
From the Institute of Mathematics and Image Computing
of the University of Lübeck

Director: Prof. Dr. JanModersitzki

Matrix-free approaches for deformable image registrationwith

large-scale and real-time applications in medical imaging

Dissertation

for Fulfillment of

Requirements

for the Doctoral Degree

of the University of Lübeck

from the Department of Computer Sciences

Submitted by

Lars König

from Preetz

Lübeck, 2018

First referee: Prof. Dr. Jan Lellmann

Second referee: Prof. Dr. Heinz Handels

Date of oral examination: November 8, 2018

Approved for printing. Lübeck, November 9, 2018

Abstract

In this thesis, we propose a novel computational approach to fast and memory-efficient
deformable image registration. We demonstrate the relevance of the proposed method
in three real-world medical applications with very different requirements, ranging from
processing of large datasets to registration with real-time constraints.

The approach builds on a variational image registration model. In this model, finding a
transformation which provides a reasonable image alignment is performed by minimizing
an objective function. In the utilized discretize-then-optimize approach, the minimization
is realized by using derivative-based optimization methods. Here, the objective function
derivatives are typically the computationally most expensive operations, both in terms
of runtime and memory requirements. Therefore, we analyze the matrix structure for
all derivative components. Based on the analysis, we derive equivalent, fully matrix-free
closed-form expressions for gradient computations as well as the Hessian-vector multipli-
cation, enabling the use of matrix-free computations for both L-BFGS and Gauss-Newton
optimization schemes.

The matrix-free computations completely eliminate the need for storing intermediate re-
sults and the cost of sparse matrix arithmetic. The expressions are fully parallelizable
and the memory complexity for the derivative computations is reduced from linear to
constant. We show that all important matrix-free derivative computations scale virtually
linear, allowing to fully benefit from parallel execution. In comparison with matrix-based
algorithms, the proposed approach is several orders of magnitude faster. The generic for-
mulation of the matrix-free approach enables the implementation on different platforms.
Besides multi-core CPUs, we present a GPU implementation which achieves a substantial,
additional speedup. In order to justify the effort for deriving the matrix-free computa-
tions, we additionally implement the registration algorithm using an automatic differen-
tiation framework. This method automatically computes optimized, analytically exact
derivatives and allows for seamless execution on GPUs. In comparison with matrix-based
methods, the automatic differentiation-based approach achieves comparable runtimes,
making it a well-suited alternative for rapid prototyping and algorithm development.

In the second part of the thesis, we utilize the matrix-free registration in three clinical
applications. First, in an application from oncology, we present an automatic pipeline
for registration of follow-up thorax-abdomen CT scans. We evaluate the algorithm on
a large number of datasets, achieving clinically feasible runtimes. Second, we consider
registration of CT and cone-beam CT images in radiotherapy. To achieve physically plau-
sible deformations, we introduce an additional local rigidity constraint. In comparison
to a commercial registration method, we achieve comparable accuracy, while obtaining
physically more plausible deformations within a clinically suitable runtime. Third, we use
the registration in real-time liver ultrasound tracking in order to determine respiratory
motion. For this, we integrate the matrix-free registration in a tracking scheme with
a moving-window strategy. In a public benchmark, we achieve real-time performance
with the lowest mean tracking error of all participants. In each of these applications, the
matrix-free methods allow the use of registration in scenarios where it would not be possi-
ble otherwise, due to run-time or memory constraints. Thus, the matrix-free registration
can contribute to further increasing the use of image registration in clinical practice.

i

Zusammenfassung

In dieser Arbeit stellen wir eine Methode für schnelle und speichereffiziente nicht-lineare
Bildregistrierung vor. Wir zeigen die Relevanz der Methode in drei medizinischen An-
wendungen mit sehr unterschiedlichen Anforderungen, von der Verarbeitung großer Da-
tensätze bis hin zur Registrierung mit Echtzeitanforderungen.

Die Methode basiert auf einem variationellen Registrierungsmodell. In diesem Modell
wird eine Transformation, die eine gute Bildüberlagerung erzeugt, durch Minimieren einer
Zielfunktion bestimmt. Bei dem verwendeten Discretize-then-Optimize Ansatz wird dies
durch Verwendung ableitungsbasierter Optimierungsverfahren realisiert. Hier sind die Ab-
leitungen der Zielfunktion typischerweise die rechenintensivsten Operationen, sowohl hin-
sichtlich der Laufzeit als auch der Speicheranforderungen. Wir analysieren daher die Ma-
trixstruktur für alle individuellen Komponenten der Ableitungen. Basierend darauf leiten
wir äquivalente, vollständig matrixfreie Ausdrücke in geschlossener Form für Gradienten-
berechnungen und Hesse-Vektor-Multiplikationen her. Dies ermöglicht die Verwendung
matrixfreier Methoden sowohl für L-BFGS- als auch für Gauß-Newton-Optimierung.

Die matrixfreien Berechnungen benötigen weder Speicher für Zwischenergebnisse noch
Sparse-Matrix-Berechnungen. Die Ausdrücke sind vollständig parallelisierbar und die
Speicherkomplexität der Ableitungsberechnungen verringert sich von linear auf konstant.
Wir zeigen, dass alle wichtigen matrixfreien Ableitungsberechnungen nahezu linear ska-
lieren und ideal von einer parallelen Ausführung profitieren. Im Vergleich zu matrixbasier-
ten Algorithmen ist der Ansatz um mehrere Größenordnungen schneller. Die generische
Formulierung des matrixfreien Ansatzes ermöglicht eine Implementierung auf verschiede-
nen Plattformen. Neben Multi-Core-CPUs präsentieren wir eine GPU-Implementierung,
die eine wesentliche zusätzliche Beschleunigung erzielt. Um den Aufwand zur Herleitung
der matrixfreien Berechnungen zu rechtfertigen, implementieren wir die Registrierung
zusätzlich in einem Framework für automatisches Differenzieren. Diese Methode berech-
net automatisch analytisch exakte Ableitungen und ermöglicht eine direkte Ausführung
auf GPUs. Im Vergleich zu matrixbasierten Methoden erreicht dieser Ansatz ähnliche
Laufzeiten und eignet sich damit für Rapid Prototyping und Algorithmenentwicklung.

Im zweiten Teil der Arbeit zeigen wir drei klinische Anwendungen der matrixfreien Re-
gistrierung. Zunächst präsentieren wir eine automatische Pipeline zur Registrierung von
onkologischen Follow-Up Thorax-Abdomen-CTs. Wir evaluieren die Methode auf einer
großen Anzahl von Datensätzen und erreichen klinisch geeignete Laufzeiten. Weiterhin be-
trachten wir CT- auf Cone-Beam-CT Registrierung in der Strahlentherapie. Für physika-
lisch plausible Deformationen führen wir eine Nebenbedingung für lokale Rigidität ein. Im
Vergleich mit einem kommerziellen Algorithmus erreichen wir eine ähnliche Genauigkeit
bei plausibleren Deformationen und klinisch geeigneter Laufzeit. Als dritte Anwendung
präsentieren wir Echtzeit-Bewegungstracking auf Leber-Ultraschallbildern und integrie-
ren die matrixfreie Registrierung in ein Tracking-Schema. In einem öffentlich verfügbaren
Benchmark erzielen wir Echtzeit-Performance und den niedrigsten mittleren Tracking-
fehler aller Teilnehmer. In jeder dieser Anwendungen ermöglichen die matrixfreien Ver-
fahren Bildregistrierung in Szenarien, in denen diese durch Laufzeit- oder Speicherbe-
schränkungen sonst unmöglich wäre und können damit dazu beitragen, die Verwendung
von Registrierung in der klinischen Praxis weiter zu erhöhen.

iii

Acknowledgments

This thesis emerged from my work at Fraunhofer MEVIS and many of the topics discussed
here are closely related to research projects I have encountered during that time. Now
that this journey comes to an end, I want to express my gratitude to all people that have
supported me along the way.

Most of all, I thank Jan Lellmann for supervising my thesis. I am deeply grateful for his
kindness and encouragement. His positive, constructive criticism and his unique talent
for concise scientific writing truly motivated me at all times and taught me many things
I wish I had learned sooner. Without him, this thesis would not have been possible.

I am also indebted to the late Bernd Fischer for raising my interest in image registration,
his unique sense of humor and his passion for creating and leading a truly remarkable
research group. He tragically passed away much too early, leaving behind a unique legacy.
Without him, this thesis would certainly not exist.

Furthermore, I thank Jan Rühaak for his collaboration in many registration projects, his
rational way of thinking, a lot of professional and personal advice, and for encouraging me
to write and submit my very first paper, as well as many more thereafter. Special thanks
go to Till Kipshagen for his tireless dedication to fine-grain performance optimizations,
code refactoring and exceptional software development.

I thank Nils Papenberg for his continued support, which has lasted since the first time
I came in contact with image registration and has finally led me to this thesis, as well
as for the pleasant collaboration in many radiotherapy projects. I also thank Alexander
Derksen for the joint work in radiotherapy, his support in deriving the matrix-free Hessian
computations – which would not have been possible without his magic paper strip – and
for enduring various journal paper reviews together.

Many thanks go to Johannes Lotz who shared an office with me for more than five years,
his positive attitude and many shared laughs. A big thank you also goes to his successor
Nadine Spahr who has repeatedly motivated me in the final months of this work, making
this time much more bearable.

Furthermore, I thank everyone at Fraunhofer MEVIS and the Institute of Mathematics
and Image computing for their unique team spirit, especially in the years of the Project
Group Image Registration. These will always be an extraordinary experience to me.

Finally, I thank my family for always believing in me. I especially thank my wife Katrin,
who had to sacrifice countless weekends and evenings for this thesis, for her love, patience
and kindness, without which this work would never have been completed.

v

Contents

List of publications xi

List of symbols xiii

1. Introduction and overview 1

1.1. Motivation . 1
1.2. Applications . 2

1.2.1. Follow-up imaging in radiology . 3
1.2.2. Image-guided treatment in radiotherapy 4
1.2.3. Real-time ultrasound tracking for motion compensation 6

1.3. Contributions and outline . 6

I. Matrix-free approaches for deformable image registration 11

2. Image registration 13

2.1. Registration framework . 13
2.1.1. Images and transformation model 14

2.2. Related work . 14
2.2.1. Deformation models . 15
2.2.2. Application scenarios . 16
2.2.3. Image registration methods . 17
2.2.4. Fast and efficient image registration algorithms 20

2.3. Variational model . 23
2.3.1. Distance measures . 23
2.3.2. Regularizer . 25

2.4. Discretization . 26
2.4.1. Discretization grids . 27
2.4.2. Rigid and affine transformation models 30
2.4.3. Image interpolation . 30
2.4.4. Distance measures . 31
2.4.5. Curvature regularizer . 32

2.5. Numerical optimization . 33
2.5.1. Newton’s method . 35
2.5.2. Limited-memory BFGS . 36
2.5.3. Gauss-Newton . 37
2.5.4. Line search . 38
2.5.5. Stopping criteria . 39

vii

Contents

2.5.6. Multi-level scheme . 39

2.6. Summary . 40

3. Matrix-free methods for efficient derivative computations 43

3.1. Distance measure derivatives . 44

3.1.1. Image interpolation derivatives . 45

3.2. Derivative computations for SSD . 48

3.2.1. Gradient computations . 48

3.2.2. Hessian-vector multiplication . 49

3.3. Derivative computations for NGF . 50

3.3.1. Gradient computations . 51

3.3.2. Hessian-vector multiplication . 55

3.4. Derivative computations for curvature regularization 59

3.4.1. Gradient computations . 60

3.4.2. Hessian computations . 60

3.5. Grid conversion . 60

3.5.1. Image grid to deformation grid . 61

3.5.2. Transposed operator . 61

3.5.3. In-place vs. separate grid conversion 64

3.6. Rigid and affine deformation model . 65

3.6.1. Derivative computations . 66

3.7. Algorithm analysis . 69

3.7.1. Sum of squared differences . 70

3.7.2. Normalized gradient fields . 71

3.7.3. Regularizer . 75

3.7.4. Rigid and affine deformation model 76

3.7.5. Summary and conclusion . 78

3.8. Implementation details . 79

3.8.1. Matrix-free computations on the CPU 80

3.8.2. Graphics processing units . 83

3.8.3. Digital signal processors . 85

3.9. Summary . 88

4. Automatic differentiation 91

4.1. Introduction . 91

4.2. Forward mode . 92

4.3. Reverse mode . 93

4.4. Theano framework . 94

4.5. Implementation details . 96

4.5.1. Tensor types and function compilation 96

4.5.2. Vectorization . 96

4.5.3. Graph optimization and compilation 97

4.5.4. Reuse of compiled functions . 98

4.5.5. Hessian computation . 98

4.5.6. Further remarks . 99

4.6. Runtime comparison . 99

4.6.1. Function compilation . 100

viii

Contents

4.6.2. Function evaluation . 102

4.7. Summary . 102

5. Experimental results 105

5.1. Scalability on the CPU . 106

5.1.1. Small images . 106

5.1.2. Large images . 110

5.2. Selective precomputation . 110

5.3. Objective function derivative runtime . 112

5.3.1. Sum of squared differences . 114

5.3.2. Normalized gradient fields . 116

5.3.3. Theano on the GPU . 117

5.3.4. Summary . 117

5.4. Multi-level registration . 119

5.4.1. Runtime . 121

5.4.2. Memory requirements . 124

5.4.3. Summary . 127

5.5. GPU-based matrix-free registration . 128

5.5.1. Runtime . 128

5.5.2. Memory requirements . 129

5.6. Discussion and summary . 129

II. Large-scale and real-time applications in medical imaging 131

6. Follow-up thorax-abdomen registration in radiology 133

6.1. Thorax-abdomen registration . 133

6.1.1. Processing pipeline . 134

6.1.2. Propagation of lesion locations . 135

6.2. Evaluation . 136

6.3. Summary and conclusion . 138

7. Deformable registration with local rigidity in radiotherapy 139

7.1. Registration framework . 141

7.1.1. Related work . 141

7.1.2. Local rigidity . 142

7.2. Example dataset . 145

7.3. Evaluation on clinical datasets . 146

7.3.1. Method . 146

7.3.2. Results . 148

7.3.3. Discussion . 152

7.4. Summary and conclusion . 154

8. Real-time registration for liver ultrasound tracking 155

8.1. Image registration algorithm . 156

8.2. Tracking algorithm . 157

8.2.1. Fallback strategy . 159

ix

Contents

8.2.2. Multiple annotations and annotation coupling 160
8.3. Evaluation . 161

8.3.1. Datasets and evaluation method 161
8.3.2. Parameterization . 162
8.3.3. Results . 163

8.4. Discussion and summary . 164

9. Conclusion and outlook 167

Bibliography 171

x

List of publications

The following list contains the author’s publications related to this thesis. For clear
identification, their citation keys are marked by an asterisk (*).

Journal publications

[BKR+14*] R. Berg, L. König, J. Rühaak, R. Lausen, and B. Fischer, “Highly effi-
cient image registration for embedded systems using a distributed multicore
DSP architecture”, Journal of Real-Time Image Processing, vol. 14, no. 2,
pp. 341–361, 2014. Cit. on pp. 8, 20, 21, 26, 44, 85, 86.

[DBK+15*] V. De Luca, T. Benz, S. Kondo, L. König, D. Lübke, S. Rothlübbers, O.
Somphone, et al., “The 2014 liver ultrasound tracking benchmark”, Physics
in Medicine and Biology, vol. 60, no. 14, pp. 5571–5599, 2015. Cit. on pp. 6,

8, 16, 25, 155, 156, 161, 164.

[KDPH16*] L. König, A. Derksen, N. Papenberg, and B. Haas, “Deformable image
registration for adaptive radiotherapy with guaranteed local rigidity con-
straints”, Radiation Oncology, vol. 11, no. 1, pp. 122–130, 2016. Cit. on pp. 8,

25, 26, 141.

[KRDL18*] L. König, J. Rühaak, A. Derksen, and J. Lellmann, “A matrix-free approach
to parallel and memory-efficient deformable image registration”, SIAM
Journal on Scientific Computing, vol. 40, no. 3, pp. B858–B888, 2018. Cit.

on pp. 3, 8, 21, 23, 44, 80, 81, 106.

[RKT+17*] J. Rühaak, L. König, F. Tramnitzke, H. Köstler, and J. Modersitzki, “A
matrix-free approach to efficient affine-linear image registration on CPU
and GPU”, Journal of Real-Time Image Processing, vol. 13, no. 1, pp. 205–
225, 2017. Cit. on pp. 8, 15, 21, 44.

Peer-reviewed conference proceedings

[KDHP15*] L. König, A. Derksen, M. Hallmann, and N. Papenberg, “Parallel and mem-
ory efficient multimodal image registration for radiotherapy using normal-
ized gradient fields”, in IEEE 12th International Symposium on Biomedical
Imaging (ISBI), 2015, pp. 734–738. Cit. on pp. 8, 21, 23, 44, 106.

xi

List of publications

[KKR14*] L. König, T. Kipshagen, and J. Rühaak, “A non-linear image registration
scheme for real-time liver ultrasound tracking using normalized gradient
fields”, in MICCAI Challenge on Liver Ultrasound Tracking (CLUST14),
2014, pp. 29–36. Cit. on pp. 7, 8, 156, 159, 160, 162.

[KR14*] L. König and J. Rühaak, “A fast and accurate parallel algorithm for non-
linear image registration using normalized gradient fields”, in IEEE 11th
International Symposium on Biomedical Imaging (ISBI), 2014, pp. 580–
583. Cit. on pp. 8, 21, 23, 44, 106.

[RKH+13*] J. Rühaak, L. König, M. Hallmann, N. Papenberg, S. Heldmann, H. Schu-
macher, and B. Fischer, “A fully parallel algorithm for multimodal image
registration using normalized gradient fields”, in IEEE 10th International
Symposium on Biomedical Imaging (ISBI), 2013, pp. 572–575. Cit. on pp. 8,

21, 25, 44.

[TRK+14*] F. Tramnitzke, J. Rühaak, L. König, J. Modersitzki, and H. Köstler, “GPU
based affine linear image registration using normalized gradient fields”,
in Seventh International Workshop on High Performance Computing for
Biomedical Image Analysis (HPC-MICCAI), 2014, pp. 1–10. Cit. on pp. 8,

21, 44, 83.

Conference abstracts

[DKM16*] A. Derksen, L. König, and H. Meine, “An alternating image registration
approach for large scale bladder deformations in radiation therapy”, in 18th
International Conference on the use of Computers in Radiation Therapy
(ICCR), 2016, pp. 1–2. Cit. on p. 153.

[DKMH16*] A. Derksen, L. König, H. Meine, and S. Heldmann, “A joint registration
and segmentation approach for large bladder deformations in adaptive ra-
diotherapy”, in Medical Physics: Proceedings of the AAPM 58th annual
meeting, vol. 43, 2016, p. 3429. Cit. on p. 153.

[KDH+15*] L. König, A. Derksen, S. Heldmann, N. Papenberg, J. Modersitzki, and B.
Haas, “Deformable image registration with guaranteed local rigidity”, in
Radiotherapy and Oncology: Proceedings of the 3rd ESTRO Forum, vol. 115,
2015, pp. S197–S198. Cit. on pp. 8, 141.

xii

List of symbols

d ambient space dimension, d ∈ N

x, y, z coordinate axes

x single point, x = (x1, . . . , xd), x ∈ R
d

xi single coordinate component of a point, xi ∈ R

ΩR reference image domain, ΩR ⊂ R
d

R continuous reference (fixed) image function, R : Rd → R

T continuous template (moving) image function, T : Rd → R

ϕ transformation function, ϕ : ΩR → R
d

u displacement, u(x) := ϕ(x)− x ∈ R
d

ui i-th component of displacement, ui(x) ∈ R

H Hessian approximation, H ∈ R
dm̄y×dm̄y

Image grid

mx,my,mz number of image grid cells for each axis

m vector of number of grid cells, m := (m1,m2,m3) = (mx,my,mz)

m̄ total number of image grid cells

hx, hy, hz grid spacings of image grid for each axis

h vector of grid spacings, h := (h1, h2, h3) = (hx, hy, hz)

h̄ volume of a single image grid cell

î coordinate index in x-direction î = 1, . . . ,mx

ĵ coordinate index in y-direction ĵ = 1, . . . ,my

k̂ coordinate index in z-direction k̂ = 1, . . . ,mz

i linear lexicographical index, i := î + ĵmx + k̂mxmy for d = 3;
i := î+ ĵmx for d = 2

x vector of lexicographically ordered image grid points,
x = (x1, . . . , xdm̄) ∈ R

dm̄

xi i-th grid point, xi := (xi, xi+m̄) for d = 2; xi := (xi, xi+m̄, xi+2m̄) for
d = 3

Deformation grid

my
x,m

y
y,m

y
z number of deformation grid cells for each axis

xiii

List of symbols

hy
x, h

y
y, h

y
z grid spacings of deformation grid for each axis

h̄y volume of a single deformation grid cell

xy vector of lexicographically ordered deformation grid points, xy =
(
xy

1 , . . . , x
y
dm̄y

)
∈ R

dm̄y

x
y
i i-th grid point, x

y
i :=

(

xy
i , x

y
i+m̄y

)

for d = 2;

x
y
i :=

(

xy
i , x

y
i+m̄y , x

y
i+2m̄y

)

for d = 3

y transformation evaluated at all points of the deformation grid, y =
(y1, . . . , ydm̄y) ∈ R

dm̄y
, such that ϕ(xy

i) = (yi, yi+m̄y) for d = 2;
ϕ(xy

i) = (yi, yi+m̄y , yi+2m̄y) for d = 3

u displacement evaluated on the deformation grid, u := y−xy ∈ R
dm̄y

Grid conversion

P grid conversion function from deformation grid to image grid, P :
R
dm̄y
→ R

dm̄

ŷ deformation, converted to image grid, ŷ := P (y) ∈ R
dm̄

ŷi i-th grid point of ŷ, with ŷi := (P (y)i, P (y)i+m̄) for d = 2; ŷi :=
(P (y)i, P (y)i+m̄, P (y)i+2m̄) for d = 3

Image evaluation

R(x) reference image evaluated on image grid, R : R
dm̄ → R

m̄ with
R(x) := R(xi)i=1,...,m̄ ∈ R

m̄

Ri single value of reference image at point i, Ri := R(xi) ∈ R

T (P (y)) deformed template on image grid, T : Rdm̄ → R
m̄, with T (P (y)) =

T (ŷ) := T (ŷi)i=1,...,m̄ ∈ R
m̄

Ti single value of reference image at point i, Ti := T (ŷi) ∈ R

Finite difference operators

∇̃Ii forward and backward finite difference gradient approximations of
image I at point i, ∇̃Ii : Rm̄ → R

2d

∆̃ui finite difference approximation of the Laplacian operator at point i,
∆̃ui : Rdm̄

y
→ R

xiv

1 Introduction and overview

Image registration describes the process of aligning two or more images [LNE11, §1.2] in
order to obtain additional information from the result. More precisely: Given a reference
and a template image, the goal of image registration is to find a transformation, such
that the transformed template is similar to the reference image [FM08].

1.1. Motivation

Medical image registration has been extensively studied over the last decades. In virtually
every medical field, image registration, image fusion, or more generally correspondence de-
tection between two images has been used to improve diagnosis, treatment and follow-up
[SDP13]. Applications range from motion detection and compensation to intra-operative
fusion of different modalities and change detection in longitudinal studies [FDW+15;
LPH+09; HD11].

However, accurate current registration models are often complex and computationally
demanding, often exhibiting long processing times and requiring large amounts of mem-
ory. These requirements can hinder the transition of such advanced algorithms into
clinical use, which could otherwise potentially support clinicians in performing diagno-
sis and treatment [RM03]. Additionally, decreased runtime has the potential to enable
completely new use cases for image registration, such as real-time applications.

As computational capabilities of modern hardware are increasing, so are acquired image
resolutions, diminishing the hope that hardware speed up will solve runtime problems over
time. Furthermore, since the broad availability of multi-core CPUs, special measures such
as multi-core parallelization and vectorized computations need to be used to utilize the full
potential of modern hardware [Sut05]. As parallelization and vectorization pose different
requirements to algorithms than serial computation models, sophisticated solutions are
required to increase efficiency.

Over the last decades, various algorithms have been established for solving the registration
problem in different ways: “While a linear transformation can be simply defined as a
superposition of rotations, translations, scaling and shear, and is always applied globally,
there is no agreement in the image processing community about the best way to define
and estimate an elastic transformation” [CS05]. Especially in algorithms computing non-
linear deformations, there does not exist a canonical approach, but different methods are
being used throughout the community.

1

1. Introduction and overview

For many of these models performance was also a concern. Different approaches for high-
performance computations have been proposed, ranging from shared-memory architec-
tures with multi-core CPUs and distributed memory cluster architectures to specialized
implementations on graphics cards [SSKH10a].

In this thesis, we will focus on the variational image registration model [Ami94; HCF04;
DR04; Mod04; CDH+06]. It has been successfully used in various applications [RHKF13;
BMR13; GRB+12; Mod09], and was thoroughly analyzed from a mathematical point of
view [Mod04]. It will be introduced in detail in Chapter 2. Based on a continuous formula-
tion of the registration problem, the model allows for theoretical analysis of mathematical
properties, such as existence of a minimizer, e.g., [BMR13]. However, implementations
of this model are commonly limited to demonstrating the feasibility and accuracy of the
approach, rather than focusing on clinically feasible memory consumption or runtimes.

The core of the variational image registration scheme is the numerical minimization of
an objective function, composed of an image-driven external energy and an internal reg-
ularization force. Using a so-called discretize-then-optimize approach, a derivative-based
quasi-Newton optimization is employed to minimize this objective function after discretiz-
ing the continuous formulation. This ensures fast convergence to a local minimum of the
objective function, but comes at the cost of gradient or even Hessian computations. Im-
plemented in a näıve way, these computations are very memory-intensive and require long
computation times, limiting image resolutions and clinical feasibility.

This constitutes the motivation of this thesis. Starting with an established registration
framework, the structure of the formulation is analyzed from a mathematical point of
view, in order to derive fast and efficient algorithms that are able to fully utilize the ca-
pabilities of modern hardware. This so-called matrix-free approach is described in Chap-
ter 3. This greatly increases the feasibility of the variational image registration approach
in real-world application scenarios with strict computational requirements, ranging from
the processing of large-scale datasets to real-time constraints. Some of these applications
will be introduced in the following.

1.2. Applications

In 2015, an estimated number of 17.5 million new cases of cancer have been diagnosed
worldwide [FAB+17], with a predicted increase in the future [FAB+17; SW14]. After
cardiovascular diseases, cancer is the second leading cause of death [WNA+16]. Therefore,
investigating applications that support cancer treatment and diagnosis is a highly relevant
topic.

Today, medical imaging plays an important role at every stage of cancer diagnosis and
treatment. Imaging techniques such as computed tomography (CT), magnetic resonance
imaging (MRI), positron emission tomography (PET) or ultrasound (US) allow the local-
ization and characterization of tumor tissue. Among others, images support the detec-
tion, monitoring and follow-up diagnosis of cancer in radiology, as well as patient-specific
treatment in radiotherapy and motion compensation in ultrasound imaging. Each of these
three areas of application has its own unique challenges and requirements for the image

2

1.2. Applications

(a) Prior scan (b) Follow-up scan (c) Initial difference (d) After registration

Figure 1.1.: Registration of two three-dimensional follow-up thorax-abdomen CT scans
from radiology, using the approach presented in Chapter 6, (a): coronal
slice of prior scan, (b): coronal slice of follow-up scan, (c): subtraction image
before registration, (d): subtraction image after registration. The most recent
scan is deformed onto a prior scan using deformable image registration. The
subtraction image after registration clearly highlights the areas of change
(white spots in the lung) corresponding to tumor growth. Image courtesy
of Radboud University Medical Center, Nijmegen, The Netherlands. Figure
adapted from [KRDL18*].

registration component, ranging from processing of large datasets to real-time perfor-
mance.

1.2.1. Follow-up imaging in radiology

If the treating physician suspects cancer, standard medical procedure is to arrange the
acquisition of a CT scan [GSTA10]. This image is then transferred to the radiology
department, where it is interpreted, or “read”, by a radiologist. The radiologist locates,
measures and classifies suspicious lesions in the image and summarizes the findings in
a radiology report. In addition to identifying new lesions, changes in comparison to
prior images of the same patient have to be assessed. In clinical practice, in this so-
called follow-up diagnosis, the clinician typically navigates manually through the slices of
the three-dimensional current image, and, once a lesion has been identified, repeats the
process on the prior image in order to identify possible changes in size or appearance of
the lesion.

Technical tasks such as navigating through the data can be a lengthy and tiring pro-
cess and prevent the clinician from performing actual diagnoses. In this setting, image
registration can be employed to automatically provide the corresponding location in one
image to a specific location in the other image, also known as cursor synchronization or
synchronized navigation [FGM+17; HBS06; Bal06; LPG+05]. Especially in cases where

3

1. Introduction and overview

new lesions appeared, finding the exact location of a then non-existent lesion in a prior
scan can be time consuming.

A typical area of application is in follow-up diagnosis of thorax-abdomen CT images. Due
to the elastic behavior of organs and tissue, a non-linear deformation is required in order
to map correspondences correctly. Furthermore, this deformation can be used to provide
new types of visualization such as subtraction images, see Figure 1.1 for an example.
On state-of-the-art scanners, the resolution of CT scans is approximately 0.7 mm in each
direction, leading to large image sizes, sometimes exceeding 512× 512× 1000 voxels. In
a clinical setting, larger numbers of these images need to be processed within reasonable
time, in order to allow timely reading by the radiologist. This constitutes a challenging
registration problem involving large numbers of high-resolution datasets, and requires an
efficient use of resources, especially available memory. An evaluation of the developed
image registration algorithm in this clinical application on a large number of datasets is
presented in Chapter 6.

1.2.2. Image-guided treatment in radiotherapy

Once a cancer diagnosis has been made there are several options for treatment and ther-
apy. Generally, over the course of treatment, a combination of these is applied. First,
tumor tissue can be removed by oncological surgery. Second, treatment can be performed
within the field of medical oncology, using specific drugs to target cancer cells, e.g., by
targeted therapy, immunotherapy or chemotherapy [BLYY12]. Third, the tumor can
be treated with radiotherapy [BHG04]. Here, we consider image-guided radiotherapy
treatment.

Radiotherapy aims to irreparably damage cancerous cells using ionizing radiation with
high energy, while healthy tissue is spared as much as possible and allowed to regenerate
[BHG04]. For this, the radiation needs to be targeted as accurately as possible, which
can either be performed by injecting radioactive sources near the tumor (brachytherapy),
or by using external beam radiotherapy. The latter is typically performed by a linear
accelerator rotating around the patient, emitting a focused photon beam. In order to
determine the optimal dose distribution, a so-called treatment plan is created before
treatment. This treatment plan is based on a diagnostic CT image of the patient, where
all important anatomy is visible (a so-called planning CT) and describes how the radiation
is applied to the target area during treatment.

Generally, the treatment is divided into several fractions, or sessions, where in each frac-
tion, a part of the planned total dose is applied. The treatment typically takes several
weeks [BLYY12]. In order to verify the treatment plan, in image-guided radiotherapy,
before application of a fraction a cone-beam CT (CBCT) image of the patient can be ac-
quired, while the patient is already in treatment position. This image is then compared
with the planning CT to verify patient position and to account for anatomical changes
between fractions [JKDM07]. Here, image registration is used to map the planning CT
image to the CBCT. The registration allows to propagate contours of important struc-
tures, such as the target volume or structures at risk, onto the CBCT image in order to

4

1.2. Applications

Figure 1.2.: Non-linear deformation grid (blue) with embedded locally rigid areas (yel-
low) for bones and prostate. A single axial slice of a male pelvis CT image
is shown. Local rigidity constraints allow to take the physical properties of
bones and rigid structures into account, which avoids unrealistic deforma-
tions. The approach is described in Chapter 7.

assess dose distribution. Furthermore, it allows to accumulate applied doses over time
for adaptive radiotherapy [JKDM07; THT+16].

However, computing meaningful deformations in this setting can be a challenging task.
For example, in the male pelvic area deformation properties of adjacent organs vary
greatly between bladder (highly elastic), prostate (almost rigid) and bones (rigid). This
requires the computation of high-resolution deformations to obtain physically plausible
results. Nevertheless, these deformations might still be unrealistic, when not considering
anatomical properties in the registration algorithm. Especially in the pelvic region, im-
plausible elastic deformations of bones are observed in the registration result and large
bladder deformations commonly cannot be handled well [TPB+11].

To address this issue, we propose deformable registration with a local rigidity constraint
for radiotherapy in Chapter 7. Here, locally rigid areas (bones, prostate) are only allowed
to rotate and translate, embedded in a non-linear deformation of the remaining tissue.
An example of a non-linear deformation grid with local rigidity constraints is shown in
Figure 1.2.

As the rigidity constraint acts on the deformation grid, in order to correctly map the
boundaries of rigid areas of with the image anatomy, high-resolution deformations are
required. Thus, an efficient algorithm that is capable of computing high deformation
resolutions on a clinical workstation is required. Furthermore, in a clinical setting, the
algorithm needs to finish rapidly in order not to interfere with clinical workflows, as the
registration is performed while the patient is already in treatment position.

Fulfilling both of these requirements, the matrix-free algorithm, developed in Chapter 3
is well-suited for this application. We use the non-linear algorithm as a basis and include
the local rigidity constraint. We evaluate the resulting method on ten clinical datasets
and compare the results with a state-of-the-art algorithm used in a clinical workstation.
Additionally, we compare our deformable registration with and without local rigidity
constraints and show that physically more plausible results can be achieved by using
local rigidity constraints.

5

1. Introduction and overview

Due to the fast runtimes and low memory requirements of the matrix-free algorithm this
novel registration method can be utilized with clinically feasible performance, which could
not be realized with matrix-based approaches before.

1.2.3. Real-time ultrasound tracking for motion compensation

In all areas of medical imaging, patient movement is an important factor and has to be
carefully taken into account. While in image acquisition, patient motion impacts the
image quality and subsequent diagnosis, interventional settings require even more urgent
attention to patient motion: For example in radiotherapy, as discussed in the previous
section, tumor tissue is intentionally damaged by radiation. A moving target area can
therefore cause severe damage to healthy tissue, if patient motion is not accounted for
[KMB+06]. Another example is high-intensity focused ultrasound (HIFU), where tissue
in a small focal volume of an ultrasound beam is heated to cause cell death [KTC03]. In
both cases, motion tracking can potentially make treatment safer.

Ultrasound (US) imaging features several benefits over other image acquisition tech-
niques. It provides real-time image acquisition and has low requirements in component
setup [FMB+15]. Furthermore, it uses non-harmful ultrasound waves. A sequence of
ultrasound images can be used to determine patient motion, e.g., due to breathing. In
these ultrasound sequences, tracking of prominent features over time, such as vessels, can
be used to identify motion and to adjust the treatment location accordingly.

Automatically tracking the features is a challenging task. While special characteristics
of the ultrasound modality, such as high noise level, make image processing difficult,
additionally real-time performance is required in order to correct for patient motion
during treatment. For real-time adaptive treatment, determining the motion from one to
the following frame must be finished before the next frame arrives. With acquisition rates
of 25 Hz or more [DBK+15*], highly efficient algorithms are needed in order to obtain
the required processing speed.

To reach this goal, we embedded the developed image registration algorithm in a novel
tracking method for liver vessels in ultrasound images, described in Chapter 8. An
example of an ultrasound frame with tracked landmarks is shown in Figure 1.3. The
tracking algorithm handles the specific challenges of long ultrasound sequences while still
achieving real-time performance.

1.3. Contributions and outline

The main contribution of this work consists of a new matrix-free formulation of a varia-
tional image registration algorithm, which enables a fast, efficient and parallel computa-
tion. The approach is extended and applied to three very different clinical fields, proving
the achieved benefits in real-world scenarios.

In detail, the contributions of this work can be divided in two parts:

6

1.3. Contributions and outline

Figure 1.3.: Proposed ultrasound tracking scheme. Five landmarks that are to be tracked
(yellow) are visualized on a single liver ultrasound frame shown in the back-
ground. The landmarks are placed in the centers of different liver vessels.
Additionally shown are three colored windows (purple, blue, red) in which
the tracking scheme computes a full, non-linear image registration in each
step in real time at up to 131 frames per second (Chapter 8). Figure adapted
from [KKR14*].

Derivation of the matrix-free method. In the first part, we develop a matrix-free
algorithm for deformable image registration. Based on a variational image registration
model, the derivative structure of important distance measures and a regularization term
is analyzed. With this, we derive new, fully matrix-free computation rules for objective
function

• gradient computations, and

• Hessian-vector multiplications.

These methods are systematically analyzed and different implementation alternatives are
discussed, balancing runtime and memory usage. Furthermore, the developed methods
are employed for deformable registration as well as for rigid and affine transformations.
Besides multi-threaded CPU versions, additional implementations on graphics cards and
a rigid registration on digital signal processors is presented, showing the flexibility of the
approach.

As will be shown, the derivation of the matrix-free method can require a considerable
amount of effort. In order to justify this effort, we additionally implement the registration
algorithm in a computational framework using automatic differentiation. This method
automatically computes analytically exact derivatives of a function without further user
intervention and allows for automatic optimization of computations and seamless execu-
tion on GPUs.

We compare both algorithms with matrix-based approaches and perform evaluations
in terms of parallel scalability, runtime and memory requirements, for components of
different complexities, ranging from single functions up to a full registration.

7

1. Introduction and overview

Our method has been published in [KR14*; KDHP15*; KRDL18*] for deformable reg-
istration and in [RKH+13*; RKT+17*] for rigid and affine deformations and is pre-
sented in an extended and more comprehensive form in this thesis. Furthermore, we
presented implementations on GPUs in [TRK+14*; RKT+17*; KRDL18*] and on DSPs
in [BKR+14*].

