might be
handy for applications where a specific order is not needed, e.g., for building an
atlas. Other applications like dynamic imaging or histological sectioning have an
intrinsic ordering. The given order can be used as-is without a problem. Although,
the fact that there is a specific ordering is not be exploited as it might be the case
in pairwise registration cases. There, the ordering plays a major role and the com-
parison is completely built upon the comparison of neighbouring images. Still, our
framework is very versatile. Di↵erent choices of image-features, the specific choice
of W , and the variability in formulation due to the use of singular values allow the
interpretation of the framework as an independent distance measure or as a gen-
eralization of di↵erent two-image measures like NGF. For the choice of features,
we suggest either image intensities or image gradients, as we discuss these within
this thesis. We base the choice of q on the discussed variants of our novel measure
SqN. Thus, the standard choices might be q = 0.5, as suggested by Möllenho↵
et al. in [102]. Furthermore, as we mainly use it in this thesis, q = 2, q = 4 as
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well as q = 1 are choices for successful registration results, as we show in Sec. 4.
This makes the framework straightforward to interpret as well as straightforward
to implement. We discuss more important invariances and properties in the course
of the next subsections.

Geometrical Interpretation and Related Work

In this section, we give some geometrical interpretations of the di↵erent singular
value-based approaches. Exemplary, we take normalized gradients as image fea-
tures. Referring to [47], the alignment of gradient-based features is achieved by
aligning the gradient directions. This corresponds to a linear dependency of the
set of gradient vectors, which is based on the assumption that a pair of vectors
form an angle in between [47]. In the case of Definition 4, the rank minimization of
the feature matrix achieves a linear dependency of the columns. In this case, the
columns are the feature vectors. The use of such gradient features is well-known
from NGF [47]. Thus, such features are especially useful in a multi-modal image
registration scenario. This idea was first used in color image regularization; see
[102]. For color image regularization, the idea is that the gradients should have
the same direction in each color channel. If there is a variation between the chan-
nels, color noise occurs. Taking a matrix of gradients and minimizing its rank,
e.g., using Schatten-Norms, achieves a coupling of the gradients directions. The
common idea of these approaches is illustrated in Fig. 5.

One might depict the scenario of rank minimization for image registration as re-
ducing all information to one main component. The idea is quite similar to a
Principal Component Analysis, as a data set might be explained with only the
principal component, e.g., for compression reasons. There are image registration
approaches using variations of principal component analysis for image registration.
In [43], [50], for example, the robust PCA is used to split dynamic imaging data
into a part containing the motion and another part containing the anatomical in-
formation. The idea is to register the motion part while keeping the anatomical
information as is. In the end, the registered motion component and the untouched
anatomy component can be recombined to achieve a fully registered data set. All
these singular value-based approaches have in common that a linear dependency
of either feature vectors or principal components is taken as a basis. The idea
of the PCA is a good starting point, as it can be interpreted as a fitting of the
orthogonal principal axes of an ellipsoid to a given data set. Inspired by that, we
might see the image registration based on singular value based distance measures
as the approach to collapse the principal axes by transforming the data. Therefore,
the images are represented by the principal axes.
Further, it is worth investigating some particular choices of q for the SqN-approach,
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Figure 5: Illustration of a local gradient matrix A = [ru1,ru2,ru3] 2 R2,3 of
three color channels; illustration adapted from [102]. The rank of A is two (left) or
one (center and right). The color-channels are illustrated gray-valued intentionally.

as those indicate connections to other well-studied norms used in image processing.
Especially q = 1, which is the nuclear norm, as well as q = 2, which is the Frobenius
norm, are commonly used in image processing. As the nuclear norm is used in a
variety of regularization strategies in image processing; see e.g. [43], [102], the
connection to the Frobenius norm is most interesting for us, since

q = 2 : kFkS,2 = kFkF =
q
�
2
1 + · · ·+ �

2
K .

This draws a direct connection to the NGF distance measure [47] from Eq. (5).
Theorem 2 illustrates how both approaches SqNand NGF are connected and NGF
can be understood as a special case of SqN.

Invariances and Energies

The behavior of the distance-energy concerning the choice of q is noteworthy, as
q is an important parameter to SqN. The parameter q is chosen as 0  q  1.
As suggested in Section 3.4, q = 4 is a noteworthy choice when using just the
feature matrix F instead of the correlation matrix C for computation of SqN.
In Fig. 8- 10 we show the energies for a�ne linear transformations of an image
against itself. For this experiment, we choose a 2D section from a DCE-MRI data
set of a human kidney, as illustrated in Figure 27 on page 75. Illustrated are the
energies for q 2 {0.5, 1, 4,1}. Note that the choices of q are based on SqNusing
the feature matrix F instead of the correlation matrix C, such that q = 4 for the
use with F is equal to q = 2 for the use with C. The choice of these specific q

is based on the geometrical ideas discussed above. For comparison, the energy
behavior of NGF is illustrated in Fig. 11. In particular, the translation plots make
it obvious that for q < 2, the trivial solution is the best case. The respective
Figures 7a and 8a show a behavior where the values near the boundaries of the
considered domain are much lower than the perfect match at position zero. Each
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time the transformed image is translated out of the respective image domain, the
fixed images are compared to an image of zeros. This is not the case for q > 2,
as we can see from Figures 9a and 10a. This is due to the change of signs. For
q > 2 the perfect match is in a maximum situation as discussed in Sec. 3.4. Apart
from the translation, each case has its global minimum at location zero, where
the perfect match of both images is. Additionally, we see that the energy-plot
of SqN is much smoother than the energy of, e.g., the NGF distance measure or
comparable approaches for multiple images. Details on the results of the a�ne
linear transformation experiment are found in the Example below.

A noteworthy problem of registration approaches that transform all images and
do not employ a fixed reference image is a non-uniqueness of the solution. More-
over, the trivial solution might be the best case concerning the energy that is to
minimize. A typical problem that can be observed is the shifting of images out
of the domain, such that they become zero everywhere. Often, multiple image
approaches are used with additional constraints concerning the uniqueness of a
solution; see e.g., [5], [42], [43], [70], [98], [111]. Typically, a constraint is deployed
that demands the mean of all deformations to be zero in all grid points [5]. A
related approach is to force the sum of all deformations to be zero in each coordi-
nate direction [43]. In theory, it still is necessary to deploy such a constraint as an
additional regularizer for use together with SqN, as the regularizers presented in
Sec. 2.4 do not handle this problem. The need for such an additional regularizing
term is due to the absence of a specific reference image, which gives the approach
a certain degree of freedom. If there is no reference image, the images may be
aligned in any arbitrary position within the image domain. In practice, we did not
notice any shifting-issues for SqN with q > 2 since we typically choose a rather
high regularization parameter, such that a proper regularization is provided, as
we can also see in Sec. 4. Furthermore, with an additional linear pre-registration
routine – as summarized in Sec. 2.1 – the images become more similar such that
the starting-guess of the respective SqN-energy for a non-linear registration rou-
tine is close enough to a minimizer, such that these issues do not play a prominent
role in practice. A desirable minimizer is found using the stopping criteria by Gill,
Murray and Wright [35] summarized in Sec. 2.7.
Another property of the Schatten-Norm-based distances is its permutational in-
variance, which allows a random ordering of the images without changing the
registration result. This property can be proved by using the properties of the
underlying SVD. Since the Schatten-Norms are unitarily invariant and permuta-
tion matrices are unitary, we can permute the order of the registered images or
respective feature maps without changing the result. As shown in [43], a straight-
forward one-liner proofs this for arbitrary matrix A 2 Rn⇥K with SVD A = U⌃V
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and permutation matrix P 2 {0, 1}n⇥n:

(PU) > (PU) = U
>
P

>
PU = U

>
U = Id.

The singular values do not change with the permutation of the columns. Thus,
the values of the Schatten-Norms do not change, which we also see in practice in
section 4. This proofs the invariance to the ordering of the images for computing
the SqN distance measure.
Also, the normalization of the features plays a significant role in the energy-
behavior. Figure 9 illustrates the a�ne linear experiments for global normalization
in the upper row and local normalization in the lower row. The used features are
normalized gradients. The y-axis indicates that the energy levels and the smooth-
ness of the energy plots are quite di↵erent. These di↵erences indicate the discussed
properties from Section 3.2. Moreover, it can be relevant in practical use, as shown
in di↵erent application scenarios in Section 4.

Example for q under A�ne Linear Transformations

This example illustrates the energy behavior of SqN for di↵erent q under a�ne
linear transformations of a 2D DCE-MRI image section against itself. The used
image is illustrated in Figure 6. We use translation, rotation, scaling as well
as shearing of one of the images. The other image is fixed. The experiment
is inspired by an analog experiment published in [43]. For each transformation
type, we use 51 di↵erent positions which are interpolated linearly. Furthermore,
we show the resulting graphs for globally as well as locally normalized gradient
features. For normalization the used norm is regularized using the parameter
⌘ = 10�4. We transform the images in full image resolution without any smoothing.
For the transformation, the moving image moves from the bottom left corner
to the upper right corner of the fixed image domain. Starting in the bottom
left corner, the moving image is completely outside the fixed images domain also
ending completely outside the domain in the upper right corner. This results in
a comparison with all zeros. This is reflected in the graphs as an outstanding
plateau at the left and right boundaries of the shown graph having value 1 or �1
in the case of globally normalized gradient features. The graphs of the locally
normalized gradient features show an analog behaviour while having a smoother
appearance. The graphs are illustrated in Fig. 8 - 10. This behavior is especially
unfavourable in the case of q < 2 as the resulting value is obviously lower than
the minimum for a perfect match of both images. For q � 2 this problem is fixed
due to the properties outlined in Sec. 3.4. Similar results can be seen for the
results using rotation around the image center as well as for the scaling and the
shearing of the moving image. Note that the moving image is scaled in both x-
and y-directions using the same scaling-factor. The shearing is only executed in
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x-direction as a similar result is to be expected for shearing in y-direction. Most
of the graphs show a rather flat course from the boundaries to the minimum. In
some, the graph is even dropping towards the boundaries. For q = 4 and q = 1

this behaviour is a bit less than for the lower q but can still be recognized. From
these results, we may conclude that q � 2 may be interesting, as there is no drop
towards a vanishing image. Furthermore, for all q, we seem to need a scenario in
that the images are already quite similar in order to find the desired minimum.
Meaning, we need to start close enough to the desired minimizer in order to find
it. For the computed examples, it is to be expected, that a smoother graph can
be obtained by smoothing the images on di↵erent scales or using a multi-level
approach, as claimed in [46]. In comparison with the graphs for NGF shown in
Fig. 11, the graphs for SqN seem to be rather smooth. For NGF, a drastically
smoother behaviour is to be expected for larger ⌘ as well as for smoothed images.
Besides, we can see from the graphs for NGF that there is no noticeable drop
towards the boundaries.

