3D guidance based on tracking systems and preoperative data for endovascular procedures

Sonja Jäckle¹, Annkristin Lange, Verónica García-Vázquez, Tim Eixmann, Florian Matysiak, Malte Maria Sieren, Hinnerk Schulz-Hildebrandt, Gereon Hüttmann, Floris Ernst, Stefan Heldmann, Torben Pätz, Tobias Preusser

¹Fraunhofer Institute for Digital Medicine MEVIS, Lübeck, Germany; sonja.jaeckle@mevis.fraunhofer.de, www.mevis.fraunhofer.de

Motivation – What is guidance?

View in real world

Motivation – What is guidance?

View in real world

CT scan view

Motivation – clinical problem

Use case: vessel repair by implanting a stent graft

Current guidance method: 2D fluoroscopy with contrast agent

Motivation – clinical problem

Use case: vessel repair by implanting a stent graft

Current guidance method: 2D fluoroscopy with contrast agent

- Drawbacks:
 - Missing depth information
 - Radiation exposure of surgical team and patient (Rehani et al. 2006)
 - Kidney damaging contrast agent (Saratzis et al. 2015)

Goal: 3D guidance without the use of X-rays and contrast agents

- Goal: 3D guidance without the use of X-rays and contrast agents
- Idea: combination of
 - Fiber optical shape sensing
 (Khan et al. 2019, Roesthuis et al. 2014):
 → Shape ✓

- Goal: 3D guidance without the use of X-rays and contrast agents
- Idea: combination of

Fiber optical shape sensing
 (Khan et al. 2019, Roesthuis et al. 2014):
 → Shape ✓

Electromagnetic (EM) tracking

(Condino et al. 2012, Lambert et al. 2012):

→ Location \checkmark

- Goal: 3D guidance without the use of X-rays and contrast agents
- Idea: combination of

Fiber optical shape sensing

 (Khan et al. 2019, Roesthuis et al. 2014):
 → Shape ✓

- Electromagnetic (EM) tracking
 (Condino et al. 2012, Lambert et al. 2012):
 → Location ✓
- Preoperative information
 - → Localization inside vessel system \checkmark

- Goal: 3D guidance without the use of X-rays and contrast agents
- Idea: combination of

Fiber optical shape sensing
 (Khan et al. 2019, Roesthuis et al. 2014):
 → Shape ✓

- Electromagnetic (EM) tracking
 (Condino et al. 2012, Lambert et al. 2012):
 → Location ✓
 - Preoperative information
 - → Localization inside vessel system \checkmark

 \rightarrow Shape + Location + Localization = 3D guidance

Stentgraft system

- Contains tracking system:
 - 1 Optical fiber
 - → Reconstructed shape of 38 cm as shape point list

Stentgraft system

- Contains tracking system:
 - 1 Optical fiber
 - → Reconstructed shape of 38 cm as shape point list
 - 1 EM sensors near the tip of the shape sensing region
 - → Position and orientation information

Stentgraft system

- Contains tracking system:
 - 1 Optical fiber
 - → Reconstructed shape of 38 cm as shape point list
 - 1 EM sensors near the tip of the shape sensing region
 - → Position and orientation information
- → Accurate localization at the front part of the stentgraft system

Given: Calibrated tracking information, preoperative vessel centerline & volume

Given: Calibrated tracking information, preoperative vessel centerline & volume Method:

- 1. Transformation of shape into CT space
 - → Shape located at EM sensor with correct direction

Given: Calibrated tracking information, preoperative vessel centerline & volume Method:

- 1. Transformation of shape into CT space
 - → Shape located at EM sensor with correct direction
- 2. Shape prealignment with vessel centerline
 - \rightarrow Shape rotated into vessel volume

Given: Calibrated tracking information, preoperative vessel centerline & volume Method:

- 1. Transformation of shape into CT space
 - → Shape located at EM sensor with correct direction
- 2. Shape prealignment with vessel centerline
 - \rightarrow Shape rotated into vessel volume
- 3. Shape registration with vessel volume
 - \rightarrow Shape located accurately in vessel volume

Experiment – vessel phantom

Insertion of the stentgraft system into a vessel phantom:

without agar-agar

© Fraunhofer

with agar-agar

Experiment – setup

- Evaluation at five different insertion depths of the stentgraft system
- CBCT acquisition and the segmentations are used as ground truth
 - Measures:

average error:
$$e_{avg} = \frac{1}{m} \sum_{i=1}^{m} \left\| x_i - x_{inearest}^{gt} \right\|_2$$

maximum error: $e_{max} = \max\left(\left\| x_1 - x_{1nearest}^{gt} \right\|_2, \dots, \left\| x_n - x_{nnearest}^{gt} \right\|_2 \right)$
tip error: $e_{tip} = \max\left(\left\| x_n - x_{nnearest}^{gt} \right\|_2 \right)$

Experiment – setup

First (left) and fourth (right) insertion depth

Ground Truth - Tracking based guidance

Measured errors (in mm) for five different insertion depths:

	Tracking based guidance
Error	$e_{avg} e_{max} e_{tip}^{ m Evaluated}$ length
1.	2.02 4.58 3.49 232.00
2.	1.81 4.44 4.44 225.00
3.	2.29 4.58 4.58 206.50
4.	2.30 3.21 3.21 185.50
5.	3.13 5.46 2.67 168.50

Measured errors (in mm) for five different insertion depths :

	Tracking based guidance
Error	$e_{avg} e_{max} e_{tip}^{ m Evaluated}$ length
1.	2.02 4.58 3.49 232.00
2.	1.81 4.44 4.44 225.00
3.	2.29 4.58 4.58 206.50
4.	2.30 3.21 3.21 185.50
5.	3.13 5.46 2.67 168.50

Clinical requirement: \leq 5mm (Manstad-Hulaas et al. 2011)

Measured errors (in mm) for five different insertion depths :

	Tracking based guidance
Error	e_{avg} e_{max} e_{tip} length
1.	2.02 4.58 3.49 232.00
2.	1.81 4.44 4.44 225.00
3.	2.29 4.58 4.58 206.50
4.	2.30 3.21 3.21 185.50
5.	3.13 5.46 2.67 168.50

Clinical requirement: \leq 5mm (Manstad-Hulaas et al. 2011)

 \rightarrow Promising results for clinical usage

Conclusion

- A novel 3D guidance method based on an optical fiber, one EM sensor and preoperative data
 - Promising results for clinical usage
- Future work:
 - Evaluation in real-time
 - Development of a stentgraft guidance

Contact: Sonja Jäckle, sonja.jaeckle@mevis.fraunhofer.de