Clinical applications. In the second part, the developed methods are used as a basis
for different clinical applications. Each of the applications highlights a different aspect of
the benefits of the matrix-free approach. Specifically,

• in follow-up imaging in radiology, cursor synchronization is utilized to easily ob-
tain corresponding lesions of prior patient scans. The presented approach enables
processing of large numbers of datasets, each with large image sizes, to aid the
diagnosis by a radiologist,

• in radiotherapy, the application targets the physical plausibility of deformations
in the male pelvic area, where the registration approach is extended with a local
rigidity constraint. The approach is evaluated on three-dimensional clinical datasets
and compared with state-of-the-art approaches. The proposed method enables the
processing of high deformation resolutions with fast, clinically feasible runtimes and
low memory requirements, published in [KDPH16*; KDH+15*], and

• in liver ultrasound tracking, the approach is used as a basis for a newly devel-
oped real-time tracking method. The fast and parallel execution of the matrix-free
method allows to use a full image registration component as part of an application
with real-time constraints. The tracking algorithm is based on our work published
in [DBK+15*; KKR14*].

Reflecting this structure, the remainder of this thesis is structured as follows. In Chap-
ter 2 a general introduction to image registration and related work is given, followed
by a description of the variational model that serves as a basis for this thesis. Impor-
tant aspects of the discretization and numerical optimization methods are described and
necessary definitions and notation are introduced.

Using these definitions, in Chapter 3, the derivative structure of the objective function is
analyzed in detail for important distance measures and a regularization term. Based on
this analysis, matrix-free computation rules for objective function gradient computations
and Hessian-vector multiplications are derived for deformable as well as rigid and affine
deformation models. These matrix-free schemes are then analyzed in terms of computa-
tional operations as well as memory usage. Specialized implementations on CPU, GPU
and DSP are discussed.

In Chapter 4, we present an alternative approach to the matrix-free computations using
automatic differentiation. Here, function derivatives are computed fully automatic with-
out further user intervention, which poses a valuable alternative in rapid prototyping and
algorithm development. We discuss the fundamentals of algorithmic differentiation and
present and evaluate an implementation of the registration objective function.

8

1.3. Contributions and outline

All derived schemes are analyzed and benchmarked in detail in Chapter 5. Evaluations
are performed for scalability, runtime and memory requirements in comparison with ap-
proaches from Chapter 3 and Chapter 4 as well as alternative, matrix-based implemen-
tations. Further evaluations and comparisons are performed for individual components
as well as for the complete objective function and registration algorithm.

In the last part of the thesis, clinical applications and extensions of the proposed method
are presented. In Chapter 6, the registration algorithm is used to support follow-up diag-
nosis of cancer in radiology. Large size and numbers of datasets pose a special challenge
here. In Chapter 7, the matrix-free approach is extended with a local rigidity constraint
and evaluated on three-dimensional clinical datasets from radiotherapy in comparison
with state-of-the-art approaches. In Chapter 8, the matrix-free registration algorithm
serves as a basis for a real-time ultrasound tracking method, that is evaluated on a large
number of benchmark datasets and compared with other approaches in a public chal-
lenge.

Finally, in Chapter 9, we summarize and discuss the findings of this work and future
perspectives.

9

Part I.

Matrix-free approaches for

deformable image registration

11

2 Image registration

This chapter gives a general introduction to the field of image registration, as well as
a detailed description of the image registration approach that is utilized in this thesis.
After defining the overall registration framework in Section 2.1, a general introduction
is given in Section 2.2, where different deformation models, application scenarios and
popular image registration methods are discussed. As the developed methods focus on
fast and efficient image registration, related approaches with a similar focus are discussed
in Section 2.2.4.

After this, important concepts and components of the variational image registration
model, which provides the basis for the developed methods, are described in detail in
Section 2.3. Following a discretize-then-optimize approach, the continuous formulation
is discretized in Section 2.4. As the registration problem will be phrased as an opti-
mization problem, implementation requires methods for numerical optimization which
are described in Section 2.5. The methods and components in this chapter serve as a
basis for further analysis and derivation of matrix-free methods in Chapter 3.

2.1. Registration framework

As outlined in Section 1.1, the goal of image registration is to establish spatial corre-
spondence between images. While in some frameworks, this includes multiple images
(time-series, video sequences), in this thesis, we will focus on the pairwise registration of
exactly two images.

The first image is referred to as the reference image R. This image remains unmodified
during the registration process and serves as a basis for comparison with the second
image. Therefore, this image is also sometimes called fixed image. The second image is
denoted as template image T . As the name “template” suggests, it is being adapted to
match the reference image by applying a transformation ϕ. As the template image is
being transformed, it is also sometimes called moving image.

The goal of image registration is now to find a reasonable transformation ϕ, such that
the transformed template image becomes “similar” to the reference image [HM06a]. The
notation in this section follows the variational model of [Mod04; Mod09].

13

2. Image registration

2.1.1. Images and transformation model

In the variational model, the images are interpreted as scalar-valued, continuous func-
tions

R : Rd → R and T : Rd → R,

with support on reference and template image domains ΩR ⊂ R
d and ΩT ⊂ R

d [Mod04;
Mod09]. Here, d ∈ N indicates the image dimension. The images are mapping a d-
dimensional coordinate to a real-valued image intensity. In many applications, where
photos or videos are used, it holds d = 2, while in medical applications we often have
d = 3, such as in CT or MRI scans. Other cases also exist, as in the example of time-
series of three-dimensional images, where d = 4 [CCM+10], or non-scalar images with
different color channels. In this thesis, the two most common cases in medical imaging
with d ∈ {2, 3} and gray intensity values will be considered. For details on how we
obtain continuous image representations from discrete data via image interpolation, see
Section 2.4.3.

Given a transformation ϕ : ΩR → R
d, mapping a coordinate location in the reference

image domain to the template image domain, a transformed template is obtained by the
composition T (ϕ) := T ◦ ϕ, where

T (ϕ) : ΩR → R, x 7→ T (ϕ(x))

maps a point in the reference image domain to a template image gray value. Note that this
transformation model uses an Eulerian representation of motion, in which the reference
frame is fixed, also sometimes referred to as backward mapping. For every point in the
reference image domain, a corresponding gray value of the deformed template image can
be determined, which allows a direct comparison of R and T (ϕ).

2.2. Related work

The comparison of reference image and template image depending on a transformation
ϕ is the common characteristic of most registration approaches. However, various image
registration approaches have been proposed in the literature, which also rely on different
definitions of images or the transformation model.

Surveys. Image registration is a key component in modern image processing solutions.
A substantial number of different registration approaches and frameworks have been pro-
posed in many application areas. Of these, medical imaging is an especially popular field,
featuring special challenges such as large, three-dimensional images, non-linear deforma-
tions and clinical time constraints. Several recent surveys [SDP13; OT14] systematically
categorize the medical image registration approaches, in addition to older surveys in
[MV98; WFW+97; MF93; PV93]. Introductions to the field of image registration can
also be found in the textbooks [Mod04; Mod09; LNE11; Gos05; HHH01]. A comparison
of software packages for medical image registration is given in [KBD17].

14

2.2. Related work

Apart from medical applications, there are numerous other fields where image registration
is also employed, ranging from visual surveillance [RJ02], automated surface inspection
[LK03] and mobile robotics [HNCB10] to remote sensing [LCSC15]. Thus, there also exist
broad overviews of image registration, including non-medical applications [ZF03; Bro92].
While each of these areas presents their own interesting problem settings and challenges,
this work focuses on applications in the medical field.

In the following sections, the content of this thesis is put in context with important related
work. Starting with a general classification of deformation models and applications of
medical image registration in Section 2.2.1 and Section 2.2.2, the most popular image
registration frameworks will be outlined in Section 2.2.3. This classification will then be
used to give an overview of fast and efficient algorithms and implementations for each of
these frameworks in Section 2.2.4.

2.2.1. Deformation models

Current image registration approaches can be largely divided into two groups, based on
the transformation model [CHH04]. The first group is composed of affine transformations,
mapping a single d-dimensional point x ∈ R

d with

ϕw(x) := Ax + b,

where b ∈ R
d is a translation vector and A ∈ R

d×d is a linear transformation matrix. The
transformation is parameterized by the vector w ∈ R

d2+d, consisting of the d2 matrix
elements from A and the d elements from the vector b. Every point x ∈ ΩR is deformed
with the same transformation, determined by the discrete number of parameters in w,
which is why this model is sometimes also called a parametric registration.

Affine transformations only allow for rotation, translation, scaling, and shearing of images.
While these transformations are rather limited, they have the advantage of preserving an
important relation between points in the transformed image: straight lines are mapped
onto straight lines. Therefore, they are preferable in some use cases, especially when an
alignment of different fields of view is needed [HZ03; JBBS02; BT01; TRU98].

An important sub-class of affine transformations are rigid transformations. Further re-
stricting the available degrees of freedom, they only allow for rotations and translations
and are often used for image pre-alignment, but are also employed in other applications
[FGM+17; RDH+15; RKT+17*; SSKH10b; SGR+08].

The second group is non-linear transformations, with the corresponding registration often
called a deformable registration. In contrast to a rigid or affine transformation, every point
is mapped with an individual deformation ϕ(x) : Rd → R

d. The non-linear transformation
model allows for more degrees of freedom, driven by geometrically or physically motivated
models [SDP13]. Deformable registration methods are capable of capturing complex, non-
linear motion. Especially in the medical field, these deformations are ubiquitous in soft
tissue and organs. As common in the literature, the terms “deformable registration” and
“non-linear registration” will be used interchangeably in this thesis. Compared to the
deformable model, the rigid and affine models restrict the set of possible deformations

15

2. Image registration

ϕ. Therefore, affine models can also be interpreted as special cases of the deformable
model.

2.2.2. Application scenarios

The interpretation of the sought-after deformation can vary largely, depending on the
application context. A common example is the task of image fusion [SDP13], where
images from the same object, acquired with different modalities are registered in order
to combine them in an overlay image. For example, in the case of positron emission
tomography (PET), the images show functional activity, such as increased metabolic
activity in a tumor. However, PET images provide no anatomical context. Therefore,
they are usually registered with a CT scan, in order to create an overlay image allowing to
visualize activity together with patient anatomy [MHV+03]. Registration of functional
images and anatomical scans is also often referred to as co-registration, especially in
neuroimaging.

While in the above example, the goal is to obtain the deformed image, in other areas
the transformation itself is directly utilized. In lung imaging, the deformation is used for
motion analysis. The computed vector field gives information about respiratory motion
and air flow in the lung. With this, information about regional lung function can be
obtained [EWSH11; WES+10], which is utilized in radiotherapy or diagnosis of Chronic
Obstructive Pulmonary Disease (COPD) [MPR+12].

In other areas, point-to-point correspondence information between two images is desired.
In follow-up diagnosis for oncology, the position of the cursor is linked between two
images from different days, which is also called cursor synchronization or synchronized
navigation [FGM+17]. This helps to detect and assess size and appearance changes of
tumor lesions.

In motion tracking, point locations are propagated from one frame to the next by applying
the obtained transformations to a sequence of images, for example in ultrasound tracking
[DBK+15*].

In radiotherapy, the obtained deformation is often used for contour propagation of organs
and structures at risk. Previously delineated contours are transferred from an older
planning image onto a newly acquired image of the same patient, in order to locate those
structures in the new image and to adapt treatment accordingly [TPB+11].

Further application scenarios exist such as atlas registration [RBMM04] or image subtrac-
tion [TVF+02; EPW+07; LGB00], making image registration a highly versatile method
with ubiquitous applications in image processing.

This also means that the derivation of a general image registration approach allows for
applications in various problem settings without changing the core algorithm. Of the de-
scribed applications, in this thesis, methods for contour propagation (Chapter 7), motion
tracking (Chapter 8) and synchronized navigation (Chapter 6) will be presented.

16

2.2. Related work

2.2.3. Image registration methods

While there also exist differences in approaches for rigid and affine algorithms, largely
different approaches have been established for deformable image registration [SDP13].
Here, some of the most popular approaches are demons-type registration [Thi98], which is
derived from the physical paradox of Maxwell’s demons; spline-based free-form deforma-
tions (FFD) [RSH+99; SRQ+01], which are constrained by geometrical properties; and
variational image registration with physically motivated regularization [Ami94; Mod04].
Given the vast variety of available image registration methods, this list is neither ex-
haustive nor strict, but provides a rough categorization of the most popular methods.
Therefore, in the following, each of the three approaches will shortly be summarized and
similarities will be identified, before giving an overview fast and efficient implementations
in Section 2.2.4.

Thirion’s Demons. The demons approach was first presented by Thirion in [Thi95;
Thi96; Thi98], and was physically motivated by the paradox of Maxwell’s demons from
thermodynamics. Subsequently, several approaches were presented in order to embed the
algorithm within a mathematical framework [PCA99; CPA99; FM01; VPM+07]. The
most popular formulation aims to satisfy the optical flow equation [HS81]

u(x)⊤∇R(x) = T (ϕ(x))−R(x),

adding an additional constraint for minimal length of the displacement vector u and nu-
merical stabilization [Thi98]. In an iterative algorithm, the method computes an update
of the deformation field with so-called “demon forces”

u(x) =
(T (ϕ(x))−R(x))∇R(x)

‖∇R(x)‖2 + (T (ϕ(x))−R(x))2

at all image points, followed by a Gaussian smoothing of the deformation and an iterative
update of ϕ. This rather simple formulation allows for a fast computation even for high
deformation resolutions, which has led to a large popularity of the algorithm, especially
in clinical applications [WDO+05; NBD+09]. Several different variants of the algorithm
were proposed [GPL+10], interchanging R and T in the update computation or sym-
metrically including information from both images. The standard demons algorithm was
found to produce singularities in the obtained deformations [VRS10]. Therefore, symmet-
ric [YLL+08] and diffeomorphic versions were presented [VPPA07; VPPA09; LAFP13],
which use a composition of the obtained displacements in each iteration rather than an
additive update as used in [GPL+10]. Further extensions of the algorithm have been
presented since then, e.g., incorporating different distance measures such as mutual in-
formation [LRS+10] and local correlation coefficient [LAFP13], or surface registration
[GMTT13]. In [PGSB16] stopping criteria were explored, finding a comparison strategy
of previous objective function values to be favorable. As will be discussed below, some
demons-based approaches can be related to special cases of the variational model, however
corresponding explicit energy terms are not known for most variants [WES+10].

Free-form deformations. Deformable registration based on so-called free-form defor-
mations was introduced in [SC97; RSH+99; SRQ+01]. In contrast to the demons al-
gorithm, the deformation is explicitly modeled via a spline-based transformation model,

17

2. Image registration

typically using B-splines. Defining a grid of control points φi1,i2,i3 on ΩR with spacings
h1, h2, h3, for d = 3 the spline-based deformation is parameterized as

ϕφ(x) =
3∑

l=0

3∑

m=0

3∑

n=0

Bl(v1)Bm(v2)Bn(v3)φi1+l,i2+m,i3+n,

where pk := ⌊ xk
hk
⌋, ik := pk − 1, vk := xk

hk
− pk, and Bk is the k-th cubic B-spline basis

function [RSH+99].

The deformation is then optimized over the control points φ, either with implicit regu-
larization by the spline parameterization itself or with an additional external regulariza-
tion term [TAS+06]. The update is derived from an image-based distance measure such
as the multi-modal normalized mutual information (NMI) [RSH+99; SRQ+01]. Sev-
eral enhancements of the algorithm have been proposed, adding local rigidity [TSC+00;
LMVS04] and volume constraints [RM01; RMBJ03; Sdi08] as well as extensions to the
temporal domain [PMR05] and landmark constraints [STU05]. Additionally, model-
ing of inverse consistency [CJ01; FRD+09] and diffeomorphic deformations [RAH+06;
MRD+11], as well as discontinuous deformations [SZP+12] were investigated. Research
on different optimization methods was performed in [KSP07], where a Robbins-Monro
stochastic gradient descent was found to be beneficial in most examples, at the cost of
a large number of (fast) iterations. Generally, free-form deformations explicitly param-
eterize the deformation using a B-spline model, which allows for a reduced number of
parameters in comparison to the image size. This discretization is comparable to the
discretize-then-optimize approach as discussed in the next paragraph.

Variational methods. In contrast to the explicit deformation model of the free-form
deformation approach, with a discrete amount of control points (also called parametric
[Mod04]), are variational image registration methods [Ami94; HCF04; DR04; Mod04;
CDH+06]. Here, as already shown in Section 2.1.1, a deformation function ϕ is searched
for in a function space. Due to this continuous model, these approaches are also referred
to as non-parametric [Mod04]. In the continuous model, the deformation is typically
regularized by a physically inspired internal energy S, also called regularizer [SDP13].
The driving external force is modeled by a distance measure D that depends on the
images, similar to the free-form deformations. With these two terms, the registration is
formulated as an optimization problem

min
ϕ:ΩR→Rd

D(R, T (ϕ)) + αS(ϕ),

where the parameter α balances between distance measure and regularizer, described in
detail in Section 2.3. For solving the registration problem using the continuous model,
two different approaches have been established [HM04].

In the first approach, the deformation is determined by deriving the Euler-Lagrange equa-
tion of the continuous model and then solving the resulting partial differential equations
(PDEs). This requires computing optimality conditions from the Gâteaux derivative of
distance measure and regularizer, and solving the PDEs by using numerical methods
[Mod04]. This approach is often denoted as optimize-then-discretize. Since regularization

18

2.2. Related work

is a core component of the variational model, much effort has been put into the deriva-
tion and analysis of different regularizers, such as diffusion [FM01], curvature [FM03b;
FM04a; Hen06] and elastic regularization [Mod04]. Additionally, the multi-modal mutual
information distance measure has been incorporated [DMM+03; Hel06] and the approach
was extended to 4D motion models [EWSH11] and sliding motion [SWHE12]. An ap-
proach incorporating guaranteed point-to-point landmark correspondences was presented
in [FM04b; FM03a]. In earlier works, related models for elastic [Bro81; BK89] and fluid
[Chr94; BG96; CRM96; CJM97] registration have been presented. These have also been
formulated in variational frameworks [GB98; FM03c; Mod04].

In the second approach, known as discretize-then-optimize, the continuous formulation
is first discretized by using methods from numerical integration and – usually – finite
differences [HM04; HM06a]. This results in a finite-dimensional optimization problem,
which can be solved using well-known methods from numerical optimization, such as
quasi-Newton methods [FM08; Mod09] or multi-grid solvers [HM06a; FHW08]. Based
on this framework, different constraints were added to the registration framework, based
on anatomical knowledge, such as local rigidity for bone movement [HHM09], volume
constraints and displacement regularity [HM04; HM07a], mass preservation [GRB+12],
mask-alignment [RHKF13] or hyper-elastic regularization [BMR13]. Point-based corre-
spondences were included in [POL+09; PRW+14; RPH+17]. In addition to the mutual
information distance measure [Hel06; Mod09], the multi-modal normalized gradient fields
(NGF) distance measure was introduced in [HM07b]. This approach is pursued in this
thesis and described in detail starting from Section 2.3. As will be shown, the model
allows for great flexibility in the choice of distance measures, regularizers and transfor-
mation models together with a direct minimization of the energy function using numerical
optimization.

Connections between approaches. The distinction between the above approaches
is not strict, and several relations and connections between them exist. Deformable regis-
tration (or image matching) and motion estimation via optical flow estimation are closely
related problems [SDP13; LC01; HSG10]. As noted before, there are different versions of
the demons approach. The “most suitable version for medical image analysis” [SDP13]
is based on the optical flow constraint. Furthermore, it has been shown in [ZKN10] that
registration with the sum of squared differences (SSD) distance measure, diffusion regu-
larization and Gauss-Newton optimization is equivalent to the Horn-Schunck optical flow
solution [HS81; HJB+12]. Additionally, the demons approach can be seen as an approx-
imation to fluid registration [BG96]. Also, the demons approach has been connected to
variational models [FM01; FM04a; Mod04] and comparative evaluations have been made
[WES+10], finding a masked demons registration superior to an SSD-based variational
model for lung registration.

Further approaches. Several other approaches exist, that are not easily classified into
the categories mentioned above [SDP13]. Related to the fluid approach [CRM96] is the
so-called large deformation diffeomorphic metric mapping (LDDMM), which yields diffeo-
morphic transformations by solving a system of differential equations [BMTY05; HBO09;
AF11]. A memory-efficient method of LDDMM has been presented in [PNH+16]. Other

19

2. Image registration

approaches use graphical models with efficient discrete optimization strategies [HJBS11;
HSP+16; SOPD15; TC07] or evolutionary algorithms [SCD11; RJR00].

2.2.4. Fast and efficient image registration algorithms

Common to all deformable registration approaches is a comparably complex and expen-
sive computation. This can result in limited practical adoption, especially in clinical
settings [RM03; CHH04]. One obstacle for this can be runtime, such that the algorithm
does not finish within clinically feasible time [SRG10; PDBS08]. Another issue can be
limited hardware capability, such that the required accuracy cannot be achieved due to,
e.g., memory limitations [PNH+16]. Therefore, much effort has gone into increasing
computational efficiency for a variety of image registration solutions.

These approaches can be classified based on the deformation model, following Section
2.2.1: Rigid and affine movement or non-linear (deformable) transformations. Second,
they can be differentiated based on the specific hardware platform that is targeted. There
exist many approaches for CPU-based systems, mostly distributed cluster environments,
but also shared-memory multi-core architectures [SSKH10a]. With the advent of general
purpose computing on graphics processing units (GPGPU), a large variety of new imple-
mentations and algorithms was presented, focusing on the specific features of GPU many-
core architectures [FVW+11]. Additionally, other embedded architectures were explored
such as digital signal processors (DSPs) [WK98; BKR+14*] and field programmable gate
arrays (FPGAs) [JLR02; CS05; CLQS12].

In the following, the most notable approaches for fast and efficient image registration
algorithms will be summarized. An overview and classification of the cited literature
is given in Table 2.1. A general overview of image registration with focus on high-
performance computing architectures is [SSKH10a], while a more specific overview of
GPU-based methods can be found in [FVW+11].

Affine and rigid registration. An early high-performance computing approach for
medical image registration was presented in [WJK98], where rigid registration was imple-
mented on a CPU cluster, connected via message passing interface (MPI) for automatic
registration of brain scans, achieving a linear speedup. Other approaches for multi-modal
affine registration followed, further using distributed cluster architectures with the mutual
information (MI) distance measure and genetic optimization [BT01] and a correlation-
based block-matching [OSP02] scheme. In [WP06], a derivative-free rigid approach with
normalized mutual information (NMI) on a shared memory architecture was presented,
allowing for faster and more accurate computations than derivative-free optimization with
Powell’s method.

A first GPU-based rigid registration using projections was presented in [KCW06], us-
ing GPU shaders for computations, in some cases achieving speedup factors up to four,
compared with a CPU implementation. Following contributions focused on implemen-
tations using the NVIDIA Compute Unified Device Architecture (CUDA) [NVI17] with
mutual information [LM08; SSKH10b; VW11] or mean squared error [BB09], reporting
speedups between one and two orders of magnitude, also depending on whether they

20

2.2. Related work

Method CPU CPU GPU FPGA, DSP
(multi-core,
multi-CPU)

(distributed,
cluster)

Affine, rigid [WP06]
[RKH+13*]
[RKT+17*]

[WJK98]
[BT01]
[OSP02]

[KCW06] [LM08]
[BB09] [SSKH10b]
[VW11] [LKHC15]
[TRK+14*]
[RKT+17*]

[WK98]
[SHP+08]
[CJS03]
[BKR+14*]

Demons [SPA03] [SKSF07] [SXMO08]
[MOXS08] [CH08]
[GPL+10]

[CLQS12]
[KCC+14]

Free-form deformations [RM03]
[SBL+13]

[IOH05]
[ZUC09]

[PDBS08] [PDBS10]
[SRG10] [MRT+10]
[SKS13] [SBL+13]
[IIH14] [EYSL15]

[JLR02]

Variational methods [Chr98]
[KR14*]
[KDHP15*]
[KRDL18*]

[MLSO01] [KRDL18*]

other [MGB16] [KDR+06] [LYC08]
[RUCH09] [LFKC10]

[CS05]
[DS07]
[CHZ11]

Table 2.1.: Overview of literature cited in Section 2.2.4, focusing on fast and efficient
medical image registration algorithms for different platforms (columns) and
registration approaches (rows). Own publications incorporated in this thesis
are marked with an (∗).

compare to a single- or multi-threaded CPU implementation. The authors of [LKHC15]
used a correlation ratio distance and compared different GPU architecture generations,
achieving similar speedups. Other hardware has also been utilized for affine and rigid
registration, such as digital signal processors (DSPs) [WK98] or field programmable gate
arrays (FPGAs) [CJS03; SHP+08].

The aforementioned approaches achieve rewarding speed-ups and efficiently utilize mod-
ern high-performance computing topologies. However, none of the above approaches is
based on a variational model. Therefore, in [RKH+13*; RKT+17*], we proposed a math-
ematical approach for fast and efficient affine image registration, based on a variational
formulation, using the multi-modal normalized gradient fields distance measure. The
approach does not rely on a specific hardware topology, but focuses on re-formulating
the mathematical problem. However, it can be specialized to run on different plat-
forms. We presented implementations for multi-threaded CPUs in [RKH+13*], GPUs
in [TRK+14*; RKT+17*] and DSPs using the sum of squared differences distance mea-
sure in [BKR+14*], as well as in the theses [Ber12; Tra14], jointly supervised by the
author of this thesis together with J. Rühaak. This approach will be discussed in detail
in Chapter 3.

21

2. Image registration

Deformable registration. Similar to rigid and affine approaches, high-performance
strategies have also been employed for deformable registration. Initially, many approaches
focused on targeting supercomputers. One of the earliest works implements elastic and
fluid deformation models with the SSD distance measure on a massively parallel 128×128
processor computer as well as on a 16-processor workstation [Chr98], finding the multi-
processor workstation to be at least four times faster than the massively parallel processor.
A multi-threaded implementation of a registration based on free-form deformations with
NMI was presented in [RM03]. The method was run on 64 processors of a 128-processor
shared-memory system, achieving an average speedup factor of 31.

Instead of using a single machine, similar to many of the rigid and affine approaches,
an elastic variational model with SSD was implemented on a distributed memory cluster
with 48 PC workstations in [MLSO01], reporting speedups up to a factor of 40. A
free-form deformation model with NMI was implemented on a 128 PC cluster [IOH05],
reporting speedup factors of about 90. In [ZUC09], the authors implemented an FFD-
based registration on a cluster of ten workstations, achieving a speedup of about factor
five. Similar to this, also demons registration was implemented on a cluster of 15 PCs
in [SPA03], reporting an 11-fold speedup. In [MGB16] a LDDMM registration algorithm
was implemented on a supercomputer cluster, using up to 1024 nodes with a focus on
processing large images up to 10243 voxels by using a distributed-memory approach. In
this thesis, we are aiming for algorithms that are suitable for clinical practice and can be
executed on a single workstation. Therefore, distributed-memory approaches will not be
considered in the following.

Since deformable registration is computationally more demanding than rigid and affine
models, their implementation on GPU has been very popular. While early approaches
used shader languages for implementation [KDR+06; SKSF07; CH08; LYC08], subse-
quent approaches almost exclusively relied on the CUDA framework.

The demons approach was implemented on GPU in [CH08; SXMO08; MOXS08] and dif-
ferent variants were compared in [GPL+10], leading to speedup factors of approximately
one order of magnitude, compared to CPU implementations.

Comparably, the FFD model has also been implemented on GPUs. Comparisons between
a single GPU and a GPU cluster have been performed in [PDBS08; PDBS10], using the
mean squared difference distance measure. Similar to the demons approach on GPU,
speedups of about one order of magnitude were achieved. Further implementations using
NMI [SRG10; MRT+10; SKS13; IIH14] and a logarithmic SSD variant [DDW+16] have
been proposed, reporting speedups in the same range. In [IIH14], the authors additionally
compare many previous GPU implementations to their approach, giving some insight into
the difficulties of comparing published results, generated on different datasets and hard-
ware. A diffeomorphic free-form registration was implemented in [EYSL15], achieving
speedups of about 10 compared with a multi-threaded CPU. In [RUCH09] the authors
utilized dual GPUs to register two-dimensional histology images and achieved a speedup
factor of about seven. Registration with block matching was utilized in [LFKC10] and a
8-node CPU cluster was compared to a GPU implementation achieving a four times faster
computation on the GPU. In contrast to the other approaches, [SBL+13] performed an
implementation in OpenCL and relied on optimization of selected components both on
GPU and on CPU, resulting in speedup factors from 2 to 60 for individual components.

22

2.3. Variational model

Specialized implementations on FPGAs were presented in [JLR02; CS05; DS07; CHZ11;
CLQS12; KCC+14].

Similar to the rigid and affine deformation model, out of all approaches discussed above,
only [Chr98; MLSO01] use a variational approach. However, they only use the mono-
modal SSD distance measure and focus on technical details of the distributed computing
environment. Therefore, we extended the matrix-free, fast and efficient computation
scheme from affine to deformable registration on multi-core systems [KR14*; KDHP15*;
KRDL18*]. In addition to multi-core CPUs, a GPU implementation was presented in
[KRDL18*] as well as in the Master’s thesis [Mei16], jointly supervised by the author of
this thesis together with J. Rühaak. A more comprehensive description of this approach
can be found in Chapter 3.

2.3. Variational model

In this thesis, we focus on the variational registration model

min
ϕ:ΩR→Rd

J (ϕ) (2.1)

with a functional J : ϕ→ R defined as

J (ϕ) := D(R, T (ϕ)) + αS(ϕ),

where ϕ denotes the transformation and R, T denote the reference and template image
as defined in Section 2.1. The functional J is composed of two main parts, a distance
measure D, and a regularizer S. The distance measure D(R, T (ϕ)) compares the images
depending on the transformation and drives the registration as a so-called external force.
However, minimizing solely the distance measure is an underdetermined problem and
ill-posed [FM08]. Therefore, the regularizer S(ϕ) is added as an “internal force”, only
depending on the transformation itself. The regularizer ensures “reasonable” transfor-
mations, often motivated by physical models of motion and enforcing sufficiently smooth
transformations. The weighting parameter α > 0 can be used to balance between both
criteria to achieve a trade-off between image similarity and transformation regularity.

This model gives a great amount of freedom regarding the choice of distance measures
and regularizers and many different approaches have been proposed [SDP13], see also
Section 2.2.

2.3.1. Distance measures

The distance measure represents a mathematical formulation of “image similarity”. In
this work, since we are solving a minimization problem in (2.1), smaller values of the
distance measure correspond to more similar images.

The existing distance measures can be roughly divided in two classes. In this thesis, two
different measures will be described, each representing one of the classes.

23

2. Image registration

The first class consists of so-called mono-modal distance measures. These distances rely
on a direct comparison of image intensities, thus requiring equal acquisition equipment
and conditions. The most popular mono-modal distance measure is the sum of squared
differences (SSD), which will be described in the next section. Further mono-modal
measures include SSD variants, such as the mean square difference [PDBS08], sum of
absolute differences [HBHH01] or logarithmic squared differences [DDW+16].

The second class consists of multi-modal distance measures, which are better suited for
comparing images that originate from different acquisition devices, such as CT and MRI,
or that have different or non-standardized intensity distributions, such as in lung intensity
changes in CT due to breathing, or cone-beam CT images. In this work, the normalized
gradient fields (NGF) distance measure [HM05] is described in detail, which focuses on
the alignment of image gradients. Further multi-modal distance measures exist, such
as the popular (normalized) mutual information [VW97; CMD+95; MCV+97], which
originates from information theory or correlation-based distances [RMAP98; SDP13].
See also Section 2.2 and [KBD17; SSKH10a] for an overview of commonly used distance
measures.

Sum of squared differences

The SSD distance measure [Mod04] is defined as

DSSD(ϕ) :=

∫

ΩR

(T (ϕ(x))−R(x))2 dx. (2.2)

It is a simple and fast, easily differentiable, mono-modal distance measure, allowing for
a direct, point-wise comparison of image gray values. However, especially in medical
imaging, where commonly images from different modalities and devices need to be regis-
tered, multi-modal distances are often preferred. In this work, the SSD will be employed
in an ultrasound tracking application, described in Chapter 8 in combination with the
multi-modal NGF, which will be described in the following section.

Normalized gradient fields

In order to create a “simple and robust alternative” [HM05] to mutual information, the
multi-modal NGF was proposed in [HM05; HM06b; HM07b]. A related approach was
proposed in [DR04] using morphological matching including the alignment of normal
fields. Defining the gradient of a differentiable function f : Rd → R at point x as

∇f(x) :=

(
∂f(x)

∂x1
, . . . ,

∂f(x)

∂xd

)⊤

∈ R
d,

the NGF is formally given as

DNGF(ϕ) :=

∫

ΩR

1−

(

〈∇T (ϕ(x)),∇R(x)〉+ τ̺

‖∇T (ϕ(x))‖τ‖∇R(ϕ(x))‖̺

)2

dx, (2.3)

24

2.3. Variational model

where ‖ · ‖ε :=
√

〈·, ·〉+ ε2.1 The parameters τ, ̺ are edge filtering parameters, that can
be used to filter for image noise. The higher these values, the less influence do smaller
gradients have in computing the distance. The NGF is based on the assumption, that
even in images of different modalities, intensity changes still take place at corresponding
locations. The formulation in (2.3) can also be interpreted as the approximation

DNGF(ϕ) ≈
∫

ΩR

1− cos2 θ(x) dx =

∫

ΩR

sin2 θ(x) dx,

where θ(x) denotes the angle between ∇T (ϕ(x)) and ∇R(x). Thus, the NGF measures
the squared sine of the angle between normalized reference image gradients and trans-
formed template image gradients at all points of the reference image domain. It assumes
its minimum value when all gradients are aligned with either an angle of 0◦ (parallel) or
180◦ (antiparallel). Although analytically equivalent, in the discretization, discussed in
Section 2.4.4, for numerical reasons using the cosine approximation in (2.3) is preferable
to an approximation to the sine formulation [Pap08, §6.3.1]. The NGF has been success-
fully used in various medical applications such as lung registration [RHKF13; PNH+16],
radiotherapy [KDPH16*], histology [LOM+16] and nuclear medicine [RKH+13*], as well
as in non-medical applications such as remote sensing [LCSC15].

2.3.2. Regularizer

As described in Section 2.2.3 and Section 2.3, regularization is a central component of
the variational model, typically favoring specific properties of the transformation, such as
smoothness, or a deformation that conforms to a specific physical motion model. Different
approaches have been presented, most are based on simplifications of physical models for
elastic or viscous motion [FM01; FM04a; BMR13; Mod04].

The regularizer is acting as a so-called internal force on the solution of the optimization
problem (2.1): Its value does not depend on the image or other input data, but solely on
the displacement

u(x) := ϕ(x)− x.

In this thesis, curvature regularization will be described, a regularizer based on second
order derivatives of the displacement. Despite the existence of more sophisticated motion
models such as [BMR13], this regularizer has proven to be successful in practical applica-
tions and public benchmarks [DBK+15*; RHKF13; RPH+17; KDPH16*]. Furthermore,
as will be shown in Chapter 3, its specific structure allows for efficient computation.

1In this work, we focus on computational issues rather than functional-analytic questions; therefore, we
generally assume that all functions satisfy the differentiability and integrability conditions dictated by
the model.

25

2. Image registration

Curvature regularizer

Curvature-based regularization was first presented in an image registration context in
[FM03b]. Given a single component function of the displacement uj : R

d → R with
u =: (u1, . . . , ud), the curvature regularizer can be defined as

S(ϕ) :=

∫

ΩR

d∑

j=1

(∆uj(x))2 dx, (2.4)

where

∆uj(x) :=
d∑

i=1

∂2uj(x)

∂x2
i

is the Laplacian of the displacement component function uj at point x. Based on the
L2-norm of second-order derivatives of the displacement, the curvature regularizer par-
ticularly favors smooth deformations and is directly related to the thin-plate-spline bend-
ing energy [FM03b]. Furthermore, its kernel contains all affine transformations, which
makes registration with curvature regularization less dependent on an exact pre-alignment
[FM04a]. As the kernel also contains harmonic functions, additionally using mixed sec-
ond order partial derivatives is proposed in [Hen06]. Since this requires numerically
more involved boundary conditions [Hel06, §4.2.3], this approach is not considered in this
work.

2.4. Discretization

As described in Section 2.2.3, two main approaches for minimizing the objective function
(2.1) of the variational image registration model exist. In the first approach, denoted
as optimize-then-discretize approach, the necessary conditions for a minimizer are deter-
mined by deriving the Euler-Lagrange equations of the continuous objective functional.
These PDEs are then solved numerically, using, e.g., time-stepping methods or fixed point
iteration schemes [FM04a].

The second approach is known as discretize-then-optimize and discretizes the continuous
objective directly. The resulting finite-dimensional optimization problem is then solved
using methods from numerical optimization. The benefits of both approaches are dis-
cussed in [Pap08, §2.2.2] and [Mod09, §2.2.1].

In this thesis, we aim for a fast and memory-efficient method, and therefore follow the
discretize-then-optimize approach of [Mod09], which has proven to be suitable for different
real-world registration solutions [RPH+17; KDPH16*; BKR+14*; LOM+16; LHL+16].
Therefore, in the following, discretized versions of distance measures and regularizer will
be derived and described in detail. While technical at times, it will turn out that a
detailed understanding of the discretization for the derivative components is crucial for
obtaining efficient matrix-free computation schemes in Chapter 3. A list of symbols
including important notation in can be found at the beginning of this thesis.

26

2.4. Discretization

y

x
ω1

ω3

ω4

ω2

hy

hx

x1 =
(x1, x1+m̄)

x4 =
(x4, x4+m̄)

x7 =
(x7, x7+m̄)

x10 =
(x10, x10+m̄)

x2 =
(x2, x2+m̄)

x5 =
(x5, x5+m̄)

x8 =
(x8, x8+m̄)

x11 =
(x11, x11+m̄)

x3 =
(x3, x3+m̄)

x6 =
(x6, x6+m̄)

x9 =
(x9, x9+m̄)

x12 =
(x12, x12+m̄)

(a) Cell-centered image grid

y

x
ω1

ω3

ω4

ω2

hy
y

hy
x

x
y
1

x
y
5

x
y
9

x
y
13

x
y
2

x
y
6

x
y
10

x
y
14

x
y
3

x
y
7

x
y
11

x
y
15

x
y
4

x
y
8

x
y
12

x
y
16

(b) Nodal deformation grid

Figure 2.1.: Different grids, discretizing the same domain ΩR for d = 2 with visualization
of the element ordering in x and xy, (a): Image grid with cell-centered dis-
cretization and size m = (3, 4). The grid points are located at the center of
the cells (white circles), (b): Deformation grid with nodal discretization and
size my = (4, 4). The grid points are located at the corners of the cells (gray
circles).