Figure 6: Visualization of 4D (x,y,z,t) DCE-MRI data. A representative axial slice
(x,y) at a representative time t is shown. The image is used for the a�ne linear
transformation experiment summarized in Example 3.5. Data courtesy of Jarle
Rørvik, Haukeland University Hospital, Bergen, Norway.
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Figure 7: Illustrated are the energies of the a�ne linear experiments for SqN with
q = 0.5 and normalized gradient features. The upper row shows the energies for
globally normalized features. The energies in the lower row are computed using
locally normalized gradient features, respectively.
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Figure 8: Illustrated are the energies of the a�ne linear experiments for SqN with
q = 1 and normalized gradient features. The upper row shows the energies for
globally normalized features. The energies in the lower row are computed using
locally normalized gradient features, respectively.
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Figure 9: Illustrated are the energies of the a�ne linear experiments for SqN with
q = 4 and normalized gradient features. The upper row shows the energies for
globally normalized features. The energies in the lower row are computed using
locally normalized gradient features, respectively.
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Figure 10: Illustrated are the energies of the a�ne linear experiments for SqN with
q = 1 and normalized gradient features. The energies are computed using locally
normalized gradient features.
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Figure 11: Illustrated are the energies of the a�ne linear experiments for NGF.
Details on the rough appearance of the graphs are summarized in Example 3.5.
Smoother graphs are to be expected for larger ⌘ or smoothed images.



3. IMAGE REGISTRATION OF MULTIPLE IMAGES 48

3.6 Discretization of Schatten-Norm-based Distances

We are now set for discretizing the Schatten-Norm-based distance measures. For
this purpose, we take already computed parts, rephrase them as needed, and com-
pose the discretized Schatten-Norm-based measures. We elaborate the discretiza-
tion on the SqN-definition, using only the feature matrix

SqN(I, q, F ) = kF (I)kS,q =

 
TX

t=1

�t(F (I))q
! 1

q

,

since it is straightforward to refomulate to the correlation-based approach from
(29) as noted in Theorem 2. For ease of presentation, we set W = 11 >, as it
just represents a factor for each element that does not change the discretization.
Exemplarily, we show the discretization for NGF-based features. The used features
can be interchanged with other discretized features if needed. For our case, we
claim Theorem 3.

Theorem 3 (Discretization of SqN). Let DSqN(I) = kW �
�
F (I) >

F (I)
�
kS,q be

the introduced distance measure, defined in Definition 5. Given a tuple of images
I 2 ImgT , T 2 N with q > 0, a feature matrix consisting normalized features
F (I) 2 Rn⇥T and a weighting matrix W 2 R

T⇥T . Without loss of generality, we
set W = 11 > and use Theorem 2, such that we can use only F (I) instead of
F (I) >

F (I). Then, a discretization of the simpliedfied term

SqN(I, q, F ) = kF (I)kS,q =

 
TX

t=1

�t(F (I))q
! 1

q

may be written as

SqNdiscrete(I, q, F ) =

 
TX

t=1

�
q
t

⇣
F ((I � Y )(xc))

⌘!
1
q

.

Proof. Beginning, each column of the feature matrix is discretized, like the tem-
plate image T of the NGF-distance. In this way, we obtain

F (I) =

0

BB@

@I1(y1(xc
1))

k(@I1(y1(xc
1)))k✏

@IT (yT (xc
1))

k(@IT (yT (xc
1)))k✏

... . . .
...

@I1(y1(xc
m))

k(@I1(y1(xc
m)))k✏

@IT (yT (xc
m))

k(@IT (yT (xc
m)))k✏

1

CCA 2 Rd·m⇥T
.
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Now applying the SVD while taking advantage of the unitary invariance of the
Schatten-Norm, we get

kF (I)kS,q = kU⌃V >
kS,q = k⌃kS,q

=

0

BB@
TX

t=1

�
q
t

0

BB@

0

BB@

@I1(y1(xc
1))

k(@I1(y1(xc
1)))k✏

@IT (yT (xc
1))

k(@IT (yT (xc
1)))k✏

... . . .
...

@I1(y1(xc
m))

k(@I1(y1(xc
m)))k✏

@IT (yT (xc
m))

k(@IT (yT (xc
m)))k✏

1

CCA

1

CCA

1

CCA

1
q

which gives for normalized features the discretization

SqNdiscrete(I, q, F ) =

 
TX

t=1

�
q
t

⇣
F ((I � Y )(xc))

⌘!
1
q

.

This result doesn’t contain the factor hd, as seen in the other discretization for-
mulas, which is due to the defined normalization of the features. Note that xc is
a cell-centered grid with which we use the notation for the discretization noted in
Section 2.6 to obtain the vectors in each column.

3.7 Derivatives of Normalized Features and
Singular Values

As discussed in Section 2.7 we aim for second-order optimization methods. As we
focus on Newton-type methods that approximate the second derivative, we only
need to compute the first derivative of the objective function. We can use the
results from [100] for the derivative of the normalized gradient fields to show the
complete derivative of SqN with normalized features using the chain rule.
In this chapter, we use the NGF distance measure derivative results from [100] to
build the numerical derivative of SqN. Furthermore, the transformations deriva-
tives, as well as the derivative of the singular values, are needed. The latter is also
summarized in this section, relying on [107]. For all results on the derivative of
the normalized gradient fields, we refer to [47], [100] and references therein.
Consider the normalized gradients g : Rd

! R with transformation fields y : Rd
!

Rd and features f : Rd
! R as g(y) = f(y)

kf(y)k2
. Following we use the suggestive

abbreviations df(y) as substitute for df(y) := @
@yf(y) and y = y(xc) 2 Rd·m⇥1,

such that g(y(xc)) 2 Rm⇥1. Note, that the vectorization of y and g in the latter
cases is due to the definition of the cell-centered grid, we elaborated in Eq. (8).
We now derive the normalized gradients as
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@

@y
g(y) =

@

@y

f(y)

kf(y)k

=
@

@y

�
f(y)kf(y)k�1

�

=
@

@y

⇣
f(y)

�
f(y) >

f(y)
�� 1

2

⌘

= df(y)
�
f(y) >

f(y)
�� 1

2 + f(y)

✓
�
1

2

◆�
f(y) >

f(y)
�� 3

2 2f(y) >df(y)

=
df(y)

kf(y)k
�

f(y)f(y) >df(y)

kf(y)k3

=
�
Id� g(y) >

g(y)
� df(y)

kf(y)k
.

(32)

Since the normalized gradient fields are an inner part of the composition for the
SqN distance, we use the chain rule. Consider � as the corresponding singular
value for one of the feature columns f of the feature matrix F . Again, we use d�
as a suggestive abbreviation. Then we obtain

@

@y
�(g(y)) =

@

@y
�

✓
f(y)

kf(y)k

◆

= d�

✓
f(y)

kf(y)k

◆
(1� g(y)g(y) >)

df(y)

kf(y)k
.

(33)

An essential part in order to compute the derivative of SqN is the derivative of
singular values. For all the following results, we refer to [107]. We start over with

the SVD of the feature matrix F , which gives F = U⌃V > =
TP
t=1

�tUt
>
Vt. Note,

U and V are orthonormal matrices. Here, fij denotes a single entry of the feature
matrix F . Now the component-wise derivative of the SVD gives [107]

@F

@fij
=

@U

@fij
⌃V > +U

@⌃

@fij
V

> +U⌃
@V

>

@fij
.

It holds that @fkl
@fij

= 0 for all (k, l) 6= (i, j), while @fij
@fij

= 1. Following [107] a
suggestive abbreviation gives

U
>

@F

@fij
V = ⌦ij

U⌃+
@⌃

@fij
+ ⌃⌦ij

V (34)
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with ⌦ij
U = U

> @U
@fij

and an analog expression for V . Here, ⌦ij
U is an anti-symmetric

matrix. From this, the relation [107]

(⌦ij
U )

> +⌦ij
U =

@U
>

@fij
U + U

>
@U

@fij
= 0

is obtained because of the orthogonality of U . The same principle applies for V .
From (34) and with the diagonal matrix ⌃ as well as the anti-symmetric matrices
⌦ij

U and ⌦ij
V , the derivatives of the singular values are obtained by [107]

@�k

@fj
= uivjk. (35)

We are now ready to elaborate on the derivative of the SqN based distance mea-
sures. Using (33) and (35) we compose the first derivative to

@

@yt
kF (I � Y )kS,q

=
@

@yt

 
TX

t=1

�t(F (I))q
! 1

q

=
1

q

 
TX

t=1

�t(F (I � Y ))q
! 1

q�1 TX

t=1

@

@yt
�t(F (I � Y ))q

=
1

q

 
TX

t=1

�t(F (I � Y ))q
! 1

q�1 TX

t=1

q�t(F (I � Y ))q�1 @

@yt
�t(F (I � Y ))

=

 
TX

t=1

�t(F (I � Y ))q
! 1

q�1 TX

t=1

�t(F (I � Y ))q�1
·

·
@

@F
�t(F (I � Y ))

@

@ft
F (I � Y )

@

@It
ft

@

@yt
It.

(36)

Here, @
@F �k(F (I �Y )) @

@ft
F (I �Y ) @

@It
ft is the part, we elaborated in (33). We write

(33) for a feature matrix F 2 Rm⇥T , discretized on a cell-centered grid, with m

grid-points and T feature vectors explicitly for one feature vector. With (35),
using the columns of U and V as ut 2 Rm⇥1

, vt 2 RT⇥1 and the normalized feature
vectors g = f

kfk 2 Rm⇥1, we get

1

kfk
(@h

m)
>

| {z }
Rd·m⇥m

0

@Id� g
>
g|{z}

Rm⇥m

1

Autvt
>

| {z }
Rm⇥T

| {z }
Rd·m⇥T

=: Dh
m, (37)
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where Id 2 Rm⇥m is the identity of dimension m⇥m. By multiplication from the
right-hand-side with the vector of singular values diag(⌃) = (�1, . . . , �T ) >

2 RT⇥1,
we can directly compute the latter sum from (36). We then obtain

@ItkFkS,q =

 
TX

t=1

�t(F )q
! 1

q�1

D
h
mdiag(⌃) 2 Rd·m⇥1

. (38)

We did not consider the part dI
dy , deriving It with respect to yt. This is handled by

multiplying the latter result with the numerical derivative of the images It with
respect to the corresponding grid yt. This specific part of the full derivative is, for
example, computed using finite di↵erences; see, e.g., [100].

Di↵erences between Derivatives for Locally and Globally Normalized
Features

As summarized in Section 3.2, features can be normalized locally or globally. A
local normalization requires more than just a single value at the location of one
grid point. An example are spatial gradients. At one grid point, mulitple values
are indicating the gradients spatial direction. If given only intensities as features,
local normalization can not be applied in a meaningful way, as there is only one
given value at the location of a grid point. Still, in this section, we describe the
di↵erences in the derivatives. Equations (37) and (38) can directly be used for
global normalization. For local normalization, the notation needs to be changed
slightly. In this case, we compute everything shown before, for each single grid
point.
The main di↵erence lies in equation (37). While (37) is straightforward to use
for globally normalized features, we need to change 1

kfk

�
Id� g

>
g
�
for locally

normalized features. For local normalization, we consider the feature vector g to
be normalized at each grid point xc

i , such that g(xc
i) =

f(xc
i )

kf(xc
i )k

. However, instead

of writing everything for each grid point, we rather use a proper rephrasing of
1

kfk

�
Id� g

>
g
�
. For this purpose, we consider the normalized feature vector to be

a matrix, such that

glocal =

0

BB@

fx1 (x
c
1)

kf(xc
1)k

. . .
fx� (x

c
1)

kf(xc
1)k

...
...

fx1 (x
c
m)

kf(xc
m)k . . .

fx� (x
c
m)

kf(xc
m)k

1

CCA 2 Rm⇥�
,

where � is the number of feature-characteristics at one grid point and fx� is the
corresponding feature-characteristic. For example, for gradient features this cor-
responds to the spatial dimension d, such that � = d; e.g., for two-dimensional
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images this gives � = d = 2. As a formula for each grid point, we obtain

Id� glocal(x
c
i)

>
glocal(x

c
i).

