3D Guidance including Shape Sensing of a Stentgraft System

Sonja Jäckle¹, Verónica García-Vázquez, Florian Matysiak, Tim Eixmann, Felix von Haxthausen, Malte Maria Sieren, Hinnerk Schulz-Hildebrandt, Gereon Hüttmann, Floris Ernst, Markus Kleemann, Torben Pätz

¹Fraunhofer MEVIS, Institute for Digital Medicine, Lübeck, Germany; sonja.jaeckle@mevis.fraunhofer.de, www.mevis.fraunhofer.de

Motivation – What is guidance?

View in real world

CT scan view

Motivation – clinical problem

Use case: vessel repair by implanting a stentgraft

Current guidance method: 2D fluoroscopy with contrast agent

- Drawbacks:
 - Missing depth information leads to challenging navigation
 - Radiation exposure of surgical team and patient (Rehani et al. 2006)
 - Contrast agent is kidney damaging (Saratzis et al. 2015)

Motivation – goal and idea

- Goal: 3D guidance without the use of X-rays and contrast agents
- Idea:

Stentgraft system

- Contains tracking system: 1. FM sensor 2. EM sensor 1 Optical fiber \rightarrow Reconstructed shape of 38 cm as **Optical fiber** shape point list 2 EM sensors near the tip and the middle of the shape sensing region \rightarrow Position and orientation information
- → Accurate localization at the front part of the stentgraft system

Guidance method – shape localization

- Given: Calibrated positions and direction vectors of tracking systems
- Idea: Using two positions and create two additional positions by adding the direction vector

Computation of rigid transformation F^{CT}_{Shape} from shape space in CT space by means of point based registration.
 (Arun et al. 1987)

Experiments – vessel phantom

Insertion of the stentgraft system into a vessel phantom:

without agar-agar

with agar-agar

Experiments – setup

- Evaluation at three different insertion depths of the stentgraft system
- CT acquisition and the segmentations are used as ground truth
- Measures:

average error: $e_{avg} = \frac{1}{m} \sum_{i=1}^{m} ||x_i - x_i^{gt}||_2$ maximum error: $e_{max} = \max(||x_1 - x_1^{gt}||_2, ..., ||x_n - x_n^{gt}||_2)$

A continuous measurement of tracking systems during insertion the stentgraft system

Results

Phantom with inserted catheter (22cm insertion depth)

Results

Measured errors for different insertion depths:

	Whole 38 cm	Shape inside vessel
Shape \ Error	e_{avg} e_{max}	e _{avg} e _{max}
22 cm inside	2.39 2.80	2.47 2.80
17 cm inside	1.28 2.94	1.00 1.39
12 cm inside	2.24 5.76	2.10 3.24

Clinical requirement: errors ≤ 5mm
 → Promising results for clinical usage

Results

Continuous measurement:

Conclusion

- A first stentgraft system with a multicore fiber and two EM sensors
- A novel 3D guidance method

 Promising for clinical usage
- Future work:
 - Evaluation in real-time
 - Comparison with other methods

Contact: Sonja Jäckle, sonja.jaeckle@mevis.fraunhofer.de