2.4.1. Discretization grids

To approximate the continuous formulations of the objective function J and transfor-
mation ϕ using quadrature methods, they are discretized on regular grids. These grids
consist of equidistantly distributed points in the cuboid (rectangular for d = 2) image
domain

ΩR := (ω1, ω2)× . . .× (ω2d−1, ω2d) ⊂ R
d. (2.5)

Different discretization grids are used in the literature, differing mainly in the location of
the grid points in the discretized domain. In this work, so-called cell-centered and nodal
grids will be used, that will be described in the following sections. Depending on the
discretization of, e.g., finite difference operators, other variants such as staggered grids
can be useful [HM06a]. A further discussion on different discretization grids can be found
in [Mod09, §8.3.1] and [Pap08, §4].

Image grid. The reference image R is discretized on a so-called cell-centered grid,
which will be denoted as the image grid in the following. The number of grid points
in each dimension is defined as m := (mx,my,mz) in x-, y-, and z-direction with grid
spacings h := (hx, hy, hz), where applicable. The total number of grid points and grid
cells is then defined as the product m̄ := m1 · · ·md with cell volume h̄ := h1 · · ·hd. With

27

2. Image registration

the cartesian product m̂ := {1, . . . ,m1} × . . . × {1, . . . ,md} and î ∈ m̂, the points are
located at the cell centers with coordinates

xi :=

(

ω1 + î1h1 −
h1

2
, . . . , ω2d−1 + îdhd −

hd
2

)

(2.6)

using the linear lexicographical mapping i := î1 + î2mx + î3mxmy (or i := î1 + î2mx for
d = 2, respectively), which results in a vector

x = (x1, . . . , xdm̄) ∈ R
dm̄.

Consequently, the grid vector x is composed of all the coordinate components of all
grid points arranged lexicographically, such that first all x-, then all y- and finally all z-
coordinates are stored. This will become important when deriving corresponding matrix
structures in Chapter 3. A single point can be recovered from x as

xi =
(

xi, . . . , xi+(d−1)m̄

)

∈ R
d.

See Figure 2.1(a) for a visualization of the discretization grid and the grid point ordering
in x.

Using these definitions, the discretized reference image, evaluated on all image grid points,
can now be written as

R(x) := (R(xi))i=1,...,m̄ ∈ R
m̄, (2.7)

with R : Rdm̄ → R
m̄, resulting in a vector of image intensities.

Deformation grid. In a similar way, the transformation ϕ is discretized on a deforma-
tion grid xy, resulting in a discretized transformation y. This discretized transformation
on the deformation grid will also be denoted as the deformation in the following.

Instead of locating the coordinates at the cell-centers, the transformation is discretized
on a nodal grid, where the grid points are located at the cell corners. All quantities
use the same notation as their counterparts for the image grid, but with an additional
superscript y. Note that the deformation grid resolution can be chosen independently
from the image grid.

The deformation grid consists of my := (my
x,m

y
y,m

y
z) grid points in each direction with

grid spacings hy := (hy
x, h

y
y, h

y
z), resulting in m̄y := my

1 · · ·m
y
d grid points in total with a

cell volume of h̄y := hy
1 · · ·h

y
d. Similar to above, but now having nodal coordinates, with

m̂y := (0, . . . ,my
1 − 1) × . . . ×

(
0, . . . ,my

d − 1
)

and îy ∈ m̂y, the grid points are located
at

x
y
iy :=

(

ω1 + îy1h
y
1, . . . , ω2d−1 + îydh

y
d

)

,

using the linear mapping iy := îy1 + îy2m
y
x + îy3m

y
xm

y
y (or iy := îy1 + îy2m

y
x for d = 2,

respectively); see Figure 2.1(b) for a visualization and note the difference to (2.6). Again,
this orders the coordinates lexicographically in a vector

xy = (xy
1 , . . . , x

y
dm̄y) ∈ R

dm̄y
,

28

2.4. Discretization

where the individual grid points in the deformation grid are

x
y
i =

(

xy
i , . . . , x

y
i+(d−1)m̄y

)

∈ R
d.

This can now be used to define the deformation

y := (y1, . . . , ydm̄y) ∈ R
dm̄y

,

which represents the transformation ϕ, evaluated at all points of xy, ordered so that

ϕ(xy
i) = (yi, . . . , yi+(d−1)m̄y).

Again, the transformed coordinates in y are ordered lexicographically, such that first all
x-, then all y- and finally all z- coordinates of the transformed deformation grid points
are stored in y.

The nodal discretization of the deformation grid ensures that an image grid point is
always surrounded by deformation grid points, even close to the boundary. This enables
fast conversion schemes between deformation grid and image grid, that will be described
in detail in Chapter 3.

The choice of two different grids for discretization of images and transformation allows
to independently choose different discretization resolutions. In particular, it allows to
choose a coarser discretization for the transformation, while still evaluating the images
at full resolution. Since, as will be described in Section 2.5, the deformation resolution
determines the size of the system of linear equations that needs to be solved during the
registration, this can have a large influence on the registration runtime.

We always choose the deformation size such that my
k ≤ mk + 1, k = 1, . . . , d, i.e., the grid

spacing of the deformation grid hy is always equal to or coarser than the grid spacing of
the image grid h.

Grid conversion. The two different discretization grids require an additional grid con-
version step in order to evaluate the deformed template image T (ϕ) on the same grid as
the discretized reference image R(x).

In order to do so, we define a linear interpolation function

P : Rdm̄
y
→ R

dm̄, (2.8)

which maps the deformation grid to the image grid by using bi- or trilinear interpolation
for d = 2 or d = 3, respectively. With this, the discretized deformed template image,
evaluated at all points of the deformation, can be defined as

T (P (y)) := (T (ŷi))i=1,...,m̄ ∈ R
m̄, (2.9)

where T : Rdm̄ → R
m̄ and ŷ is the deformation on the image grid,

ŷi :=
(

P (y)i, . . . , P (y)i+(d−1)m̄

)

∈ R
dm̄.

We now have R(x) ∈ R
m̄ as well as T (P (y)) ∈ R

m̄, such that reference and deformed
template image can be directly compared, depending on the deformation y. Discretized
versions of suitable distance measures will be described in Section 2.4.4.

29

2. Image registration

2.4.2. Rigid and affine transformation models

As noted in Section 2.2.1, the affine transformation model can be interpreted as a special
case of the deformable model. In the discretized setting, the deformation y is replaced
by a parameter w ∈ R

d2+d, and the the grid conversion function P (y) in (2.9) by a
“grid-generating” function ŷ : Rd

2+d → R
dm̄ with

ŷ(w) :=
([

(Ax1 + b)1, . . . , (Axm̄ + b)1

]

, . . . ,
[

(Ax1 + b)d, . . . , (Axm̄ + b)d
])⊤

, (2.10)

where the new parameters w = (a1, . . . , ad2 , b1, . . . , bd) ∈ R
d2+d consist of the entries from

A ∈ R
d×d and b ∈ R

d. The function ŷ maps the affine transformation parameters to a
deformed image grid. When further restricting the transformation to a rigid transfor-
mation, the matrix A is chosen as a d-dimensional rotation matrix, parameterized by a
single rotation parameter for d = 2 and three rotation parameters for d = 3.

2.4.3. Image interpolation

In order to compute the deformed template image T (P (y)), it must be possible to evaluate
the template image on any point of the continuous domain ΩT . However, in practice,
images are commonly given as discrete image data, represented by equidistantly sampled
pixel (d = 2) or voxel (d = 3) gray values Ri ∈ ΩR, Tj ∈ ΩT , given on cell-centered data

grids xR ∈ R
mR
,xT ∈ R

mT
, respectively. To transfer these data values to a continuous

representation, we use d-dimensional image interpolation, with

R(xR
i) = Ri, i = 1, . . . ,Rm

R
, T (xT

j) = Tj , j = 1, . . . ,Rm
T

(2.11)

at the data points.

Various interpolation models are used in the literature, ranging from nearest neighbor
and linear interpolation to different spline-based models [LGS99]. In order to ensure
continuity as well as efficient evaluation, in this work, we use standard bi-linear (d = 2)
and tri-linear interpolation [Mod09, §3.3], which is a commonly applied interpolation
model in medical image registration [SSKH10a]. Dirichlet boundary conditions are used,
based on the assumption that medical images often contain a black (zero) background.

As linearly interpolated images are not always differentiable at the data grid points,
from a mathematical point of view, more sophisticated schemes are desirable. However,
these often also involve computationally more expensive models [LGS99]. Therefore, as a
compromise to facilitate fast and efficient computation, we use one-sided limits to obtain
derivative approximations at the grid points, whenever image derivatives are required.

Note that in this work, generally x = xR, such that the image grid equals the data
grid of the reference image. Thus, no interpolation is required when evaluating R(x) on
the (un-deformed) image grid. However, the evaluation of T (ŷ) heavily relies on image
interpolation for evaluating the template image at the transformed coordinates, which
typically do not coincide with the data points.

30

2.4. Discretization

2.4.4. Distance measures

Using the notation above, the distance measures that were presented in Section 2.3.1 can
now be discretized.

Sum of squared differences

Discretizing the SSD distance measure from (2.2) on the cell-centered image grid is
straightforward using the midpoint quadrature rule with

DSSD(ϕ) ≈ DSSD(y) := h̄
m̄∑

i=1

(Ti(P (y))−Ri(x))2 , (2.12)

where Ti and Ri denote the i-th component function of the linearized image functions
described in (2.9) and (2.7), respectively.

Normalized gradient fields

The discretization of the NGF in (2.3) is performed similarly to the SSD by using the
midpoint quadrature rule with

DNGF(ϕ) ≈ DNGF(y) := h̄
m̄∑

i=1



1−

(
1
2〈∇̃Ti(P (y)), ∇̃Ri(x)〉+ τ̺

‖∇̃Ti(P (y))‖τ‖∇̃Ri(x)‖̺

)2


 , (2.13)

where ∇̃R, ∇̃T are discretized image gradients, that will be defined in the following. The
factor 1

2 in the numerator also results from this discretization and will become clear at
the end of this section.

Let I ∈ R
m̄ be a discretized image. We now define finite difference operators ∇̃−Ii :

R
m̄ → R

d for backward differences and ∇̃+Ii : Rm̄ → R
d for forward differences. These

difference operators approximate the gradient of the discretized image at grid point i and
can be written as

∇̃−Ii :=

(

Ii − Ii−x
hx

,
Ii − Ii−y

hy
,
Ii − Ii−z

hz

)

(2.14)

for backward differences with d = 3, ∇̃−Ii :=

(
Ii−Ii−x
hx

,
Ii−Ii−y
hy

)

for d = 2, and

∇̃+Ii :=

(

Ii+x − Ii
hx

,
Ii+y − Ii

hy
,
Ii+z − Ii

hz

)

(2.15)

for forward differences with d = 3, ∇̃+Ii :=

(
Ii+x−Ii
hx

,
Ii+y−Ii
hy

)

for d = 2. For the

neighboring indices of Ii, where i = î+ ĵmx + k̂mxmy, with î = 1, . . . ,mx, ĵ = 1, . . . ,my,

k̂ = 1, . . . ,mz, we introduce a special notation to handle the boundary conditions with

i−x := max(̂i− 1, 1) + ĵ mx + k̂mxmy, i+x := min(̂i+ 1,mx) + ĵ mx + k̂mxmy, (2.16)

i−y := î+ max(ĵ − 1, 1)mx + k̂mxmy, i+y := î+ min(ĵ + 1,my)mx + k̂mxmy, (2.17)

31

2. Image registration

with k̂ = 0 for d = 2 and additionally

i−z := î+ ĵmx + max(k̂ − 1, 1)mxmy, i+z := î+ ĵmx + min(k̂ + 1,mz)mxmy (2.18)

for d = 3. For indices inside the image domain, this maps to a regular linear index. At the
boundary, however, this effectively duplicates the image values, implementing Neumann
conditions for cell-centered grids [Hel06, §4.4.3]. Unlike Dirichlet conditions, this avoids
introducing artificial edges at the image borders, which would otherwise influence image
alignment.

Both operators from (2.14) and (2.15) are now concatenated into ∇̃ : Rm̄ → R
2d with

∇̃Ii :=
(

∇̃−Ii, ∇̃+Ii
)

, (2.19)

such that we can define

‖∇̃Ii‖ε :=

√

1

2
〈∇̃Ii, ∇̃Ii〉+ ε2. (2.20)

This special finite difference scheme allows to symmetrically use forward and backward
differences for approximating ∇Ri and ∇Ti in (2.13). This effectively considers Ii and its

two neighbors, without resulting in central differences ∇̃±Ii = 1
2

(

∇̃−Ii + ∇̃+Ii
)

, which

would not consider Ii but only the neighboring points and can lead to checkerboarding
issues. In (2.20), the forward and backward gradient approximations are averaged with

1

2
〈∇̃Ii, ∇̃Ii〉 =

1

2

(

〈∇̃−Ii, ∇̃−Ii〉+ 〈∇̃+Ii, ∇̃+Ii〉
)

=
1

2

((

∇̃−Ii
)2

1
+
(

∇̃+Ii
)2

1

)

+ . . .+
1

2

((

∇̃−Ii
)2

d
+
(

∇̃+Ii
)2

d

)

,

to obtain squared gradient values on the cell-centered image grid. This “square-then-
average” scheme does not result in central differences, but retains the gradient information
from the short differences. With this, it is capable to capture oscillating functions that
would yield zero derivatives with regular central differences [Hel06].

2.4.5. Curvature regularizer

The curvature regularizer, defined in (2.4), only depends on the deformation and is there-
fore discretized on the deformation grid as

S(ϕ) ≈ S(y) = h̄y
m̄y
∑

i=1

d∑

j=1

(

∆̃ui+(j−1)m̄y

)2
, (2.21)

with the displacement u := (u1, . . . ,udm̄y) := y − xy ∈ R
dm̄y

. Similar to the discretized
gradient operator, ∆̃ui : Rdm̄

y
→ R is a finite-differences approximation of the Laplacian

with

∆̃uiy+dm̄y :=
∑

k∈d̂

uiy
−k

+dm̄y − 2 uiy+dm̄y + uiy
+k

+dm̄y

(
hy
k

)2 , (2.22)

32

2.5. Numerical optimization

where d̂ := {x, y} for d = 2, and d̂ := {x, y, z} for d = 3. Again, Neumann boundary con-
ditions are used [FM03b] for u. Other authors propose the use of higher-order boundary
conditions and considering mixed derivatives for “full curvature” regularization [Hen06].
However, since this includes much more involved computations [Hel06, §4.2.3], it is not
considered here.

As the curvature regularizer is discretized on a nodal grid, a slightly different imple-
mentation of boundary conditions must be chosen, since some nodes are now placed
at the boundary ∂ΩR, see again Figure 2.1(b). With iy = îy + ĵymy

x + k̂ymy
xm

y
y and

îy = 1, . . . ,my
x, ĵy = 1, . . . ,my

y, k̂
y = 1, . . . ,my

z , we define

iy−x :=
∣
∣
∣̂iy − 1

∣
∣
∣+ ĵy my

x + k̂my
xm

y
y, iy+x := my

x −
∣
∣
∣̂iy + 1−my

x

∣
∣
∣+ ĵy my

x + k̂ymy
xm

y
y,

iy−y := îy +
∣
∣
∣ĵy − 1

∣
∣
∣my

x + k̂my
xm

y
y, iy+y := îy +

(

my
y −

∣
∣
∣ĵy + 1−my

y

∣
∣
∣

)

my
x + k̂ymy

xm
y
y,

with k̂y = 0 for d = 2 and for d = 3 additionally

iy−z := îy + ĵymy
x +

∣
∣
∣k̂y − 1

∣
∣
∣my

xm
y
y, iy+z := îy + ĵymy

x +
(

my
z −

∣
∣
∣k̂y + 1−my

z

∣
∣
∣

)

my
xm

y
y,

such that at the domain boundaries it holds ui−k+dm̄y = ui+k+dm̄y [Hel06, §4.4.3]. Note

that, since ∆̃ is a linear operator, with an appropriate matrix A ∈ R
dm̄y×dm̄y

the curvature
regularizer is often also written as a quadratic form

S(y) = h̄y (Au)⊤Au = h̄y u⊤A⊤Au, (2.23)

which can be useful for the calculation of derivatives [Mod09, §8].

2.5. Numerical optimization

Using the discretized versions of distance measures and regularizer from the previous
sections, a discrete objective function J(y) : Rdm̄

y
→ R can be defined as

J(y) := D(y) + αS(y), (2.24)

with the corresponding finite-dimensional optimization problem

min
y∈Rdm̄

y
J(y). (2.25)

This objective function can now be minimized by using methods from numerical opti-
mization.

The derived functions are assumed to be continuous and sufficiently smooth, but are
generally non-convex and non-linear. For this, in the literature a broad variety of iterative
optimization schemes is available. To avoid local minima, the optimization is embedded
in a multi-level strategy, that will be described in Section 2.5.6.

In this section, we will outline the main features of the optimization algorithms used
in this thesis. For further in-depth discussion of mathematical details of the presented

33

2. Image registration

algorithms, we refer to [NW06; GMW81; DS96]. We do not discuss existence or unique-
ness of solutions here, but refer to the references given in [Mod09, §10.2.1]. An overview
of the registration algorithm can be found in Algorithm 2.1 at the end of this section.
This algorithm description also contains references to the corresponding sections to aid
navigation of the manuscript.

Generally, in iteration k ∈ N, iterative optimization schemes update the current defor-
mation yk with a search direction sk ∈ R

dm̄y
, such that

yk+1 = yk + η sk, (2.26)

where η > 0 is a step-length parameter determined via a line search algorithm, see
Section 2.5.4. In order to minimize the function value, sk is chosen as a descent direction,
such that [GMW81, §4.3]

∇J(y)⊤sk < 0. (2.27)

Various algorithms have been used in medical image registration [OT14; SSKH10a] to
determine a search direction sk and comparative evaluations of optimizers have been
performed for registration with mutual information [MVS99; KSP07], but no algorithm
performed best for all described cases.

Some algorithms use derivative-free direct search methods, especially when the gradient
computation is complicated, costly, or the objective function is not differentiable. The
two most popular direct search algorithms are Powell’s method of conjugate directions
and the Nelder-Mead downhill simplex method [Fle87, §2.2], [Kel99, §8.1]. In a medical
image registration context these have been utilized especially in conjunction with the
originally discrete mutual information distance and a low number of degrees of freedom
such as rigid and affine transformations. Powell’s method has for example been utilized
in [MCV+97; PMV00; CWN02; ARH05] and the Nelder-Mead method in [DSHK99;
SZ02; CBMK04]. More recent derivative-free algorithms have been compared for rigid
registration in [WP06]. While the computation of derivative free optimization schemes is
comparably easy, they can exhibit very slow convergence in practice [KLT03].

An alternative are derivative-based methods. The simplest derivative-based method is
steepest descent, where

sk = −∇J(yk).

Steepest descent has been used in several different image registration approaches and
frameworks, see [SDP13] for further references. The steepest descent method exhibits a
linear convergence rate [NW06, §3.3] and therefore still “can have an unacceptably slow
rate of convergence, even when the Hessian is reasonably well conditioned” [NW06, §3.3].
In [KSP07], a stochastic gradient descent method was proposed, which results in a fast
single update step but comes at the cost of a slower convergence and thus a very high
number of iterations.

A faster convergence can be achieved with algorithms based on Newton’s Method, which
will be described in the following.

34

2.5. Numerical optimization

Other optimization algorithms that have been employed for image registration include
a non-linear conjugate gradient method [KSP07] (which can be related to the L-BFGS
method described in Section 2.5.2, cf. [NW06, §7.2]), discrete optimization strategies
[HJBS11; HSP+16; SOPD15; TC07], and evolutionary algorithms [SCD11; RJR00],
which are not considered here.

2.5.1. Newton’s method

Assuming J : Rdm̄
y
→ R is at least twice continuously differentiable, Newton’s method is

based on a quadratic Taylor series approximation

J(yk + sk) ≈ J(yk) +∇J(yk)⊤sk +
1

2
s⊤∇2J(yk)sk.

With the necessary condition for a minimizer, ∂J(yk+s
k)

∂sk
= 0, we obtain the Newton

equation

∇2J(yk)sk = −∇J(yk), (2.28)

where solving for sk gives the next iterative update. In a region close enough to a
minimizer, Newton’s method converges locally quadratic assuming sufficient smoothness
[NW06, §3.3]. Note that in (2.28), ∇2J is generally required to be invertible and with
(2.27) to be positive definite in order to obtain a descent direction.

The Newton update step is computationally expensive: First, the exact Hessian of the
objective function needs to be computed. Second, for each iteration, the system of linear
equations in (2.28) must be solved. Therefore, several algorithms have been developed
that utilize approximations of the Hessian ∇2J , instead of computing it exactly. While
these algorithms do not converge as fast as Newton’s method in theory, they typically
still exhibit super-linear convergence rates [NW06, §3.3].

Newton-like methods

Algorithms, which approximate the Hessian in Newton’s method with a matrix Hk ≈
∇2J(yk) are called Newton-like methods [DS96, p. xiii].

An important subclass of these algorithms are so-called quasi-Newton methods. These
methods perform an iterative update of the inverse Hessian approximation (Hk)−1 by
using only gradient information. While several different methods exist, by far the most
popular in the field of medical image registration is a limited-memory variant of the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm. This so-called L-BFGS method
has for example been used in [MHV+03; LSM+10; CCBF09; VRK+10; Sdi08; RHKF13]
and will be described in Section 2.5.2.

Another important subclass are so-called least-squares Newton methods. These methods
exploit a least-squares structure of the problem formulation to perform an approximation
of the Hessian by dropping specific higher order terms for their computation. In contrast
to quasi-Newton methods, the Hessian approximation is freshly computed in each step

35

2. Image registration

instead of an iterative update. The resulting Gauss-Newton method has been applied in
[HJB+12; SGR+08; HM06a; AF11] for medical image registration and will be described
in Section 2.5.3. An extension of the Gauss-Newton method is the Levenberg-Marquardt
method, that has been used in [TRU98; KNFM04; LYC08; Hen03]. This method extends
the Gauss-Newton approach by a variable damping factor λ, such that far away from a
minimizer the Levenberg-Marquardt algorithm approximates a slow, but globally conver-
gent gradient descent method and behaves like the faster Gauss-Newton method when
close to the solution.

In this work, we have chosen the L-BFGS method and the Gauss-Newton scheme for opti-
mization, since these have been proven to be successful in various real-world applications.
While the L-BFGS method only requires gradient information and iteratively updates the
Hessian approximation, the Gauss-Newton scheme exploits the specific problem structure
and performs a new approximation at every step, which may lead to convergence within
fewer iterations, making both schemes an interesting choice.

2.5.2. Limited-memory BFGS

The limited-memory BFGS (L-BFGS) method represents a specialized limited-memory
variant of the underlying BFGS algorithm.

In order to obtain a new search direction, the BFGS method performs an iterative update
of the Hessian approximation Hk at each step k. For computing the update, the method
requires the Hessian approximation Hk+1 to fulfill the condition

∇J(yk+1) = ∇J(yk) +Hk+1ηsk.

Using ηsk = yk+1 − yk from (2.26) and re-ordering gives the so-called secant equation
[NW06, §6.1]

Hk+1(yk+1 − yk) = ∇J(yk+1)−∇J(yk),

which with ŝk := ηsk = yk+1 − yk and gk := ∇J(yk+1)−∇J(yk) reads

Hk+1ŝk = gk.

By imposing further conditions, requiring the updated Hessian approximation to be sym-
metric, and Hk+1 chosen so that it minimizes ‖Hk+1 −Hk‖ for the weighted Frobenius
norm [NW06, §6.1], a rank-two update rule with

Hk+1 = Hk −
Hkŝkŝk

⊤

Hk

ŝk
⊤Hkŝk

+
gkgk

⊤

gk
⊤

ŝk

can be derived. For a details we refer to [NW06, §6.1] or [DS96, §9.2].

A benefit of the BFGS method is that instead of solving (2.28) with Hk+1 ≈ ∇2J(yk) in

each step, the inverse H̃k+1 :=
(

Hk+1
)−1

can be updated directly with

H̃k+1 =

(

I −
ŝkgk

⊤

gk
⊤

ŝk

)

H̃k

(

I −
gkŝk

⊤

gk
⊤

ŝk

)

+
ŝkŝk

⊤

gk
⊤

ŝk
, (2.29)

36

2.5. Numerical optimization

where I is the identity matrix. Since the inverse Hessian approximation will generally be
dense [NW06, §7.2], storing H̃k ∈ R

dm̄y×dm̄y
becomes infeasible. However, as can be seen

from (2.29), by recursively substituting the computations for H̃k, the current iterate can
be computed by using only the vectors ŝi,gi ∈ R

dm̄y
, i = 0, . . . , k with an initial value

for H̃0, which will be described at the end of this section.

In this scheme, the required memory for storing these vectors grows with the number
of iterations, which can still become significantly large. Therefore, in contrast to the
original BFGS algorithm, the L-BFGS method discards older ŝi,gi with i < k−L, where
L ∈ N is a small number; in this thesis we use L = 5. For the iterative update, the two-
loop update as presented in [Noc80] and [NW06, Algorithm 7.4] is used. This algorithm
directly computes sk+1 = −H̃k∇J(yk), implicitly solving the Newton equation (2.28)
with the L-BFGS Hessian approximation to obtain a new search direction.

To complete the L-BFGS algorithm, an initial value H̃0 is required. As proposed by
[Hel06, §5], we utilize the Hessian of the regularizer, described in (3.49), with an additional
diagonal term, such that

H0 = ∇2S + γI, (2.30)

with γ > 0 to ensure positive definiteness. Note, that since the regularizer is a quadratic
form, (2.30) is constant. To compute the required multiplication with the inverse H̃0 in
the two-loop update, we solve a system of linear equations as proposed in [NW06, §7.2]
using the conjugate gradient method [GV13, §11.3].

2.5.3. Gauss-Newton

Similar to the methods described before, the Gauss-Newton method also employs an ap-
proximation Hk ≈ ∇2J(yk) in solving the Newton equation (2.28). However, in contrast
to quasi-Newton methods, instead of iteratively updating the Hessian approximation, the
Gauss-Newton scheme computes Hk anew in every iteration. The Gauss-Newton method
can be utilized for least-squares type objective functions of the form

Ĵ(y) = r(y)⊤r(y) = ‖r(y)‖22,

where r(y) : R
dm̄y
→ R

dm̄y
is a non-linear residual function [Fle87, §6.1]. Using this

notation, the gradient of Ĵ can be written as

∇Ĵ(y) = 2r(y)⊤dr(y), (2.31)

where dr ∈ R
dm̄y×dm̄y

is the Jacobian matrix of r with

dr :=

(

∂ri
∂yj

)

i=1,...,dm̄y; i=1,...,dm̄y

.

Using the product rule, the Hessian is

∇2Ĵ(y) = 2dr(y)⊤dr(y) + 2
dm̄y
∑

i=1

ri(y)∇2ri(y),

37

2. Image registration

where ∇2ri(y) ∈ R
dm̄y×dm̄y

, i = 1, . . . , dm̄y are the individual matrices of the third-order
tensor ∇2r. It can be shown that for problems where the residual r(y) is small near the
solution, the second term can be neglected, see [DS96, §10.2] or [NW06, §10.3], giving a
quadratic Gauss-Newton approximation of the Hessian with

∇2Ĵ(yk) ≈ Hk := 2dr(yk)⊤dr(yk). (2.32)

This approximation avoids the expensive computation of second-order derivatives and
can be obtained by only using information already computed for the gradient (2.31). To
obtain a new search direction, we use Hk as a Hessian approximation in (2.28) and solve
the system of linear equations by using a standard conjugate gradient method [GV13,
§11.3]. Note that with (2.28) and (2.32) it holds

sk
⊤

∇Ĵ(yk) = −sk
⊤

Hk(yk)sk = −sk
⊤

2dr(yk)⊤dr(yk)sk = −2‖dr(yk)sk‖22 ≤ 0,

such that according to (2.27) every search direction computed with the Gauss-Newton
method is either a descent direction, or – if the norm is zero – yk is a stationary point
[NW06, §10.3].

2.5.4. Line search

To determine the step-length parameter η > 0 given in the update step (2.26), for L-
BFGS as well as Gauss-Newton, a line search algorithm is required. Given a descent
direction sk, the objective function is linearized as

φ(η) := J(yk + ηsk).

The goal is now to efficiently find a value for η, which ensures sufficient minimization
of the objective function. As an exact minimum is costly to determine, especially for
non-linear functions, inexact line search algorithms rely on quickly finding a suitable η,
which must fulfill certain conditions. A typical condition, which we also employ in this
work as proposed in [Mod09, §6.3.3], is the so-called Armijo condition [NW06, §3.1]

J(yk + ηsk) ≤ J(yk) + δ1η∇J(yk)⊤sk, (2.33)

where δ1 is a small constant. In this work, we set δ1 = 10−4. The Armijo condition
ensures a sufficient decrease in the objective function value. Starting with η = 1, if (2.33)
is not fulfilled, the step length is updated with η ← 0.5η, until the condition is satisfied or
a maximum of ten iterations is reached as a safeguard, in which case the optimization is
stopped. Another condition that is often required is the so-called curvature condition

∇J(yk + ηsk)⊤sk ≥ δ2∇J(yk)⊤sk,

with both conditions together also known as Wolfe conditions. However, since this condi-
tion requires the additional costly evaluation of objective function gradients, as proposed
in [Hel06, §5.3.1], we only enforce (2.33) in the line search algorithm, also known as
Armijo line search.

38

2.5. Numerical optimization

2.5.5. Stopping criteria

Finally, for every iterative optimization algorithm, stopping criteria have to be defined,
indicating a sufficient minimization of the objective function. We employed the stopping
criteria

‖yk − yk−1‖∞ = ‖ηsk−1‖∞ < δ3 (2.34)

J
(

yk−1
)

− J(yk)

J(y0)− J(yk)
< δ3 (2.35)

‖∇J(yk)‖∞
‖∇J(y0)‖∞

< δ3 (2.36)

and as a safeguard

k ≥ kmax, (2.37)

which are closely related to those proposed in [GMW81, §8.3.2]. The first two criteria
(2.34) and (2.35) consider the progress of the iteration regarding change in the current
iterate, utilizing the search step length and change in the function value, while (2.36)
examines the gradient magnitude of the objective function. Here, y0 is an external
starting guess, which can be the identity or the result of a pre-registration. The iteration
is stopped if any of these conditions becomes true. The last criterion (2.37) acts as a
safeguard which terminates the iteration if the other criteria fail within a reasonable
amount of iterations, typically kmax = 100.

2.5.6. Multi-level scheme

In image registration, the objective function is generally not convex. Therefore, the above
derivative-based local optimization schemes are only capable to determine local minima
of the objective function, which may not coincide with the desired transformation. There-
fore, to avoid “getting stuck” in local minima, we use an additional coarse-to-fine multi-
level scheme, consecutively solving the registration problem on different resolutions.

First, to enable the multi-level scheme, image representations of different resolutions
need to be computed. For this, a lowpass image pyramid is created [Jäh05, §5.2.2]. By
filtering the image with the normalized binomial kernel G := (0.25, 0.5, 0.25) consecu-
tively in each dimension, a smoothed representation of both images is created [Jäh05,

§11.4]. Then, the smoothed image is subsampled to a resolution of mR
coarse = ⌊m

R

2 ⌋ or

mT
coarse = ⌊m

T

2 ⌋, for reference and template image, respectively, using linear interpolation
if required. Additionally, the corresponding deformation grid resolution is reduced ac-
cordingly, maintaining the original ratio between image grid and deformation grid. This
process is repeated until a sequence of progressively coarser image representations has
been created.

Second, starting with the coarsest image grid and deformation grid resolutions using the
identity transformation (or the result of an external pre-registration) as a first iterate,
the registration problem is solved on consecutively finer deformation and image grids. At

39

2. Image registration

the end of each level, the result deformation is upsampled to the next level’s deformation
grid resolution and utilized as an initial guess.

In this process, the smoothing of the image data serves as a lowpass filter, eliminating
detailed structures, which typically cause local minima.

In a practical setting, compared to block filters, used for example in [Mod09, §3.7], this
method has the advantage that it is not restricted to image sizes that are an even number
or a power of two.

This concludes the description of all important components of the registration framework,
which serves as a basis for this thesis. The full registration algorithm is summarized as
pseudocode in Algorithm 2.1.

1: T,R ← createPyramids(T,R) ⊲ Create image pyramids, Section 2.5.6
2: load y0

coarsest ⊲ Initialize with identity or pre-registration
3:

4: for level in [coarsest, finest] do ⊲ Multi-level loop, Section 2.5.6
5: load Tlevel,Rlevel

6: k ← 0
7: ⊲ Iterative optimization loop, Section 2.5
8: while !stop do ⊲ Check stopping criteria, Section 2.5.5

9: sk ← searchDirection
(

J(yklevel)
)

⊲ Search direction, Section 2.5.2, 2.5.3

10: ηopt ← linesearch
(

J(yklevel + ηsk)
)

⊲ Line search, Section 2.5.4

11: yk+1
level ← yklevel + ηoptsk

12: k ← k + 1
13: end while

14:

15: if level 6= finest then

16: y0
level+1 ← upsample

(

yklevel

)

⊲ Upsample to next level

17: else

18: result← yklevel ⊲ Final result
19: end if

20: end for

Algorithm 2.1: Pseudocode for the multi-level registration algorithm. The objective func-
tion, consisting of distance measure and regularizer, is minimized by us-
ing a numerical optimization scheme. This optimization is embedded in a
coarse-to-fine multi-level scheme, where the resulting deformation is used
as a starting guess for the next finer level.

2.6. Summary

In this chapter, we described the underlying image registration framework and its in-
dividual components and building blocks, which will serve as a basis for the methods
presented in Chapter 3. For this, the concept and general field of image registration

40

2.6. Summary

was introduced in Section 2.2 and important approaches and applications were high-
lighted. Since the overall goal of this work is to develop a fast and efficient algorithm, an
overview of related works concerning performance of registration algorithms was given in
Section 2.2.4. After this, the variational image registration framework used in this thesis
was described in Section 2.3 with two important distance measures, the mono-modal sum
of squared differences and the multi-modal normalized gradient fields. Furthermore, cur-
vature regularization was introduced, which completes the objective function – the core
component of the registration algorithm. Since we employ a discretize-then-optimize ap-
proach, in Section 2.4 a discrete formulation of the objective function was derived and in
Section 2.5 numerical optimization schemes were discussed. Special emphasis was placed
on derivative-based Newton-like methods, especially the limited-memory BFGS algorithm
and the Gauss-Newton method. A description of the coarse-to-fine multi-level scheme in
Section 2.5.6 completes the description of the registration algorithm.

41

3 Matrix-free methods for efficient

derivative computations

Considering the Newton-like optimization methods described in Section 2.5, computing
derivatives of the objective function is a critically important task for solving the registra-
tion problem. First, for a fast convergence of the optimization algorithms the derivatives
need to be determined as accurately as possible. Second, as will be seen later on, deriva-
tive computations amount to a considerable portion of the overall runtime and memory
consumption of the registration algorithm. Therefore, analytical derivatives of the dis-
cretized objective function components and their computation are analyzed and described
in detail in this chapter. From this analysis, a novel matrix-free computation scheme is
derived, aiming at fast and efficient derivative evaluations in order to improve the memory
consumption and runtime of the registration algorithm.

Derivative computation approaches. While some approaches for computing deriva-
tives simply approximate the gradient from objective function values via finite differences
[RM03], for large problem sizes this approach can be time consuming and the inherent in-
accuracy may cause a slower convergence of the optimization scheme. Another approach
is to compute analytical derivatives of the objective function, which is utilized in the
following sections.

In the most popular implementation of the presented variational approach, described in
[Mod09], the individual derivatives are constructed based on individual Jacobian matrices,
derived from a decomposition of the objective function into a composition of multiple
functions. These Jacobian matrices are constructed as sparse matrices, which are then
multiplied to obtain the result, also called a matrix-based approach. This approach is very
close to the analytical derivation and allows for flexibility in interchanging components.
Additionally, further insights can be obtained from examining the matrix structures,
which also makes this a good choice for teaching purposes. However, this method requires
considerable resources for constructing, handling, storing and computing sparse matrices
and their products as intermediate results. Furthermore, the approach makes an efficient
parallelization and full exploitation of the problem structure difficult.

Therefore, in the following sections, a so-called matrix-free formulation for the objec-
tive function derivatives is presented. As will be shown, the known matrix structures
of the derivatives can be broken down into closed-form formulations which are mathe-
matically equivalent with those obtained by the matrix-based approach. However, these

43

3. Matrix-free methods for efficient derivative computations

closed forms no longer require special data structures, such as sparse matrices, nor ex-
plicit matrix multiplications. They allow for an efficient computation of the derivatives
without computational overhead and largely reduce memory requirements. Additionally,
parallelization is straightforward.

In the following, derivative formulations for gradient and Gauss-Newton Hessian com-
putations of the presented distance measures are introduced in Section 3.1. From this,
matrix-free formulations for gradient and Hessian computations are derived for the sum
of squared differences in Section 3.2 and for the normalized gradient fields in Section 3.3.
Matrix-free computations for the curvature regularizer are presented in Section 3.4. Fur-
thermore, efficient matrix-free methods for the grid conversion from deformation grid to
image grid and the corresponding transposed operator are derived in Section 3.5, together
with an efficient parallelization strategy.

As previously discussed in Section 2.2.1 and Section 2.4.2, the rigid and affine transfor-
mation models can be interpreted as a special case of the deformable registration model.
However, there are several implications of the now fixed number of unknowns, which also
require changes in the matrix-free formulation. This is discussed in Section 3.6.