Here, Id 2 R�⇥� is the respective identity and glocal(xc
i) 2 R1⇥� is the vector of

feature-characteristics at grid-point xc
i . We now abbreviate

Id� glocal(x
c
i)

>
glocal(x

c
i) =: Glocal(x

c
i) 2 R�⇥�

.

Furthermore, we consider (Glocal(xc
i))j 2 R

�⇥1 to be a column of Glocal(xc
i). This

allows us to set up a block-structured matrix that we can directly use like in
(37). Taking the columns (Glocal(xc

i))j, we concatenate a block structure matrix of
diagonal matrices

�local :=

0

B@
diag(⌘1(Glocal(xc

1))1) . . . diag(⌘1(Glocal(xc
1))�)

...
...

diag(⌘m(Glocal(xc
m))1) . . . diag(⌘m(Glocal(xc

m))�)

1

CA 2 R�·m⇥�2
, (39)

where ⌘ = (⌘1, . . . , ⌘m) >
2 Rm⇥1 is the vector of normalization factors ⌘i =

1
kglocal(xc

i )k
. This matrix is substituted into (37), which gives the equivalent equation

for locally normalized feature vectors:

(@h
m)

>

| {z }
R�·m̂⇥m̂

�local uivjk
>

| {z }
R�2⇥K

| {z }
R�·m̂⇥K

. (40)

Exemplary, for T = 3 two-dimensional (d = � = 2) images, we obtain for locally
normalized images with m pixels:

(@h
m)

>

| {z }
R2·m̂⇥m̂

�local uivjt
>

| {z }
R22⇥3

| {z }
R2·m̂⇥3

.

Here, �local 2 R2m⇥22 consists of 2-by-2 blocks. More precisely, the i-th row of
�local for the t-th image It comprises

⌘i

0

@1�
⇣

@x1It(x
c
i )

k@It(xc
i )k

⌘2
1�

⇣
@x2It(x

c
i )

k@It(xc
i )k

⌘2

@x1@x2It(x
c
i )

k@It(xc
i )k

@x2@x1It(x
c
i )

k@It(xc
i )k

1

A .

In contrast to that, the globally normalized features are multiplied with the same
factor at each grid point. Because of that, we can directly use the form of (37).
For that case, g >

g is a vector-multiplication of the vectorized, normalized feature
images. The corresponding matrix is gglobal

>
gglobal = �global 2 R2m⇥2m, where

gglobal 2 R2m⇥1.
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3.8 Error Estimates

We elaborate on the discretization of our distance- and regularization functionals
by utilizing a midpoint quadrature rule. Since the discretization introduces errors,
we investigate for an error bound in this section. We focus on the errors aris-
ing from estimating the interpolation of discretized images within the numerical
schemes. Since we are using a multi-level scheme for optimization, we want the
error to decrease with increasing data resolution. This section is based on the fact
that SqN can be computed analytically for non-discrete functions. The assumption
is that the given images are non-discrete, continuous functions, such that the in-
terpolation error for interpolation of the given, discretized images decreases when
the grid is refined.
We start our discussion by the introduction of some abbreviations. Let D(Y ) be
the continuous distance functional. On the one hand, we have interpolation errors,
which is why we define Dm(Y ) as approximated distance functional using inter-
polated images with data resolution m. On the other hand, we use the midpoint
quadrature for integration approximation, which is why we introduce Dm,h as an
approximation of the distance functional comprising the quadrature as well as the
interpolated images. Following [120], we use the triangle inequality to obtain a
splitting of the error bounds

|D(Yh)�Dm,h(Yh)|  |D(Yh)�Dm(Yh)|+ |Dm(Yh)�Dm,h(Yh)|.

This splits up the error into an interpolation error part and a quadrature error
part. For increasing data resolution, especially in the limit with m ! 1, the first
summand vanishes. This is based on an approximation result in [134]. We now
need to focus on the second summand for which we will investigate the quadrature
error of the correlation-based SqN distance functional DSqN . We restrict to the
2D-case since the extension to higher dimensions is straightforward, as we will
also see later. Furthermore, we use the suggestive abbreviations F = F (I(Y )) and
h = (h1, h2). Therefore, we use the discretized intensity images as columns of the
feature array F for ease of presentation.
We now begin by analyzing the quadrature error of one element of the correlation
matrix of features. For this purpose, we use a first-order Taylor approximation at
x for

p
x+ e ⇡

p
x+

e

2
p
x
+O(e2) =

p
x+O(khk2),

where e = O(khk2) and x > 0. For practical reasons, we consider images not being
entirely zero; otherwise the error would increase and tend to become infinity. This
means the integrals are well-defined and none of the images tends to zero. We
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therefore obtain

�
F

>
F
�
i,j

=

R
Ii(yi(x))Ij(yj(x)) d⌦qR

I
2
i (yi(x)) d⌦

qR
I
2
j (yj(x)) d⌦

=
hd
Pn

k=1 Ii(xk)Ij(xk) +O(khk22)⇣p
hd
Pn

k=1 I
2
i (xk) +O(khk22)

⌘⇣q
hd
Pn

k=1 I
2
j (xk) +O(khk22)

⌘

=

Pn
k=1 Ii(xk)Ij(xk) +O(khk22)qPn

k=1 I
2
i (xk)

Pn
k=1 I

2
j (xk) +O(khk22)

,

where xk are cell-centered grid points and n is the number of total grid points.
Now the whole fraction is

Pn
k=1 Ii(xk)Ij(xk) +O(khk22)qPn

k=1 I
2
i (xk)

Pn
k=1 I

2
j (xk) +O(khk22)

=

Pn
k=1 Ii(xk)Ij(xk)qPn

k=1 I
2
i (xk)

Pn
k=1 I

2
j (xk)

+O(khk22)

=
�
Fh

>
Fh

�
i,j

+O(khk22),

which gives us an upper error bound for each element of the feature array, where
Fh is the approximation of F for cell-size h. That a+O(x2)

b+O(x2) =
a
b +O(x2), b 6= 0 can

be seen by computing 1
b+O(x2) �

1
b , which gives O(x2), such that the total error

rate of the fraction is O(x2). We use this error bound to investigate the behavior
of the error bound for the whole array composed with the Schatten-Norm. Let us
abbreviate fi,j =

�
F

>
F
�
i,j
, then the feature array is

F
>
F =

�
fi,j +O(khk22)

�T
i,j=1

= Fh
>
Fh +O(khk22)11

>
,

where T is the number of images and 1 2 RT is a vector of all ones. Now by
substitution, we obtain for our distance functional

��F >
F
��
S,q

=
��Fh

>
Fh +O(khk22)11

>
��
S,q

.

Again, using the triangle inequality, we can split the Schatten-Norm to
��Fh

>
Fh +O(khk22)11

>
��
S,q


��Fh

>
Fh

��
S,q

+
��O(khk22)11

>
��
S,q

.

Since we can factor out our error estiamte O(khk22) from the norm and the rank-1
matrix 11 > has the single singular value � = T , we obtain

��Fh
>
Fh

��
S,q

+O(khk22). (41)
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Utilizing the fact that F
>
F is symmetric, positive semi-definite, we know that

�(F )2 = �(F >
F ) = �(F >

F ). Furthermore, kF >
FkS,q = kFk

2
S,q. With this, we

deduce the total error bound etotal by

etotal = |kFkS,q � kFhkS,q|

=
���
�
kFh

>
FhkS,q +O(khk22)

� 1
2 � kFh

>
Fhk

1
2
S,q

���



���kFh
>
Fhk

1
2
S,q +O(khk22)� kFh

>
Fhk

1
2
S,q

���

= O(khk22),

(42)

with the help of
p
x+ h ⇡

p
x+ h.

From (41) and (42), we can see, that the quadrature error for the whole feature
array vanishes for h ! 0, as desired. Therefore, we can conclude that for arbi-
trary fine resolution |m| ! 1 and arbitrary fine quadrature intervals h ! 0, the
approximated distance functional converges to the continuous functional.
In addition, this result is still valid for di↵erent normalized features like e.g., nor-
malized gradients. When using finite di↵erences to approximate the intensity
gradients, the error of the finite di↵erence scheme adds up to the interpolation
and quadrature error. This is achieved by substituting the function f : ⌦ ! R
that is to be integrated using the midpoint quadrature by its finite di↵erence ap-
proximation f(xk) = fh(xk) + Efd, where Efd is the error of the finite di↵erence
scheme: Z

⌦

f(x)dx = hd
nX

k=1

f(xk) +O(khk22)

= hd
nX

k=1

(fh(xk) + (Efd)k) +O(khk22)

= hd
nX

k=1

fh(xk) + Efd +O(khk22)

A discussion about the accuracy of numerical minimizers with respect to the con-
tinuous solutions is not within the scope of this work.

Examples

We now exemplarily verify the error estimates of our novel distance measure. First,
we estimate the error behavior for I = (sin(x), cos(x), sin(x)), assuming normalized
intensities as features. With these analytical functions, there is no doubt that the
expected behavior can be shown. For the experiments we further assume that
⌦ = [0, ⇡2 ]. Therefore, with

Ftrig.(I) =
⇣ R

sin
k sin k

R
cos

k cos k

R
sin

k sin k

⌘
,
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we compute the theoretical values of SqN(Ftrig.(I)) and compare them for di↵erent
sampling resolutions on cell-centered grids. Figure 12 illustrates the error estimates
for q 2 {1, 2, 4} and 15 di↵erent resolution levels. The resolution of the di↵erent
levels is obtained by r = 2l, where l 2 {1, . . . , 15}. The left-hand side illustrates the
error between the theoretical value D and the numerical value Dh as absolute value
|D�Dh| against the grid spacing h in a log� log plot. Furthermore, the assumed
quadratic behavior is drawn by h

2 against h. On the right-hand side, a semi-log
plot shows the behavior of the error for h ! 0. For verification of the quadratic
behavior of the error estimates, we observe the following: On the left-hand side, we
see the same slope as the theoretical estimate of the numerical computation. On
the right-hand side, as h decreases, we observe the actual behavior, which needs
to decrease in a quadratic manner. Note, that the computation of SqN is based
on the correlation matrix C = F

>
F . For a direct comparison to SqN using just

F as a computation basis, we refer to Theorem 2.
Now that the quadratic behavior is shown to be correct also for analytic functions
like sine and cosine for intensity features, it is especially engaging to see the behav-
ior for actual images. We investigate the error behavior for a part of a DCE-MRI
data set; data courtesy of Jarle Rørvik, Haukeland University Hospital, Bergen,
Norway. Figure 13 illustrates three representative coronal slices of the DCE-MRI
data set. The full data set is acquired as a time series of three-dimensional time
points. Here, we use multiple two-dimensional sagittal planes cut out of the three-
dimensional time points. The reference for our error estimates is the computation
of SqN on the non-interpolated data set in its full resolution – this time, we use nor-
malized gradients as features. As a basis, we compute SqN using just the feature
matrix F . That means our primary focus lies on q = 4, due to the relation to the
NGF distance measure. The single images of the data set contain 256-by-256 pix-
els. The domain (in millimeters) of the images is ⌦ = [0, 425]⇥[0, 425]. The error is
estimated on six di↵erent grid resolutions, starting from 8-by-8 in steps of power-2
up to original resolution. Therefore, the cell size h is ranging from ⇠ 1.7 mm up
to ⇠ 53 mm. For interpolation, a standard cubic-spline method is used; see e.g.
[100] for details. The error behavior is illustrated in Figures 14, 15 and 16. The
behavior of the error is, as expected, quadratic for all chosen q. The log-log plots
of the theoretical error vs. the numerical error estimates showcases the quadratic
error decrease. There, the slope of the numerical estimate needs to be the same as
the slope of the theoretical estimate to fulfill the quadratic decrease. We further
see that the error-decrease remains quadratic for di↵erent numbers of images, as
we show plots for three as well as for 45 images. We also observe a proportional
increase of error for a coarse grid for a higher number of images. Nevertheless, it
always tends to zero. Very compelling is also the behavior concerning the normal-
izations. The error for globally normalized features is lower than for features that
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(a) Error behavior for q = 2
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(b) Error behavior for q = 4

Figure 12: Illustrated is the quadratically decreasing error for an increasing number
of grid points. Here, the error is based on the integral computations for the
trigonometric functions (sin, cos, sin). The functions represent three images with
intensity features. The results are computed on the domain ⌦ = [0, ⇡2 ].
Note that for q = 1 with h ! 0, the tiny increase is due to the scaling of the
y-axis.

are normalized locally. This observation is due to the overall values of the feature
maps, which are much smaller per cell for global normalization. Thus, the error
between the original data and the interpolation on the grid is smaller. Captivating
is also the sharp decrease of the locally normalized features when turning to the
same grid resolution the original data has. Here, the error of the locally normalized
features is much lower than the globally normalized features. The error value is
as low as machine precision. The latter two observations support the discussion
from Sec. 3.2 that globally normalized features may not consider small details. In
contrast – and this is what we see in the plots – the fine details considered by local
normalization lead to a lower error on full resolution.
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Time Point 0 Time Point 5 Time Point 20

Figure 13: Illustrated are three representative coronal slices of a 4D DCE-MRI
dataset of a human kidney at z-position 14. The full data set comprises 45 volumes
containing 256-by-256-by-30 voxels. Hence, the sagittal slices contain 256-by-256
pixels. Data courtesy of Jarle Rørvik, Haukeland University Hospital, Bergen,
Norway.
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(a) Error for 3 images and q = 4 with globally normalized features.
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(b) Error for 3 images and q = 4 with locally normalized features.

Figure 14: Illustrated is the quadratically decreasing error for an increasing number
of grid points, equivalent to decreasing h. Here, the error is based on the resolution
of the non-interpolated data, which is 256-by-256 per image. Considered for the
computation were three images. The used features are normalized gradients. The
plots show the error behavior for global as well as local normalization.
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(a) Error for 3 images and q = 2 with globally normalized features.
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(b) Error for 3 images and q = 2 with locally normalized features.

Figure 15: Illustrated is the quadratically decreasing error for an increasing number
of grid points, equivalent to decreasing h. Here, the error is based on the resolution
of the non-interpolated data, which is 256-by-256 per image. Considered for the
computation were three images. The used features are normalized gradients. The
plots show the error behavior for global as well as local normalization.
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(a) Error for 45 images and q = 4 with globally normalized features.
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(b) Error for 45 images and q = 4 with locally normalized features.

Figure 16: Illustrated is the quadratically decreasing error for an increasing number
of grid points, equivalent to decreasing h. Here, the error is based on the resolution
of the non-interpolated data, which is 256-by-256 per image. Considered for the
computation were 45 images. The used features are normalized gradients. The
plots show the error behavior for global as well as local normalization.
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3.9 Optimization and Implementation Remarks

This section is the respective extension of Sec. 2.7. The focus is rather on deploy-
ing details for handling multiple images with the outlined optimization schemes
than on reviewing the full schemes for multiple images. This is accompanied by
implementation remarks as we discuss the discretized setting. We mainly base this
part on original literature, see, e.g., [3], [55], [103], [116].

BFGS

For the BFGS method, we start over at the choice of the starting-guess for H.
Here, we follow [55] for the choice of H0 or the inverse B0 = H

�1
0 for an inital

guess. Considering f(x) to be our objective function, then the Hessian is [55]

r
2
f(x) = r

2
D(x) + ↵r

2
S(x) = r

2
D(x) + ↵hA.

The Matrix A is, considering Dirichlet boundary conditions [55], symmetric posi-
tive definite. Thus, we choose B0 following [55] as

B0 = (↵h)�1
A

�1
⇡ (r2

f(x))�1

as a starting-guess that approximates the Hessian of our objective function. Nu-
merical experiments in [55] show, that this choice outperforms a simple identity
as starting-guess. Also for di↵erent boundary conditions it is possible to use this
starting-guess. Adding a regularizing identity to A and using a pseudo-inverse B0

is still positive definite for [55]

B0 = (✏I + ↵hA)�1
,

for ✏ > 0. This formula holds for the chosen Dirichlet boundary conditions. When
choosing Neumann boundary conditions, A is no longer positive definite [55]. In-
stead, it is positive semi-definite and a Moore-Penrose pseudo inverse may be
computed [55]. We use this for deploying a starting-guess for our specific multiple-
image approach. As outlined in Sec. 3.3, we use a straightforward extension of
the regularization by using a summation of regularization-energies for each image.
Taking into consideration that we concatenate all transformation grids into a long
transformation vector y 2 Rd·n·T we build A for the approximation of r2

f(x) as a
block-diagonal matrix. With this, we obtain

A =

0

BBB@

A1

A2

. . .
AT

1

CCCA
,
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where At is the respective approximation for the single images. This specific
construction has the advantage that each block can be determined individually as
the inverse of a block-diagonal matrix is a block-diagonal of the inverse blocks.
A great advantage is that this is straightforward to parallelize. When using the
curvature regularizer, all At are equal, for example.
For the limited-memory version of the BFGS-Method, only a few, meaning five to
ten, of the last si and gi, are used to save memory. This means we just need to
compute the approximation to the Hessian once and update it in each step. Con-
sidering a full A for approximation, we would need to save a matrix of dimension
n · d ·T ⇥n · d ·T . With the low-memory version, we only need to save two vectors
of dimension n · d · T . For our example for the 2D images of size 256⇥ 256 pixels,
we just need to save ⇡ 4 · 106 entries instead of ⇡ 2 · 1011 entries, which makes the
recomputation in each iteration much faster.

Gauß-Newton

In our multiple image case, for vectorized Jacobian, we need to handle
d r(xk) 2 Rd·n·T , which ends up in a Hessian approximation H 2 Rd·n·T⇥d·n·T .
Unlike as for the BFGS method, for solving the Newton system with a Gauß-
Newton approximation of the Hessian, we need to compute the approximation
anew in each iteration. Although this may get infeasible for many large images,
due to the better convergence, it is worthwhile to consider Gauß-Newton for op-
timization, at least for problems containing small images or a small number of
images.

3.10 Guideline for the Choice of Parameters

Since there are a few parameters we have introduced along with SqN we now give a
guideline to a choice of parameters in a practical way. We focus on the parameters
for the distance measure SqN rather than on the choice of a suitable regularization
parameter ↵. For this, we refer to appropriate image registration literature; see
e.g. [29], [32], [100].
The most prominent parameter along with SqN is the q. In Section 3.4, the use of
q � 2 is recommended. This is due to the behavior of the distance energy. In that
case, the global maximum is the best match for the given images. Therefore, a
simple switch of signs deploys a minimization problem. Furthermore, the Schatten-
Norms for q � 2 are actual norms. Thus, SqN is convex. In particular, q = 2 (or
q = 4, depending on the use of the correlation matrix C or the feature matrix
F in the formulation of SqN) and q = 1 are choices worthwhile to try. The
choice q = 4 along with the feature matrix F in the formulation of SqN have
shown to be a good choice in practice; c.f. [7]–[9], [60]. The choice of q = 1
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may be engaging in combination with eigenvalue or singular value approximating
approaches as for q = 1, only the largest singular value is relevant. A method like
the so-called power iteration might be worthwhile to investigate together with SqN
and q = 1 eliminate the SVD computation in each iteration. We also use q = 0.5
which originates from color image denoising; see [102]. This deploys a non-convex
quasi-norm case for the Schatten-Norms, which can be solved using the methods
reviewed in this work but may rather be solved using optimization methods not
utilizing the objective function’s derivatives.
The choice of the weighting matrix W is shortly discussed in the respective sub-
section within Section 3.4. The edge parameter ⌘ for normalized gradient features
may be chosen following the rule shown in [47]. This parameter is highly depen-
dent on the data and may also be chosen manually by sight. For that, one can plot
the di↵erent spatial parts of the normalized intensity gradients while adapting ⌘,
such that the noise reduces.

3.11 Summary

With Equations (25), (26), (29) and (31), SqN is a very flexible distance-measuring
framework. Due to its use of the Schatten-Norms, it is possible to combine various
advantages from well-studied approaches for two-images. It is possible to use dif-
ferent image features, such as simple intensities, intensity-gradients or even more
advanced features like MIND [53], [54] or local scale-invariant features (SIFT) [87],
[88]. By building a feature matrix, various geometrical ideas can be used for sim-
ilarity measurement taking advantage of the specific features. This allows for the
use of SqN in a wide variety of applications, not only in medicine. Furthermore,
the architecture of the specific feature matrix allows the registration of multiple
images in one process. Due to the use of singular values modeled by the Schatten-
Norms, intrinsic properties over a whole stack of images can be considered for
registration. Of course, by using Equation (31), the neighborhood-size for similar-
ity measurement can be determined. With this, also a pair-wise image registration
lies within the possibilities of the SqN-framework. Moreover, an arbitrary number
of images can be considered for the measurement of similarity between features.
Altogether, we have seen a straightforward discretization of the framework as well
as an analysis of the first derivative, such that the framework can be used with
higher-order optimization methods. Also, the framework has upper and lower
distance-energy bounds and the error estimates for the discretization lies within
the expectations. On the one hand, the error vanishes quadratically for refined
grids. On the other hand, the error rises linearly for a higher number of images
considered for registration, as expected. Finally, the elaboration of the numerical
optimization schemes with details on the starting-guess for Hessian-approximation
makes it straightforward to implement SqN for use in various toolboxes.
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4 Numerical Results

In this chapter, we elaborate on numerical results for medical applications using
the novel distance measure SqN. We start with a short overview of the datasets
we use for our numerical experiments. Following, we use an academic example in
which we register five x-ray images of a human hand. This dataset is annotated
with landmarks, which allows us to discuss the results concerning di↵erent param-
eters. The discussion of the parameters gives a first impression of the behavior
of SqN in comparison to the standard measures like NGF or SSD. Subsequently,
we present results for motion correction of DCE-MRI datasets as well as results
for 3D reconstruction of histological tissue. A fusion application, as requested
by clinicians, accompanies this. Finally, this chapter presents a proof-of-concept
application using a recently published convolutional neural network to show the
applicability of SqN with modern neural network methods.