In Section 3.7, the properties of the obtained matrix-free computations are analyzed with
regard to computational operations and memory requirements. Also, a generalization
of the approach to other methods is discussed. Furthermore, in Section 3.8, details of
specific implementations of the matrix-free approach are presented, targeting different
platforms such as CPU, GPU and DSP.

Acknowledgments and related publications. We have previously published parts
and preliminary versions of the methods presented in this chapter in several conference
proceedings and journal articles. We published the matrix-free approaches for deformable
registration in [KRDL18*; KR14*; KDHP15*] and matrix-free methods for the affine
deformation model in [RKH+13*; RKT+17*].

We have published the implementations on specialized platforms discussed in Section 3.8
in [BKR+14*; TRK+14*]. Additionally, implementations on GPUs were supported by
the work performed in connection with the Master’s Theses [Mei16; Tra14] and the Bach-
elor’s Thesis [Ber12] a for a DSP platform. All of these theses were jointly supervised
by the author of this thesis and J. Rühaak. The matrix-free computations for affine
registration, the affine implementation on GPU and DSP and the matrix-free computa-
tions for the gradient, which we published in [RKT+17*; KR14*; RKH+13*; BKR+14*;
TRK+14*], were also incorporated in [Rüh17]. The author of this thesis and J. Rühaak
contributed equally to the relevant publications.

3.1. Distance measure derivatives

In this section, we derive analytical derivatives for gradient and Gauss-Newton Hessian
approximation of the SSD (Section 3.2) and NGF distance measure (Section 3.3).

44

3.1. Distance measure derivatives

In order to compute derivatives of the distance measure computations, we make use of
the fact that the distance measures in (2.12) and (2.13) exhibit a similar structure and
can be formulated as a composition of multiple functions:

D(y) = ψ(r(T (P (y)))). (3.1)

Here, the functions T : Rdm̄ → R
m̄ and P : Rdm̄

y
→ R

dm̄ are the known definitions from
(2.9), representing the template image interpolation and the grid conversion function.
Additionally, r : Rm̄ → R

m̄ is a residual function, evaluating the image similarity between
reference and template image for each point on the reference image grid. Furthermore,
ψ : Rm̄ → R is a reduction function, mapping the residual to a real-valued number. This
function evaluation in four steps can be written as a mapping

R
dm̄y P
→ R

dm̄ T
→ R

m̄ r
→ R

m̄ ψ
→ R, (3.2)

which transforms the deformation y ∈ R
dm̄y

to a single scalar, indicating the image
similarity.

In order to compute derivatives of this expression, i.e., gradient and Gauss-Newton Hes-
sian approximation of (3.1), we make use of the chain rule. For the gradient, we obtain
the column vector

∇D(y) =

(
∂ψ

∂r

∂r

∂T

∂T

∂P

∂P

∂y

)⊤

∈ R
dm̄y×1, (3.3)

which consists of four partial derivatives. As can be seen in (3.2), the individual Ja-
cobian matrices have the dimensions ∂ψ

∂r
∈ R

1×m̄, ∂r
∂T
∈ R

m̄×m̄, ∂T
∂P
∈ R

m̄×dm̄ and
∂P
∂y
∈ R

dm̄×dm̄y
.

Using these matrices, the Gauss-Newton approximation of the Hessian (2.32) can be
written as

∇2D(y) ≈ H(y) =
∂P

∂y

⊤ ∂T

∂P

⊤ ∂r

∂T

⊤∂2ψ

∂r2

∂r

∂T

∂T

∂P

∂P

∂y
, (3.4)

where ∂2ψ
∂r2 is the second-order derivative of the outer reduction function ψ which typically

is a constant, as we will see later on.

Despite different computations of r and ψ, all of the presented distance measures share
the same definition for T and P , and therefore also for the Jacobian matrices ∂T

∂P
and ∂P

∂y
.

The grid conversion derivative ∂P
∂y

will be described dedicatedly in Section 3.5, while the
derivative of the image interpolation function will be derived in the following.

3.1.1. Image interpolation derivatives

As described in Section 2.4.3, we use bi-linear (d = 2) or tri-linear interpolation (d = 3)
to obtain image values at non-integer coordinates. In this section, the structure of the
image interpolation derivatives ∂T

∂P
will be described.

45

3. Matrix-free methods for efficient derivative computations

∂Ti
∂Pj

︷ ︸︸ ︷

∂Ti
∂Pj+m̄

︷ ︸︸ ︷

∂Ti
∂Pj+2m̄

︷ ︸︸ ︷

















• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •

















Figure 3.1.: The Jacobian ∂T
∂P

of the template image interpolation function exhibits a very
sparse structure of d horizontally aligned diagonal matrices. The figure shows
the matrix for d = 3. The three diagonals correspond to the derivatives in
x-, y- and z-direction.

From the definition of the interpolation function T : Rdm̄ → R
m̄ in (2.9),

Ti(ŷ) = T (ŷi) = T
(

ŷi, . . . , ŷi+(d−1)m̄

)

defines the evaluation of the image at a single point. Since the evaluation only depends
on the d coordinates of that single point, the derivative of Ti can be written as

∂Ti
∂ŷj+km̄

=
∂Ti

∂Pj+km̄
=







∂T
∂ŷj+km̄

if i = j + km̄,

0 otherwise,
(3.5)

with j = 1, . . . , m̄ and k = 0, . . . , d − 1 for all directional derivatives. Consequently, the
Jacobian matrix

∂T

∂P
=

(

∂Ti
∂Pj

)

i=1,...,m̄,j=1,...,dm̄

∈ R
m̄×dm̄

has the structure of d horizontally aligned diagonal matrices,

∂T

∂P
=
(

diag
(
∂T1
∂P1

, . . . , ∂Tm̄
∂Pm̄

)

, . . . ,diag
(

∂T1
∂P(d−1)m̄+1

, . . . , ∂Tm̄
∂Pdm̄

))

, (3.6)

where diag(x) : Rm̄ → R
m̄×m̄ maps a vector to the corresponding square diagonal matrix

with the vector on the diagonal, see Figure 3.1. Each diagonal represents the derivatives
of the interpolation function with respect to one coordinate direction.

In order to calculate the non-zero indices of ∂T
∂P

, we first define the interpolation function
T (ŷi) in more detail. Let c : Rd → R

d,

c(ŷi) :=







ŷi−ω1

h1
− 0.5

...
ŷi+(d−1)m̄−ω2d−1

hd
− 0.5







(3.7)

46

3.1. Distance measure derivatives

be a function converting a coordinate ŷi from the image domain ΩR, as defined in (2.5),
to zero-based indices. Then for α, β, γ ∈ {0, 1} with

ξ(c, α, β, γ) := (⌊c1 + 1⌋+ α) + (⌊c2 + 1⌋+ β)mx + (⌊c3 + 1⌋+ γ)mxmy

(for d = 2, ξ(c, α, β) := (⌊c1 + 1⌋+ α)+(⌊c2 + 1⌋+ β)mx), and additionally abbreviating
ξi(α, β, γ) := ξ(c(ŷi)), α, β, γ), as defined in (2.11), Tξi(α,β,γ) determines the neighboring
image data points of ŷi. If an index is located outside of the domain, a zero value is
assumed, which is a reasonable assumption for medical images that often exhibit a black
background.

To obtain an interpolated image value, the neighboring data points are weighted according
to their distance to the coordinate ŷi. With the weights

ws(ŷi) :=

{

1− (c(ŷi)− ⌊c(ŷi)⌋), if s = 0,

c(ŷi)− ⌊c(ŷi)⌋ otherwise,

the interpolated value can be written as

Ti(ŷ) = T (ŷi) =
1∑

α=0

1∑

β=0

1∑

γ=0

w(ŷi)
α
1w(ŷi)

β
2w(ŷi)

γ
3Tξi(α,β,γ), (3.8)

i.e., a weighted sum of all eight neighboring points of ŷi. Using Horner’s scheme [GV13,
§9.2.4] and abbreviating w := w(ŷi), this can be implemented efficiently as

Ti(ŷ) = w0
1

(

w0
2

(

w0
3Tξi(0,0,0) + w1

3Tξi(0,0,1)

)

+ w1
2

(

w0
3Tξi(0,1,0) + w1

3Tξi(0,1,1)

))

+ w1
1

(

w0
2

(

w0
3Tξi(1,0,0) + w1

3Tξi(1,0,1)

)

+ w1
2

(

w0
3Tξi(1,1,0) + w1

3Tξi(1,1,1)

))

.

For d = 2, the third sum over γ in (3.8) vanishes, resulting in a weighted sum of four
points. From this, the non-zero derivatives in (3.5) can directly be computed as

∂Ti
∂ŷi

=
1

h1

(
− w0

2

(

w0
3Tξi(0,0,0) + w1

3Tξi(0,0,1)

)

− w1
2

(

w0
3Tξi(0,1,0) + w1

3Tξi(0,1,1)

)

+ w0
2

(

w0
3Tξi(1,0,0) + w1

3Tξi(1,0,1)

)

+ w1
2

(

w0
3Tξi(1,1,0) + w1

3Tξi(1,1,1)

))
(3.9)

∂Ti
∂ŷi+m̄

=
1

h2

(
w0

1

(

−
(

w0
3Tξi(0,0,0) + w1

3Tξi(0,0,1)

)

+
(

w0
3Tξi(0,1,0) + w1

3Tξi(0,1,1)

))

+ w1
1

(

−
(

w0
3Tξi(1,0,0) + w1

3Tξi(1,0,1)

)

+
(

w0
3Tξi(1,1,0) + w1

3Tξi(1,1,1)

)))
(3.10)

∂Ti
∂ŷi+2m̄

=
1

h3

(
w0

1

(

w0
2

(

−Tξi(0,0,0) + Tξi(0,0,1)

)

+ w1
2

(

−Tξi(0,1,0) + Tξi(0,1,1)

))

+ w1
1

(

w0
2

(

−Tξi(1,0,0) + Tξi(1,0,1)

)

+ w1
2

(

−Tξi(1,1,0) + Tξi(1,1,1)

)))
, (3.11)

for the derivatives in x-, y- and z-direction, respectively. The derivatives for d = 2 can
be computed analogously.

Using (3.9) – (3.11), the Jacobian matrix of the image interpolation function, given in
(3.6), can be computed explicitly, which will be a central component in the matrix-free
formulations.

47

3. Matrix-free methods for efficient derivative computations

3.2. Derivative computations for SSD

Using the formulations of the distance measure gradient and Gauss-Newton Hessian ap-
proximation as a product of individual Jacobian matrices, given in (3.3) and (3.4), the
derivative computations can be analyzed in more detail.

Recalling the definition of the discrete SSD in (2.12) with

DSSD(y) = h̄
m̄∑

i=1

(Ti(P (y))−Ri(x))2 ,

we can define the individual functions from (3.1) in order to derive their Jacobians. For
the SSD, the function ψSSD : Rm̄ → R is

ψSSD(r) := h̄
m̄∑

i=1

r2
i . (3.12)

The residual function rSSD : Rm̄ → R
m̄ is

rSSD(T) := T −R = (T1, . . . , Tm̄)− (R1, . . . , Rm̄) , (3.13)

i.e., a point-wise difference. As in (3.1), the SSD can be written as

DSSD(y) = ψSSD(rSSD(T (P (y)))).

3.2.1. Gradient computations

As can be seen from (3.13), derivative calculation for the SSD is comparably simple, as

∂rSSD

∂T
= I ∈ R

m̄×m̄ (3.14)

is the identity matrix. Furthermore, we have

∂ψSSD

∂rSSD
= 2h̄rSSD ∈ R

1×m̄.

Therefore, with (3.3), the full gradient of the SSD can be written as

∇DSSD(y) = 2h̄

(

rSSD ∂T

∂P

∂P

∂y

)⊤

. (3.15)

In a matrix-based approach, (3.15) is evaluated by creating ∂T
∂P

and ∂P
∂y

as sparse matrices,
using the computations from Section 2.4.3 and Section 3.5, and computing their matrix-
matrix product as well as the matrix-vector product with rSSD.

In matrix-free computations, single elements of the gradient (∇DSSD)i ∈ R are computed
on-the-fly from the original input data, i.e., the images R, T and the transformation y,
without storing intermediate results, or creating data structures such as sparse matrices.
On one hand, this lowers the memory usage of the algorithm, since intermediate results

48

3.2. Derivative computations for SSD

∂ψSSD

∂rSSD
︷ ︸︸ ︷

∂T
∂P

︷ ︸︸ ︷

∂DSSD

∂P
= (• • • • • • • • • •)










• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •










Figure 3.2.: Sparse matrix structure for computing the SSD gradient for d = 3.

are not stored. On the other hand, some calculations have to be performed multiple
times. However, loading and storing values from and to memory also takes time for
memory access and transfer. We will see later on that in many cases it is in fact faster
to perform some recalculations, which is the central motivation of this thesis.

Another benefit is that single gradient elements can be computed independently, which
enables direct parallelization. While for the SSD these computations are comparably
simple, in the following sections the methods will also be applied to the more involved
computations of the NGF.

The grid conversion and its Jacobian ∂P
∂y

will be described in detail in Section 3.5. Con-
sidering (3.14), the remaining components in (3.3) are

∂DSSD

∂P
:=

∂ψSSD

∂rSSD

∂T

∂P
∈ R

dm̄.

A schematic view of the matrix structure of these computations is shown in Figure 3.2.
The matrix-free computation of a SSD single gradient element can now be written as

(

∂DSSD

∂P

)

i+lm̄

= 2h̄
(

rSSD
)

i

∂Ti
∂Pi+lm̄

(3.16)

= 2h̄ (Ti −Ri)
∂Ti

∂Pi+lm̄

with i = 1, . . . , m̄ and l = 0, . . . , d − 1, such that ∂DSSD

∂P
∈ R

dm̄ as stated above. Substi-
tuting the image interpolation computations and their derivatives from Section 2.4.3, all
elements can now be directly computed. Additionally, all elements can be computed in
parallel, and no intermediate results need to be stored.

3.2.2. Hessian-vector multiplication

As described in Section 2.5.3 and (3.4), when using the Gauss-Newton optimizer, the
computation of a Hessian-approximation is required. However, this requires first-order
derivatives only, which have already been computed for the gradient. In a matrix-based
framework, this makes the computation of the Gauss-Newton approximation of the Hes-
sian comparably easy. However, storing the Hessian matrix approximation requires a
significant amount of memory.

49

3. Matrix-free methods for efficient derivative computations

In order not to store the Hessian approximation in a matrix-free approach, in the following
we derive a matrix-free matrix-vector multiplication, which is frequently required when
solving (2.28), e.g., with a conjugate gradient iterative solver.

Using (3.4) and ∂rSSD

∂T
= I, the Gauss-Newton Hessian approximation for the SSD can be

written as

HSSD = 2h̄
∂P

∂y

⊤ ∂T

∂P

⊤ ∂T

∂P

∂P

∂y
.

This computation not only requires the Jacobians of image interpolation and grid con-
version, but also their transpose. Due to the diagonal structure, the transpose of ∂T

∂P
is

trivial (Figure 3.1). Again, for the transpose of the grid conversion Jacobian we refer to
Section 3.5. Therefore, for the time being it is not considered here and we define

ĤSSD :=
∂T

∂P

⊤ ∂T

∂P
, (3.17)

such that HSSD = 2h̄∂P
∂y

⊤
ĤSSD ∂P

∂y
. Using the known structure of ∂T

∂P
, we can now derive

a matrix-free formulation for the matrix-vector multiplication

ĤSSD p̂ =
∂T

∂P

⊤ ∂T

∂P
p̂ = q̂

with p̂, q̂ ∈ R
dm̄ (Figure 3.3). A single element q̂i ∈ R of the result vector q̂ can be

computed as

q̂lm̄+i =
d−1∑

k=0

∂Ti
∂Plm̄+i

∂Ti
∂Pkm̄+i

p̂km̄+i, (3.18)

with i = 1, . . . , m̄ and l = 0, . . . , d − 1. Similar to the gradient computation in (3.16),
a single element of the result vector can be computed without the need for matrices
or storage of intermediate results. Parallelization can be performed over all elements
of the result vector. However, for each element the d image interpolation derivatives
∂T

∂Plm̄+i
, l = 0, . . . , d need to be computed. Without storing of the image interpolation

derivatives between computations of the elements q̂i, this requires computing all image
derivatives d times instead of just once, as in the matrix-based case. Therefore, compared
to the gradient computation in Section 3.2.1, this involves an additional computational
overhead due to multiple recalculations of image derivatives, see Section 3.7.

3.3. Derivative computations for NGF

From the definition of the discretized NGF in (2.13),

DNGF(y) = h̄
m̄∑

i=1



1−

(
1
2〈∇̃Ti(P (y)), ∇̃Ri(x)〉+ τ̺

‖∇̃Ti(P (y))‖τ‖∇̃Ri(x)‖̺

)2


 ,

50

3.3. Derivative computations for NGF



































































•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•



































































∂T
∂P

⊤





















• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •





















∂T
∂P



































































•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•



































































p̂

=



































































•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•



































































q̂

Figure 3.3.: Sparse matrix structure of the SSD Hessian-vector multiplication ĤSSD p̂ =
q̂. The figure shows the matrix structures for d = 3.

it can be seen that, in comparison with the SSD (2.12), the residual function is more
involved. Considering (2.13), we define rNGF : Rm̄ → R

m̄ and

rNGF
i (T) :=

1
2〈∇̃Ti(P (y)), ∇̃Ri(x)〉+ τ̺

‖∇̃Ti(P (y))‖τ‖∇̃Ri(x)‖̺
, (3.19)

such that

rNGF(T) =
(

rNGF
1 (T), . . . , rNGF

m̄ (T)
)

.

In comparison to the SSD reduction function (3.12), the outer reduction function is
slightly different with ψNGF : Rm̄ → R and

ψNGF(r) := h̄
m̄∑

i=1

(

1− r2
i

)

.

Using these definitions, analogously to (3.1), the NGF can be written as

DNGF(y) = ψNGF(rNGF(T (P (y)))).

3.3.1. Gradient computations

Recalling the distance measure gradient decomposition (3.3), the NGF gradient is

∇DNGF(y) =

(

∂ψNGF

∂rNGF

∂rNGF

∂T

∂T

∂P

∂P

∂y

)⊤

∈ R
dm̄y×1.

The computation of the derivative of the vector reduction ψNGF(r) is straightforward:

∂ψNGF

∂rNGF
= −2h̄rNGF = −2h̄

(

rNGF
1 , . . . , rNGF

m̄

)

∈ R
1×m̄. (3.20)

51

3. Matrix-free methods for efficient derivative computations

Similar to Section 3.2.1, since the grid conversion and its Jacobian will be described in
detail in Section 3.5, we will only consider the partial gradient

∂DNGF

∂P
:=

∂ψNGF

∂rNGF

∂rNGF

∂T

∂T

∂P
∈ R

1×dm̄

= − 2h̄rNGF∂r
NGF

∂T

∂T

∂P
∈ R

1×dm̄ (3.21)

in this section. Again, the goal is to derive fully matrix-free expressions for the gradient,
that do not require the explicit formulation of the Jacobian matrices shown above.

While the derivative of rSSD is the identity for the SSD in (3.14), computing the Jacobian

matrix ∂rNGF

∂T
∈ R

m̄×m̄ is more involved. We first focus on the computation of a single

row of the Jacobian, denoted as
∂rNGF
i

∂T
∈ R

1×m̄ and further simplify the calculations by
splitting rNGF

i into sub-expressions.

From (3.19), the residual rNGF
i : Rm̄ → R can be interpreted as the quotient

rNGF
i =

rNGF
1,i

rNGF
2,i

, (3.22)

with

rNGF
1,i :=

1

2
〈∇̃Ti, ∇̃Ri〉+ τ̺ (3.23)

rNGF
2,i := ‖∇̃Ti‖τ‖∇̃Ri‖̺. (3.24)

Numerator and denominator can now be differentiated separately, yielding

∂rNGF
1,i

∂T
=

1

2
(∇̃Ri)

⊤∂∇̃i
∂T
∈ R

1×m̄ (3.25)

∂rNGF
2,i

∂T
= ‖∇̃Ri‖̺

(∇̃Ti)
⊤

2‖∇̃Ti‖τ

∂∇̃i
∂T
∈ R

1×m̄. (3.26)

Additionally, both terms contain the Jacobian ∂∇̃i

∂T
of the finite-differences gradient com-

putation. As defined in (2.19), the function ∇̃ : Rm̄ → R
2d maps an image to both forward

and backward difference gradients. Correspondingly, ∇̃i : Rm̄ → R is a single component
function, computing the gradient for a single point of the image. As the gradient at that
point only depends on the values at the point itself and its neighboring points, for d = 3,

the Jacobian ∂∇̃i

∂T
∈ R

2d×m̄ is of the form

∂∇̃i
∂T

=

















i−z i−y i−x i i+x i+y i+z

−1
hx

1
hx

−1
hy

1
hy

−1
hz

1
hz
−1
hx

1
hx

−1
hy

1
hy

−1
hz

1
hz

















, (3.27)

52

3.3. Derivative computations for NGF

where only non-zero elements are shown and the non-zero column indices are displayed
above the matrix. Note that for the column indices the notation for boundary values from
(2.16) – (2.18) has been used. This way, if boundary conditions become active, column
indices are automatically correct. For d = 2, the Jacobian is

∂∇̃i
∂T

=











i−y i−x i i+x i+y

−1
hx

1
hx

−1
hy

1
hy

−1
hx

1
hx

−1
hy

1
hy











. (3.28)

In both cases, the locations of the non-zero matrix elements are fixed and the matrix

exhibits a very sparse pattern. With the elements of ∂∇̃i

∂T
known, we can now continue

the derivation of rNGF
i .

The quotient rule applied to (3.22) leads to

∂rNGF
i

∂T
=

1
(

rNGF
2,i

)2

(

∂rNGF
1,i

∂T
rNGF

2,i − rNGF
1,i

∂rNGF
2,i

∂T

)

(3.29)

=
∂rNGF

1,i

∂T

1

rNGF
2,i

−
rNGF

1,i
(

rNGF
2,i

)2

∂rNGF
2,i

∂T
. (3.30)

Substituting (3.23), (3.24) for rNGF
1,i and rNGF

2,i , and (3.25), (3.26) for the corresponding
derivatives, it holds

∂rNGF
i

∂T
=

(∇̃Ri)
⊤

2‖∇̃Ti‖τ‖∇̃Ri‖̺

∂∇̃i
∂T
−

1
2〈∇̃Ti, ∇̃Ri〉+ τ̺

‖∇̃Ti‖2τ‖∇̃Ri‖
2
̺

‖∇̃Ri‖̺
(∇̃Ti)

⊤

2‖∇̃Ti‖τ

∂∇̃i
∂T

=
1

2

(

(∇̃Ri)
⊤

‖∇̃Ti‖τ‖∇̃Ri‖̺

∂∇̃i
∂T
−

1
2〈∇̃Ti, ∇̃Ri〉+ τ̺

‖∇̃Ti‖3τ‖∇̃Ri‖̺
(∇̃Ti)

⊤∂∇̃i
∂T

)

, (3.31)

with
∂rNGF
i

∂T
∈ R

1×m̄. This expression already contains computations that are explicit
enough to compute a row of the Jacobian from the previous derivations. However, it

still contains vector and matrix operations with large, sparse matrices, such as ∂∇̃i

∂T
,

given in (3.27) and (3.28). The full Jacobian ∂rNGF

∂T
exhibits a matrix structure with

2d+ 1 diagonals. Together with the derivatives of the image interpolation ∂T
∂P

and ∂ψNGF

∂rNGF

in (3.20), the matrix structures for computing ∂DNGF

∂P
are visualized in Figure 3.4. In

comparison with Figure 3.2, the structure of the computation differs by the 2d+1 banded
Jacobian matrix ∂rNGF

∂T
.

In order to derive a matrix-free expression for a single element of ∂DNGF

∂P
, from (3.31), we

introduce the abbreviation

ρi(k) :=
−Ri +Rik
‖∇̃Ti‖τ‖∇̃Ri‖̺

−

(
1
2〈∇̃Ti, ∇̃Ri〉+ τ̺

)

(−Ti + Tik)

‖∇̃Ti‖3τ‖∇̃Ri‖̺
∈ R. (3.32)

53

3. Matrix-free methods for efficient derivative computations

∂ψNGF

∂rNGF
︷ ︸︸ ︷

∂rNGF

∂T
︷ ︸︸ ︷

∂T
∂P

︷ ︸︸ ︷

∂DNGF

∂P
= (• • • • • • • • • •)










• • • •

• • • • •

• • • • •

• • • • • •

• • • • •

• • • • •

• • • • • •

• • • • •

• • • • •

• • • •



















• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •










Figure 3.4.: Sparse matrix structure for the computation of the NGF gradient for d = 3.

Compared to (3.31), the Jacobian matrix ∂∇̃i

∂T
still needs to be considered

First, we define the set of indices k, to be used in (3.32), corresponding to the neighboring
indices in each direction with

K := {−z,−y,−x, 0, x, y, z}, (3.33)

for d = 3 and K := {−y,−x, 0, x, y} for d = 2. Then, with the weights from (3.27), (3.28),
abbreviated as

ĥk :=
1

2h2
|k|

,

the Jacobian matrix ∂∇̃i

∂T
can be incorporated into (3.32). This results in

ρ̂i(k) :=

{∑

j∈K\{0}−ĥjρi(j) if k = 0,

ĥkρi(k) otherwise,
(3.34)

with ρ̂i(k) : K → R, representing the non-zero elements of the Jacobian matrix row
∂rNGF
i

∂T
.

The matrix row can finally be compactly written as

∂rNGF
i

∂T
=

(
i−z i−y i−x i i+x i+y i+z

ρ̂i(−z) ρ̂i(−y) ρ̂i(−x) ρ̂i(0) ρ̂i(x) ρ̂i(y) ρ̂i(z)
)

∈ R
1×m̄, (3.35)

where only non-zero elements are shown and column indices are indicated above the
vector. For d = 2, we have

∂rNGF
i

∂T
=

(
i−y i−x i i+x i+y

ρ̂i(−y) ρ̂i(−x) ρ̂i(0) ρ̂i(x) ρ̂i(y)
)

∈ R
1×m̄. (3.36)

As in Figure 3.4, the structure of ∂r
NGF

∂T
as a 2d+1 banded diagonal matrix is apparent.

Exploiting this pattern, a single element of the partial gradient ∂DNGF

∂P
, given in (3.21),

can now explicitly be computed as

(

∂DNGF

∂P

)

i+lm̄

= −2 h̄




∑

k∈K

rNGF
ik

ρ̂ik(−k)




∂Ti

∂Pi+lm̄
, (3.37)

54

3.3. Derivative computations for NGF

where i = 1, . . . , m̄, l = 0, . . . , d. Using the explicit descriptions of rNGF
i in (3.19), ρ̂i in

(3.34) and ∂Ti
∂Pi+lm̄

in (3.9) – (3.11), each element of the gradient can be computed directly
from the input data, independently and in parallel. This allows for a straightforward
element-wise parallel implementation.

3.3.2. Hessian-vector multiplication

We will consider the grid conversion Jacobian matrix ∂P
∂y

separately in Section 3.5 and
only compute the partial Hessian approximation. Similar to Section 3.2.2,

ĤNGF :=
∂T

∂P

⊤∂rNGF

∂T

⊤
∂2ψNGF

∂rNGF2

∂rNGF

∂T

∂T

∂P
, (3.38)

such that

HNGF =
∂P

∂y

⊤

ĤNGF∂P

∂y
.

Differentiating (3.20), we obtain

∂2ψNGF

∂rNGF2 = −2h̄.

In contrast to the Gauss-Newton method in (2.32), the derivative of the outer function
ψNGF has a different sign. Therefore, in order to obtain descent directions in (2.28), the
sign of the Hessian approximation has been inverted, as proposed in [Mod09, §7.4]. This
leads to a first simplification of (3.38) with

ĤNGF = 2h̄
∂T

∂P

⊤∂rNGF

∂T

⊤
∂rNGF

∂T

∂T

∂P
.

As can be seen from (3.4), besides the image interpolation derivatives ∂T
∂P

already inves-
tigated in Section 3.2.2, the Hessian approximation contains the matrix multiplication
∂rNGF

∂T

⊤
∂rNGF

∂T
. The overall goal is to derive a matrix-free expression for the matrix-vector

multiplication

ĤNGFp̂ = q̂,

with p̂, q̂ ∈ R
dm̄, which can be schematically visualized as shown in Figure 3.5.

Abbreviating

dr :=
∂rNGF

∂T
,

the main challenge lies in the matrix-free computation of dr⊤dr. Performing a standard

matrix multiplication with dr ∈ R
m̄×m̄, a single element

(

dr⊤dr
)

i,j
of the result is the

55

3. Matrix-free methods for efficient derivative computations



































































•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•



































































∂T
∂P

⊤





















• • • •
• • • • •
• • • • •

• • • • • •
• • • • •
• • • • •

• • • • • •
• • • • •
• • • • •
• • • •





















∂rNGF

∂T

⊤





















• • • •
• • • • •
• • • • •

• • • • • •
• • • • •
• • • • •

• • • • • •
• • • • •
• • • • •
• • • •





















∂rNGF

∂T





















• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •





















∂T
∂P



































































•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•



































































p̂

=



































































•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•



































































q̂

Figure 3.5.: Sparse matrix structure of the NGF Hessian-vector multiplication ĤNGFp̂ =
q̂ for d = 3. The computation involves highly sparse matrices with a fixed
pattern of non-zeros. The main computational effort results from the product
∂rNGF

∂T

⊤
∂rNGF

∂T
, where ∂rNGF

∂T
has 2d+ 1 non-zero diagonals.

scalar product of column i and j,

(

dr⊤dr
)

i,j
=

dm̄∑

k=1

(

dr⊤
)

i,k
drk,j

=
dm̄∑

k=1

drk,i drk,j , (3.39)

where dri,j denotes the element at the i-th row and the j-th column of the matrix dr.
Abbreviating the i-th column of dr as

dri :=
∂rNGF

i

∂T
= drk,i, k = 1, . . . , dm̄

with dri ∈ R
m̄×1, (3.39) becomes

(

dr⊤dr
)

i,j
= 〈dri, drj〉. (3.40)

However, from the previous section and especially (3.35), we already know that dr is very
sparse, such that most elements of the scalar product (3.39) will be zero. The remainder
of this section is dedicated to exactly identifying the non-zero elements for all elements
in dr⊤dr and to deriving a closed form matrix-free expression.

Similar to (3.35), a single column is of the form

dri =
(

i−z i−y i−x i i+x i+y i+z

ρ̂i−z(z) ρ̂i−y(y) ρ̂i−x(x) ρ̂i(0) ρ̂ix(−x) ρ̂iy(−y) ρ̂iz(−z)
)⊤
∈ R

m̄×1,

(3.41)

for d = 3 and analogously to (3.36) for d = 2.

56

3.3. Derivative computations for NGF

Diagonal elements. We first consider the diagonal elements of the matrix multiplica-
tion dr⊤dr, i.e., 〈dri, dri〉, i = 1, . . . , m̄, before advancing to the general case 〈dri, drj〉.
From (3.41), it can be seen that in dri, the non-zero elements are located at (dri)ik ,
k ∈ K, with K as in (3.33). Therefore,

〈dri, dri〉 =
∑

k∈K

(dri)
2
ik

=
∑

k∈K

ρ̂ik(−k)2,

which is a sum of 2d+ 1 terms.

General case. For the general case 〈dri, drj〉 with arbitrary i, j, we define κ := j − i,
such that 〈dri, drj〉 = 〈dri, dri+κ〉. Using (3.41), it can be seen that in dri, the non-zero
elements are located at indices i+M, with

M := {−mxmy,−mx,−1, 0, 1,mx,mxmy}

and M := {−mx,−1, 0, 1,mx} for d = 2, for indices with 0 < i+M≤ m̄.

The elements of the scalar product 〈dri, dri+κ〉 can only be non-zero if the two vectors dri
and dri+κ have non-zero elements at one or more identical indices. Using the previous
definitions, this is fulfilled if

(i+M) ∩ (i+ κ+M) 6= ∅. (3.42)

From this we can define a new set

N :=M−M (3.43)

of indices κ ∈ N fulfilling (3.42), so that the scalar product 〈dri, dri+κ〉, κ ∈ N is
potentially non-zero. Considering (3.43), the number of elements |N | is bounded by the
number of element pairs M, giving |N | ≤ |M| · |M|. Recalling that the scalar products
originate from the non-zero elements in the matrix dr⊤dr, this bound directly translates
to a maximum number of |N | ≤ 49 non-zero elements per row in dr⊤dr for d = 3 and
|N | ≤ 25 for d = 2.

However, we will see that the actual number of diagonal elements that need to be com-
puted is substantially lower. To determine the exact number of elements |N |, we define
the mapping N :M×M→ Z with

N(i, j) := j − i.

Using this mapping, the set N can be written as

N = N(M,M) =
{

κ ∈ Z

∣
∣
∣ κ = N(i, j), i, j ∈M

}

.

From this representation, all elements of the set N can be determined explicitly, as shown
in Table 3.1. We find that the number of non-zero elements in the set is |N | = 25 for
d = 3 and |N | = 13 for d = 2, which also gives the maximum number of elements for
each column in dr⊤dr.

With the pre-image N−1(κ), the exact indices of the non-zero elements contributing to
the scalar products 〈dri, drj〉 can be derived. This can be used to construct an explicit

57

3. Matrix-free methods for efficient derivative computations

κ ∈ N N−1(κ) |N−1(κ)|

−2m1m2 {(m1m2,−m1m2)} 1

d = 3

−m1m2 −m1 {(m1,−m1m2), (m1m2,−m1)} 2
−m1m2 − 1 {(1,−m1m2), (m1m2,−1)} 2
−m1m2 {(0,−m1m2), (m1m2, 0)} 2
−m1m2 + 1 {(−1,−m1m2), (m1m2, 1)} 2
−m1m2 +m1 {(−m1,−m1m2), (m1m2,m1)} 2

−2m1 {(m1,−m1) 1

d = {2, 3}

−m1 − 1 {(1,−m1), (m1,−1)} 2
−m1 {(0,−m1), (m1, 0)} 2
−m1 + 1 {(−1,−m1), (m1, 1)} 2
−2 {(1,−1)} 1
−1 {(0,−1), (1, 0)} 2

0 {(̂i, î) | î ∈M} 2d+ 1
1 {(0, 1), (−1, 0)} 2
2 {(−1, 1)} 1
m1 − 1 {(1,m1), (−m1,−1)} 2
m1 {(0,m1), (−m1, 0)} 2
m1 + 1 {(−1,m1), (−m1, 1)} 2
2m1 {(−m1,m1) 1

m1m2 −m1 {(m1,m1m2), (−m1m2,−m1)} 2

d = 3

m1m2 − 1 {(1,m1m2), (−m1m2,−1)} 2
m1m2 {(0,m1m2), (−m1m2, 0)} 2
m1m2 + 1 {(−1,m1m2), (−m1m2, 1)} 2
m1m2 +m1 {(−m1,m1m2), (−m1m2,m1)} 2
2m1m2 {(−m1m2,m1m2)} 1

Table 3.1.: Offsets κ := j− i for which 〈dri, drj〉 6= 0, corresponding to non-zero elements
(dr⊤dr)i,j in the matrix-product dr⊤dr. The maximum number of elements
in each row is |N | = 25 for d = 3 and |N | = 13 for d = 2. The pre-image sets
N−1(κ) indicate the locations of each non-zero element in dri and drj . The
third column shows the number of products involving non-zero coefficients in
the evaluation of 〈dri, drj〉, and sums to |M| · |M|.

formulation of a single element
(

dr⊤dr
)

i,j
, involving only non-zero elements. As shown

in Table 3.1, for the main diagonal of dr⊤dr, |N−1(0)| = 2d + 1 non-zero elements are
involved in the scalar product, while for all other scalar products only one or two elements
are non-zero. With κ = j − i and (̂i, ĵ) ∈ N−1(κ), the elements of the matrix dr⊤dr can
be computed as

(

dr⊤dr
)

i,j
=







∑

(̂i,ĵ)∈N−1(j−i)

(dri)i+î (drj)j+ĵ , if j − i ∈ N ,

0, otherwise,

=







∑

(̂i,ĵ)∈N−1(j−i)

ρ̂i+î(−î) ρ̂j+ĵ(−ĵ), if j − i ∈ N ,

0, otherwise,

(3.44)

58

3.4. Derivative computations for curvature regularization

where, in a slight abuse of notation, ρ̂(±m1m2), ρ̂(±m1), ρ̂(±1) should be interpreted as
ρ̂(±z), ρ̂(±y), ρ̂(±x), respectively.

By substituting the explicit formulation of ρ̂i(κ) from (3.34) into (3.44), a complete
formulation of each element of dr⊤dr is now available. Compared to a matrix-matrix
multiplication, the computational costs are greatly reduced: Only non-zero elements are
considered and no handling, locating and storing of sparse matrix elements is needed.

Coming back to Figure 3.5, in order to compute the final matrix-vector multiplication
ĤNGFp̂ = q̂, we need to right-multiply with the image interpolation derivatives ∂T

∂P
and

left-multiply with its transpose ∂T
∂P

⊤
. Again, the block diagonal structure of the image

derivative matrices can be easily exploited, so that for the final matrix-vector product
ĤNGFp̂ = q̂, we obtain

q̂lm̄+i =
∑

κ∈N

d−1∑

s=0

∂Ti
∂Plm̄+i

(

dr⊤dr
)

i,i+κ

∂Tκ
∂Psm̄+i+κ

p̂sm̄+i+κ, (3.45)

for l = 0, . . . , d− 1 and i = 1, . . . , m̄, using the definition of
(

dr⊤dr
)

i,i+κ
from (3.44) and

the image derivatives given in (3.9) – (3.11). Again, each element of the result vector can
be computed in parallel and no intermediate storage is required.

3.4. Derivative computations for curvature regularization

Compared to the distance measures, the derivative calculations of the curvature regular-
izer are much simpler. The curvature regularizer is defined in (2.21) as

S(y) = h̄y
m̄y
∑

i=1

d∑

j=1

(

∆̃ui+(j−1)m̄y

)2
.