4.1 Overview of the used Datasets

For the di↵erent numerical experiments, we use the following, shortly introduced,
datasets. This section intends to give a short overview of the datasets and to
clarify data courtesy. Details on the datasets and the number of pixels, voxels,
slices or time points are given in the respective section.
Our first experiment utilizes an x-ray image of a human hand, as found in the
FAIR toolbox [100] or in [2]. The toolbox provides landmarks that can be seen in
Figure 17 overlayed on the hand.
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Figure 17: X-Ray image of a human hand manually annotated with landmarks.
The image data and the landmarks are taken from the FAIR-Toolbox [100].
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The second experiment is about motion correction in dynamic imaging. More
precisely, we use multiple DCE-MRI datasets with courtesy of Jarle Rørvik from
Haukeland University Hospital Bergen, Norway. Figure 18 shows two-dimensional,
coronal overview slices from a representative dataset. For reasonable computation
times, we also use smaller parts of the datasets, only showing one kidney, as shown
in Figure 19.

Time point 0 Time point 5 Time point 20

Figure 18: Illustrated are three representative 2D coronal slices of two di↵erent 4D
DCE-MRI datasets of human kidneys; data courtesy of Jarle Rørvik, Haukeland
University Hospital, Bergen, Norway.

data-t1 data-t2 data-t3

Figure 19: Illustrated is the left kidney from the dataset shown in Fig. 18.

The third experiment is about the registration of histological serial sectioning.
Here, we use a dataset of a mouse brain, as shown with representative slices in
Figure 20, with courtesy of O. Schmitt, University of Rostock, Germany; see [123]
for experimental details. Furthermore, a marmoset monkey brain dataset is used.
Figure 21 shows representative slices; data courtesy of Harald Möller, Max Planck
Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; see also [92].
The fourth experiment uses datasets of a mouse kidney as well as datasets of a
mouse heart for 3D reconstruction and fusion of the images from di↵erent modal-
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Slice A Slice B

Figure 20: Two representative axial slices of a mouse brain dataset. Data courtesy
of O. Schmitt, University of Rostock, Germany; see [123] for experimental details.

Slice 5 Slice 30 Slice 46

Figure 21: Three representative axial slices of a marmoset monkey brain dataset.
Data courtesy of Harald Möller, Max Planck Institute for Human Cognitive and
Brain Sciences, Leipzig, Germany; see also [92].

ities. Figure 22 shows representative slices of the kidney, while Figure 23 shows
representative slices of the heart; data courtesy of Joachim Jankowski, Institute
for Molecular Cardiovascular Research, UK Aachen, Aachen, Germany.
The last experiment is about the application of SqN in a deep learning framework.
For this, we utilized the DIR-LAB data, which are 4D CT datasets of human
lungs and can be found on www.dir-lab.com. Data courtesy of Richard Castillo,
Department of Radiation Oncology, Winship Cancer Institute, Emory University,
Atlanta, USA; see [14]–[16]. Figure 24 illustrates representative, two-dimensional
sections from one of the provided datasets.
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Figure 22: Illustrated are three representative histological slices of a mouse kid-
ney. Data courtesy of Joachim Jankowski, Institute for Molecular Cardiovascular
Research, UK Aachen, Aachen, Germany.
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Figure 23: Illustrated are three representative histological slices of a mouse heart.
Data courtesy of Joachim Jankowski, Institute for Molecular Cardiovascular Re-
search, UK Aachen, Aachen, Germany.

Figure 24: Visualization of CT data from DIR-Lab [14] (see www.dir-lab.com).
Two representative axial slices at a representative time t of a human lung are
shown. Data courtesy [14]–[16].
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4.2 Academic Examples

The academic example we show involves the registration of manually rotated x-
ray images of a human hand. With this example, we show that SqN is capable
of achieving registration results of comparable quality to standard methods using
NGF or SSD. The dataset we use is from the FAIR-Toolbox [100]. Amit originally
published the images in 1994; see [2]. Here, we use the reference image of the
hands, which is manually annotated with landmarks. For registration, we use
five versions of this hand. In a pre-processing step, we rotate four of the images
using the angles ±10� as well as ±9�. One of the images remains un-transformed
in the pre-processing. Our primary focus for the experiments is on the distance
measure SqN. For comparison, we use NGF and SSD. For SqN we use local as well
as global normalization of gradient-features with di↵erent values for q. Here, we
choose q 2 {0.5, 1, 4,1}. The regularization parameter ↵ is ranging from 1 · 10�5

to 1 ·102 in steps of 101. The edge-descriminating parameter ⌘ is fixed to ⌘ =
p
35,

chosen manually by optical inspection. As an interpolation model, we choose a
standard cubic-spline model to provide an accurate interpolation of the medical
data. Our maximum iterations are set to 222 for each level, such that the bu↵er is
large enough that the optimization stops due to the other stopping criteria. The
gradient-tolerance is set to 1 · 10�8. The results for NGF and SSD are computed
sequentially using only one sweep. Our results are computed from level 3 with a
resolution of 8⇥8 pixels to level 7 with a resolution of 128⇥128 pixels, which is the
full resolution of the images. Figure 25 illustrates the x-ray image overlayed with
the respective landmarks. The image domain is ⌦ = (0, 20) ⇥ (0, 25). Figure 2
and Figure 3 show the results of our computations. The tables contain several
abbreviations: J is the energy of the objective function. D is the energy of the
distance measure. S is the regularization-energy. The time is measured as a sum
of all iterations and all levels, just as the iterations are accumulated for all levels.
E1 is the mean landmark-error before registration, and E2 is the mean landmark
error after alignment. Max E1 is the maximal landmark-error and Max E2 the
corresponding error after alignment. The results are computed using our Python-
Toolbox GReAT that has been developed by the author. Table 2 and Table 3
show the best results for each distance measure. The computations for SqN with
q = 0.5 and q = 1 turned out to be worse than for q = 4 and q = 1, which is
why we don’t show them in the tables. We computed all results for all mentioned
↵. Illustrated are only the results for the lowest mean landmark error. Therefore,
the tables show the respective regularization parameter ↵ for the lowest mean
landmark error. We achieved the overall lowest error using SqN with q = 1 and
↵ = 10. For a fair comparison, we computed the results for NGF and SSD in
a sequential process, registering pairs of images. Other than with the standard
two-image registration, both images were transformed, meaning that there was
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no fixed reference image. This is reflected in the results for NGF, for which we
typically expect comparable results to SqN with q = 4, as a close relation was
pointed out in Sec. 3. The approach without a fixed reference seems to cause
trouble, such that the landmark error slightly increases after registration. SSD
has no problems without a fixed reference image and is able to lower the mean
landmark error, but not in a comparable quality as SqN does. Most likely, due to
the absence of a fixed reference image as well as due to the pairwise process, the
number of iterations for NGF and SSD was much higher than for SqN. This also
causes a notable di↵erence in computation time. A graphical illustration of the
results is presented in Figure 26.
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Figure 25: X-Ray image of a human hand manually annotated with landmarks.
The image domain is ⌦ = (0, 20)⇥ (0, 25). The image data and the landmarks are
taken from the FAIR-Toolbox [100].
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J Objective energy
D Distance energy
S Regularization energy

Iter Total number of iterations (accumulation)
E1 Mean landmark error before registration
E2 Mean landmark error after registration

Reduc. Reduction of the error (in percent): (1� E2
E1) · 100

Max {E1, E2} Maximal error

Table 1: Abbreviations used in Tables 2 and 3.

Distance Normal. q Alpha Time (s) J D S
SqN global 4 0.01 241.5394 -2.1240 -2.1501 0.0260
SqN local 4 0.1 300.7015 -213.8486 -219.1441 5.2955
SqN local 1 10.0 304.4160 -752.9994 -807.4317 54.4322
iSqN local 4 0.001 217.8871 -2.2341 -2.2352 0.0011
NGF local - 100.0 509.1613 345.1176 333.7306 11.3870
SSD local - 100.0 334.0477 362.7093 278.5980 84.1113

Table 2: Illustrated are the results of our computations for registration of five
rotated X-Ray images of a human hand. J is the objective-energy. D is the
distance-energy and S is the regularization-energy. The time is measured in sec-
onds. Further numbers can be found in Figure 3.

Distance Normal. q Iter. E1 E2 Reduc. Max E1 Max E2
SqN global 4 754 0.9795 0.3591 63.3384 1.1269 0.8265
SqN local 4 828 0.9795 0.5855 40.2246 1.1269 1.7230
SqN local 1 960 0.9795 0.3281 66.5033 1.1269 0.6072
iSqN local 4 975 0.9795 0.1447 85.2272 1.1269 0.3185
NGF local - 3823 0.9795 1.0143 -3.5528 1.1269 1.1842
SSD local - 2140 0.9795 0.7210 26.391 1.1269 1.1058

Table 3: Illustrated are the results of our computations for registration of five
rotated X-Ray images of a human hand. Here E1 is the mean landmark error
before registration. E2 ist the mean landmark error after registration. Max E1
is the maximal landmark error before registration and Max E2 is the maximal
landmark error after registration. The iterations are counted over all five levels.
Reduc. is the reduction of the error in percentage.
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Figure 26: Illustrated are the results for registration of the X-Ray images of a
human hand. The gray bars represent the regularization energy. Yellow circles
illustrate the respective regularization parameter ↵. Both the gray bars as well as
the regularization parameters correlate to the value-axis on the right-hand side.
The mean landmark error for the respective distance measure is illustrated by the
blue diamonds connected with a blue dashed line to illustrate the trend between
the distance measures. The starting error is illustrated by the gray, horizontal bar.
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4.3 Motion Correction of Dynamic MRI Sequences

Motion correction is one of the most important tasks of medical image registra-
tion and, therefore, well studied. However, motion correction for dynamic MRI
sequences is a particularly challenging task as it combines spatial and temporal
changes in intensities [64]. Because of this, there are still novel methods for motion
correction developed and studied. In dynamic medical imaging, it is almost always
inevitable to correct for the motion to examine physiological functionality within
anatomical structures.
In this work, we focus on studying motion correction of dynamic MRI sequences.
The studied sequences comprise a human kidney as well as a beating human heart.
We begin by examining dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI) of human kidneys. All kidney datasets are provided with courtesy
of Jarle Rørvik, Haukeland University Hospital Bergen, Norway. The focus of
DCE-MRI of human kidneys is on the estimation of clinically relevant parame-
ters. Especially the Glomerular Filtration Rate (GFR) is an essential indicator of
kidney dysfunction and diseases [62], [146], [149]. To allow for an estimation of
GFR through pharmacokinetic modeling, adequate motion correction is required
[62]. Correction of motion enables a voxel-wise estimation of GFR. Among the
challenges we need to overcome with image registration to obtain reliable estima-
tion results are organ motion due to breathing, physiological pulsations, and other
patients movements [62], [63].
The datasets we use are 4D (3D with time-component) acquisitions. For DCE-MRI
acquisitions, a contrast agent, typically gadolinium (Gd), is injected [63]. Right
after injection, the first data is acquired within a short time-slot of a few seconds.
This first acquisition is for the estimation of injection parameters like concentra-
tion of the agent within the blood. Before moving on with acquisition, clinicians
typically wait for the contrast agent to arrive in the region of interest, after one to
two minutes. This break in acquisition gives us a non-uniform time-scale for the
data. Furthermore, due to the injection of a contrast agent, the data has a dynamic
intensity component that is to be maintained. In conclusion, the data needs to be
corrected for motion while maintaining dynamics that manifest by changing in-
tensities over a non-uniform time scale. Additionally, the non-uniform time-scale
may also produce non-continuities in motion as well as in change of intensities.
Figure 27 shows three representative slices of a 4D dataset. The slices are coronal
slices at pixel-position 25 of the z-direction showing di↵erent time-points. The 4D
dataset comprises a total of 146-by-82-by-52 voxels in 49 time points, such that
the 2D slices are 146-by-82 pixels and 49 time points. Furthermore, a maximum
intensity projection (MIP) of the di↵erence images over time is presented on the
very right of the figure. The MIP illustrates the motion due to breathing and
pulsation over time. This particular registration experiment is also shown in our
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publication [8]. For registration we use SqN with q = 0.5, which in this case is
motivated by the Schatten-Norm usecase in color image denoising [102]. There,
an analytical solution for q = 0.5 is discussed. With this particular numerical
example, we show that SqN is capable of outperforming standard methods. With
this, we prove that SqN is capable of achieving results of comparable or even bet-
ter quality compared to standard methods in a sequential manner. For ease of
presentation we use our in Sec. 3.3 introduced summation of regularizers, using a
standard curvature regularizer with parameter ↵ = 0.1. The features are globally
normalized gradients. For optimization, we choose Gauß-Newton with Armijo line
search within a multi-level scheme; see Sec. 2.7. A competing registration uses the
NGF distance measure [47], [100] in a sequential manner with one single sweep,
meaning, registering the image-pairs from image 1 to K and vice versa. We refer
to Sec. 2.1 and Sec. 3 for details on the sequential registration approach. Even
though the results in Figure 28 and Figure 29 look quite similar, the registration,
achieved within the extended MATLAB-Toolbox FAIR [100], was about six times
faster for SqN than for NGF. An optical inspection of Figure 28 and Figure 29
reveals well-aligned structures. Not only the MIPs in Figure 28 are very smooth
and do not show any doubled structures anymore. Also, the sagittal and axial cuts
of the stack of time-point images show straight lines. For time-dependent data,
the straight lines are the structures that are expectable for motion-correction.
Each row of the images in Figure 29 represents the same structure changing over
time. In a best-case scenario, the structures are completely the same after cor-
rection, such that straight lines appear. We can see that this is not the case for
the uncorrected data. The corrected data shows many straight columns, which is
an indicator of a good motion-correction in this case. Note that the illustrated
tissue-structures do not necessarily correspond due to shiftings within the hidden
axis during registration. A second experiment, which we have also elaborated in
[7], shows comparable results for a di↵erent dataset. Here, we use 178-by-95 pixel
large coronal slices of a 178-by-95- by-30 voxel comprising volume with 45 time
points for z-slice 18; see Figure 30 for representative slices. We compute the regis-
tration results for this particular dataset using SqN with q = 4 and q = 1. Again,
we compare the results to NGF because of our choice of features. We use locally
normalized gradient features. For the computations, we use our own developed
Python-Toolbox GReAT. We use L-BFGS with Armijo line search for optimiza-
tion within a multi-level scheme over three di↵erent levels, up to half the original
resolution. Again, the registration with the NGF distance measure is sequential
with only one single sweep as it was already significantly slower than SqN. This
time the results for SqN were achieved in around 8 minutes, compared to twice
the time for the single sweep of NGF. Figure 31 illustrates the mentioned straight
lines after correction. We can further see that NGF smoothed out the movement
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over time. Since the structures are not fully straight, NGF does not seem to be
converged after just one single sweep, but a similar result to the one of SqN is to
be expected when giving more time on the computation. Note that the dataset
has an irregular time-axis, so a few large jumps are visible on the time-axis in the
unregistered plots in Figure 31.
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Figure 27: Illustrated are three representative 2D coronal slices of two di↵erent 4D
DCE-MRI datasets of human kidneys; data courtesy of Jarle Rørvik, Haukeland
University Hospital, Bergen, Norway. The slices are shown at three di↵erent time
points. The datasets are 192-by-256-by-52-by-49 (Dataset A) and 256-by-256-by-
30-by-45 (Dataset B) volumes, respectively. The shown slices are the corresponding
number of pixels of the first two spatial dimensions. On the very right of both
rows, a maximum intensity projection (MIP) of the di↵erence images over time is
shown. The MIP showcases the variations over time.
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Figure 28: Illustrated is the left kidney from dataset A of Fig. 27. Top row:
Displayed are 2D slices of the left kidney at three arbitrary, representative time
points during contrast agent uptake. Bottom row: Coronal view of maximum
intensity projections

P
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registered data. Note the blurred and doubled structures in the non-registered
data.
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Figure 29: Two exemplary sagittal and axial slices at di↵erent positions of the
data, each; see also Fig. 28. Note that for ease of presentation, the sagittal slices
are rotated by 90 degrees. The top row shows the original unregistered data. The
middle row shows SqN-registered data (q = 0.5), and the bottom row shows NGF-
registered data using ⌘ = 25. Note that the laminar structure of the tissue is only
visible after registration.
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Figure 30: Shown are three representative 2D coronal slices of the 4D DCE-MRI
dataset of a human kidney, data courtesy of Jarle Rørvik, Haukeland University
Hospital, Bergen, Norway. The slices are shown at three di↵erent time points. The
dataset is a 178-by-95-by-30-by-45 volume; the shown slices are 178-by-95.
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Figure 31: Illustrated are sagittal cuts through the stack of 2D slices from a 4D
DCE-MRI dataset of a human kidney at positions 29 and 40. The first column
shows the unregistered stack. Right next to this, the results of the di↵erent regis-
tration approaches are illustrated.
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4.4 Reconstruction and Fusion of Histological Sections

In this chapter, we study the registration of histological serial sectioning. Since
traditional histology does not examine the sectioned tissue across multiple sections
[85], [86], [101], [124], [142], image registration provides a way of extension of the
classical histology. For this purpose, the tissue sections are registered, such that a
3D volume is reconstructed. With the help of appropriate registrations methods,
this reconstructed volume shows details across the slides. This would not have
been possible from examining the sections only in their given two dimensions.
Di↵erent from what we see in our first numerical experiment, histological sections
typically are di↵erently stained [85], [86]. These stainings reveal several details on
a macroscopic and microscopic scale. For example, this involves the examination of
cell nuclei and other cell components or the di↵erentiation of healthy and corrupted
tissue in biopsy samples, to name a few.

Tissue-Volume Reconstruction

We elaborate on the tissue reconstruction of histological serial sections using SqN in
the following experiments. Here, we show that SqN is capable of registering a stack
of consecutive slices independent of its order in a quality comparable to standard
methods like NGF or SSD. Furthermore, common error behaviors of sequential
registration processes, like a z-drift, can be improved by the global approach of
SqN. The pure reconstruction of tissue illustrated in Figure 33 and Figure 35, we
have also elaborated in [7], [8]. The sectioned datasets are animal brains. Figure 32
illustrates a sectioned mouse brain, data courtesy of O. Schmitt, University of
Rostock, Germany. This dataset comprises 189 coronal slices of 512-by-512 pixels.
Figure 35 illustrates a marmoset-monkey brain dataset; data courtesy of Harald
Möller, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig,
Germany [92]. This dataset comprises 69 sections with various high-resolution
slices of di↵erent sizes. The sizes vary from 2252⇥ 3957 pixels up to 7655⇥ 9965
pixels. For proof of concept, we reduced the number of pixels per slice to reduce
computation time to a reasonable level [7]. For registration we opt for SqN with
q = 0.5 as presented in [8] for the mouse brain dataset with sequential SSD for
comparison. For the monkey brain dataset we opt for SqN with q = 4 and q = 1

and NGF for comparison, as elaborated in [7]. Again, the sequential approaches
involve an alternating optimization framework which is based on a fixed initial and
a fixed final slice to avoid the banana-e↵ect [34], [123], [130], [131], [138]. Following
[8], the sequential registration process may accumulate small errors that can cause
a significant drift of the overall structure; see [138] for examples. The results
illustrated in Figure 33 and Figure 35 indicate, that a global drift is not introduced
using SqN. Furthermore, by optical inspection, we see that the local structure is
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well aligned. Additionally, SqN needs just one pass to register all images. We
compute the reults shown in Figure 33 using FAIR [100] within MATLAB. For
optimization, we use a standard Gauß-Newton with Armijo line search within a
multi-level scheme and a curvature regularizer, following the summation extension
from Sec. 3.3. The sequential competitor SSD is computed with one single sweep.
Both approaches are able to align the images, as expected. Although, the result
of SqN looks smoother since the edges of the tissue are more straight. On the
one hand, it seems that the sequential competitor has not converged yet. It is
to be expected that the structures in the bottom of the axial and sagittal cuts
are straightened as well. On the other hand, the result using SqN may be too
straight such that it would not match the real, unknown shape of the tissue. The
result of SSD may be closer to reality, as it isn’t straightening out everything.
The result illustrated in Figure 35 is computed using the python-toolbox GReAT.
For optimization, we opt for L-BFGS with Armijo line search within a multi-level
scheme. Again, we use a curvature regularizer for the regularity of the grids, as
this provides smooth results that seem to be su�ciently realistic. Furthermore,
the curvature regularizer was successfully used in di↵erent previous publications
about similar application scenarios; see e.g., [85], [86], [101]. Figure 35 shows that
the local structure is well aligned in just one pass with SqN, but the process for
NGF has not converged yet. It still is closer to the unregistered stack of images,
and the local structures are not as smooth as with SqN. The single sweep of NGF
took about two times longer than the registration using SqN.
To show the invariance to permutations, we present in Figure 36 a registration
result using SqN4 applied to a randomly permuted stack of histological slices. After
registration, the stack was permuted back. The permutation didn’t influence the
registration results, as can be seen by comparison of Figure 36 to Figure 35.
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Coronal Axial Sagittal

Figure 32: For an overview of the dataset, di↵erent anatomical planes (coronal,
axial, sagittal) of a stack of histological mouse-brain slices are shown. On the very
left, a single slide is illustrated. In the middle and right positions, the stack of
histological sections is cut at an arbitrary spatial position to show the alignment
of the single slices. Here, the slices are linearly pre-registered, but a variation can
still be seen, which is to be corrected. The dataset comprises 189 coronal sections
of 512-by-512 pixels; data courtesy of O. Schmitt, University of Rostock, Germany;
see [123] for experimental details.
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Figure 33: Displayed from left to right are exemplarily an axial, coronal, and
sagittal slice of the 3D data of size 512-by-512-by-189. Displayed are non-registered
data (top row), SqN-registered data (middle row) and SSD-registered data (bottom
row). Note that the di↵erent cut-positions do not necessarily correspond.