As described in (2.23), in a matrix-based formulation,

S(y) = h̄y(Au)⊤Au = h̄yu⊤A⊤Au,

where A ∈ R
dm̄y×dm̄y

is the corresponding curvature matrix operator as defined in [Hel06,
§4.4.4], resulting from the weights of the finite difference stencil in (2.22) and Neumann
boundary conditions as given in Section 2.4.5. With this, the gradient is

∇S(y) = 2h̄yA⊤Au, (3.46)

which, using the discretized Laplace operator from (2.22) and ∆̃u :=
(

∆̃u1, . . . , ∆̃udm̄y

)

,

can also be written as

∇S(y) = 2 h̄y∆̃
(

∆̃u
)

.

Furthermore, the Hessian matrix of the regularizer

∇2S(y) = 2h̄yA⊤A (3.47)

is constant and can easily be computed exactly. Thus, no Gauss-Newton approximation
of the Hessian is needed for the regularizer.

59

3. Matrix-free methods for efficient derivative computations

3.4.1. Gradient computations

A matrix-free computation of the curvature regularizer gradient can easily be performed
by point wise applying the symmetric discretized Laplace operator ∆̃ twice. This can be
performed independently for each point with

(∇S(y))i+lm̄y = 2 h̄y∆̃
(

∆̃u
)

i+lm̄y
(3.48)

and l = 0, . . . , d− 1, i = 1, . . . , m̄y. As the curvature regularizer operates directly on the
deformation grid, no further grid conversion steps are necessary and (3.48) constitutes
the final gradient.

3.4.2. Hessian computations

The gradient computation (3.48) and a Hessian-vector multiplication ∇2Sp = q are
closely related (see (3.46) and (3.47)), so that

qi+lm̄y =
(

∇2Sp
)

i+lm̄y

= (∇S(p + xy))i+lm̄y

= 2h̄y∆̃
(

∆̃p
)

i+lm̄y
, (3.49)

for l = 0, . . . , d − 1 and i = 1, . . . , m̄y. While the (approximated) Hessian-matrix multi-
plication for the distance measures is much more complicated than the gradient, for the
curvature regularizer it can be computed with the same effort.

In contrast to the distance measure Hessian approximations, however, in our registration
scheme, the Hessian of the curvature regularizer is not only required for Gauss-Newton
optimization, but also for the initial value H0 for the Hessian approximation in the
L-BFGS scheme (Section 2.5.2). The latter requires a multiplication with the inverse
(H0)−1. Instead of directly inverting the matrix, a system of linear equations is solved
with an iterative solver as described in Section 2.5.2. Here, the matrix-vector multipli-
cation ∇2Sp = q needs to be performed multiple times per iteration, such that a fast
evaluation is essential.

3.5. Grid conversion

Two different discretization grids are used in this work: the image grid x ∈ R
m̄, defined

on the reference image domain ΩR with resolution h and size m, and the deformation grid
xy ∈ R

m̄y
, which determines the resolution hy and size my of the deformation y (see also

Section 2.4.1). As the size of the system of linear equations (2.28) is determined solely by
the deformation grid size, this allows to choose the deformation grid resolution coarser
than the resolution of the image grid, decreasing computation time while still preserving
the image resolution. However, this requires a grid conversion function in order to map
the deformation between both grids.

60

3.5. Grid conversion

3.5.1. Image grid to deformation grid

The grid conversion function (2.8)

P : Rdm̄
y
→ R

dm̄,

maps from the deformation grid to the image grid. This function is frequently required
in all discussed distance measures in order to evaluate the function value (see (3.1)). For
a fast and efficient grid conversion, we use tri-linear interpolation for d = 3 and bi-linear
interpolation for d = 2, such that the grid conversion can be written as a matrix-vector
multiplication

ŷ = Py (3.50)

with P ∈ R
dm̄×dm̄y

, y ∈ R
dm̄y

and ŷ ∈ R
dm̄. Since the deformation consists of d compo-

nents, each of these need to be interpolated. As each component is interpolated at the
same location, P has a block-diagonal structure of d interpolation matrices P̃ ∈ R

m̄×m̄y

with P = diag(P̃ , P̃ , P̃) for d = 3 and P = diag(P̃ , P̃) for d = 2. An example of two grids
and the corresponding matrix P̃ is shown in Figure 3.6.

For computing the grid conversion in a matrix-free way, the interpolation described in
Section 3.1.1 can be used. However, since the deformation grid is always given with a nodal
discretization (Section 2.4.1) each image grid point is always surrounded by deformation
grid points. Therefore no checks for boundary conditions need to be performed, see also
Figure 3.6(a). As can be seen in (3.8), each interpolated point ŷi is a weighted sum of
its 2d neighbors on the deformation grid, shown for d = 2 in Figure 3.7(a). Using the
definitions from Section 3.1.1 with hy instead of h in (3.7), it holds

ŷi+lm̄ =
1∑

α=0

1∑

β=0

1∑

γ=0

w(ŷi)
α
1w(ŷi)

β
2w(ŷi)

γ
3 yξi(α,β,γ)+lm̄y , (3.51)

with i = 1, . . . , m̄ and l = 0, . . . , d − 1. For d = 2 the third weight is not needed,
i.e., w(ŷi)

γ
3 ≡ 1. This is also visualized in Figure 3.7(a) for d = 2, where the weights

wα,β := wα1w
β
2 for one image grid point are shown as arrows.

Note that while in the example in Figure 3.6(a) each deformation grid cell contains the
same number of image grid points, this is not valid in general: In Figure 3.7(a), the grid
spacing is chosen such that the number of image grid points per deformation grid cell
varies. This also results in a less regular sparsity pattern of the grid conversion matrix
compared to Figure 3.6(b).

3.5.2. Transposed operator

From (3.3) and (3.4), in order to compute distance measure derivatives, the derivative ∂P
∂y

is required. Using (3.50), differentiating the grid conversion function is rather simple:

∂P

∂y
= P ∈ R

dm̄×dm̄y
. (3.52)

61

3. Matrix-free methods for efficient derivative computations

x
y
1

x
y
4

x
y
7

x
y
2

x
y
5

x
y
8

x
y
3

x
y
6

x
y
9

x1

x5

x9

x13

x2

x6

x10

x14

x3

x7

x11

x15

x4

x8

x12

x16

(a)




























• • • •

• • • •

• • • •

• • • •

• • • •

• • • •

• • • •

• • • •

• • • •

• • • •

• • • •

• • • •

• • • •

• • • •

• • • •

• • • •










































y1

y2

y3

y4

y5

y6

y7

y8

y9















=




























ŷ1

ŷ2

ŷ3

ŷ4

ŷ5

ŷ6

ŷ7

ŷ8

ŷ9

ŷ10

ŷ11

ŷ12

ŷ13

ŷ14

ŷ15

ŷ16




























(b)

Figure 3.6.: Grid conversion example for d = 2, (a): Two small grids; circles for defor-
mation grid with my = (3, 3), squares for image grid with m = (4, 4), (b):
Corresponding grid conversion matrix P̃ , converting the x-component of the
deformation y from deformation grid the image grid. While each row of P̃
contains exactly four elements, the number of elements in each column varies,
requiring a different computation strategy for the right-multiply.

Note that in contrast to the image interpolation derivatives in Section 3.1.1, we compute
the derivative ∂P

∂y
with respect to the data points y. Stating (3.50) as

ŷ = P (x) · y,

we see that the interpolation matrix P (x) evaluates the data points y on the image grid
x. Analogous to this, the image interpolation can be written as

T (ŷ) = Q(ŷ) ·T,

where Q(ŷ) ∈ R
m̄×m̄T

is an interpolation matrix, evaluating the template image data

points T ∈ R
m̄T

on the deformed image grid ŷ. In contrast to the grid conversion,
we compute the derivative ∂T

∂ŷ
with respect to the evaluation points, resulting in a very

different derivative structure.

While the matrix P in (3.52) is the same as in (3.50), for computing (3.3) and (3.4),
instead of a left-multiply now a right-multiply

ŷ⊤P = (P⊤ŷ)⊤

is required, which can also be interpreted as a left-multiply with the transposed matrix
P⊤.

As can be seen from Figure 3.6(b), instead of computing a weighted sum of a fixed
number of points as in (3.51), multiplication with P⊤ corresponds to the computation

62

3.5. Grid conversion

(a) (b)

(c) (d)

Figure 3.7.: Grid conversion operations for d = 2. Circles indicate a nodal deforma-
tion grid, squares indicate a cell-centered image grid, different interpolation
weights are visualized by arrows, (a): deformation grid to image grid, ex-
emplarily shown for one image grid point. Each value on the image grid is
computed by a weighted sum of the values of its deformation grid neighbors,
(b): transposed operation, exemplarily shown for one deformation grid point.
Each value on the deformation grid is a weighted sum of all image grid val-
ues from neighboring deformation grid cells, (c), (d): transposed operation
with red-black scheme. For each deformation grid cell, weighted values on
the image grid are accumulated into all surrounding deformation grid points.
Weights need to be computed only once per cell. First all odd rows are
processed in parallel (red), as shown in (c), then all even rows (black) are
processed in parallel as shown in (d). This avoids write conflicts in overlap-
ping deformation grid points during parallel execution.

of a weighted sum of values from all image grid points in the adjacent deformation grid
cells, as shown in Figure 3.7(b) for d = 2. Depending on the spacing of both grids, the
number of elements of that sum can vary for different points and with hy ≥ h often has
more than 2d elements.

The variable number of elements implies that these points need to be identified during
the computations before the sum can be computed, which makes the computation more
involved. Apart from this, deriving a matrix-free computation that can be parallelized per
deformation grid point, as shown in Figure 3.7(b) and similar to (3.51), is straightforward.
However, in a matrix-free computation scheme, parts of weights (shown as arrows in
Figure 3.7(b)) already used for the previous points need to be recalculated for every
deformation grid point. Especially when hy ≫ h and d = 3, the number of recalculations

63

3. Matrix-free methods for efficient derivative computations

is a significant obstacle, as will be discussed further in Section 3.7. Therefore, a red-black
scheme was used instead.

Red-black computation scheme. Instead of computing the complete weighted sum
for every deformation grid point as in Figure 3.7(b), those elements of the sum are
computed which utilize the same weights ws. These elements contribute to the weighted
sums for different deformation grid points surrounding one deformation grid cell, which
suggests an evaluation as shown in Figure 3.7(c). In this scheme, for each deformation
grid cell, only the contributions of the image grid points in the current deformation grid
cell are added to the weighted sums of the surrounding deformation grid points. This
way, the weights ws only need to be computed once.

However, this scheme is not straightforward to parallelize. Contributions of the neigh-
boring deformation grid cells are added to the weighted sums of the same deformation
grid points. When parallelizing over the deformation grid cells, this creates simultaneous
write accesses, resulting in write conflicts. Therefore, the domain is split in an alternating
fashion in the last dimension (y-dimension for d = 2 and z-dimension for d = 3), separat-
ing it into alternating red and black rows for d = 2 and xy-slices for d = 3. All rows/slices
of the same color can now be computed in parallel, first computing all red rows/slices in
parallel and then all black rows/slices, as shown in Figure 3.7(c) and Figure 3.7(d). The
deformation grid points within a row/slice are processed sequentially.

3.5.3. In-place vs. separate grid conversion

In the previous sections, the grid conversion operations are treated as separate steps. As
given in (3.1), the distance measure function evaluation can be written as

D(y) = ψ(r(T (P (y)))).

Considering the grid conversion separately, this can be split into two steps

1. ŷ← Py

2. D ← ψ(r(T (ŷ)))).

First, the deformation is interpolated on the image grid. Second, using the deformation
on the image grid, the final function value is computed.

For gradient and Gauss-Newton Hessian computations, additionally a third step is re-
quired. The distance measure gradient computation (3.3) can be decomposed into

∇D(y) =

(
∂ψ

∂r

∂r

∂T

∂T

∂P

∂P

∂y

)⊤

.

Separating the grid conversion steps, the gradient can be computed by

1. ŷ← Py

2. ĝ←
∂ψ

∂r

∂r

∂T

∂T

∂P
(ŷ)

3. ∇D⊤ ← P⊤ĝ.

64

3.6. Rigid and affine deformation model

First, again, the deformation is interpolated on the image grid. Then, a “gradient on
the image grid” ĝ ∈ R

dm̄ is computed. Finally, by multiplying with the transposed grid

conversion matrix ∂P
∂y

⊤
= P⊤ ∈ R

dm̄y×m̄, the gradient ∇D ∈ R
dm̄y

is obtained.

The computation of the distance measure Hessian-vector multiplication is similar. Mul-
tiplication of the Gauss-Newton Hessian approximation with a vector p ∈ R

m̄y
can be

written as (3.4)

q = Hp =
∂P

∂y

⊤

Ĥ
∂P

∂y
p =

∂P

∂y

⊤ ∂T

∂P

⊤ ∂r

∂T

⊤∂2ψ

∂r2

∂r

∂T

∂T

∂P

∂P

∂y
p, (3.53)

which can be split into the three steps

1. p̂←
∂P

∂y
p = Pp

2. q̂← Ĥp̂ =
∂T

∂P

⊤ ∂r

∂T

⊤∂2ψ

∂r2

∂r

∂T

∂T

∂P
p̂

3. q← P⊤q̂.

The vector p is first converted to the image grid. The result p̂ ∈ R
dm̄ is then multiplied by

Ĥ. Finally the result on the image grid q̂ is multiplied by the transposed grid conversion
matrix to obtain the final result q.

Treating the grid conversion as separate steps, however, requires additional memory for
temporarily storing ŷ, p̂ ∈ R

dm̄ and ĝ, ŷ ∈ R
dm̄y

. Therefore, it is tempting to substi-
tute the matrix-free grid conversion into the distance measure computations, so that no
temporary storage is required.

This in-place grid conversion further increases the amount of recalculations since con-
verted grid points on the image grid are required multiple times for the computation of
different result elements. This will be analyzed further in Section 3.7. In some cases
it leads to slower overall runtimes. Since, depending on the application scenario, either
runtime or memory requirements may be important, both variants will be evaluated in
Chapter 5.

3.6. Rigid and affine deformation model

In comparison to the deformable deformation model, for an affine registration model (Sec-
tion 2.4.2) the grid conversion function P (y) is replaced by a “grid-generating” function
ŷ : Rd

2+d → R
dm̄, defined in (2.10), with

ŷ(w) =
([

(Ax1 + b)1, . . . , (Axm̄ + b)1

]

, . . . ,
[

(Ax1 + b)d, . . . , (Axm̄ + b)d
])⊤

, (3.54)

which transforms the new parameters w to a deformed grid. Here, the parameters
w = (a1, . . . , ad2 , b1, . . . , bd) ∈ R

d2+d consist of the entries from the linear transforma-
tion matrix A ∈ R

d×d and the translation vector b ∈ R
d, which results in 12 parameters

65

3. Matrix-free methods for efficient derivative computations

for d = 3, and 6 parameters for d = 2. In affine registration, a regularization term is
usually not necessary [Mod09, §6] such that the optimization problem (2.25) becomes

min
w∈Rd

2+d
D(ŷ(w)). (3.55)

For a rigid deformation, the matrix A is additionally replaced by a function

A(θ) : Rϑ → R
d2+d, (3.56)

with ϑ := 3 for d = 3 and ϑ := 1 for d = 2, which maps three rotation angles θ ∈ R
3 for

d = 3 or a single rotation angle θ ∈ R for d = 2 to a d-dimensional rotation matrix. With
the additional translation b ∈ R

d this results in a total of 6 unknowns for d = 3 and 3
unknowns for d = 2 for the rigid case.

Since the main parts of the distance measure computations remain unchanged, with the
definition of ŷ the function value of the distance measures can directly be computed.
However, the number of unknowns is now fixed and largely reduced. This requires dif-
ferent approaches for matrix-free methods for the derivatives, which will be described in
the following section.

3.6.1. Derivative computations

Replacing the grid conversion function in (3.3) with ŷ(w), we obtain

∇D(w) =

(
∂ψ

∂r

∂r

∂T

∂T

∂ŷ

∂ŷ

∂w

)⊤

∈ R
(d2+d)×1 (3.57)

for the affine distance measure gradient. Apart from the term ∂ŷ

∂w
, the computation

remains unchanged compared to the deformable case. Especially when treating the grid
conversion as a separate step, the matrix-free computations (3.16) for SSD and (3.21) for
NGF and can be utilized. Analogously, following (3.4), the Hessian approximation for
the affine deformation model can be written as

∇2D(w) ≈ H(w) =
∂ŷ

∂w

⊤∂T

∂ŷ

⊤ ∂r

∂T

⊤∂2ψ

∂r2

∂r

∂T

∂T

∂ŷ

∂ŷ

∂w
∈ R

(d2+d)×(d2+d). (3.58)

Differentiating (3.54), we obtain the Jacobian matrix ∂ŷ

∂w
which has a block diagonal

structure. With

W :=






x1 . . . x1+(d−1)m̄ 1
...

...
...

...
xm̄ . . . x1+dm̄ 1




 ∈ R

m̄×(d+1), (3.59)

the Jacobian matrix of ŷ can be written as

∂ŷ

∂w
=






W
. . .

W




 ∈ R

dm̄×d(d+1), (3.60)

putting W on the diagonal d times and zeros otherwise. As can be seen, the structure
of ∂ŷ

∂w
consists of constant values from the image grid x (Section 2.4.1), as well as ones.

With the definition of this Jacobian, we can now revisit the derivative computations for
the different distance measures.

66

3.6. Rigid and affine deformation model

Sum of squared differences. To derive a matrix-free computation for the SSD gradi-
ent, the additional step of multiplying with the Jacobian ∂ŷ

∂w
, replacing the grid conversion

function, will now be integrated into the matrix-free computations. For the SSD gradient
(3.16) this results in

(

∇DSSD
)

k+ld
=

m̄∑

i=1

(Ti −Ri)
∂Ti

∂ŷi+lm̄
xi+(k−1)m̄, (3.61)

with k = 1, . . . , d+ 1, l = 0, . . . , d− 1 and, corresponding to the column of ones in (3.59),
xi+dm̄ := 1, such that ∇DSSD ∈ R

d2+d.

Note the additional sum compared to (3.16), incorporating all residual elements rSSD
i =

(Ti −Ri) for each gradient entry. In a per-element parallel computation as in the de-
formable deformation model, the full residual has to be computed multiple times. Addi-
tionally, parallelization is problematic, since only d2 + d gradient elements exist, limiting
the maximum number of parallel threads. Therefore, we pursue a different computation
strategy: Instead of considering all summands for a single gradient element, a vector of
single summands

(

∇DSSD
)i

:=

((

∇DSSD
)i

1
, . . . ,

(

∇DSSD
)i

d2+d

)

∈ R
d2+d

with
(

∇DSSD
)i

k+ld
:= (Ti −Ri)

∂Ti
∂ŷi+lm̄

xi+(k−1)m̄ (3.62)

is computed for k = 1, . . . , d+ 1, l = 0, . . . , d− 1, i.e., computing only one summand but
for all gradient elements at once. This can then be parallelized for i = 1, . . . , m̄. Finally,
a reduction

∇DSSD = 2h̄
m̄∑

i=1

(

∇DSSD
)i

(3.63)

is performed. In order to perform this efficiently, the reduction needs to be performed
without allocation of auxiliary memory for each summand, i.e., using specialized reduction
variables in OpenMP, see Section 3.8.1.

For computing the Gauss-Newton Hessian approximation, this approach can be used as
well. Since HSSD ∈ R

(d2+d)×(d2+d) has only few elements in comparison to the deformable
case, the Hessian approximation can be explicitly and efficiently stored instead of com-
puting a matrix-free Hessian-vector multiplication. The number of stored elements can
be further reduced by exploiting the symmetry of the Hessian.

Utilizing (3.17) and ∂rSSD

∂T
= I, computations for the Hessian approximation (3.58) can

be performed in a similar way as the gradient (3.63). The rows of the matrix

dwSSD :=
∂T

∂ŷ

∂ŷ

∂w
∈ R

m̄×(d2+d)

are
(

dwSSD
)i

:=

((

dwSSD
)i

1
, . . . ,

(

dwSSD
)i

d2+d

)

∈ R
1×(d2+d), (3.64)

67

3. Matrix-free methods for efficient derivative computations

where

(

dwSSD
)i

k+ld
:=

∂Ti
∂ŷi+lm̄

xi+(k−1)m̄ ∈ R. (3.65)

In order to obtain
(

dwSSD
)⊤

dwSSD as in (3.58), a reduction can be performed over the

outer product of the rows (3.64), so that

HSSD(w) = 2h̄
m̄∑

i=1

((

dwSSD
)i
)⊤ (

dwSSD
)i
∈ R

(d2+d)×(d2+d). (3.66)

Equations (3.65) and (3.62) are very similar, except for the residual term (Ti−Ri). There-
fore, the gradient and the Hessian approximation can be computed together efficiently.

Normalized gradient fields. As in (3.61), the affine transformation function can be
integrated into the matrix-free NGF gradient computations (3.37), resulting in

(

∇DNGF
)

k+ld̄
= −2h̄

m̄∑

i=1




∑

j∈K

rNGF
ij

ρ̂ij (−j)




∂Ti

∂ŷi+lm̄
xi+(k−1)m̄, (3.67)

with k = 1, . . . , d + 1, l = 0, . . . , d − 1 and xi+dm̄ := 1, corresponding to the column of
ones in (3.59). Similar to the SSD computations in (3.63) and (3.62), this formulation
requires to compute the same values multiple times to obtain the full gradient and per-
element parallelization can only be computed with d2 + d parallel tasks. Therefore, the

computation is again reformulated and split into single summands
(

∇DNGF
)i
∈ R

d2+d

for parallelization, which results in

(

∇DNGF
)i

k+ld̄
:= rNGF

i

∑

j∈K

ρ̂ij (−j)
∂Ti

∂ŷij+lm̄
xij+(k−1)m̄ (3.68)

for k = 1, . . . , d+ 1, l = 0, . . . , d− 1 and the vector of single summands

(

∇DNGF
)i

:=

((

∇DNGF
)i

1
, . . . ,

(

∇DNGF
)i

d2+d

)

∈ R
d2+d.

The full affine gradient ∇DNGF ∈ R
d2+d can then be written as

∇DNGF = −2h̄
m̄∑

i=1

(

∇DNGF
)i
, (3.69)

which can now easily be parallelized with up to m̄ parallel tasks.

Similar to the SSD, the small number of affine parameters can be exploited to simplify
computation of the Hessian approximation. Instead of deriving a matrix-free computation

of the matrix product ∂rNGF

∂T

⊤
∂rNGF

∂T
, as in (3.44), again a row of the matrix dwNGF :=

∂rNGF

∂T
∂T
∂ŷ

∂ŷ

∂w
∈ R

m̄×(d2+d) is computed via

(

dwNGF
)i

:=

((

dwNGF
)i

1
, . . . ,

(

dwNGF
)i

d2+d

)

∈ R
1×(d2+d) (3.70)

68

3.7. Algorithm analysis

with

(

dwNGF
)i

k+ld̄
=
∑

j∈K

ρ̂ij (−j)
∂Ti

∂ŷij+lm̄
xij+(k−1)m̄. (3.71)

The Hessian approximation can then be computed as the reduction of the outer product
of the rows (3.70), which only have d2 + d elements each:

HNGF(w) = 2h̄
m̄∑

i=1

((

dwNGF
)i
)⊤ (

dwNGF
)i
∈ R

(d2+d)×(d2+d). (3.72)

Again, similar to the SSD affine computations, because of the similarity between (3.67)
and (3.71), gradient and Hessian approximation can be efficiently computed together.

Rigid deformation model. For a rigid transformation model as in (3.56), an addi-
tional function is concatenated to the computations, resulting in another Jacobian matrix
in the derivative calculations. However, since Aϑ : Rϑ → R

d2+d is a function with a fixed
and comparably small number of parameters, its derivatives can be computed efficiently
in a separate step and no specialized matrix-free computations are required.

3.7. Algorithm analysis

In the previous sections of this chapter, we presented matrix-free formulations for the
objective function derivatives. In this section, we first analyze these methods from a
theoretical point of view, before performing practical evaluations in Chapter 5. Emphasis
is placed on two main characteristics:

• runtime, and

• memory consumption.

In comparison with a matrix-based approach, we discuss differences between both con-
cepts in terms of in-place recalculations versus precomputations that are stored to mem-
ory. Based on this, we analyze possible trade-offs between memory usage and runtime.

The matrix-based approach heavily relies on the multiplication of sparse matrices. The
actual computational cost for sparse matrix multiplications, however, is highly dependent
on the chosen sparse matrix format and the specific implementation and therefore hard to
quantify from theory. However, besides matrix multiplications, meaningful comparisons
between matrix-based and matrix-free methods can be made by analyzing the cost of
computing the entries of the matrices involved and storing them to memory.

For the matrix-based approach, the relation between computing and storing matrix ele-
ments is simple: Every non-zero matrix element is computed exactly once, the elements
are composed to a sparse matrix, and this matrix is written to memory for later use, i.e.,
all matrix elements are precomputed. This gives a one-to-one ratio of elements computed
and elements stored to memory.

69

3. Matrix-free methods for efficient derivative computations

For the matrix-free approach, this is different. In a fully matrix-free computation, no in-
termediate results are written to memory and all computations are performed on-the-fly
only using initial data, such as the images and the current deformation. Some intermedi-
ate results might need to be computed multiple times, since they occur in the computation
of multiple result elements. These operations are denoted as recalculations. Since storing
a value to memory typically consumes much more time than performing a floating point
operation, an overall decrease of runtime is still possible.

In the matrix-free approach, the ratio between element computations and elements stored
to memory can additionally be influenced by selectively precomputing crucial elements,
such as performing the grid conversion in separate steps (Section 3.5.3), or precomputing
the deformed template image T (ŷ). In some scenarios this can yield an additional speedup
of the computations at the cost of a higher memory usage, which will also be discussed
in detail below.

3.7.1. Sum of squared differences

For the SSD distance measure, matrix-free computations for the gradient and Hessian-
vector multiplication were given in Section 3.2, which will now be analyzed.

Gradient. With the general definition of the distance measure gradient in (3.3), as

∇D(y) =

(
∂ψ

∂r

∂r

∂T

∂T

∂P

∂P

∂y

)⊤

∈ R
dm̄y×1,

an upper bound for the number of matrix coefficient computations and memory store
operations for the gradient can be determined. The vector ∂ψ

∂r
∈ R

m̄ requires the com-

putation of m̄ residual elements. For the SSD, the matrix ∂rSSD

∂T
is the identity and thus

can be neglected. The matrix ∂T
∂P
∈ R

m̄×dm̄ is composed of d blocks of diagonal matrices
(Figure 3.1), and contains dm̄ non-zero elements. Finally, the grid conversion matrix
∂P
∂y

= P ∈ R
dm̄×dm̄y

contains at most 2d elements in each row. Since the matrix P

consists of d identical blocks P̂ ∈ R
m̄×m̄y

(Section 3.5.1) we only count one block with
at most 2dm̄ coefficients here. Additionally, the matrix elements of P only depend on
the size of the image and deformation grids, but not on the image data or deformation.
Therefore they only need to be computed and stored once for each resolution.

In total this gives (1 + d+ 2d)m̄ non-zero matrix coefficient calculations, which amounts
to 12m̄ for d = 3 and 7m̄ for d = 2. In a matrix-based computation, each of these
coefficients is computed and then stored to memory for later use, resulting in memory
requirements of the same amount.

A matrix-free computation for the SSD gradient was given in (3.16). It can be seen
that each computation of a single gradient element only requires one element of each
matrix. Since these are not required for the computation of other gradient elements, for
the computation of the full gradient also (1 + d+ 2d)m̄ matrix element computations are
required, as summarized in Table 3.2. While the number of coefficient computations is
identical to the matrix-based case, no intermediate results are stored and a large benefit
in runtime for the matrix-free computations can be expected.

70

3.7. Algorithm analysis

Hessian approximation. In addition to the matrix-based gradient computation, for
a matrix-based SSD Hessian-vector multiplication no additional coefficient computations
are needed. As can be seen in (3.17), since the Gauss-Newton Hessian multiplication is
composed from first-order derivatives, it consists of the same matrices that have already
been computed for the gradient computation. Assuming that the Hessian approximation
is computed anew from these matrices every time, no additional memory is required. If
the Hessian approximation is explicitly stored, additional memory for d2m̄ coefficients
is required, due to the structure of the image derivative matrices in (3.17), shown in
Figure 3.1.

The matrix-free Hessian-vector multiplication is given in (3.18). As already discussed at
the end of Section 3.2.2, a naive computation involves a d-fold overhead for the compu-
tation of the image derivatives. However, the d directional derivatives of Ti are usually
computed together. It is therefore preferable to also compute the d result elements q̂lm̄+i,
l = 0, . . . , d− 1 together, which eliminates the overhead and requires dm̄ coefficients for
the image derivatives and 2dm̄ coefficients for the grid conversion, resulting in a total
of (d + 2d)m̄ matrix element computations, see also Table 3.2. Again, no intermediate
storage of matrix coefficients is required.

Summary. The matrix-free and matrix-based SSD gradient computation and Gauss-
Newton Hessian-vector multiplication require the same amount of coefficient calculations.
Therefore, the matrix-free version is potentially much faster while requiring less memory.
However, these benefits might be slightly reduced when computing gradient and Hessian
at the same time, since the coefficients stored for the matrix-based gradient can be reused
for the matrix-based Hessian, while using the matrix-free approach these have to be
recalculated.

Since the amount of coefficient computations is already minimal for gradient and Gauss-
Newton Hessian-vector multiplication, for the SSD no computational overhead can be
eliminated by precomputing certain often used values such as the deformation on the
image grid ŷ or the transformed template T (ŷ). For the NGF, discussed in the following
section, this is different.

Summarizing the memory usage as shown in Table 3.2, for the matrix-free approach the
memory requirements are in the order of O(m̄). The matrix-free approach requires only
constant auxiliary space and thus reduces the memory requirements to O(1).

3.7.2. Normalized gradient fields

Matrix-free computations for the NGF gradient were given in Section 3.3. The main
difference in comparison with the SSD is the more complicated structure of the Jacobian
matrix ∂rNGF

∂T
, see Figure 3.4 and Figure 3.5. In the following, we will analyze the impact

of this on the amount of computations and memory store operations.

71

3. Matrix-free methods for efficient derivative computations

Method matrix-based matrix-free gradient matrix-free Hessian

(calc./stores) calc. stores calc. stores

∂ψ
∂r

m̄ m̄ 0 0 0
∂T
∂P

dm̄ dm̄ 0 dm̄ 0
∂P
∂y

2dm̄ 2dm̄ 0 2dm̄ 0

total d = 2 7m̄ 7m̄ 0 6m̄ 0
total d = 3 12m̄ 12m̄ 0 11m̄ 0

Table 3.2.: SSD derivative matrix element calculations and memory requirements. For
the matrix-based approach, all computed values are always stored to memory,
while for the matrix-free approach everything is computed on-the-fly without
the need for intermediate storage. For the SSD matrix-free gradient and
Gauss-Newton Hessian-vector multiplication no overhead in comparison to the
matrix-based approach in terms of recalculations is required. A significant
speedup can thus be expected while lowering the memory requirements for
intermediate results from O(m̄) to O(1).

Gradient. As shown in (3.3) and already discussed in Section 3.7.1, four Jacobian
matrices are required for a matrix-based distance measure gradient computation. Since
everything except the matrix ∂rNGF

∂T
remains unchanged, from the previous section we

know that for the other four Jacobian matrices (1 + d + 2d)m̄ matrix coefficient com-
putations are needed and that the matrix-based approach requires the same amount of
memory store operations. The matrix ∂rNGF

∂T
∈ R

m̄×m̄ itself exhibits a structure with
2d+ 1 diagonals, as shown in Section 3.3.

In the matrix-based case this results in an upper bound of (2d+1)m̄ coefficient calculations
and memory stores, which gives a total of (2+3d+2d)m̄ coefficient calculations. The same
amount of memory is required for intermediate results, with an additional m̄ coefficients
for storing the deformed template image T (ŷ), as discussed later on. In total, this amounts
to 20m̄ for d = 3 and 13m̄ coefficients for d = 2, see also Table 3.3.

For the matrix-free case, the gradient computations are given in (3.37). For every point
i, the values of rNGF

ik
and ρ̂ik are required at the indices k ∈ K, i.e., 2d + 1 locations.

If, as suggested before for the SSD Gauss-Newton Hessian computations, the directional
derivatives for l = 0, . . . , d−1 are computed together, this also results in (2d+1)m̄ matrix

element calculations and thus no recalculations regarding the matrix ∂rNGF

∂T
. However,

the values rNGF
ik

in (3.37) also need to be computed (2d+ 1)m̄ times instead of m̄ times,
leading to recalculations.

Further recalculations become visible when examining the computation of the individual
matrix elements ρ̂ik more closely. As defined in (3.34) and (3.32), the computation of ρ̂ik
for k ∈ K requires the computation of finite difference gradient approximations at 2d+ 1
points. Each of these finite difference gradient approximations requires an evaluation
of the image at all neighboring points, see (2.19), such that, with duplicates removed,
2d2+2d+1 neighborhood evaluations are required for each final gradient element in (3.37),

72

3.7. Algorithm analysis

resulting in at most (2d2+2d+1)m̄ neighborhood evaluations overall. Given that there are
only m̄ points in the image grid, this amounts to an additional recalculation of (2d2+2d)m̄
image values. While for the reference image simply existing values need to be loaded, for
the deformed template image T (ŷ) this involves expensive image interpolation. Therefore,
as a trade-off between recalculations and memory-usage, the deformed template image
T (ŷ) can be precomputed. In this case the recalculations will vanish, but instead m̄
image values need to be stored to memory.

A similar trade-off can be performed for the deformation on the image grid ŷ. For eval-
uating the deformed template image as discussed above, 2d2 + 2d+ 1 evaluations of the
deformation ŷ are required. Given the matrix-based case, which needed 2dm̄ coefficient
evaluations for the grid conversion matrix, i.e., 2d coefficient computations for the interpo-
lation of a single point, this results in a total of 2d(2d2+2d+1)m̄ coefficient computations.
In contrast, if the grid is precomputed, an additional amount of memory for the dm̄ values
of ŷ is required, but the computational overhead is largely reduced. However, instead
of 2dm̄ coefficient computations for the grid conversion, 2 · 2dm̄ computations are still
needed, since the forward and the transposed grid conversion operator must be computed
in two separate steps as described in Section 3.5.3. Furthermore, the resulting gradient
on the image grid ∂D

∂P
needs to be stored before the second grid conversion step. In total,

computing the grid conversion in separate steps and precomputing the deformed template
image T (ŷ) requires to store (2d + 1)m̄ coefficients to memory, but reduces the number
of calculations by a factor of 7.11 for d = 3 and a factor of 3.67 for d = 2, as can be seen
in the rightmost column of Table 3.3.

While there additionally exist recalculations for rNGF
i in (3.37) as discussed above, it is

not beneficial to perform precomputations here, since most parts for computing rNGF
i are

also required for ρ̂i in ∂rNGF

∂T
, as can be seen when comparing (3.32) and (3.19). Thus,

rNGF
i can be computed as a by-product of the calculations of ∂rNGF

∂T
at little additional

cost such that a precomputation of rNGF would not result in any benefit.

The discussed alternatives, their computational effort and memory stores in comparison
with the matrix-based approach are summarized in Table 3.3.

Hessian approximation. For the matrix-based NGF Gauss-Newton Hessian approx-
imation, the same observations are valid as in the SSD case. For the NGF, the matrix-
based Gauss-Newton approximation of the Hessian (3.4) is

HNGF = 2h̄
∂P

∂y

⊤ ∂T

∂P

⊤∂rNGF

∂T

⊤
∂rNGF

∂T

∂T

∂P

∂P

∂y
.

Since HNGF is created from first-order derivatives, a matrix-based implementation re-
quires no additional matrix coefficients to be computed or stored, compared to evaluation
of the gradient. If the Hessian approximation as in (3.38) is explicitly stored, since the

matrix ∂rNGF

∂T

⊤
∂rNGF

∂T
contains at most |N | = 2d2 + 2d+ 1 non-zero elements in each col-

umn (cf. Section 3.3.2), additional memory for (2d2 + 2d+ 1)d2m̄ coefficients is required,
see also Figure 3.5.

The matrix-free Hessian-vector multiplication for the NGF is given in (3.45). As shown in
Figure 3.5, the main computational effort results from the matrix-matrix multiplication

73

3. Matrix-free methods for efficient derivative computations

Method matrix-based matrix-free gradient matrix-free gradient
with precomputations

(calc./stores) calc. stores calc. stores

∂ψ
∂rNGF m̄ (2d+ 1)m̄ 0 (2d+ 1)m̄ 0
∂rNGF

∂T
(2d+ 1)m̄ (2d+ 1)m̄ 0 (2d+ 1)m̄ 0

∂T
∂P

dm̄ dm̄ 0 dm̄ 0
∂P
∂y
, ŷ 2dm̄ 2d(2d2 + 2d+ 1)m̄ 0 2 · 2dm̄ 2dm̄

T (ŷ) m̄ (2d2 + 2d+ 1)m̄ 0 m̄ m̄

total d = 2 13m̄ 77m̄ 0 21m̄ 5m̄
total d = 3 20m̄ 242m̄ 0 34m̄ 7m̄

Table 3.3.: NGF derivative matrix element calculations and memory requirements for
the matrix-based approach and matrix-free gradient. For the matrix-based
approach, all computed values are always stored to memory, while for the
matrix-free case, two approaches are shown: Third column: A fully matrix-free
version, where everything is computed on the fly and the memory requirements
are reduced from O(m̄) to O(1). Fourth column: Specific parts are selectively
precomputed. By precomputing, the number of recalculations can be reduced
at the cost of moderate extra memory requirements for intermediate results.

∂rNGF

∂T

⊤
∂rNGF

∂T
. As discussed in Section 3.3.2, each column of the resulting matrix has

at most |N | = 2d2 + 2d + 1 non-zero entries. To compute all non-zero elements in one

column, a maximum of |M|2 = (2d+1)2 different elements from ∂rNGF

∂T
, i.e., coefficients ρ̂i

in (3.44) is required (Table 3.1). If again the result elements for l = 0, . . . , d− 1 in (3.45)
are computed simultaneously, this results in (2d + 1)2m̄ matrix element computations.
Additionally, each non-zero element is multiplied by image derivatives ∂Ti

∂Pj
, which are

therefore required for 2d2 + 2d + 1 points per column, each point with d directional
derivatives, resulting in (2d2 + 2d+ 1)dm̄ coefficient computations for ∂T

∂P
(Table 3.4).