Slice 5 Slice 30 Slice 46

Figure 34: Three representative axial slices of a marmoset monkey brain dataset.
Data courtesy of Harald Möller, Max Planck Institute for Human Cognitive and
Brain Sciences, Leipzig, Germany; see also [92].
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Figure 35: Shown are the registration results for 3D reconstruction of the monkey
brain datasets. For illustration, we show only 2D slices that are sagittal cuts at two
positions, i.e., 53 and 82. Data courtesy of Harald Möller, Max Planck Institute
for Human Cognitive and Brain Sciences, Leipzig, Germany; see also [92].
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Figure 36: Registration results after random permutation of the axial slices. As
expected, the results are the same as for the non-permuted image stack; also see
Fig. 35 for comparison. Note that the shown positions of the permutation do not
necessarily correspond to the non-permuted stack.
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Fusion with Advanced Imaging for Information-Maximization

It may be interesting to examine histological sectioning in even more detail beyond
the given information by the respective histological stainings. An examination of
structure across the slides is possible by three-dimensional reconstruction of his-
tological tissue from serial sectioning. Now to combine information from di↵erent
stainings and to understand the correlation between macroscopic and microscopic
structure, a combination of histological staining and matrix-assisted laser desorp-
tion/ionization mass spectrometry imaging (MALDI MSI) is a way to go [113],
[135], [141]. While the histological staining highlights certain structures like cell
nuclei or specific tissue structures, MALDI MSI provides full spectra of detailed
molecular information. The reconstructed histological tissue, combined with 3D
MALDI MSI, may be highly beneficial for histological and molecular examination
[60]. Such a combination may be especially exciting for an examination of biopsies
after tumor resection, for example. For a proof of concept and to show the poten-
tial of the fusion, we register a sectioned kidney as well as a sectioned heart of a
mouse. This section is intended to show the applicability in a clinical-development
scenario, as clinicians may request an examination tool.

Figure 37 shows representative histological sections of the datasets. The kidney
dataset consists of 32 slices, though 128 slices are to be registered because of the
four modalities. The heart dataset consists of 54 slices. For the heart, we register
just three di↵erent modalities; thus, in total, 162 slices. For spatial alignment
we choose SqN with q = 4 as a distance measure and a curvature regularizer
for each images as presented in Eq. (29) and Eq. (6). We chose SqN because of
successfull results in previous publications; cf. [7]–[9]. Furthermore, the fusion of
the di↵erent modalities is done concomitantly with the registration of the slices.
This is an application-specific assumption since the same physical slices are used
for creating the images of the di↵erent modalities. Thus, in theory, there should
not be any shift of tissue across the slides.
The data of the di↵erent modalities is of di↵erent pixel-resolutions, and the slices
are di↵erently rotated, which makes preprocessing inevitable. Moreover, the irreg-
ular background of the images is to be removed. Typically, there are dust and dirt,
as well as stitching errors from the object-slides and the concatenation of image
patches [86], [124]. The stitching errors are due to multiple photographs of the
tissue-object that need to be combined to obtain the whole slice. A straightfor-
ward connected-components method [79] is used for the segmentation. This kind
of segmentation is su�cient in our case since the contrast between tissue-object
and background is strong enough. Scaling and rotation of the slices are linearly
corrected based on the respective principal axes, as described in [99]. This pre-
aligns the slices based on the center of mass, which is computed using the image
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intensities. For our proof-of-concept study, we use two di↵erent molecular mass
signals for the kidney. The molecular mass 805 focuses on localizing specific pro-
teins around the medulla part of the kidney. Furthermore, the molecular mass 1106
localizes proteins in areas around vessel-structures. Figure 38 illustrates represen-
tative slices of the kidney, showing the mass distribution of the masses 805 and
1106. Figure 39 shows a 3D reconstruction after registration of the single slices.
Besides q = 4, we chose a global normalization strategy with edge-parameter
⌘ = 8 ·10�5 and a curvature regularizer with regularization parameter ↵ = 2 ·10�4.
We choose a spline interpolation model and a multi-level strategy over 3 di↵er-
ent resolution-levels. For optimization we use L-BFGS with Wolfe-linesearch; c.f.
Sec. 2.7 and [103]. The fusion of the two di↵erent molecular masses m/z 805 and
m/z 1106 after 3D reconstruction are illustrated in Figure 39. For better distinc-
tion, the masses are color-coded. The red mass is m/z 805; the green mass is m/z
1106. The registration of the full stack is finally visualized using MeVisLab [52].
The examination of the tissue is possible in 3D. The advanced viewing-tools of
MeVisLab based on the toolkit Open Inventor by SGI [145] allow for free rotation
and free cutting of the reconstructed tissue in the 3D space. This is especially
useful for the examination of tissue structures aside from the typical anatomical
planes. Figure 42 shows two di↵erent, arbitrary cuts of the reconstructed Gomori
volume. Apart from the 3D volumes, a split-screen-mode for examining the plain,
single slices, and the slices blended with molecular mass distribution images from
MALDI MSI in a side-by-side view is possible. Scrolling through the stack of sec-
tions is possible since both views are connected. Figure 41 shows a screenshot of
the split-screen-view in MeVisLab for a Gomori-MALDI-Blending for molecular
mass m/z 805. For better contrast, the mass is depicted in green. The same split-
screen-view is shown in Figure 43 for the heart data. Again, the blended molecular
mass image is depicted in green for better contrast. The reconstructed 3D volume
of the Gomori-stained heart slices is illustrated in Figure 44. Note that the striped
coloration of the volume is due to di↵erent lighting of the scenery while taking
photos of the stained tissue-object slides in the laboratory.
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Figure 37: Illustrated are three representative histological slices of a mouse kidney.
The corresponding slices are shown in three di↵erent stains. The stainings are
Gomori, hematoxylin, and eosin (H & E) and a fluorescence stain. The di↵erent
stainings highlight specific, for examination, relevant structures of the tissue. Data
courtesy of Joachim Jankowski, Institute for Molecular Cardiovascular Research,
UK Aachen, Aachen, Germany.
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Figure 38: Illustrated are three representative MALDI MSI slices of a mouse kid-
ney for molecular mass m/z 805. Especially slice C illustrates the focus of the
intensity signal on the medulla of the kidney. From left to right, the slices are
from deeper within the kidney, such that slice A shows quite a di↵erent inten-
sity distribution. Data courtesy of Joachim Jankowski, Institute for Molecular
Cardiovascular Research, UK Aachen, Aachen, Germany.

Figure 39: Illustration of the spatial mass distribution after registration of the
MALDI MSI optical images. Molecular mass m/z 805 is depicted in red, m/z
1106 is depicted in green. The molecular mass m/z 1106 has a very low intensity
signal and looks unspecific in the above illustration. Mass m/z 805 highlights the
mass distribution within the medulla of the kidney. The depicted cube in the right
bottom corner shows the actual rotation within the 3D-space.
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Figure 40: Illustrated are three representative histological slices of a mouse heart.
The corresponding slices are shown in two di↵erent stains and with MALDI MSI.
The respective stainings are Gomori and hematoxylin and eosin (H & E). Data
courtesy of Joachim Jankowski, Institute for Molecular Cardiovascular Research,
UK Aachen, Aachen, Germany.
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Figure 41: Screenshot of a split-screen-view within MeVisLab. The right-hand-
side illustrates one of the Gomori slices blended with the corresponding optical
mass image of m/z 805. On the left-hand side, the registered stack of slices is
illustrated. Shown are the respective axial (top right), sagittal (bottom left) and
coronal (bottom right) cuts of the stack.

Figure 42: Illustrated is the reconstructed volume of the Gomori-stained kid-
ney slices from di↵erent view-angles. The squares shown in the images are the
cutting-planes. The planes are freely movable in the space. This allows a detailed
examination of the tissue by virtual cutting.
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Figure 43: Screenshot of a split-screen-view within MeVisLab. The right-hand-side
illustrates one of the Gomori slices of the heart blended with the corresponding
optical mass image of m/z 660. On the left-hand side, the registered stack of slices
is illustrated. Shown are the respective axial (top right), sagittal (bottom left)
and coronal (bottom right) cuts of the stack.

Figure 44: Illustrated is the reconstructed volume of the Gomori-stained heart
slices from di↵erent view-angles. On the right, the volume is additionally cut to
show the inner alignment.
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4.5 Future Work: Application of SqN in Deep Learning