Observations similar to the gradient can be made for recalculations of the deformed
template T (ŷ) and the deformation on the image grid ŷ. Identical to the gradient, the
deformed template image T (ŷ) needs to be evaluated at (2d2+2d+1) points for each result
element, which results in (2d2 +2d+1)m̄ image interpolation calculations. This overhead
can be eliminated by precomputing T (ŷ), which requires to store m̄ values to memory.
However, as described above, the image derivatives are also needed at these locations.
Since the interpolated image value and the corresponding derivatives can efficiently be
computed together, the benefit from precomputing T (ŷ) for the Hessian is therefore
lower than for the gradient since the derivatives need to be computed anyway, see also
Section 5.2.

Similar to the gradient, the deformation on the image grid ŷ is also required at (2d2 +
2d+ 1) points for each result element, thus again resulting in a total of 2d(2d2 + 2d+ 1)m̄
interpolation coefficient computations. When precomputing ŷ, besides 2 · 2dm̄ coefficient

74

3.7. Algorithm analysis

Method matrix-free Hessian matrix-free Hessian
with precomputations

calc. stores calc. stores

∂rNGF

∂T
(2d+ 1)2m̄ 0 (2d+ 1)2m̄ 0

∂T
∂P

(2d2 + 2d+ 1)dm̄ 0 (2d2 + 2d+ 1)dm̄ 0
∂P
∂y
, ŷ, p̂, q̂ 2d(2d2 + 2d+ 1)m̄ 0 2 · 2dm̄ 3dm̄

T (ŷ) (2d2 + 2d+ 1)m̄ 0 m̄ m̄

total d = 2 116m̄ 0 60m̄ 7m̄
total d = 3 349m̄ 0 141m̄ 10m̄

Table 3.4.: NGF derivative matrix element calculations and memory requirements for
the matrix-free Gauss-Newton Hessian-vector multiplication. Similar to the
gradient computation in Table 3.3, two versions are shown. In the second
column no intermediate storage is needed, which comes at the cost of several
recalculations. In the third column, some values are selectively precomputed,
reducing the number of precomputations at the cost of additional storage
requirements.

computations for the separate grid conversion steps, dm̄ values need to be stored to
memory. As shown in Figure 3.5 for the Hessian-vector multiplication, the vector p̂ and
the result ĤNGFp̂ = q̂ need to be stored as well, such that further 2dm̄ values need to
be stored to memory (Table 3.4). While requiring total additional memory for (3d+ 1)m̄
values, the precomputations result in a reduction of computations by a factor of 2.48 for
d = 3 and a factor of 1.93 for d = 2.

Summary. In comparison to the SSD, the matrix-free computation of the NGF gradient
and Hessian-vector multiplication requires an additional overhead of up to 30 times more
matrix-element calculations. While the matrix-based approach requires more memory
than the SSD case for additionally storing ∂rNGF

∂T
, the fully matrix-free approach still does

not require memory for intermediate results and reduces the memory requirements from
O(m̄) to O(1).

If desired, the number of recalculations can be reduced by precomputing the deformed
template image and the deformation on the image grid (Table 3.3 and Table 3.4). At the
cost of a moderate memory use, this can potentially improve the overall runtime and is
evaluated in Section 5.2.

3.7.3. Regularizer

As described in Section 3.4, the matrix-based curvature regularizer can be computed by
using a single matrix operator A, containing weights from the finite difference stencil de-
rived from (2.22). Since it operates directly on the deformation grid y, no grid conversion
is involved.

75

3. Matrix-free methods for efficient derivative computations

The matrix A ∈ R
dm̄y×dm̄y

exhibits a block-diagonal structure of d identical blocks,
similar to the matrix P as discussed before. Following (2.22), it can be seen that for the
computation of the Laplacian at each point, the point itself and all neighboring values
are required, which results in 2d+1 elements per row in A. Assuming that the d identical
blocks are only stored once, this results in (2d + 1)m̄y matrix element calculations and
memory stores.

For the matrix-based curvature gradient as given in (3.46) as

∇S(y) = 2h̄yA⊤Au,

the computation of A⊤A is required. As shown in (3.48), this is equivalent to applying the
discretized Laplacian operator (2.22) twice, which can also directly be used for computing
a Hessian-vector multiplication as shown in (3.49).

By recursively substituting the discretized Laplacian operator in (2.22), it can be seen
that for the computation all second-order neighbors of each point are needed. Similar to
the NGF finite difference computations in the previous section, this results in an upper
bound of 2d2 + 2d + 1 diagonals in A⊤A and thus (2d2 + 2d + 1)m̄y matrix element
calculations and stores for the matrix-based approach.

Since the matrix elements result from the finite difference stencil (2.22), they are highly
redundant and can very easily be computed on-the-fly in a matrix-free computation.

When computing a fully matrix-free version of the curvature regularizer as in (3.48), as
discussed above, each evaluation of the outer Laplacian requires 2d + 1 evaluations of
the inner Laplacian function, which results in a total of (2d + 1)m̄y instead of m̄y inner
Laplacian evaluations. For the matrix-based case, this is equivalent to first computing
the matrix A⊤A and then applying it to u. Alternatively, A and A⊤ can also be applied
subsequently. However, in the matrix-free case this requires an intermediate storage of
size dm̄y for the precomputation of Au, see Table 3.5, reducing the number of element
calculations by a factor of 1.79 for d = 3 and 1.30 for d = 2.

3.7.4. Rigid and affine deformation model

In the affine deformation model, while the components of the distance measure derivative
computations are largely identical, the additional function ŷ : Rd

2+d → R
dm̄ requires a

different computation scheme, as discussed in Section 3.6. In this scheme, an increment
for all d2 + d gradient elements is computed in each parallel task and the final gradient
is obtained by a sum of all these increment vectors. This is in contrast to the deformable
case, where a complete, single gradient element is computed in each parallel task.

Sum of squared differences. A matrix-based computation for the affine distance
measure gradient is given in (3.57) as

∇D(w) =

(
∂ψ

∂r

∂r

∂T

∂T

∂ŷ

∂ŷ

∂w

)⊤

∈ R
(d2+d)×1.

76

3.7. Algorithm analysis

Method matrix-based matrix-free matrix-free
with precomputations

(calc./stores) calc. stores calc. stores

A⊤Au (2d2 + 2d+ 1)m̄y∗ (2d2 + 2d+ 1)m̄y 0 2(2d+ 1)m̄y dm̄y

total d = 2 13m̄y∗ 13m̄y 0 10m̄y 2m̄y

total d = 3 25m̄y∗ 25m̄y 0 14m̄y 3m̄y

Table 3.5.: Curvature regularizer derivative matrix element calculations and memory re-
quirements for the matrix-based and matrix-free approach. The highly re-
dundant coefficients can be efficiently computed on-the-fly for the matrix-free
approach. By storing the result of Au, the number of calculations can be
reduced, at the cost of additional intermediate storage.
∗When computing A⊤(Ay) instead of (A⊤A)y, only (2d + 1)m̄y calculations
and stores are needed.

As before, ∂ψ
∂r

requires the computation of m̄ elements, ∂rSSD

∂T
is the identity and ∂T

∂ŷ

requires dm̄ matrix-element computations. Additionally, as shown in (3.60), the matrix
∂ŷ

∂w
∈ R

dm̄×d(d+1) has block-diagonal structure with the dense matrix W ∈ R
m̄×(d+1) d-

times on the diagonal (3.59). As the last column of W only consists of ones it can be
neglected, resulting in additional dm̄ element calculations.

As can be seen from (3.62) and (3.63), for the computation of a single increment vector

of the matrix-free SSD distance measure
(

∇DSSD
)i

the following factors are needed: the

residual (Ti − Ri), all directional image derivatives
(
∂Ti
∂ŷi
, . . . , ∂Ti

∂ŷi+(d−1)m̄

)

and the image

grid coordinates at point xi. Since for
(

∇DSSD
)i

they are all only needed at the current

index i, no recalculations are involved for computing the final gradient (Table 3.6).

Since the affine Hessian can directly be computed from already-calculated items for the
gradient, no additional calculations are needed for both approaches.

Normalized gradient fields. For the NGF, similar to the deformable case, there are
recalculations involved when computing the matrix-free affine derivatives. Compared to
the deformable case, however, the recalculations are now required for different compo-
nents, as will be described in the following.

First, we will again analyze the matrix-based case. In comparison to the SSD, three of
the four matrices in (3.57) remain unchanged. Furthermore, identical to the deformable

case ∂rNGF

∂T
∈ R

m̄×m̄ is no longer the identity, but exhibits a sparse structure with 2d+ 1
diagonals as described in Section 3.3, see also Table 3.7.

The matrix-free computation for the affine NGF is described in (3.68). As can be seen,
the residual rNGF

i originating from ∂ψ
∂rNGF is only required once for every increment vector

(

∇DNGF
)i

, resulting in m̄ element calculations. This is in contrast to the deformable

matrix-free computations, where (2d+ 1)m̄ element calculations were required for ∂ψ
∂rNGF ,

77

3. Matrix-free methods for efficient derivative computations

Method matrix-based matrix-free

(calc./stores) calc. stores

∂ψ
∂r

m̄ m̄ 0
∂T
∂ŷ

dm̄ dm̄ 0
∂ŷ

∂w
dm̄ dm̄ 0

total d = 2 5m̄ 5m̄ 0
total d = 3 7m̄ 7m̄ 0

Table 3.6.: SSD affine derivative matrix element calculations and memory requirements.
While for the matrix-based approach, all computed values are always stored
to memory, for the matrix-free approach everything is computed on-the-fly
without the need for intermediate storage. No recalculations are needed for the
matrix-free approach, so that a significant speedup can be expected. Since the
Hessian can efficiently be computed together with the gradient, no additional
calculations are needed for both approaches.

see Table 3.3. Instead, the image derivatives, which only required dm matrix element
calculations in the deformable case, now involve recalculations. Considering (3.68), for

every increment vector
(

∇DNGF
)i

, the image derivatives and also elements from ∂ŷ

∂w
are

now needed for 2d + 1 points j ∈ K, which results in (2d + 1)m̄ element calculations

each and thus recalculations, see Table 3.7. Matrix elements from ∂rNGF

∂T
are required at

2d + 1 points, which corresponds to the number of diagonals and thus no recalculations
are needed in this case.

3.7.5. Summary and conclusion

In Section 3.7.1 it was found that for the SSD distance measure the same amount of
matrix element computations is needed for the matrix-based and matrix-free approach.
However, since the matrix-free approach does not require to store intermediate results, a
significant speed up can be expected and the memory requirements are largely reduced.

For the NGF distance measure in Section 3.7.2 and curvature regularizer in Section 3.7.3
there is a certain computational overhead involved. While the matrix-free computations
can still be performed without any intermediate storage, additional recalculations need
to be performed. Therefore, we presented alternatives with selective precomputations,
which reduce the number of recalculations at the cost of a moderate memory usage and
will be evaluated in the next section.

For all of the analyzed matrix-free derivative computations, memory usage was reduced
from O(m̄) to O(1) for the derivatives using fully matrix-free versions. Besides largely
reduced memory consumption, as will be shown in the next chapter, this also results in an
additional reduction of runtime, since memory stores are often significantly slower than
floating point operations.

78

3.8. Implementation details

Method matrix-based matrix-free

(calc./stores) calc. stores

∂ψ
∂rNGF m̄ m̄ 0
∂rNGF

∂T
(2d+ 1)m̄ (2d+ 1)m̄ 0

∂T
∂ŷ

dm̄ (2d+ 1)dm̄ 0
∂ŷ

∂w
dm̄ (2d+ 1)dm̄ 0

total d = 2 10m̄ 26m̄ 0
total d = 3 14m̄ 50m̄ 0

Table 3.7.: NGF affine derivative matrix element calculations and memory requirements.
In comparison to the deformable deformation model in Table 3.3, recalcula-
tions of the image derivatives ∂T

∂ŷ
are required instead of ∂ψ

∂rNGF .

The general concepts for deriving matrix-free computations can be applied to use cases
other than SSD, NGF and curvature regularization. Considering the general distance
measure formulation D = ψ(r(T (P (y)))), the image interpolation T and grid conversion
operator P are independent of the actual distance measure, so that matrix-free formula-
tions of their derivatives can be reused for other image distances.

Of the remaining parts, the main component is the Jacobian ∂r
∂T

. While ∂rSSD

∂T
= I for SSD,

for NGF the sparse structure of ∂r
NGF

∂T
favors the derivation of closed-form expressions for

reduced runtimes and memory usage. Therefore, in order to derive efficient matrix-free
computations, it is beneficial if

• derivative components exhibit a sparse structure with a fixed pattern, and

• result elements have no interdependencies,

enabling fully parallel, on-the-fly computations.

3.8. Implementation details

Achieving optimal performance requires fine-tuning the implementation to the charac-
teristics of the platform and programming language. Additionally, different forms of
parallelism can be utilized, ranging from multi-core computations and vectorized instruc-
tions on CPU to many-core parallelism using general purpose computation on graphics
processing units (GPGPU).

Implementation details for matrix-free algorithms on standard CPUs will be described in
Section 3.8.1, while specialized platforms such as graphics processing units (GPUs) and
digital signal processors (DSPs) will be considered in Section 3.8.2 and Section 3.8.3.

79

3. Matrix-free methods for efficient derivative computations

1: fval← 0
2: for k̂ in [0,mz − 1] do

3: for ĵ in [0,my − 1] do

4: for î in [0,mx − 1] do

5: i← î+mxĵ +mxmyk̂ ⊲ Compute linear index
6: i±x, i±y, i±z ← as in (2.16) – (2.18) ⊲ Compute neighbor indices
7: [dTx, dTy, dTz]← imageDerivative(Ti) ⊲ Compute image derivative
8:

9: r← [rNGF
i−z

, rNGF
i−y

, rNGF
i−x

, rNGF
i , rNGF

i+x
, rNGF
i+y

, rNGF
i+z

] ⊲ rNGF
i defined in (3.22)

10: fval← fval + rNGF
i · rNGF

i ⊲ Accumulate function value
11: dr← [ρ̂i−z(z), ρ̂i−y(y), ρ̂i−x(x), ρ̂i(0), ρ̂i+x(−x), ρ̂i+y(−y), ρ̂i+z(−z)]
12: ⊲ ρ̂i defined in (3.34)
13: drSum← −2h̄ (r[0]dr[0] + r[1]dr[1] + r[2]dr[2] + r[3]dr[3]

14: + r[4]dr[4] + r[5]dr[5] + r[6]dr[6])
15: ⊲ Compute sum of (3.37)
16: grad[i]← drSum · dTx

17: grad[i+ m̄]← drSum · dTy

18: grad[i+ 2m̄]← drSum · dTz

19: end for

20: end for

21: end for

22: fval = h̄ (m̄− fval) ⊲ Compute final function value, see (2.13)

Algorithm 3.1: Pseudocode for the matrix-free NGF gradient (grad) and function value
(fval) computation as in (3.37) for d = 3 for deformable registration. The
algorithm can be fully parallelized over all loop iterations with a reduction
for the function value fval. Figure modified from [KRDL18*].

3.8.1. Matrix-free computations on the CPU

Despite the recent popularity of GPU-accelerated computations, the main target platform
for medical image registration algorithms is still the standard PC workstation. In order
to utilize the full computational power, thread-level parallelization is indispensable on
current multi-core CPUs. Furthermore, every computational core is able to utilize data
level parallelism via single instruction, multiple data (SIMD) computations. These vector
instructions perform the same operation on several values concurrently and can further
improve algorithm runtime.

Implementation. In this work, we implemented all matrix-free CPU code in C++.
Two main components of the algorithm that have been discussed in the previous sections
are the distance measure gradient and Hessian-vector multiplication. Especially for the
NGF, these components involve numerous different computations. In order simplify the
translation from mathematical formulation to implementation, we provide pseudocode
for the deformable NGF gradient and Hessian-vector multiplication for d = 3 in Algo-
rithm 3.1 and Algorithm 3.2, including references to the corresponding definitions in the
previous sections. Related computations for d = 2 as well as for the SSD as described in

80

3.8. Implementation details

1: N← [−2m1m2,−m1m2 −m1,−m1m2 − 1,−m1m2,−m1m2 + 1,−m1m2 +m1,−2m1,−m1 − 1,−m1,

2: −m1 + 1,−2,−1, 0, 1, 2,m1 − 1,m1,m1 + 1, 2m1,m1m2 −m1,m1m2 − 1,m1m2,m1m2 + 1

3: m1m2 +m1, 2m1m2] ⊲ Initialize 25 indices in N, see Table 3.1
4: q← 0
5: for k̂ in [0,mz − 1] do

6: for ĵ in [0,my − 1] do

7: for î in [0,mx − 1] do

8: i← î+mxĵ +mxmyk̂ ⊲ Compute linear index
9: i±x, i±y, i±z ← as in (2.16) – (2.18) ⊲ Compute neighbor indices

10: [dTx, dTy, dTz]← imageDerivative(Ti+N)
11: ⊲ Compute image derivatives at 25 points
12: for k in [0, 24] do ⊲ Compute 25 values of dr⊤dr, see (3.45)
13: drdr← 0
14:

15: for (̃i, j̃) in N−1(N[k]) do

16: ⊲ Compute 49 values of ρ̂i, see (3.44) and Table 3.1
17: drdr ← drdr + ρ̂i+ĩ(−ĩ) · ρ̂i+N[k]+j̃(−j̃)
18: end for

19:

20: q[i]← q[i] + dTx[12] · drdr · dTx[k] · p̂i+N[k]

21: q[i+ m̄]← q[i+ m̄] + dTy[12] · drdr · dTy[k] · p̂i+N[k]+m̄

22: q[i+ 2m̄]← q[i+ 2m̄] + dTz[12] · drdr · dTz[k] · p̂i+N[k]+2m̄

23: ⊲ Element [12] corresponds to the derivative at index i+ N[12] = i
24: end for

25: end for

26: end for

27: end for

Algorithm 3.2: Pseudocode for the matrix-free NGF Hessian-vector multiplication Ĥp̂ =
q̂ for d = 3 for deformable registration as in (3.45). The algorithm can
be fully parallelized over all loop iterations, computing three elements of
the result simultaneously in each thread. For ease of presentation the
inner computations involving k and (̃i, j̃) have been formulated as loops.
These are fully unrolled in the actual implementation. Figure modified
from [KRDL18*].

Section 3.2 can be derived by simplifying these algorithms. For simplicity, implementa-
tions without grid conversion are shown, which then needs to be performed in separate
steps, as discussed in Section 3.5.3. In Algorithm 3.2, for ease of presentation the inner
computations involving k and (j̃, j̃) are shown as a loop, but are explicitly implemented
(unrolled) in the actual implementation. Additionally, as shown in Algorithm 3.2, to
reduce the number of recalculations, three elements of the result vector are computed in
each inner loop iteration of the Hessian-vector multiplication.

Parallelization. In Algorithm 3.1 as well as Algorithm 3.2, every loop iteration can be
computed in an individual thread, resulting in a maximum of m̄ concurrent threads. For

81

3. Matrix-free methods for efficient derivative computations

parallelization, we utilized the OpenMP framework [DM98], which enables parallelization
by adding compiler directives to the code. In order to parallelize individual loop iterations
the #pragma omp for statement was used.

As utilization of individual threads comes with a certain overhead, a suitable balance
between the amount of work that is performed by each thread and the total number
of threads has to be found. For the CPU code, the parallelization was performed for
the outer loop, iterating over k̂, resulting in mz threads for d = 3 (ĵ with my threads
for d = 2). Since mz (or my for d = 2) is in most cases still larger than the typical
number of cores on the CPU, this ensures sufficient computational load for each core and
reduces thread management overhead. For parallelization on GPU a more fine-grained
parallelization strategy is used (Section 3.8.2).

Additionally, in Algorithm 3.1 the function value is accumulated over all loop iterations.
To achieve this without write conflicts from different threads, we used the OpenMP
#pragma omp for reduction(+: fval) statement. However, in this case the small
number of mz (my for d = 2) individual results of all threads could also easily be stored
separately and a reduction could be performed manually afterwards.

For the affine deformation model as described in Section 3.6, additional reduction vari-
ables are needed. As can be seen in (3.63) for SSD and (3.69) for NGF, all d2 + d
elements of the gradient are updated in each inner loop iteration, thus d2 + d reduction
variables are required. Additionally, the affine Hessian computations in (3.66) and (3.72)
update a matrix with (d2 + d)2 values in each iteration. Exploiting the symmetry of the

Hessian, additional (d2+d)(d2+d+1)
2 reduction variables are required here, which we also

implemented using the OpenMP reduction statement.

Vectorization. In addition to multiple computational cores, most modern CPUs also
feature additional vectorized instructions. These single instruction, multiple data (SIMD)
instructions can perform the same operation simultaneously on different data. On the x86
architecture, the recent version of SIMD instructions is called Advanced Vector Extensions
(AVX) [Lom11] and provides registers with a size of 256 bits for computations. Using
typical double values with a size of 64 bits (8 bytes), each operation can be performed
on four values simultaneously. To utilize AVX in our C++ code, we used the Intel AVX
Intrinsics [Lom11], which enable a manual vectorization of the code using specialized
function calls for SIMD operations.

Several ways of vectorizing an algorithm with AVX exist. For example, each function
can be optimized individually by grouping identical arithmetic operations together and
performing them with SIMD operations. In contrast to this, due to the favorable structure
of the matrix-free computations, we were able to replace all operations in the inner loop of
Algorithm 3.1 and Algorithm 3.2 by SIMD operations. This means that four indices î are
processed simultaneously, such that the inner loop can be incremented by four elements
at a time. For cases where mx is not divisible by four, special boundary handling is
required: The remaining 1-3 iterations are simply performed by using the non-vectorized
code.

82

3.8. Implementation details

3.8.2. Graphics processing units

The matrix-free algorithm exhibits favorable characteristics for a GPU implementation:
parallelizability and low memory requirements. In comparison to the CPU, current GPUs
exhibit a many-core architecture with a much higher amount (i.e., thousands) of paral-
lel processing units. In order to exploit this architecture, excellent parallelizability is
mandatory. Additionally, common GPUs are implemented as separate expansion cards
so that all data has to be copied to the GPU device before computation. As GPU mem-
ory is limited and cannot be easily upgraded, memory requirements can become a serious
concern.

We implemented the matrix-free registration for the rigid and affine deformation model
as well as for deformable registration. The GPU-based matrix-free registration was pre-
sented in the Master’s Thesis [Tra14] and conference paper [TRK+14*] for rigid and
affine registration. In the Master’s Thesis [Mei16], a GPU-based deformable registration
was developed, which is evaluated in Chapter 5.

For utilizing the GPU acceleration capabilities, we relied on the popular NVIDIA Com-
pute Unified Device Architecture (CUDA) C/C++ framework [NVI17]. In the following,
we will discuss how specialized platform features such as different memory areas have
been utilized and give additional implementation details.

Parallelization. The CUDA framework separates two scopes of code execution: device
and host. Host code executes on the CPU. It performs GPU initialization, data transfer
and manages the execution of GPU code. Code that runs on the GPU is called device
code. The device code executes in specialized parallel programs, so-called kernels, which
are launched from host code.

Each kernel is executed in parallel on a number of threads, which can be specified in its
function call. When executing on the GPU, multiple threads are additionally grouped
into thread blocks, which will become important when dealing with the memory layout in
the next section.

The number of parallel processors, so-called CUDA cores, is significantly larger than the
usual number of cores on a standard CPU. For example, the GeForce GTX980 graphics
card that we used for the evaluation in Chapter 5 features 16 so-called streaming multi-
processors (SMP) with 128 CUDA cores each, resulting in a total of 2048 CUDA cores.
Therefore, we used a different parallelization strategy. As described in Section 3.8.1, par-
allelization on the CPU was restricted to the outer loop, resulting in mz threads for d = 3
(my for d = 2), in order to provide high computational load for each thread and to reduce
initialization overhead. On the GPU, however, there are typically more than mz (my for
d = 2) CUDA cores available. In order to fully utilize the GPU, we therefore performed
a full parallelization for all loops, resulting in m̄ individual threads that are distributed
onto the CUDA cores. With this, we ensure a sufficient utilization of the GPU.

Memory layout. Before computations in device code can be performed, all required
memory contents must be transferred from the host main memory to the device global
memory. On a standard PC workstation, these transfers are performed over the PCIe 3.0

83

3. Matrix-free methods for efficient derivative computations

bus with a theoretical maximum bandwidth of ≈ 16 GB s−1, resulting in a measured per-
formance of ≈ 12 GB s−1. Compared to a theoretical maximum bandwidth of 224 GB s−1

for device-to-device transfers on the GeForce GTX980, transfers from and to the host are
significantly slower and can thus become a bottleneck.

Therefore, all steps of the registration algorithm were implemented in GPU code, which
minimizes the required host-to-device transfers. The reference image R and template
image T are transferred to the GPU only once at the beginning of the algorithm. The
multi-level image pyramid is created directly on the GPU and remains in GPU global
memory. All further computations are performed in GPU memory, so that only the final
registration result needs to be copied back to the host memory.

Besides the GPU global device memory, further specialized memory areas exist, which
were exploited in our implementation, see Figure 3.8. These memory areas provide faster
access times than global memory, but have limited scope or size. The first is constant
memory. Constant memory is limited to a size of 64 kB and read-only, but can be
cached and read from all threads. Thus, it is ideal for small values that are constant but
accessed frequently. Therefore, we stored the values m,my, h, hy, m̄, m̄yh̄, h̄y in constant
memory.

Another specialized memory area is the shared memory. The shared memory has a limited
size of 96 kB per multiprocessor, but is located on-chip and thus very fast. However, it can
only be accessed from within the same thread block. Therefore, for deformable registra-
tion, we performed the reductions for the function value, also discussed in Section 3.8.1,
in shared memory, using an efficient reduction scheme described in [Har07]. Addition-
ally, the affine registration relies heavily on shared-memory use, since also gradient and
Hessian-vector computations contain reductions (Section 3.6).

Image interpolation. Another specialized memory area is the texture memory. Tex-
ture memory provides caching and optimized memory patterns for localized access in
2D or 3D and is thus faster than global memory. Additionally, texture memory sup-
ports hardware-based linear interpolation, including automatic boundary value handling.
Thus, texture memory appears ideal for the the reference image R and especially the
template image T (Section 2.4.3).

However, as described in [Mei16], the interpolation weights for hardware-based linear
interpolation are stored in 9-bit fixed point format [NVI17, §G.2]. This leads to com-
paratively large errors in the order of 10−3 in comparison to interpolation on the CPU,
which results in erroneous image gradient computations and caused the optimization to
fail for deformable registration with NGF. Therefore, we relied on manual interpolation
on the GPU with full precision.

Grid conversion. The transposed grid conversion operator P⊤ŷ was implemented
on the CPU using a red-black scheme in order to avoid write conflicts and to enable
efficient parallelization (Section 3.5.2, Figure 3.7). However, in this scheme parallelization
can only be performed for the outer loop, which does not fully utilize all CUDA cores,
as discussed earlier. Therefore, for the GPU implementation of the transposed grid
conversion operator, we used the specialized atomic operations [NVI17, §B.12], specifically
the atomicAdd function. Atomic operations enable write access to global and shared

84

3.8. Implementation details

Figure 3.8.: CUDA hardware model, including different memory areas. While the global
device memory is large but comparatively slow, constant memory and shared
memory are faster but with small size and are read-only or only available
within the same thread block, respectively. Image modified from [NVI09,
§4.1].

memory without write conflicts and allow for a fast computation of the transposed grid
conversion operator without the red-black scheme. Note that while atomic operations
also exist on the CPU with OpenMP, we found that these operations are significantly
slower than the red-black scheme in this case.

3.8.3. Digital signal processors

A different interesting platform for accelerating image registration are so-called digital
signal processors. In comparison to CPUs and GPUs, these are specialized processors,
which are optimized for performing algorithmic calculations while exhibiting a low power
consumption and are therefore often utilized in embedded applications. The recent avail-
ability of multi-core DSP processors and the special constraints of the embedded platform
make DSPs an attractive target for a matrix-free registration algorithm.

We presented and implemented a prototype of DSP-based matrix-free registration in
[BKR+14*]. In addition to multi-core DSPs, this prototype includes a distributed com-
puting concept with four DSP processors connected over a local area network.

This unique setup requires additional extensions to the algorithm in order to efficiently
utilize the distributed DSP setup, which will be presented exemplarily in the following.
More details on the setup and implementation can be found in [BKR+14*] as well as in
the Bachelor’s Thesis [Ber12].

85

3. Matrix-free methods for efficient derivative computations

Registration framework. For the implementation of the DSP-based matrix-free reg-
istration, a rigid deformation model in 2D was considered. In practice, rigid deformations
are often required when pre-aligning images before a deformable registration or, e.g., for
comparison of similar objects for quality control. We utilized the SSD distance mea-
sure, which is suitable for mono-modal registration. In combination with 2D images,
this registration type is often required for registration of camera images in industrial
manufacturing lines or surveillance scenarios.

As described in Section 3.6, in order to limit the affine deformation model to rigid motion
(rotation and translation only), the parameters w in the affine distance measure D(ŷ(w))
from (3.55) are replaced by a function

A(θ) : Rϑ → R
d2+d.

For d = 2, we set ϑ = 3 with θ := (α, tx, ty) ∈ R
3, where α indicates rotation angle and

tx, ty are translation parameters. The rigid deformation model results in the optimization
problem

min
θ∈R3

D(ŷ(A(θ))),

with

A(θ) := (cos(α), sin(α),− sin(α), cos(α), tx, ty) ,

representing a rotation matrix with additional translation components.

From this, matrix-free derivatives can be easily computed analogously to Section 3.6.1,
see [BKR+14*] for details. An interactive live-demo of this matrix-free rigid registration
algorithm in 2D, running in a web-browser on the local CPU can be found at http:

//imaging.live/rigid-image-registration.

Distribution of image data. As a major difference to the previously presented ap-
proaches, the distributed setup requires an additional strategy for data handling. In
[BKR+14*], we utilized a setup of four independent processors DSP1, . . . ,DSP4 con-
nected over a local area network. Since each of the processors has its own private RAM,
initially the image data needs to be transferred. For parallelization, the discretized image
grid x on the reference image domain ΩR is split into four equal squares, each containing
the image grid points x1, . . . ,x4, such that DSPk computes the function value and deriva-
tive calculations for the image grid points xk, k = 1, . . . , 4. Besides the benefit of parallel
computation, this also reduces the amount of image data that needs to be transferred to
the DSPs.

However, while for the reference image R the image data that needs to be transfered to
DSPk is equal to the pixels located at xk, due to the transformation, additional image
data is required for computing the deformed template image T k(θ) := T (ŷk(A(θ))),
where ŷk is the transformed image grid xk, depending on the transformation parameters
θ, analogously to (3.54).

Without any further assumptions, the full template image would need to be trans-
ferred to each DSP. Therefore, in order to limit the amount of transferred data, worst-
case transformation parameters θmax = (αmax, tmax

x , tmax
y) are introduced. From these

86

http://imaging.live/rigid-image-registration
http://imaging.live/rigid-image-registration

3.8. Implementation details

ŷ1(A(−θmax))

ŷ1(A(θmax))

(a)

DSP4

DSP2DSP1

DSP3

(b)

Figure 3.9.: Distribution of image data to four DSPs, (a): The maximum image area
of T (white circles) to be transferred to each DSP (solid lines) is computed
by dividing T into four parts (dashed lines) and applying worst case trans-
formation parameters ±θmax to each of them; shown exemplarily for DSP1,
(b): Final image data of T that is transferred to each DSP. Areas outside
of T are not transferred, but inserted by padding the out-of-bounds value
during transfer. Both strategies minimize the amount of image data that is
transferred and thus decrease total runtime.

worst-case parameters, all permutations within −θmax and θmax are sampled in Θ :=
[−αmax, αmax]× [−tmax

x , tmax
x]× [−tmax

y , tmax
y]. The maximum area of T , that needs to be

transferred for DSPk is then determined by the rectangle spanned by the two points

ŷkmin := min
θ∈Θ

ŷk(A(θ)) ∈ R
2

ŷkmax := max
θ∈Θ

ŷk(A(θ)) ∈ R
2,

i.e., the component-wise minimum and maximum transformed coordinates that can be
reached by any combination of the worst-case transformation parameters θmax, as shown
in Figure 3.9.

In many applications, the worst case parameters θmax can be determined from the field
of view or physical setup, such that they cannot be exceeded.

Data padding for boundary conditions. As discussed, e.g., in Section 2.4.3, the re-
quired image interpolation for the deformed template image T (ŷ) uses Dirichlet boundary
conditions for values outside of the image domain. In an implementation, these boundary
conditions require conditional statements distinguishing whether valid image data or an
out-of-bounds value has to be used. However, these conditional statements introduce
branch commands into the program.

87

3. Matrix-free methods for efficient derivative computations

In a so-called pipelined processor, such as the DSPs that we used, multiple instructions
are executed in parallel in different stages of a pipeline, increasing computational perfor-
mance. Conditional branches in the instruction sequence however pose so-called pipeline
hazards, which require the instruction pipeline to be rebuilt, and result in performance
losses.

A solution to prevent pipeline hazards in the image interpolation is data padding. The
image data is artificially enlarged at the boundaries with areas that are filled with the
out-of-bounds value. This way, the computation can be performed without conditional
statements and thus without pipeline hazards.

In our DSP setup, the fact that the data needs to be initially copied to each DSP can
be exploited for this. From the previous section, the amount of padding that is required
for each DSP is already known from the worst-case transformation parameters θmax, as
shown in Figure 3.9(b). When copying the image data to each DSP, the data can now
be placed at the correct, padded position in DSP memory, which is pre-initialized with
the out-of-bounds value (typically zero). This way, the amount of transferred memory
remains equal to only the valid image data values, while still achieving padded image
data on the DSPs, that can be computed without pipeline hazards.

3.9. Summary

In this chapter, matrix-free methods for derivative computations of distance measures
and curvature regularization were derived and analyzed. In Section 3.1, we derived ana-
lytical derivatives for gradient and Gauss-Newton Hessian approximations as a product
of Jacobian matrices. These formulations served as a starting point for derivation of
matrix-free computations in the following sections.

In Section 3.2, matrix-free computations were derived for the SSD distance measure.
Both, gradient computations as well as a matrix-free Hessian-vector multiplication were
considered. For both cases, we derived fully closed-form matrix-free expressions that
do not require any intermediate storage and are parallelizable element-wise. In the fol-
lowing Section 3.3, we used these findings to derive matrix-free computations for the
more involved NGF. Similar to the SSD before, we developed matrix-free expressions for
the gradient as well as a Hessian-vector multiplication. Additionally, in Section 3.4 we
determined a matrix-free formulation for the curvature regularizer.

Finally, in Section 3.5 we considered grid-conversion operators for mapping between image
grid and deformation grid. We derived efficient, matrix-free and parallelizable compu-
tation schemes, including a red-black method for computation of the transposed grid
conversion operator. Additionally, methods for directly integrating the grid conversion
into the distance measure computations were discussed. With this, matrix-free versions of
all important components of the objective function derivatives for deformable registration
were derived, allowing for a memory efficient and parallel computation.

Furthermore, in Section 3.6 we analyzed the affine and rigid deformation model. It was
shown that due to the different structure, different methods for deriving a matrix-free

88

3.9. Summary

formulation have to be utilized and corresponding expressions were subsequently derived
for the objective function.

All previously derived matrix-free computations were analyzed from a theoretical point
of view in Section 3.7. Special emphasis was placed on memory usage and algorithm
runtime and it was found that options exist to influence the trade-off between both.
Additionally, comparisons were performed with a matrix-based approach and benefits of
the matrix-free computations in terms of memory usage and possible recalculations were
discussed.

Finally, in Section 3.8 we discussed details on specific implementations of the matrix-
free approach. Starting with a standard CPU implementation, methods of parallelization
were discussed and pseudocode for gradient and Hessian-vector multiplications was given.
Since the derived methods are not limited to a specific architecture, they can additionally
easily be used to exploit the benefits of specialized hardware platforms such as GPUs and
DSPs. These were discussed in the following, giving insights on exploitation of specific
platform characteristics in order to achieve optimal performance.

This concludes the derivation and theoretical analysis of the proposed matrix-free reg-
istration approach. In Chapter 5, its practical performance is evaluated in different
implementations and applications.

89

4 Automatic differentiation

In addition to manually determining the derivatives of the objective function as described
in Chapter 3, automatic approaches to determine analytical derivatives exist [NW06, §8].
An approach that has been routinely used in areas such as optimal control [GW08, §1],
but recently received more attention due to the popularity of “deep learning” techniques,
is automatic differentiation. Also called algorithmic differentiation, these methods are
capable of automatically computing function derivatives only based on the source code of
the function. In contrast to symbolic differentiation, instead of closed-form expressions
of the derivative only numerical values are computed. However, these numerical values
represent the exact derivatives and are not prone to approximation errors such as finite
difference approximations [BPRS18].

In automatic differentiation, derivatives are computed automatically by tracing individ-
ual computational operations during the function evaluation and repeated application
of the chain rule. Apart from implementation of the function itself, this approach does
not require any further mathematical derivations from the user. Therefore, automatic
differentiation presents an alternative to “manual” methods presented in Chapter 3, elim-
inating the burden of manual derivative computations.

In the following, after a general introduction, we will first present the two basic operation
modes of automatic differentiation in Section 4.2 and Section 4.3. After this, we will
introduce the Theano framework [AAA+16], which implements a special variant of algo-
rithmic differentiation, allowing for easy implementation and fast derivative evaluation.
In Section 4.5, we will then discuss details and pitfalls we encountered while implementing
the registration objective function in Theano. Finally, in Section 4.6, we evaluate different
aspects of the implemented Theano functions such as compilation and evaluation time
on CPU as well as GPU. A comparison with the hand-tuned, manual implementation of
the registration algorithm is postponed to Chapter 5.