Considering the current state of research concerning neural networks and deep
learning methods, we examine our introduced distance measurement framework
within a deep learning approach. This section is intended to show the applicabil-
ity of SqN within state-of-the-art deep learning approaches in a proof of concept
manner. For this purpose, we take recently proposed network architectures for
image registration [57]–[59], [77], [78], as a basis. Here, we give a proof of con-
cept example for three images, which is to be studied in more detail in the future.
Since neural networks and deep learning are not the focus of this work, we refer to
future works that should be considered concerning groupwise image registration
using deep learning methods for a more detailed analysis.
The network we use is a convolutional neural network (CNN) and follows the ar-
chitecture of a U-Net [117]. More precisely, the architecture is based on [77] and
is illustrated in Fig. 48; for details see [77], [78]. For general details on neural
networks and deep learning methods, we refer to appropriate literature like, e.g.,
[36], [84], [133]. Here, we roughly outline the idea of the network and describe the
outcome for our tailored approach using SqN. The network, as presented in [77],
is an adaption of a U-Net. The network is a sequence of repetitive operations.
These comprise several convolutions using 5 ⇥ 5 and 3 ⇥ 3 kernels, max-pooling
operations, batch-normalizations, and application of rectified linear unit (ReLU)
activation-functions. In summary, the images are pre-processed individually using
a convolution. Then, they are concatenated such that several poolings and convo-
lutions can be applied. This increases the number of channels of the concatenated
dataset and lowers the spatial dimension, which boils down the data to relevant
features. Using more convolutional layers, the final output of the network are the
respective deformation grids in full resolution. Here, we refer to spatial transformer
networks ; see e.g. [71], for details.
The used network is following a so-called unsupervised approach. Here, this is
based on the variational framework we also use for our registration, introduced in
Sec. 2.1. The supervision is performed using the minimization of the variational
energy composed of the distance energy and regularization energy. In our case, the
distance energy is computed using SqNwith q = 4. For regularization, we again
use curvature; see Sec. 3.3. The fact that such an approach is suitable for image
registration and also might be superior to conventional registration methods has
been shown in [57]–[59], [78]. As it uses SqN, our extension is not using a specific
reference image. Furthermore, it handles multiple images. Our implementation
uses Python and, more precisely, the package PyTorch. For our proof of concept
application, we use the DIR-Lab dataset [14]–[16], which are 4D CT-scans of hu-
man lungs. Given are ten patient datasets in total, each having ten time points
of three spatial dimensions. For learning, we use 3-tuples of time points from
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the first five datasets. We start learning with time points (1, 2, 3) from dataset
1, minimizing the energy for 450 epochs. Then, we take the next tuple, which
comprises time points (2, 3, 4), for the next 450 epochs, doing the same for the
following tuples. This gives in total eight 3-tuples for each of the five datasets,
such that the given set of tuples is {(k, k + 1, k + 2) | k 2 {1, 2, . . . , 8}}. Following
this, we have 40 datasets for training. The learning rate is set to 5 · 10�3, while
the regularization parameter ↵ = 5 · 10�5. For SqN we use q = 4 and globally
normalized gradient features with edge parameter ⌘ = 333. The edge parameter
was chosen on a visual basis, such that the background noise does not play a major
role in computing the image gradients. For optimization, we use Adam [75], which
is a first-order optimization algorithm using adaptive moment-estimates, compa-
rable to stochastic gradient descent (SGD); see [75] for details. We chose Adam
because of its availability within PyTorch. For all time points, we use the reso-
lution 128-by-128-by-64 and compute everything on a GPU. The training process
takes several hours, but once learned, we are able to register three time points of
the left-over datasets in about 0.006 seconds. We evaluate the trained network on
dataset number six, which is unseen and therefore qualifies for a proper evaluation.
In Figures 46 and 47 the results are exemplarily illustrated by absolute di↵erences
for the extreme inhale and exhale phases as well as for consecutive slices as we have
used for learning using two time points each for di↵erence computation. It can be
seen that the di↵erence is reduced after applying the network for registration. The
results are better for the correction of consecutive time points, most likely because
the network was trained to consecutive slices. In both Figures, we can see an
improvement, although the result is far from being comparable to results shown
by e.g., [76], [112]. Nevertheless, for just five used datasets within the learning
process, the results seem promising. We suggest further analysis of approaches
like SqN considering multiple images for image registration combined with neural
networks, as these might improve results for e.g. real-time applications. A network
that is capable of registering a whole series of images might be exciting in a wide
variety of applications.
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Figure 45: Visualization of 4D (x,y,z,t) CT data from DIR-Lab [14] (see www.dir-
lab.com). Two representative axial slices (x,y) at a representative time t of a
human lung are shown. Data courtesy [14]–[16].
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Figure 46: Shown are the absolute di↵erences of the maximum inhale and maxi-
mum exhale phase as 2D slice (x,y) of the human lung from the 4D-CT (x,y,z,t)
DIR-Lab dataset [14] after (left) registration using the neural net with SqN and
before (right) registration.
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Figure 47: Shown are the absolute di↵erences of two consecutive time points as 2D
slice (x,y) of the human lung from the 4D-CT (x,y,z,t) DIR-Lab dataset [14] after
(left) registration using the neural net with SqN and before (right) registration.
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5 Discussion, Conclusion and Future Research

In this thesis, we presented a distance measurement framework for image regis-
tration of multiple images. Based on the variational image registration framework
for two images presented in Section 2, we derived a novel, versatile distance mea-
surement framework in Section 3. We started by defining the notation of the
variational framework for multiple images and multiple transformations as well.
Thereupon, we examined a straightforward extension to use two-image based reg-
istration methods for multiple image registration in a sequential manner. This
extension is based on the summation of pairs of images. Despite the definition
using a sum of two-image based distances, this approach may be used without
a fixed reference image. Typically, one of the transformation grids is fixed [99],
[100], such that the standard methods, reviewed in Sec. 2 can directly be used. A
drawback is that only the similarity information of couples is considered for the
computation of the energy.
In order to derive our novel multiple image distance framework in the most ver-
satile way possible, we used a feature matrix, built from the vectorized feature
images. This feature array allowed us to examine the properties of our distance
measure without early specification of what features are used for measurement of
image similarity. Furthermore, di↵erent normalization techniques for the features
were discussed to overcome di↵erences in magnitude concerning di↵erent choices
of features. The particular choice of gradient features is a prominent example. For
these, the magnitude is di↵erent for di↵erent modalities. Therefore, an applica-
tion of gradient features in multi-modal image registration makes an appropriate
normalization indispensable. Before we headed for the central part of this thesis,
we briefly described how we extend the regularization to multiple images. The
regularization for registration of multiple images does not lie within the scope of
this work but is an important topic that needs to be examined. Our approach is to
regularize each transformation individually. The resulting energy is a summation
of all individual energies. This is the same regularization as for the sequential im-
age registration. The major drawback of this approach is that there is no coupling
across the transformation girds. Time-dependent data, like dynamic imaging from
DCE-MRI, may su↵er from a simple, individual regularization of the transforma-
tion grids since the time dependency is not considered. This may lead to smooth
individual frames but jumps and discontinuities over time, e.g., across the frames.
First, investigations concerning image registration of multiple images are made in,
e.g., [1], where a time-dependent smoothing extends a spatially coupling. After
this, we considered three di↵erent geometrically inspired approaches for multiple
image registration in order to derive a general distance measurement framework,
which is the central result of this work. We started with an idea from color-image
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regularization [102].
The idea is to align the directions of the intensity gradients. In color-image regu-
larization, this minimizes color noise since edges across the di↵erent color channels
should match, and noise only occurs if they do not. This idea is transferred to
image registration by using it for distance measurement with normalized gradient
features. The Schatten-Norms, as a result of this, act as a smooth approximation
to the rank-function. So the first result is the rank-minimization of the feature
matrix consisting of the feature-images as columns. The geometrical background
is an alignment of the gradients by making them linearly dependent. The major
drawback of this approach is the fact that the energy is minimal for the trivial
solution. Without proper regularization and an additional constraint concerning
the translation of the transformation grids, this approach tends to shift all im-
ages out of the domain, such that all columns become zero. The output is an
optimum for the feature matrix of rank zero, meaning the feature matrix is the
trivial solution. The idea of coupling the color channels may also be interesting for
non-gray-valued medical image data. Besides multiple images, the feature matrix
may also incorporate multiple channels of the image data, such that each channel
can be transformed on its own. For this, the later introduced weighting concept
might be handy to control the influence of coupling channels and images.
A di↵erent, geometrically inspired point of view is to consider the vectorized
feature-images to span a parallelotope of which the volume is to minimize. This
follows the same idea of minimizing the rank of the feature matrix but is modeled
slightly di↵erently. The volume is given by the determinant of the correlation ma-
trix built by the quadratic form of the feature matrix multiplied with itself. In this
case, the determinant is rephrased using the product of singular values to which
additionally the logarithm is applied to convert the product to a sum. Finally, the
rank minimization from the first approach, using the Schatten-Norms as a rank-
function approximation, is rephrased via modeling the volume of the spanned
feature-parallelotope without using the Schatten-Norms. In general, the volume
minimization could also be expressed using Schatten-Norms. The derivation with-
out them via a geometrical idea shows a justification to use the Schatten-Norms
for the first approach. Comparing both approaches, both aim for a minimiza-
tion of the rank of the feature matrix, which implies that small singular values
vanish. Following [136], the best rank-one approximation is a maximum singu-
lar value, meaning all smaller singular values vanish, and the full weight is put
on the largest singular value. Here, we have the major drawback of the volume
minimization approach. Since we are using the logarithm function, the singular
values can not be zero; otherwise, the energy is undefined and the approach be-
comes numerically unstable for singular values tending to zero. Because of the
weaknesses of these two approaches, we discussed the alignment of images using
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the correlation of features. For this purpose, we took the correlation matrix that
we already built for computing the volume of the feature parallelotope as a basis.
Due to the assumption that our approach is based on normalized features, the
correlation matrix is a concatenation of the inner products expressing the angles
between the respective feature vectors. Here, we presented the main idea of the
correlation approach. Since the features are normalized, the main diagonal of the
correlation matrix always consists of ones. The best case, in which all feature maps
are aligned is that all inner products are either 1 or �1. The worst case is the
identity matrix, such that we wanted to be as far as possible from this solution.
From this maximization problem, we built the minimization problem using the
negative sign. By a straightforward computation, we saw that we do not need to
subtract the identity for minimization.
To go even further, we added a weighting matrix, such that the considered neigh-
borhood of images, meaning the number of images for comparison, can be con-
trolled. Di↵erent weightings may be interesting for specific applications to incor-
porate prior knowledge of the connection between images. A gaussian weighting or
even a weighting, considering only three to four images, may be worthwhile test-
ing. With Theorem 2, we furthermore saw that the correlation approach could be
converted to the rank minimization approach by adapting q, meaning that all ap-
proaches are closely related. The novel distance measure framework can be derived
from various geometrical ideas, it is straightforward to interpret and extremely ver-
satile. Especially our given overview of invariances and the energy-behavior of the
novel distance measurement framework revealed di↵erent interesting results. In
order to use the approach, we do not need to choose a specific reference image.
Furthermore, the ordering of images is completely irrelevant due to the use of sin-
gular values. The energy is also quite smooth compared to others, and for q > 2,
our numerical experiments show that there is always a global minimum. Conclud-
ingly, the examination of the first derivative and the error estimates show that the
approach is straightforward to use also with higher-order optimization schemes.
Moreover, the error behavior is as expected since it tends to zero when increasing
the number of grid points, which is suitable for use with multi-level schemes. All
statements of Sec. 3 have been proven by numerical application. This was done in
Sec. 4 using medical applications.

Future Research

This thesis introduces a novel distance measurement framework. Here, we will
give an overview of what may and should be done in future works to gain even
more insight into SqN and its properties for image registration. We begin with a
few obvious things. The choice of the parameter q for the Schatten-Norms plays
a significant role. A more detailed analysis – building on the given results – of



5. DISCUSSION, CONCLUSION AND FUTURE RESEARCH 99

the behavior of the Schatten-Norms with respect to q should be done. Especially
the behavior of the Schatten-Norms with respect to q concerning the changing
transformation fields during the optimization process may be interesting to un-
derstand. Furthermore, the regularization was just extended in a pertinent way.
Here, the focus should lie on investigating regularization methods for multiple im-
ages, as started in [1]. Concerning the applications part, di↵erent features should
be tested in medical applications. Here, we focused on intensity- and gradient-
features. More advanced features may be interesting for applications combined
with deep-learning methods. Given the present situation concerning neural net-
works, artificial intelligence and deep learning methods, it may be interesting to
see how the distance measurement framework performs. A specifically designed
network can probably learn relevant features to give the framework another degree
of freedom. Overall, the SqN distance measure is very promising and should be
investigated further.
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[83] P. Leškovskỳ, A. Alekseychuk, A. Stanski, O. Hellwich, K. Schlüns, N.
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[127] M Söhn, M Birkner, D Yan, and M Alber, “Modelling individual geometric
variation based on dominant eigenmodes of organ deformation: implemen-
tation and evaluation”, Physics in Medicine & Biology, vol. 50, no. 24,
p. 5893, 2005.

[128] A. Sotiras, C. Davatzikos, and N. Paragios, “Deformable medical image
registration: A survey”, IEEE transactions on medical imaging, vol. 32,
no. 7, pp. 1153–1190, 2013.
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