4.1. Introduction

For derivative computations, automatic differentiation relies heavily on the chain-rule
of calculus. The original function f(x) is interpreted as a composition of elementary
operations fi(x) with known derivatives, such that

f(x) = f1 ◦ f2 ◦ . . . ◦ fn.

91

4. Automatic differentiation

x1

x2

x3

x4

x5 f(x1, x2)

ex
2
1

x1 cos(x2)

x3 + x4

Figure 4.1.: Computational graph for f(x1, x2) = x1 cos(x2)+ex
2
1 , each node corresponds

to an elementary computational operation. The function value is computed
by traversing the graph from left to right.

The elementary operations can, for example, be basic operations such as addition, sub-
traction, multiplication or division of variables, trigonometric functions such as sin(x) and
cos(x), or the exponential ex. Each operation is then differentiated and the derivatives
are evaluated recursively according to the chain rule.

As an example, consider the function f : R2 → R with

f(x1, x2) = x1 cos(x2) + ex
2
1 . (4.1)

The function f(x1, x2) can be decomposed into elementary operations, complementing
the input variables x1, x2 by intermediate variables

x3 := ex
2
1

x4 := x1 cos(x2) (4.2)

x5 := x3 + x4.

Evaluating these expressions consecutively from top to bottom with initial values x1,
x2 can be interpreted as a computational graph of concatenated operations as shown in
Figure 4.1, obtaining x5 as the final function value output.

Utilizing the chain rule, this structure can now be used to automatically compute numer-
ical values for derivatives with automatic differentiation. Here, two major computation
modes exist, forward and reverse mode computation, which will be discussed in the fol-
lowing. Further comprehensive information on automatic differentiation can be found in
the textbook [GW08].

4.2. Forward mode

The forward mode, also called tangent-linear mode, enables the computation of a direc-
tional derivative ∇f⊤p in the seed direction p ∈ R

k, with k = 2 in the example (4.1).
The computational graph is traversed from inputs to outputs and partial derivatives of
the intermediate functions are concatenated following the chain rule [NW06, §8.2].

92

4.3. Reverse mode

Using the previous example, we calculate the directional derivatives of the intermediate
variables (4.2) with respect to the input variables as

ẋi := ∇x⊤
i p =

(
∂xi
x1

,
∂xi
x2

)

(p1, p2)⊤ =
∂xi
x1

p1 +
∂xi
x2

p2,

and obtain

ẋ3 = 2x1e
x2

1p1

ẋ4 = cos(x2)p1 − x1 sin(x2)p2

ẋ5 = ẋ3 + ẋ4.

With initial values for p and x1, x2, a value for the directional derivative ẋ5 = ∇f⊤p
can be determined by following this expression from top to bottom, corresponding to a
forward direction through the computational graph.

A great benefit of the forward mode is that the computation of the derivative can be
performed simultaneously with the function evaluation. Additionally, for each step only
the values of the parent nodes are required. Thus it is not required to store further
derivative information or to have all derivative information available at the same time.

However, for each directional derivative, one forward pass or “sweep” through the com-
putational graph has to be performed. Using the i-th unit vector ei and p = ei yields the
i-th column of the Jacobian matrix. Thus, for a function f : RN → R

M , N passes are
required for the computation of the full Jacobian. For functions such as the deformable
objective function (2.24) with J(y) : Rdm̄

y
→ R, dm̄y passes are required to compute the

gradient, which is highly inefficient [BPRS18].

Nevertheless, the forward mode can still be utilized in computing higher-order derivatives.
The directional derivative ∇f⊤p, which can be computed in a single pass, corresponds
to a right-hand Jacobian-vector multiplication. This can be utilized when computing the
Hessian-vector multiplication Hp for the Gauss-Newton method, as shown in Figure 3.5.
In this case, instead of applying the forward mode to the function itself, it is applied to
the Jacobian of the objective function, effectively computing Hp. The Jacobian matrix
itself is previously computed by using the reverse mode, described in the next section.
Further details on the automatic Hessian computation are also given in Section 4.5.5.

4.3. Reverse mode

In comparison to the forward mode, the automatic differentiation reverse mode traverses
the computational graph in inverse direction, from the outputs to the inputs. Thus,
the derivative computation cannot be performed simultaneously with the function value
computation and an additional reverse pass through the graph is required. Again, the
reverse mode utilizes the chain rule, but now initially computing partial derivatives at
the outputs and then recursively updating the derivative values in the direction of the

93

4. Automatic differentiation

input variables. For this, the reverse mode adds so-called adjoint variables x̄i to each
node xi in the computational graph, defined as

x̄i :=
∂f

∂xi
=

∑

xj∈children(xi)

∂f

∂xj

∂xj
∂xi

[NW06, §8.2], which again results from the chain rule. In our example from (4.1), starting
with x̄5 = ∂f

∂x5
= 1 since x5 is the output variable, we can now compute

x̄5 =
∂f

∂x5
= 1

x̄4 =
∂f

∂x4
=

∂f

∂x5

∂x5

∂x4
= 1 · 1

x̄3 =
∂f

∂x3
=

∂f

∂x5

∂x5

∂x3
= 1 · 1

x̄2 =
∂f

∂x2
=

∂f

∂x4

∂x4

∂x2
= 1 · (−x1 sin(x2))

x̄1 =
∂f

∂x1
=

∂f

∂x4

∂x4

∂x1
+

∂f

∂x3

∂x3

∂x1
= 1 · cos(x2) + 1 · 2x1e

x2
1 ,

by processing the computations from top to bottom, moving backwards through the
computational graph. The derivatives

∂xj
∂xi

are obtained from (4.2) and their values are

stored in the forward pass for each node. As can be seen, we finally obtain∇f = (x̄1, x̄2)⊤

and thus a value for all elements of the gradient in a single reverse pass. Note, that in an
actual computation, numerical values are substituted for x1, x2 and the derivatives that
are propagated through the graph, such that a full symbolic expression for the derivative
never exists.

Generally, for each output variable, in the reverse mode a row of the Jacobian matrix
can be computed in each pass, such that for computing the full Jacobian of a function
f : R

N → R
M , M passes are needed. This is particularly advantageous for the de-

formable registration objective function (2.24) with J : Rdm̄
y
→ R, where the gradient

can be computed in a single pass. However, a drawback of the reverse mode is that an
initial forward pass is required, computing the function value and storing all intermediate
derivative values. Depending on the function structure and the number of elementary
operations, this can require a considerable amount of memory.

4.4. Theano framework

There exist many different frameworks for automatic differentiation in several program-
ming languages [NW06, §8.2], [GW08, §6], [BHWB18]. Due to the recent popularity of
deep learning algorithms, the concept of automatic differentiation has also received much
attention in the field of machine learning. Several different frameworks with focus on
deep learning have been developed, consisting of an automatic differentiation framework
at the core, which is required for backpropagation in neural networks [BPRS18].

Besides others, such as TensorFlow [ABC+16], PyTorch [PCL+17], Caffe2 [JSD+14] and
CNTK [SA16], a widely used framework in this context is Theano [AAA+16; BLP+12;

94

4.4. Theano framework

BBB+10]. Theano is based on the Python programming language and uses a syntax
similar to the popular NumPy library [WCV11] to define tensor variables for automatic
differentiation. This makes Theano a suitable choice for an implementation of the registra-
tion algorithm as given in Chapter 2, automatically determining the required derivatives.
Additionally, Theano computations can automatically be performed on the GPU without
manual intervention.

An intriguing question is whether these automatic tools can offer similar performance
as the manual matrix-free approach discussed in the previous chapters. In order to
investigate this question, we implemented the deformable image registration in Theano.
This allows for a direct comparison in terms of runtime as well as memory usage on
CPU and GPU (Section 5.3 and Section 5.4). In the following, we will discuss the
details of the automatic differentiation framework in Theano, as well as details of our
implementation.

Special properties of Theano. In comparison to the concept of automatic differen-
tiation as discussed in the previous sections, Theano contains additional features that
optimize the computational graph before computation. Therefore, its computations
can be interpreted as a hybrid of symbolic differentiation and automatic differentiation
[BPRS18].

For derivative computation, Theano builds a computational graph that is evaluated in
reverse mode. Additionally, so-called R-operators are available, which perform forward
mode differentiation [AAA+16]. These operations are based on the automatic differenti-
ation principles as discussed before.

However, Theano additionally utilizes a graph optimization algorithm to simplify compu-
tations and improve numerical stability. This optimization allows to replace parts of the
graph by optimized operations, to simplify computations, precompute constants and to
remove redundant operations. Additionally Theano performs optimizations for numerical
stability by replacing certain expressions with stable implementations [AAA+16].

This has different effects: First, an additional compilation step is required before func-
tion value or derivatives can be computed. In this step, the graph is built and optimizer
and stabilization are applied. In contrast, in a “näıve” automatic differentiation frame-
work, the graph is built on-the-fly while evaluating the function value. Second, the graph
optimization poses some limitations on control flow and loops in the function computa-
tion. In a pure automatic differentiation framework, control flow statements and loops
are transparent to the algorithm. In Theano, this is realized by using certain scan and
IfElse operations, which require special consideration.

Additionally, Theano not only optimizes the graph, but replaces suitable operations by
compiled C/C++ or GPU code. This enables to execute Theano functions on a GPU
device without any code modifications. Furthermore, the optimized graph structure re-
duces memory requirements for the reverse mode, making Theano even more interesting
for comparison with the matrix-free methods.

Additionally, as no manual effort is required for derivative computations, this approach
is also well-suited for rapid prototyping. New distance measures or regularizers can be

95

4. Automatic differentiation

implemented and evaluated quickly without the lengthy process of manually determin-
ing, implementing and testing derivatives. The automatic differentiation framework also
allows to compute exact higher-order derivatives, such as the full Hessian matrix, that
are tedious to compute manually.

4.5. Implementation details

We implemented the NGF and SSD distance measures as well as the curvature regular-
izer, including grid conversion and linear interpolation in Theano. In the following, we
will discuss important obstacles we encountered during the implementation and details
that deserve special attention. Additionally, useful hints for implementing a registration
objective function in Theano and integration with an existing framework will be given.
For a full tutorial and examples on the usage of Theano, we refer to the project web page
[The18].

4.5.1. Tensor types and function compilation

In order to create functions that can be differentiated automatically, in Theano so-called
tensor datatypes are utilized. These tensors serve as symbolic variables and do not neces-
sarily have associated data or fixed sizes. However, their basic data type, such as integer
or floating-point, as well as their structure, such as vector or matrix, have to be defined.

The tensor variables are then used to program the function value computation in usual
Python code, as shown in Listing 1. The resulting symbolic expression can then be
compiled into a callable function by calling theano.function and specifying the input
parameters. Additionally, the expression can be automatically differentiated by calling
theano.tensor.grad. This results in another symbolic expression for the gradient, which
again can be compiled into a callable function.

As can be seen in Listing 1, for computations that are not operations between two tensor
variables, such as product or sum, specialized Theano operations have to be used, since
the exact size of the tensor and its value is not specified when creating the graph.

4.5.2. Vectorization

As discussed earlier, Theano supports loops in the code by using the scan function.
Since the discussed distance measures and regularizers contain an element-wise sum,
this could be implemented in Theano with the scan function, similar to the gradient in
Algorithm 3.1, looping over all image points. However, we found that the scan function is
associated with a runtime penalty since its the execution is not parallelized. Therefore, we
moved to a vectorized implementation. As shown exemplarily in Listing 1, in a vectorized
implementation, the loop is implemented as element-wise operations on the elements of
a vector. These computations can then benefit from optimized, parallel implementations
during the graph optimization step.

96

4.5. Implementation details

1 import theano, numpy as np

2

3 #define images as tensors with float vector type

4 R, T, h = theano.tensor.vectors(’R’,’T’,’h’)

5

6 #create symbolic expression for function value

7 r = R-T

8 fval = theano.tensor.prod(h)*theano.tensor.sum(r**2)

9

10 #compile function

11 f = theano.function([R,T,h],fval)

12

13 #automatically compute gradient wrt. T

14 grad = theano.tensor.grad(fval,T)

15

16 #compile gradient function

17 df = theano.function([R,T,h],grad)

18

19 #evaluate for d=2 with random data of size 32x32

20 prod_m = np.prod([32,32])

21 R_rand = np.random.rand(prod_m)

22 T_rand = np.random.rand(prod_m)

23 h_rand = np.random.rand(2)

24

25 f(R_rand, T_rand, h_rand)

26 df(R_rand, T_rand, h_rand)

Listing 1: Exemplary Python script using Theano to create and evaluate a SSD-like func-
tion and the corresponding gradient. In a full implementation of the reg-
istration, additionally image interpolation and grid conversion are required,
depending on the deformation y. The gradient is computed fully automatic
without additional user input.

4.5.3. Graph optimization and compilation

There are two different aspects when evaluating the runtime of Theano-based computa-
tions: function compilation time and runtime of the function object. The compilation
time includes graph optimization and only needs to be performed once to create a func-
tion object. Afterwards, the function can be called freely, without requiring another
compilation step. In Listing 1, the compilation steps are performed in lines 11 and 17.
The resulting functions are then evaluated in lines 25 and 26, respectively. As the com-
pilation step is generally much more time consuming than the function evaluation itself,
it is beneficial to minimize the number of function compilations and to reuse compiled
functions as often as possible, as discussed in the next paragraph. Note, however, that
Theano keeps a local compilation cache, which can also reduce the function compilation

97

4. Automatic differentiation

time, if similar functions are compiled multiple times on the same machine.

4.5.4. Reuse of compiled functions

The code in Listing 1 passes the spacing h as well as the images R,T to Theano as indepen-
dent variables of f, rather than defining them as NumPy-arrays before the compilation
step and compiling them into the graph. The advantage of this approach is that the
function f is now independent of the image data, size, and resolution and can be reused
in a multi-level scheme and with arbitrary images without recompiling. In our experi-
ments we found no significant runtime difference for the function execution between both
approaches.

For GPU computations, additionally the theano.shared function can be beneficial, defin-
ing variables that are compiled into the graph and automatically copied to the GPU.
Different values for the variables can then be substituted by using the set value com-
mand.

While a single compilation step is faster than compiling a new function for every regis-
tration level, it can still take up a considerable amount of time. This time can be further
reduced by using the Python pickle library. This allows to store and reuse functions
even for multiple registration calls with different data, which further reduces the runtime.
Note, however, that for each platform such as CPU or GPU a separate function has to
be stored, since different specialized operations are used in the computational graph.

4.5.5. Hessian computation

The creation and compilation of a function and its gradient has been shown exemplarily
in Listing 1. As previously discussed in Section 4.2, for computing a Hessian-vector
multiplicationHp, the forward mode of automatic differentiation is beneficial. In Theano,
this is realized by the theano.tensor.Rop operator, which implements the multiplication
of the Jacobian matrix with a vector from the right-hand side. Applied to the gradient
from Listing 1, this can be implemented as

p = theano.tensor.vector()

Hp = theano.tensor.Rop(grad,T,p)

d2f times p = theano.function([R,T,h,p],Hp),

which can then be evaluated using some vector p with

p rand = np.random.rand(prod m)

d2f times p(R rand, T rand, h rand, p rand).

Note that this will compute the exact Hessian as opposed to the Gauss-Newton approxi-
mation discussed previously in Section 2.5.3. If the Gauss-Newton Hessian approximation

98

4.6. Runtime comparison

is desired, e.g., since its quadratic form guarantees a descent direction in Newton’s method
(Section 2.5.3), it can also be computed automatically with

drr times p = theano.tensor.dot(theano.tensor.Rop(r, y, p),r)

Hp GN = theano.tensor.grad(drr times p, T,

consider constant=[drr times p])

d2f times p GN = theano.function([R,T,h,p],Hp GN).

This computes (dr p)⊤r = (r⊤dr p)⊤ as given in (2.31). Then, this expression is derived
again, but considering dr a constant, such that we derive an expression for (dr⊤dr) p as
in (2.32), i.e., the matrix-vector multiplication with the Gauss-Newton Hessian approxi-
mation.

4.5.6. Further remarks

For GPU computation, the THEANO FLAGS environment variable needs to be set, contain-
ing the device=cuda0 parameter. When this option is set, all suitable computations are
automatically performed on the first GPU device supporting NVIDIA CUDA.

As the double precision floating point performance of current GPUs is much lower than
their single precision performance, it is recommended to additionally set floatX=float32.
The floatX type is used as a placeholder in all Theano tensor variable floating point
computations and is set to single precision this way. However, this will generally lead to
reduced computational precision, which may influence convergence in the optimization
scheme.

Since the main benefit of Theano lies in its automatic derivative computations, we found
that not much can be gained by also implementing the optimization algorithm and multi-
level scheme in Theano. Instead, we utilized the Python ctypes library to integrate the
Theano objective function and its derivatives into our C++ implementation. The ctypes

library allows to create C/C++ compatible data types from Python objects. We used this
to make the compiled Theano functions available from within C/C++ for function value
and derivative computations. This allows to seamlessly switch between the matrix-free
implementations from Chapter 3 and the Theano implementation for comparison and is
utilized in Section 5.4.

4.6. Runtime comparison

We implemented the registration objective function as discretized in Section 2.4 with
the SSD and NGF distance measures as well as the curvature regularizer, including grid
conversion and linear image interpolation. For the evaluation we used Python 3.6 with
Theano 0.9 on a 12-core Intel Xeon E5-2630v2 workstation with a GeForce GTX 980
graphics card running Ubuntu Linux 16.04, as also used in Chapter 5.

All evaluations were averaged over 30 tests and achieved numerically identical results in
comparison with the matrix-free implementation. The measured runtimes for function

99

4. Automatic differentiation

Method Compile Unpickle Runtime

C
P

U

DSSD 2.0 0.5 1.4
∇DSSD 5.1 0.8 3.1

∇2DSSDp 100.9 2.0 6.0
HSSDp 41.8 1.5 6.7

G
P

U
DSSD 13.7 7.3 0.8
∇DSSD 21.8 16.2 2.1

∇2DSSDp 48.8 32.2 2.8
HSSDp 39.4 25.9 2.8

Table 4.1.: Evaluation of compile times and runtimes (in seconds) for the SSD distance
measure and automatically computed derivatives in Theano for d = 3 with
m = (128, 128, 128) and my = (33, 33, 33); ∇2DSSD denotes the exact Hes-
sian, while HSSD is the Gauss-Newton approximation. While compiling each
function is relatively slow, loading compiled functions from disk (“unpickle”)
can be considerably faster. By executing the functions on the GPU, Theano
achieves speedups of up to 2.4.

compilation and evaluation for NGF, SSD and the curvature regularizer are given in
Table 4.2, Table 4.1 and Table 4.3. Measurements were performed on CPU and GPU for
the function value as well as for the derivatives. The evaluations on GPU were performed
with single precision performance and the gpuarray back-end.

4.6.1. Function compilation

We evaluated different scenarios for the function compilation. First, we performed a reg-
ular function compilation as shown in Listing 1. Note, that since Theano keeps a compile
cache of previously utilized C++ operators, the initial function compilation can take
slightly longer than the reported values. Second, as discussed in the previous section, we
used the Python pickle library to store compiled functions to disk. As recommended
by Theano, we utilized the faster cPickle equivalent. Then, we measured the time that
is required to unpickle (i.e., load) a stored function again. This scenario is especially
interesting when integrating a stable algorithm into end-user software in order to min-
imize compilation times. While some parts of the computational graph might still be
re-optimized upon unpickling, generally this decreases runtime. Note, that since the
functions were defined solely by using tensor variables as discussed in Section 4.5, the
compile times are independent of the image and deformation size.

Comparing the compile times for the function value and the derivatives on the CPU, it
can be observed that for the distance measures in Table 4.1 and Table 4.2, the gradient
function compilation is only slightly slower than the function value compilation. The
Hessian computations, however, are more expensive, while generally the compilation of
the exact Hessian takes more time than the compilation of the Gauss-Newton approxi-
mation. Especially for the SSD, the creation of the exact Hessian and the Gauss-Newton
approximation are slower by factors of 51.3 and 21.2, respectively. In comparison, the

100

4.6. Runtime comparison

Method Compile Unpickle Runtime

C
P

U

DNGF 3.5 0.6 1.5
∇DNGF 7.4 1.2 3.6

∇2DNGFp 38.7 3.1 7.9
HNGFp 19.1 2.3 7.9

G
P

U

DNGF 40.8 38.1 0.8
∇DNGF 69.2 59.1 2.2

∇2DNGFp 133.3 95.1 2.8
HNGFp 92.4 73.0 2.8

Table 4.2.: Evaluation of compile times and runtimes (in seconds) for the NGF distance
measure in Theano, see Table 4.1 for details. On the GPU, runtime speedups
of up to 2.82 are achieved.

Method Compile Unpickle Runtime

C
P

U S 0.99 0.25 0.0025
∇S 5.78 0.88 0.0072

∇2Sp 5.99 0.88 0.0071

G
P

U S 7.70 0.42 0.0139
∇S 30.40 1.27 0.0046

∇2Sp 7.88 1.27 0.0041

Table 4.3.: Evaluation of compile times and runtimes (in seconds) for the curvature reg-
ularizer and automatically computed derivatives, implemented in Theano for
d = 3 with my = (33, 33, 33), see Table 4.1 for further descriptions. On
the GPU, except for the function value, runtime speedups of up to 1.71 are
achieved.

same computations for the NGF are only slower by a factor of 11.0 and 5.44. This is
likely caused by different graph optimizations and use of different compiled functions, also
depending on the complexity of the functions. As can be seen, more complex derivatives
require longer compilation times. Since the Gauss-Newton approximation of the Hessian
discards certain second order terms, this also reduces the compilation time.

For the curvature regularizer in Table 4.3, this is different. While the gradient function
compilation is slower by a factor of 5.81, compiling the Hessian function takes almost
the same time as the gradient. This is expected, since the gradient computation and
Hessian-vector multiplication are closely related as discussed in Section 3.4.2 and thus
contain the same computations.

Function compilation on the GPU takes longer than on the CPU, except for the SSD
Hessians. Thus, while the obtained GPU-based functions potentially have faster runtimes,
the higher compilation times can diminish this benefit, depending on the number of
subsequent function evaluations.

101

4. Automatic differentiation

Pickling and unpickling the compiled function can in some cases largely reduce the run-
time. However, there is only a smaller reduction in runtime for the distance measure
function value and derivatives on the GPU. This indicates that a larger number of re-
optimizations need to be peformed on this platform after loading the function from disk.
Generally, each function only occupies a couple of megabytes when stored on disk, such
that pickling the compiled functions is a valuable alternative, especially, when the func-
tion implementation does not change often.

4.6.2. Function evaluation

In comparison to the compile times, the runtimes for function evaluation depend on
the image and deformation dimensions (rightmost column in Table 4.1, Table 4.2 and
Table 4.3). In our experiments, we used image sizes of m = (128, 128, 128) with a de-
formation size of my = (33, 33, 33), which are common medium-size resolutions in image
registration problems.

For all functions on CPU and GPU the function value computations are faster than the
gradient computations by factors ranging from 2.28 to 3.04. For the Hessian, these factors
range from 3.42 to 5.20, except for the curvature regularizer, where as discussed before,
Hessian-vector multiplication and gradient are very similar. Additionally, in contrast to
the compilation times, exact Hessian and Gauss-Newton approximation exhibit almost
identical runtimes.

On the CPU, unpickling is very fast and does not pose a major runtime penalty. As
the unpickle times on GPU are much longer for the distance measures, the use of GPU
functions is only beneficial when a large number of function evaluations is expected.

The speedup factors gained by the computation on GPU range from 1.57 for the cur-
vature gradient to 2.81 for the NGF Gauss-Newton Hessian, with an exception of the
curvature function value, which is slower on the GPU. It can be observed that more
complex functions obtain a higher speedup on the GPU, possibly utilizing the GPU more
efficiently. Our analysis showed that the slower curvature function value most likely re-
sults from a specific tensor concatenation operator on the GPU, utilized for the boundary
conditions. Re-formulating the curvature implementation to avoid that specific opera-
tor might improve the runtime, but may, however, on the contrary slow down the CPU
implementation.

Further runtime comparisons between the Theano implementations and matrix-free as
well as matrix-based methods are performed in Chapter 5.

4.7. Summary

In this section, we presented an implementation of the registration objective function
and derivatives, based on an automatic differentiation framework. We implemented the
SSD and NGF distance measures as well as the curvature regularizer, including image

102

4.7. Summary

interpolation and grid conversion in the Python-based framework Theano, enabling au-
tomatic computation of gradient and Hessian functions. Furthermore, Theano allows to
automatically perform all computations on the GPU without further user effort.

The Theano framework requires an initial compilation step for each function, optimizing
the computational graph, which can take up a considerable amount of the overall runtime.
In almost all cases, loading compiled functions decreases the runtime of the compilation
step. This makes the automatically determined derivatives also feasible for application
in end-user software.

An execution of the implemented functions on the GPU achieved speedup factors of up
to 2.8. While this speedup can be obtained without manual intervention, the distance
measure computations on GPU require longer times for loading the compiled functions
from disk than the CPU versions, possibly caused by re-optimizations performed by
Theano during load. If only few iterations are performed in the registration, this can
diminish the runtime benefit of the GPU execution.

In summary, automatic differentiation of the objective function constitutes a very flexible
strategy, which allows for rapid evaluation of new models and ideas. In Section 5.3 and
Section 5.4, we will investigate how this flexible automatic approach compares to the
hand-optimized approach proposed in Chapter 3.

103

5 Experimental results

In this chapter, we verify the analyses of the matrix-free computations by evaluating
and comparing different aspects of the derived algorithm. Previously, we showed that
matrix-free methods are element-wise parallelizable. Now, we will investigate whether
this also results in corresponding speedups in practice. Furthermore, the matrix-free
methods promise a largely reduced memory consumption, as no intermediate results
are stored. In the following, we will measure the memory requirements to verify these
claims. Additionally, we compare the matrix-free computations (MFC) to matrix-based
implementations as well as the Theano-based algorithm (THEANO) on CPU and GPU.

We proceed from analyzing the smallest components of the objective function, such as
distance measure and regularizer derivatives, to an evaluation of the complete objective
function derivatives. Finally, we characterize different implementations and algorithms
for the full multi-level registration in terms of runtime and memory usage.

For this, initially, in Section 5.1, we analyze the parallel scalability of the matrix-free
derivative computations. Additionally, different variants of the matrix-free computations,
as discussed in Section 3.7, are compared in Section 5.2 to determine the effects of the
proposed trade-offs between recalculations and memory use.

Afterwards in Section 5.3, the runtime of the complete objective function derivatives
is compared for several algorithm implementations. Besides the Theano-based imple-
mentation using automatic differentiation, the C++ implementation of the matrix-free
algorithm is compared to a matrix-based C++ implementation (MBC) and a publicly
available MATLAB implementation using the FAIR toolbox [Mod09] (FAIR).

Additionally, we present a real-world registration dataset and perform a full multi-level
registration with all algorithms in Section 5.4. Besides runtime, we also compare peak
memory usage for all algorithms as well as for MFC implementation alternatives. Finally,
in Section 5.5, we present a GPU-based implementation of the matrix-free computations
using NVIDIA CUDA and compare the runtime and memory requirements to the CPU-
based implementation.

Benchmark environment. Unless otherwise stated, all experiments in this chapter
were performed on a 12-core dual processor workstation with two Intel Xeon E5-2630v2
CPUs running at 2.6 GHz, with 32 GB RAM and a NVIDIA GeForce GTX 980 graphics
card using Ubuntu Linux 16.04. To minimize the influence of unrelated processes, the

105

5. Experimental results

workstation was run without a graphical user interface, all unneeded processes were ter-
minated and all tests were run with highest process priority. Furthermore, we disabled
memory swapping to obtain meaningful results for runtime and memory consumption.

The C++ implementations were compiled with gcc 5.4.0 using OpenMP and AVX sup-
port with highest optimization (-O3), while the FAIR evaluations were performed with
MATLAB R2017b. For the Theano evaluations, we used Theano 0.9.0 with Python
3.6.0.

Acknowledgments and related publications. We presented preliminary results
of the matrix-free computations performed in this chapter in [KRDL18*; KDHP15*;
KR14*]. We especially thank Daniel Budelmann and Martin Meike for their contribution
to the CUDA implementation of the matrix-free registration algorithm. A preliminary
version of the CUDA-based registration was presented in the thesis [Mei16].

5.1. Scalability on the CPU

In this section, we evaluate the scalability of the matrix-free computations, i.e., we analyze
the runtime of a fixed problem size in relation to the number of utilized computational
cores. For this, we measured the runtime of all objective function components that were
discussed in Chapter 3. Besides the distance measures and regularizer with their function
value, gradient and Hessian-vector multiplication computations, as given in Section 3.2,
Section 3.3 and Section 3.4, respectively, we also investigated the grid conversion and its
corresponding transposed operator from Section 3.5. All methods were implemented in
C++, fully parallelized with OpenMP and further accelerated using vectorized compu-
tations with AVX as discussed in Section 3.8.1.

We evaluated two problem sizes, corresponding to typical image registration scenarios:
Small problems with an image size of m = (64, 64, 64) and a deformation size of my =
(17, 17, 17), which typically occur in coarser levels of a multi-level computation, and large
problems with an image size of m = (512, 512, 512), which are, e.g., found in typical
clinical CT images, and a deformation size of my = (129, 129, 129).

For evaluation we used randomly generated image data. Starting with a serial execution
on a single core, for each test an increasing number of computational cores were activated
and runtimes were measured. The obtained runtimes were averaged over 30 evaluations
with identical data and initialization in order to reduce measurement noise.

The results for serial and parallel computation as well as the resulting speedup factors
are shown in Table 5.1. Additionally, detailed speedup factors are visualized in Figure 5.1
for the small images and in Figure 5.2 for the large images.

5.1.1. Small images

For the evaluation with small images in Figure 5.1, we obtained speedup factors ranging
from 8.93 to 10.5 for the distance measures and their derivatives as well as the grid
conversion from image grid to deformation grid. For up to eight cores, the computation

106

5.1. Scalability on the CPU

Method Small images Large images

Serial (ms) Parallel (ms) Speedup Serial (s) Parallel (s) Speedup

DNGF 41.41 3.93 10.5 27.27 2.02 13.5
∂DNGF

∂P
45.82 5.13 8.9 32.03 2.69 11.9

ĤNGFp̂ 250.47 23.02 10.9 146.80 12.14 12.1

DSSD 6.07 0.59 10.3 3.80 0.32 11.8
∂DSSD

∂P
6.65 0.66 10.1 5.05 0.46 11.0

ĤSSDp̂ 7.16 0.69 10.4 5.65 0.54 10.5

Py 12.01 1.15 10.4 6.71 0.56 11.9
P⊤ŷ 8.80 2.24 3.9 4.67 0.45 10.4

S 0.10 0.03 3.9 0.05 0.01 3.5
∇S 0.18 0.04 4.6 0.10 0.02 4.0

∇2Sp 0.18 0.04 4.5 0.10 0.03 3.9

Table 5.1.: Scaling behavior of the matrix-free computations on a 12-core workstation
compared to a single-core execution. Two different image resolutions are eval-
uated for d = 3: Small images with m = (64, 64, 64) and my = (17, 17, 17),
and large images with m = (512, 512, 512) and my = (129, 129, 129). Distance
measure and grid conversion computations scale approximately linear, for the
small images only limited by the number of available parallel tasks. Due to
memory-bound computations, speedup factors of the curvature regularizer are
lower.

scales approximately linear. After this, similar performance is observed for eight, nine
and ten cores and, after another increase, for eleven and twelve cores. This behavior is not
directly related to algorithm scalability and can partly be explained by the ratio of parallel
tasks to computational cores. As shown in Section 3.8.1, on the CPU we only parallelize
the outer loop of the computation, which in this case iterates over the z-dimension. This
is recommended in OpenMP and typically represents the best trade-off between number
of parallel tasks and administration overhead. Thus, 64 parallel tasks are available here.
When distributing these tasks to the computational cores, they can rarely be divided
without a remainder. Since in our computations, all tasks need approximately the same
times to execute, these remaining tasks are executed while the other computational cores
are idle, consequently increasing runtime. Theoretically the resulting speedup can be
modeled as

sntasks(ncores) :=
ntasks

⌈ntasks
ncores

⌉
, (5.1)

where ntasks and ncores denote the number of available parallel tasks and computational
cores, respectively. In this case, we have especially s64(8) = s64(9) = 8 and s64(11) =
s64(12) ≈ 10.7, which explains the areas of unchanged speedup in Figure 5.1 as well
as the limited maximum speedup. However, while s64(10) ≈ 9.1, we only achieve an
approximately 8-fold speedup for ten cores. As the measurements closely follow (5.1)

107

5. Experimental results

1 2 4 6 8 10 12

1
2

4

6

8

10

12

CPU cores

S
p

ee
d
u
p

DSSD

∂DSSD

∂P

ĤSSDp̂

1 2 4 6 8 10 12

1
2

4

6

8

10

12

CPU cores

S
p

ee
d
u
p

DNGF

∂DNGF

∂P

ĤNGFp̂

1 2 4 6 8 10 12

1
2

4

6

8

10

12

CPU cores

S
p

ee
d
u
p

S
∇S

∇2Sp

1 2 4 6 8 10 12

1
2

4

6

8

10

12

CPU cores

S
p

ee
d
u
p

Py

P⊤ŷ

Figure 5.1.: Speedup for parallel computations of matrix-free functions using a different
number of CPU cores for small images with m = (64, 64, 64) and my =
(17, 17, 17). While the distance measure computations exhibit the desired
linear scalability, for larger numbers of CPU cores the speedup is limited by
the ratio of parallel tasks to cores. The transposed grid conversion operator
P⊤ŷ is limited by the number of available tasks due to the used red-black
scheme, while the curvature regularizer is limited by memory bandwidth.

for all other numbers of parallel cores, the speedup for this particular case must be
additionally limited by other aspects, such as additional synchronization overhead.

Additionally, the transposed grid conversion operator P⊤ŷ only exhibits a speedup fac-
tor of 3.93. As can be seen in Figure 5.1, after an initial increase, the speedup remains
constant after four cores. This can be explained with the limited number of computa-
tional tasks in connection with the used red-black scheme, as described in Section 3.5.2.
Since P⊤ŷ operates on the deformation grid, only 17 parallel tasks are available in this
example. Due to the red-black scheme, only half of them can be executed simultaneously.
Considering (5.1), this results in a maximum speedup of 4.5 for up to eight cores. For
higher numbers of computational cores no further speedup is observed since the paral-
lelization overhead is likely too large with only one thread per core. This is confirmed by
the measurements using the large images with a maximum speedup of 10.4.

108

5.1. Scalability on the CPU

1 2 4 6 8 10 12

1
2

4

6

8

10

12

CPU cores

S
p

ee
d
u
p

DSSD

∂DSSD

∂P

ĤSSDp̂

1 2 4 6 8 10 12

1
2

4

6

8

10

12

CPU cores

S
p

ee
d
u
p

DNGF

∂DNGF

∂P

ĤNGFp̂

1 2 4 6 8 10 12

1
2

4

6

8

10

12

CPU cores

S
p

ee
d
u
p

S
∇S

∇2Sp

1 2 4 6 8 10 12

1
2

4

6

8

10

12

CPU cores

S
p

ee
d
u
p

Py

P⊤ŷ

Figure 5.2.: Speedup for parallel computations of matrix-free functions using a varying
number of CPU cores, in comparison to single-core execution. Distance mea-
sure, regularizer and grid conversion functions are evaluated for large images
with m = (512, 512, 512) and my = (129, 129, 129). Distance measure com-
putations and grid conversion operators exhibit the desired approximately
linear scalability. The curvature regularizer computations are again limited
by memory transfer bandwidth.

In comparison to the distance measures and grid conversion operators, the scaling be-
havior of the curvature regularizer is limited. We measured maximum speedup factors
ranging from 3.57 to 5.12 for all image sizes. While an execution on three cores still yields
a speedup of about three, for an execution on more cores only a small additional increase
can be observed. Here, the computation is most likely bound by memory transfer speed:
Compared to the distance measures, only a small number of computational operations
is performed on every deformation element. However, still the complete deformation has
to be accessed. This results in a low arithmetic intensity (floating point operations per
byte of data loaded or stored, FLOPS/byte) and thus a limited speedup when adding
more computational cores, since the overall runtime is limited by the maximum memory
transfer bandwidth. However, as the absolute runtimes of the curvature regularizer are
several magnitudes lower than those of grid conversion and distance measures and their
derivatives, this has only limited effect on the overall runtimes.

109

5. Experimental results

5.1.2. Large images

As can be seen from Figure 5.2, for the evaluation with large images all computations for
SSD and NGF achieve desirable results with approximately linear scaling. In comparison
with a serial computation on one core, we obtain speedup factors from 10.5 to 13.5 for
a parallel computation on twelve cores. Similarly, the grid conversion operators achieve
speedup factors of 11.9 and 10.4. The transposed operator P⊤ŷ exhibits an almost linear
scaling for one to eight cores, while the performance does not increase from eight to
nine and ten, and from eleven to twelve cores. This behavior is again related to the
number of available tasks in relation to the number of computational cores as discussed
in Section 5.1.1.

Summary. The relevant matrix-free computations for distance measures and grid con-
version exhibit approximately linear scaling behavior on larger images. On smaller im-
ages, the scalability can be limited by different factors, such as the ratio between parallel
tasks and CPU cores or a limited total number of available parallel tasks. Here, more
fine-grained parallelism would not be beneficial, as the smaller image sizes in a multi-level
scheme make up only a small fraction of the overall computation time. Similarly, while
the scaling behavior of the curvature regularizer is limited by memory transfer bandwidth,
its execution is several orders of magnitude faster compared to the other functions and
should thus not impede the overall execution time of the final registration algorithm.

If a sufficient number of parallel tasks is available, we have shown that a substantial
speedup can be expected when utilizing additional computational cores, which is an
important requirement for a fast algorithm given the steadily increasing core counts in
modern multi-core CPUs and ensures further speedups on future platforms.

5.2. Selective precomputation

In Section 3.7, we discussed different implementation alternatives for the matrix-free
methods. A main principle of the matrix-free algorithm is to perform recalculations
instead of storing precomputed intermediate values to memory. However, some interme-
diate results require especially high numbers of recalculations. Thus, it can be beneficial
to selectively precompute some intermediate values.

In this section, we will evaluate for d = 3 if these precomputations, which come at
the cost of moderate and closely controlled additional memory requirements, result in
a reduced runtime. In Table 5.2, we show the runtimes of three different matrix-free
implementations for distance measures: (1) precomputing both deformed template image
T (ŷ) and computing the grid conversions Py = ŷ and P⊤ĝ in separate steps as described
in Section 3.5.3, (2) precomputing only T (ŷ), and (3) calculating everything on the fly.
Furthermore, we evaluate two alternatives for the curvature regularizer: Precomputing
the first application of the Laplace operator or calculating everything on the fly. In the
following, we discuss the results for each individual method in detail.

110

5.2. Selective precomputation

Precomp. Function value Gradient Hessian

T (ŷ) • • ◦ • • ◦ • • ◦
ŷ • ◦ ◦ • ◦ ◦ • ◦ ◦

SSD (s) 0.9 0.7 0.6 1.7 1.2 1.2 2.0 1.8 1.9
NGF (s) 2.7 3.8 3.7 4.0 3.9 18.3 13.6 29.2 29.1

Table 5.2.: Impact of selective precomputation on distance measure runtime; •: values
precomputed and stored, ◦: values recalculated on the fly. Parallel computa-
tions, evaluated for images with size m = (512, 512, 512) and deformation size
my = (129, 129, 129). For the gradient, the precomputation of ŷ includes the
gradient on the image grid ∂D

∂P
, for the Gauss-Newton Hessian approximation

it includes p̂, q̂, as described in Section 3.5.3. For SSD, there is no recalcula-
tion overhead, thus variants which compute everything on the fly are fastest.
For NGF, gradient computations only precomputing the deformed template
image T (ŷ) are fastest, while for function value and Hessian, precomputing
both deformed template and deformed grids yields the lowest runtimes.

Sum of squared differences. In theory, matrix-free SSD computations can be per-
formed without recalculations as shown in Table 3.2. This is confirmed by the experimen-
tal results in Table 5.2. No runtime benefit can be observed by precomputing the deformed
template image T (ŷ) or the deformed grids, since the number of element computations
is already minimal. For the function value and gradient computations, implementations
computing everything on the fly without precomputations achieve the lowest runtimes.
For the Hessian-vector multiplications, similar runtimes are observed with and without
precomputations. We therefore conclude that for SSD computations the implementa-
tions without precomputations can always be preferred, as they exhibit both the fastest
runtimes and the lowest memory usage.

Normalized gradient fields. For the NGF distance measure the results in Table 5.2
are qualitatively different. When computing the function value, the fastest runtime is
achieved when precomputing both the deformed template image T (ŷ) and the deformed
grids Py and P⊤ŷ, with an decrease in runtime by a factor of 1.4. For the gradient, no
relevant speedup is achieved by precomputing the deformed grids. However, also com-
puting the deformed template image on the fly drastically slows down the computations
by a factor of 4.6. The Hessian-vector multiplication again is similar to the function
value computations. The fastest runtime is achieved by precomputing both the deformed
template image and the deformed grids, while the two other alternatives achieve similar
runtimes which are slower by a factor of 2.1.

Thus, when aiming for the fastest runtimes, precomputing at least the deformed template
image is recommended for NGF. When utilizing the L-BFGS optimization scheme where
the Gauss-Newton Hessian-vector multiplication is not required, computing the grid con-
version steps on the fly results only in a moderately slower computation for the function
value and the fastest possible gradient computations. However, when the Hessian ap-
proximation is required for Gauss-Newton optimization, the deformed grids as well as

111

5. Experimental results

the deformed template image should be precomputed when fastest runtimes are desired.
This, however, requires memory for storing 10m̄ elements of ŷ, p̂, q̂ and T (ŷ), as shown
in Table 3.4, amounting to 10 GB for an image size of 5123 voxels.

Curvature regularizer. We proposed implementation alternatives for the curvature
regularizer in Table 3.5, suggesting to precompute the result of the matrix multiplication
Au for the computation of A⊤Au. For both alternatives, precomputing Au and on-
the-fly computation of A⊤Au, we obtained runtimes of 0.025 s with precomputations and
0.027 s when computing everything on the fly, computed for d = 3 with a deformation size
of my = (129, 129, 129). Thus, given difference in the range of milliseconds, no relevant
difference in runtimes for computations with or without precomputations can be observed
for the curvature regularizer.

While for the SSD this was expected since the number of computations is not reduced by
the precomputations, this is not the case for the curvature regularizer, as can be seen in
Table 3.5. The similar runtimes for both alternatives can be explained by the fact that
the curvature computation speed is mainly limited by memory bandwidth as discussed
in Section 5.1. Thus, further reducing the number of computations does not result in an
additional runtime benefit. We therefore conclude that for the curvature regularizer the
on-the-fly variant can always be preferred.

5.3. Objective function derivative runtime

We now evaluate the matrix-free approach in the full registration scheme and compare it
to existing algorithms.

Algorithms. We compare our C++-based matrix-free computations (MFC) to three
different implementations. Two implementations are matrix-based: the publicly avail-
able FAIR-toolbox [Mod09], implemented in MATLAB, and a matrix-based C++ imple-
mentation (MBC). Additionally, we make comparisons with the Python-based Theano
implementation (THEANO) using automatically computed derivatives (Chapter 4).

While FAIR aims at a research and teaching audience, the C++-based implementation
of MBC targets performance, while still being matrix-based. Comparing MFC with
these implementations gives an impression of how much speedup can be gained by de-
riving a matrix-free implementation from already optimized research code. In contrast
to this, the implementation of THEANO requires even less manual intervention than
the matrix-based variants and therefore represents an alternative to the matrix-based
implementations also in the research context.

Both C++ implementations, MBC and MFC, were optimized manually for fair compar-
ison. In MBC, critical components such as distance measure computations, linear in-
terpolation and sparse matrix multiplications were parallelized using OpenMP. In MFC,
the objective function derivative computations were fully parallelized with OpenMP as
described in Section 3.8.1. Furthermore, all matrix-free computations were accelerated
by using vectorized computations with the Advanced Vector instructions (AVX) as also
described in Section 3.8.1.

112

5.3. Objective function derivative runtime

6
4

3
9

3

1
7

3

3
3

3

6
5

3

1
2
8

3
1
7

3

3
3

3

6
5

3

1
2
9

3

2
5
6

3
3
3

3

6
5

3

1
2
9

3

2
5
7

3

5
1
2

3
6
5

3

1
2
9

3

2
5
7

3

5
1
3

3

10−3

10−1

101

103

Image / Deformation size

R
u

n
ti

m
e

(s
)

FAIR

THEANO

MBC

MFC

(a) Gradient runtime

6
4

3
9

3

1
7

3

3
3

3

6
5

3

1
2
8

3
1
7

3

3
3

3

6
5

3

1
2
9

3

2
5
6

3
3
3

3

6
5

3

1
2
9

3

2
5
7

3

5
1
2

3
6
5

3

1
2
9

3

2
5
7

3

5
1
3

3

10−3

10−1

101

103

Image / Deformation size

R
u

n
ti

m
e

(s
)

FAIR

THEANO

MBC

MFC

(b) Hessian-vector multiplication runtime

Figure 5.3.: Runtime evaluation of SSD objective function derivatives for parallel exe-
cution on CPU for different image and deformation resolutions, as shown
in Table 5.3 and Table 5.4, for four different algorithms (logarithmic scale),
(a): gradient runtime, (b): Hessian-vector multiplication runtime. FAIR:
MATLAB matrix-based, THEANO: Python/Theano with automatic differ-
entiation, MBC: C++ matrix-based, MFC: C++ matrix-free computations.
For THEANO, the runtimes include the unpickle times from Table 4.1. MFC
is up to four magnitudes faster than the other algorithms and enables the
computation of higher resolutions; THEANO yields competitive performance
with FAIR (gradient) and even the manually optimized MBC (Hessian).

For evaluation of the MFC runtimes, we used the implementations that achieved the
fastest runtimes in Section 5.2. Additional comparisons for different variants of MFC can
be found in Section 5.4.

In FAIR, the fastest available components were chosen, using MATLAB MEX versions
where available, also including OpenMP parallelized variants of linear interpolation and
curvature regularizer. Additionally, we enabled FAIR’s matrix-free implementation of the
curvature regularizer.

Experimental setup. We first compare the runtimes of a single evaluation of the
objective function derivatives before advancing to the full multi-level registration in Sec-
tion 5.4.

For both SSD and NGF distance measures, parallel runtimes for gradient computations
as well as a Hessian-vector multiplication with the Gauss-Newton Hessian approximation
were measured with all four algorithms.

In order to determine the effect of different image and deformation resolutions on the
runtime, we evaluated image sizes from 643 to 5123 voxels with varying deformation

113

5. Experimental results

resolutions. An image size of 5123 voxels commonly occurs, e.g., in CT images as utilized
in Section 5.4, while the coarser resolutions are then computed in the corresponding
multi-level computations. Images of these smaller sizes are also common when processing
other imaging modalities such as MRI, specific organs or regions of interest.

5.3.1. Sum of squared differences

Results of the runtime measurements using the registration objective function with SSD
are visualized in Figure 5.3. The runtimes and speedup relative to the matrix-free algo-
rithm are shown in Table 5.3 for gradient computations and in Table 5.4 for the Hessian
matrix-vector multiplication.

As can be seen in Figure 5.3, MFC achieves the fastest runtimes. For the gradient, MBC
is faster than THEANO and FAIR; for the Hessian-vector multiplication, THEANO is
faster than MBC for image sizes larger than 643 voxels.

In the rightmost three columns of Table 5.3, speedup factors for gradient computations
in comparison with MFC are shown. In comparison to FAIR, MFC achieves a speedup
of about two orders of magnitude, ranging from 120 to 370. Compared to MBC, the
speedup is about one order of magnitude, ranging from 10 to 49.

The THEANO computations are slower than MBC but faster than FAIR. In comparison
to THEANO, the matrix-free computations still achieve a speedup of up to two orders of
magnitude, ranging from 56 to 330. Note that the THEANO runtimes include the time
for loading (unpickling) the functions, as shown in Table 4.1.

Even larger speedups are achieved by MFC for the SSD Hessian-vector multiplication
shown in Table 5.4. Here, the speedups in comparison to FAIR range from a factor of
350 to 1000. In comparison to MBC, the speedup factors are now also in the range of
two orders of magnitude, ranging from 160 to 550. Here, the THEANO computations
are not only faster than FAIR, but also faster than MBC for image sizes larger than 643

voxels. Additionally, the difference in runtime between MFC and THEANO increased,
with MFC now being faster by a factor of 94 to 610.

For both gradient and Hessian-vector computations, MFC is the only algorithm that is
able to compute results for an image size of 5123 voxels. All other algorithms exceed
the available 32 GB of memory. Additionally, for the Hessian-vector multiplication, FAIR
and MBC run out of memory for an image resolution of 2563 voxels with a deformation
resolution of 2573, while THEANO successfully computes a result. This indicates that
THEANO exhibits a lower memory usage than FAIR and MBC, which will be investigated
further in Section 5.4.2.

Another observation that can be made from Table 5.3 and Table 5.4 is the ratio of gradient
to Hessian computations for each algorithm. While the MFC exhibits similar runtimes for
both, the THEANO Hessian computations are slower by a factor of approximately two in
comparison to the corresponding gradient compuations. For MBC and FAIR this factor
is even larger, ranging from 2.7 to 4.5 for FAIR and 14 to 37 for MBC. This shows unused
potential for optimizations, which is realized only by the manually derived MFC.

114

5.3. Objective function derivative runtime

Size Runtime (s) Speedup

mi my
i FAIR MBC THEANO MFC

MFC MFC MFC

vs. vs. vs.

FAIR MBC THEANO

512 513 * * * 6.707 – – –
257 * * * 1.778 – – –
129 * * * 1.277 – – –

256 257 91.2 * 34.8 0.621 150 – 56
129 78.4 4.14 27.8 0.216 360 19 130
65 76.3 4.13 27.1 0.204 370 20 130

128 129 9.5 1.29 4.7 0.081 120 16 57
65 8.2 0.50 3.9 0.029 280 17 140
33 8.4 0.50 3.9 0.023 370 22 170

64 65 1.0 0.13 1.2 0.008 120 15 140
33 0.9 0.06 1.1 0.003 260 18 330
17 0.9 0.06 1.1 0.006 160 10 190

Table 5.3.: Runtime evaluation of the SSD objective function gradient for different image
and deformation resolutions for four algorithms. For abbreviations and details
see Figure 5.3.

Size Runtime (s) Speedup

mi my
i FAIR MBC THEANO MFC

MFC MFC MFC

vs. vs. vs.

FAIR MBC THEANO

512 513 * * * 5.448 – – –
257 * * * 2.136 – – –
129 * * * 1.818 – – –

256 257 * * 57.8 0.614 – – 94
129 289.4 151.6 55.2 0.277 1000 550 200
65 208.8 88.9 54.6 0.228 920 390 240

128 129 40.8 18.0 8.6 0.081 510 220 110
65 24.4 10.2 8.0 0.034 710 300 230
33 23.1 10.1 8.2 0.029 800 350 280

64 65 4.5 1.8 2.7 0.010 470 190 280
33 2.7 1.1 2.6 0.004 620 260 610
17 2.6 1.1 2.6 0.007 350 160 360

Table 5.4.: Runtime evaluation of the SSD objective function Hessian-vector multiplica-
tion for different image and deformation resolutions for four algorithms. For
abbreviations and details see Figure 5.3.

115

5. Experimental results

6
4

3
9

3

1
7

3

3
3

3

6
5

3

1
2
8

3
1
7

3

3
3

3

6
5

3

1
2
9

3

2
5
6

3
3
3

3

6
5

3

1
2
9

3

2
5
7

3

5
1
2

3
6
5

3

1
2
9

3

2
5
7

3

5
1
3

3

10−3

10−1

101

103

Image / Deformation size

R
u

n
ti

m
e

(s
)

FAIR

THEANO

MBC

MFC

(a) Gradient runtime

6
4

3
9

3

1
7

3

3
3

3

6
5

3

1
2
8

3
1
7

3

3
3

3

6
5

3

1
2
9

3

2
5
6

3
3
3

3

6
5

3

1
2
9

3

2
5
7

3

5
1
2

3
6
5

3

1
2
9

3

2
5
7

3

5
1
3

3

10−3

10−1

101

103

Image / Deformation size
R

u
n
ti

m
e

(s
)

FAIR

THEANO

MBC

MFC

(b) Hessian-vector multiplication runtime

Figure 5.4.: Runtime evaluation of NGF objective function derivatives for different image
and deformation resolutions, as shown in Table 5.5 and Table 5.6, for four
different algorithms (logarithmic scale), (a): gradient runtime, (b): Hessian-
vector multiplication runtime. FAIR: MATLAB matrix-based, THEANO:
Python/Theano with automatic differentiation, MBC: C++ matrix-based,
MFC: C++ matrix-free computations. MFC is up to three magnitudes faster
than the other algorithms and enables the computation of higher resolutions.
For the Hessian-vector multiplication, the automatically computed THEANO
computations are even faster than the manually optimized MBC.

5.3.2. Normalized gradient fields

As can be seen in Figure 5.4, for the NGF distance measure runtime distributions for the
four algorithms are similar to the previously discussed SSD results. MFC is the fastest
algorithm for both gradient and Hessian-vector computations. While MBC is faster than
THEANO for gradient computations, THEANO is faster for Hessian computations with
image sizes larger than 643 voxels.

Detailed results and speedup factors are given in Table 5.5 for gradient computations
and in Table 5.6 for the Hessian-vector multiplication. Similar to the SSD computations,
computing the objective function gradient with MFC is about two orders of magnitude
faster than with FAIR and about one order of magnitude faster than using MBC. In
comparison to THEANO, MFC is faster by factors ranging from 40 to 190.

For the NGF Hessian-vector computations, MFC is again faster by about two orders
of magnitude compared to MBC and FAIR, with speedup factors ranging from 77 to
890. In comparison to the SSD Hessian runtimes, THEANO computations are closer to
computations with MFC. Here, speedup factors in comparison with MFC range from 33
to 95.

116

5.3. Objective function derivative runtime

Again, the gradient for an image resolution of 5123 can only be computed with MFC.
Additionally, FAIR and MBC run out of memory for an image size of 2563 voxels with
deformation sizes of 2573 and 1293 as well as an image size of 1283 voxels with a defor-
mation size of 1293. In comparison, THEANO is able to compute Hessian results for all
resolutions, except with an image size of 5123 voxels.

In contrast to the SSD derivative computations with MFC, which achieved similar run-
times for gradient and Hessian, the NGF Hessian computations with MFC are slower by
a factor of 2 to 4.5 compared to the corresponding gradient computations. For FAIR
and MBC these factors range from 3.7 to 26 and 46 to 140, respectively, which are also
larger than for the SSD computations. This can be partly explained with the more in-
volved computations of the NGF Hessian. However, similar to the SSD computations,
THEANO NGF Hessian computations are slower only by a factor of approximately two.
This shows that an automatically derived and optimized derivative calculation can po-
tentially obtain computations with less overhead than manual optimization, especially for
complicated computations such as the NGF Hessian. The absolute runtimes, however,
still remain high in comparison to MFC, such that manual optimization of the derivatives
still yields a large benefit in this case.

5.3.3. Theano on the GPU

The objective function evaluations in Section 4.6 indicate that a substantial speedup can
be expected from performing the THEANO objective function computations on the GPU.
However, as also stated in Section 4.6, creating the Theano functions or loading these
from disk takes much longer than on the CPU. Therefore, unreasonably large runtimes
are required for a single objective function derivative evaluation when including the un-
pickle time, as done for Theano on CPU in the previous sections. When running a full
registration, however, this overhead is only required once when each function is loaded at
the beginning of the registration. After this, each function can be evaluated arbitrarily
often throughout the registration. Depending on the number of function evaluations the
faster runtime might compensate for the initial overhead and result in a faster overall
runtime. We will therefore evaluate the Theano GPU computations for a full multi-level
registration in Section 5.4.

5.3.4. Summary

In this section, we evaluated the runtime for derivative computation of the full registration
objective function for the distance measures SSD and NGF. In comparison to the matrix-
based algorithms FAIR and MBC, the matrix-free computations are faster by several
orders of magnitude in every case. Additionally, MFC is the only algorithm that is able
to compute results for an image size of 5123 voxels. Thus, besides a very fast execution,
MFC additionally benefits from its efficient memory use.

While the THEANO computations show considerably slower runtimes than MFC, run-
times are similar to FAIR and MBC, especially for Hessian computations, where addi-
tionally higher resolutions can be computed.

117

5. Experimental results

Size Runtime (s) Speedup

mi my
i FAIR MBC THEANO MFC

MFC MFC MFC

vs. vs. vs.

FAIR MBC THEANO

512 513 * * * 10.12 – – –
257 * * * 4.34 – – –
129 * * * 4.27 – – –

256 257 196.6 * 39.4 0.97 200 – 40
129 148.8 4.44 32.1 0.54 270 8.2 59
65 127.4 4.37 31.4 0.51 250 8.6 62

128 129 13.0 1.06 5.7 0.12 110 8.8 47
65 12.2 0.53 4.9 0.07 170 7.5 69
33 12.5 0.54 4.8 0.06 200 8.6 76

64 65 1.5 0.13 1.7 0.01 110 9.3 120
33 1.4 0.07 1.6 0.01 170 7.9 190
17 1.5 0.06 1.6 0.01 170 7.2 180

Table 5.5.: Runtime evaluation of the NGF objective function gradient for different image
and deformation resolutions for four algorithms. For abbreviations and details
see Figure 5.4.

Size Runtime (s) Speedup

mi my
i FAIR MBC THEANO MFC

MFC MFC MFC

vs. vs. vs.

FAIR MBC THEANO

512 513 * * * 20.39 – – –
257 * * * 14.38 – – –
129 * * * 14.07 – – –

256 257 * * 70.9 2.06 – – 34
129 * * 68.0 1.73 – – 39
65 775.9 511.8 68.0 1.73 450 300 39

128 129 * * 11.0 0.34 – – 33
65 89.8 43.9 10.3 0.25 360 180 42
33 48.8 25.6 10.2 0.24 210 110 43

64 65 39.1 17.7 3.6 0.04 890 400 83
33 10.6 5.0 3.6 0.04 280 130 95
17 5.6 2.9 3.5 0.04 150 77 93

Table 5.6.: Runtime evaluation of the NGF objective function Hessian-vector multiplica-
tion for different image and deformation resolutions for four algorithms. For
abbreviations and details see Figure 5.4.

118

5.4. Multi-level registration

(a) Reference image (b) Template image (c) Initial difference (d) After registration

Figure 5.5.: Dataset for the full multi-level registration: Two three-dimensional thorax-
abdomen CT scans of the same patient, acquired nine months apart, cropped
to a size of m = (512, 512, 512), (a): coronal slice of reference image, (b):
coronal slice of template image, (c): difference image before registration,
(d): difference image after registration for an exemplary registration with
NGF. The difference image after registration highlights the areas of change
(white spots in the lung) corresponding to tumor growth. Datasets courtesy
of Radboud University Medical Center, Nijmegen, The Netherlands.

Thus, for computing objective function derivatives, both algorithms, MFC and THEANO,
present valuable alternatives to matrix-based approaches. While MFC requires some
effort in deriving and implementing the computations, the effort pays off and substan-
tially faster runtimes are achieved. Additionally, higher resolutions can be processed.
THEANO achieved runtimes similar to existing research codes, with minimal develop-
ment effort and high flexibility and is thus especially suitable for model development and
rapid prototyping.

While computing objective function derivatives represents a major component of the
final registration algorithm, the total registration runtime and peak memory usage are
ultimately the crucial factor when using a registration algorithm in practice. Therefore, in
the next section, we will investigate the full multi-level registration for different algorithms
with respect these aspects.

5.4. Multi-level registration

After characterizing the algorithms’ performance on individual components of the ob-
jective function in the previous chapters, in this section, we evaluate the algorithms
in a complete real-world problem from clinical practice: registering two CT images for
follow-up diagnosis in oncology, shown in Figure 5.5. Both images are from the same
patient and have been acquired nine months apart. A difference image can reveal re-
gions of change for further investigation in order to assess tumor development. As shown
in Figure 5.5(c), due to different respiratory states and nonlinear organ motion, simple
subtraction is not sufficient, but with a prior registration allows to identify suspicious
regions, see Figure 5.5(d).

119

5. Experimental results

100 101 102 103 104

5123

2563

1283

643

5123

2563

1283

643

Runtime (s)

L
-B

F
G

S
G

a
u
ss

-N
ew

to
n

MFC

MBC

FAIR

TH.-GPU

THEANO

100 101 102 103 104

5123

2563

1283

643

5123

2563

1283

643

Memory usage (MB)

Figure 5.6.: Runtime (left) and memory usage (right) for a full multi-level registration
with SSD for different algorithms and image sizes (logarithmic scale). For
each evaluation, a coarse-to-fine multi-level registration with three levels was
performed; the deformation grid size was chosen as one quarter of the image
size on each level. The proposed matrix-free method (MFC) achieves both
the fastest runtimes and the lowest memory consumption. Theano-based
implementations with automatic differentiation are a flexible alternative to
matrix-based methods MBC and FAIR with similar performance, especially
for Gauss-Newton optimization. For detailed results see Table 5.7 and Ta-
ble 5.8.

For the experiments in this section, the original images have been cropped to a size of
5123 voxels. We then performed full multi-level registrations as described in Section 2.5.6
for various resolution settings at the finest level. Starting with the original image size
of 5123 voxels, we also investigated downsampled image sizes of 2563, 1283 and 643 in
order to analyze performance on smaller images. All registrations were computed using
a multi-level scheme with three levels and the deformation resolution was chosen as one
quarter of the image resolution on each level. Specifically, a registration with the finest
image size of 5123 voxels starts with an image size of 1283, then 2563 and finally 5123

voxels, with deformation grid sizes of 333, 653 and 1293 grid points.

We recorded the runtime and memory requirements of the full multi-level registration for
the matrix-based FAIR and MBC algorithms, for the Theano implementation with auto-
matic differentiation from Chapter 4 (THEANO) on CPU as well as on GPU, and for the
matrix-free computations (MFC) proposed in Chapter 3. For the THEANO implemen-
tations, the Python-based objective function derivative calculations were integrated into
the C++-based registration framework as described in Section 4.5.6. We also included
the MFC implementation alternatives, discussed in Section 5.2.

120

5.4. Multi-level registration

Algorithm Runtime L-BFGS (s) Runtime Gauss-Newton (s)

5123 2563 1283 643 5123 2563 1283 643

FAIR * 839 94.0 19.3 * 52 178 4882 578.7
MBC * 181 29.1 3.7 * 3641 481 63.9

THEANO * 1302 231.5 40.7 * 36 200 4908 715.4
THEANO-GPU† * 701 160.9 80.5 * * 1964 274.7

MFC 88 13 2.4 0.5 1201 152 27 5.0

Table 5.7.: Total multi-level runtime in seconds using SSD for different image sizes. *:
computations exceeded 32 GB of memory (4 GB for GPU); †: using 32-bit
floating point precision. See Figure 5.6 for more details.

Algorithm Memory L-BFGS (MB) Memory Gauss-Newton (MB)

5123 2563 1283 643 5123 2563 1283 643

FAIR * 16 669 2362 609 * 23 237 3187 772
MBC * 11 360 1449 187 * 19 500 2478 318

THEANO * 5022 977 624 * 4987 974 613
THEANO-GPU† * 3025 465 145 * * 1109 221

MFC 3754 478 63 11 3157 399 54 10

Table 5.8.: Total peak memory usage in megabytes (106 bytes) for a full multi-level reg-
istration with SSD for different image sizes. *: computations exceeded 32 GB
(CPU) / 4 GB (GPU) of memory; †: using 32-bit floating point precision. See
Figure 5.6 for more details.

All experiments were performed on the same 12-core workstation as in the previous sec-
tion. To minimize measurement influence during the runtime measurements, all other
non-essential processes, including graphical user interface, were terminated and the eval-
uation was run with highest process priority. For the parameters, we used α = 10 as
regularizer weight and τ, ̺ = 5 for the NGF edge-filtering parameters. Due to small nu-
merical differences, the number of optimization iterations performed before the stopping
criteria are fulfilled can slightly vary between algorithms. As this impedes a fair runtime
comparison, we chose a fixed number of 20 iterations on each level for benchmarking.

5.4.1. Runtime

Sum of squared differences. The results for the multi-level registration with SSD
are visualized in the left part of Figure 5.6, detailed results are furthermore given in
Table 5.7.

Our proposed MFC approach achieves the fastest runtimes for all resolutions and for
both L-BFGS and Gauss-Newton optimization schemes. In comparison with FAIR, the

121

5. Experimental results

speedup of MFC ranges from 38.6 to 64.5 for L-BFGS and from 115.7 to 343.3 for Gauss-
Newton: the more complicated derivation of a matrix-free Hessian-vector multiplica-
tion for Gauss-Newton and MFC is rewarded by higher speedups than for L-BFGS and
MFC.

Compared to MBC, speedup factors range from 7.4 to 13.9 for L-BFGS and from 12.8
to 24.0 for Gauss-Newton, i.e., approximately one order of magnitude for both schemes.
Again, the speedups for the Gauss-Newton-based computations are higher than for L-
BFGS.

The THEANO implementation on the CPU performed worse than FAIR for optimization
with L-BFGS. For Gauss-Newton, the execution times are similar, with a slightly slower
computation time for an image resolution of 644 voxels and a slightly faster computation
for 2563 voxels. Executing THEANO on the GPU yields speedup factors from 1.4 to
2.5 compared CPU computations, except for L-BFGS at the smallest image size of 643

voxels, where the GPU computation is in fact slower than the CPU version. This can
be attributed to the longer unpickle times. Generally, for the GPU computations, larger
image sizes correlate with larger speedups, which is related to a better utilization of
the many-core architecture of the GPU by a larger number of image voxels. For larger
images, THEANO on GPU achieves computation times that are in a comparable range
with FAIR for L-BFGS optimization. For Gauss-Newton optimization, the computations
on GPU are faster than FAIR by a factor of up to 2.5.

As will be further discussed in Section 5.4.2, in all cases MFC is able to compute higher
resolutions than all other evaluated algorithms within the 32 GB memory constraint of
the benchmark workstation. Especially THEANO-GPU is limited by the 4 GB of graph-
ics memory and can only be used for image resolutions up to 1283 voxels with Gauss-
Newton.

Normalized gradient fields. The results of the runtime evaluation for the multi-level
registration with NGF are visualized in the left part of Figure 5.7. Detailed results can be
found in Table 5.9. As in Section 5.3, we used the fastest version of MFC from Section 5.2
for the evaluation, precomputing both ŷ and the deformed template image T (ŷ), which we
thus denote as MFC(T ,ŷ). Other MFC implementation alternatives, computing different
values on the fly, will be compared at the end of this section.

Similar speedups to the SSD case can be observed when comparing the runtimes of
MFC(T , ŷ) and FAIR for L-BFGS: The MFC(T , ŷ) implementation is faster by a factor
of 26.2 to 41.1. For Gauss-Newton, the factor ranges from 37.0 to 70.7: the speedup
is slightly lower than in the SSD case, consistent with the observations in the previous
sections.

MFC(T , ŷ) is faster than MBC by a factor ranging from 5.2 to 8.6 for L-BFGS opti-
mization and from 11.1 to 14.6 for Gauss-Newton. These numbers are lower than for the
evaluation of only the objective function, especially for the Gauss-Newton Hessian-vector
multiplication. This can be attributed to the fact that, in addition to the Hessian matrix,
the gradient is also required for solving the Newton equation (Section 2.5.1). Since the
speedup for the gradient computations is lower, as shown in Table 5.5 and Table 5.6, this
also affects the overall speedup for the Gauss-Newton multi-level registration.

122

5.4. Multi-level registration

100 101 102 103 104

5123

2563

1283

643

5123

2563

1283

643

Runtime (s)

L
-B

F
G

S
G

a
u
ss

-N
ew

to
n

MFC(T, ŷ)

MBC

FAIR

TH.-GPU

THEANO

100 101 102 103 104

5123

2563

1283

643

5123

2563

1283

643

Memory usage (MB)

Figure 5.7.: Runtime (left) and memory usage (right) for a full multi-level registration
with NGF for different algorithms and image sizes (logarithmic scale). For
each evaluation, a coarse-to-fine multi-level registration with three levels was
performed; the deformation grid size was chosen as one quarter of the image
size on each level. The matrix-free computations (MFC) exhibit both the
fastest runtimes and the lowest memory consumption. Theano-based com-
putations with automatic differentiation are a viable alternative to matrix-
based methods MBC and FAIR, especially for Gauss-Newton optimization.
For detailed results see Table 5.9 and Table 5.10.

100 101 102 103 104

5123

2563

1283

643

5123

2563

1283

643

Runtime (s)

L
-B

F
G

S
G

a
u

ss
-N

ew
to

n

MFC(T ,ŷ)

MFC(T)

MFC

100 101 102 103 104

5123

2563

1283

643

5123

2563

1283

643

Memory usage (MB)

Figure 5.8.: Runtime (left) and memory usage (right) for a full multi-level registration
with NGF for different alternative implementations of MFC and varying im-
age sizes (logarithmic scale). While MFC(T ,ŷ), MFC(T) with selected pre-
computations achieve faster runtimes in most cases, the memory usage can
be considerably higher. For detailed results see Table 5.9 and Table 5.10.

123

5. Experimental results

The THEANO computations on CPU are slower than FAIR for L-BFGS on all resolutions.
For Gauss-Newton, however, all computations are faster than FAIR, with a speedup factor
of 2.03 for an image resolution of 1283 voxels. Additionally, THEANO on CPU is able
to compute the registration with Gauss-Newton at an image resolution of 2563 voxels,
while both FAIR and MBC run out of memory for this size. However, at this resolution,
THEANO requires an unreasonably long runtime of more than 12 hours.

In comparison to the CPU version, THEANO on GPU is slower for L-BFGS and image
sizes of 643 and 1283 voxels. This mainly results from the large overhead of loading
(unpickling) the Theano functions (Table 4.2). For the smaller image sizes, the GPU
speedup is not large enough to outweigh the initial overhead. For larger images, resulting
in longer iterations times in relation to the loading overhead, computation on GPU is
faster by a factor of 1.6 (L-BFGS) and 2.0 to 2.7 (Gauss-Newton) at 2563 voxels. For
Gauss-Newton, the GPU-based computations are then only slightly slower than MBC
and from 2.2 to 5.6 times faster than FAIR.

In comparison to the SSD-based multi-level registrations, for the Gauss-Newton opti-
mization the restrictions imposed by memory size are even larger. While all MFC imple-
mentations handle all evaluated sizes, image sizes of 2563 and 5123 exceed the capabilities
of FAIR and MBC.

Effect of selective precomputation. Figure 5.8 and Table 5.9 visualize the multi-
level runtimes for the MFC implementation alternatives from Section 5.2. The alter-
natives differ in the amount of selectively precomputed structures. While MFC(T , ŷ),
which was used previously in this section, precomputes the deformation on the image
grid ŷ as well as the deformed template image T (ŷ), MFC(T) precomputes only T (ŷ)
but computes ŷ on the fly. Finally, MFC computes both T (ŷ) and ŷ on the fly.

For L-BFGS optimization, there is no substantial difference in runtime between MFC(T ,
ŷ) and MFC(T), which is consistent with the observations in Section 5.2. The MFC
computations, however, which compute everything on the fly, are slower than MFC(T)
by a factor of approximately 4 for all image sizes and L-BFGS optimization.

For Gauss-Newton optimization MFC(T , ŷ) yields the fastest computations, with no
substantial difference between MFC(T) and MFC, consistent with the observations in
Section 5.2.

In summary, selective precomputations can further reduce the runtimes of the matrix-free
registration. Depending on the optimization scheme, different amounts of precomputa-
tions achieve the lowest runtime. While for L-BFGS further precomputations than T (ŷ)
do not result in further benefits, the runtime for Gauss-Newton can be reduced even
more. Naturally, this results in higher memory requirements, which will be discussed in
the next section.

5.4.2. Memory requirements

In contrast to algorithm runtime, which can be inconvenient or impractical when too
large, peak memory requirements impose a hard limit on the problem size.

124

5.4. Multi-level registration

Algorithm Runtime L-BFGS (s) Runtime Gauss-Newton (s)

5123 2563 1283 643 5123 2563 1283 643

FAIR * 740 89.6 13.1 * * 11 667 814
MBC * 155 16.6 2.6 * * 1835 321

THEANO * 1117 144.9 33.8 * 45 276 5734 725
THEANO-GPU† * 685 161.2 102.6 * * 2100 371

MFC(T ,ŷ) 132 18 2.2 0.5 9908 1233 165 22
MFC(T) 124 16 2.8 0.7 18 937 2509 368 43

MFC 478 67 11.2 2.8 19 327 2547 378 45

Table 5.9.: Total multi-level runtime in seconds using NGF for different image sizes. *:
computations exceeded 32 GB (CPU) / 4 GB (GPU) of memory; †: using
32-bit floating point precision. See Figure 5.7 and Figure 5.8 for more details.

Algorithm Memory L-BFGS (MB) Memory Gauss-Newton (MB)

5123 2563 1283 643 5123 2563 1283 643

FAIR * 17 086 2432 643 * * 4402 927
MBC * 13 459 1694 220 * * 5446 697

THEANO * 7185 1219 469 * 7183 1213 466
THEANO-GPU† * 3526 518 158 * * 1363 251

MFC(T ,ŷ) 11 103 1395 179 25 16 783 2110 268 36
MFC(T) 4812 615 79 17 4200 537 71 12

MFC 3755 478 63 11 3158 399 54 10

Table 5.10.: Total peak memory usage in megabytes (106 bytes) for a full multi-level regis-
tration with NGF for different image sizes. *: computations exceeded 32 GB
(CPU) / 4 GB (GPU) of memory; †: using 32-bit floating point precision.
See Figure 5.7 and Figure 5.8 for more details.

Therefore, we evaluated the peak memory usage of all algorithms for the full multi-level
registration, including the images and their multi-level representations, the objective
function derivatives, memory required for the optimization algorithm and CG solver, and
further auxiliary variables.

Sum of squared differences. For SSD, the memory requirements are visualized in
the right part of Figure 5.6. Additionally, detailed results are given in Table 5.8. The two
matrix-based algorithms FAIR and MBC have the highest memory usage. For L-BFGS
optimization, MBC and FAIR require 16.6 GB and 11.3 GB of memory for a full multi-
level registration with an image size of 2563 voxels, respectively. Even more memory is
required for Gauss-Newton optimization: FAIR requires 23.2 GB of memory, MBC needs
19.5 GB. Larger image sizes exceed 32 GB and therefore cannot be computed on the
benchmark workstation.

125

5. Experimental results

In contrast to this, the memory usage of MFC is substantially lower. Even for an im-
age resolution of 5123 voxels, only 3.7 GB are required for L-BFGS optimization and
3.1 GB for Gauss-Newton optimization: MFC improves the overall memory consump-
tion of the full algorithm by two orders of magnitude in comparison to the matrix-based
algorithms.

Since the L-BFGS scheme requires additional buffers for storing gradient information
from previous iterations, memory consumption for L-BFGS is even higher than for Gauss-
Newton, which is the opposite for the matrix-based algorithms.

The memory consumption for THEANO on CPU is lower than FAIR and MBC for large
image sizes by factors of 3.3 and 2.3 for L-BFGS, and 4.7 and 3.9 for Gauss-Newton and
an image size of 2563 voxels, respectively. However, the THEANO computations exhibit a
comparatively large baseline memory-usage: For images of size 643, the required memory
is about 600 MB, which is comparable to FAIR, while MBC only requires 187 MB for L-
BFGS and 318 MB for Gauss-Newton optimization in this case, which makes THEANO
more suitable in cases where larger images are processed.

The GPU version of THEANO requires less memory for L-BFGS optimization than the
CPU implementation. This is at least partially caused by the use of single precision
floating-point values (Section 4.5.6). However, for an image size of 1283 voxels and Gauss-
Newton optimization, the required memory of the GPU version is even larger than for the
CPU version, which is probably caused by different graph optimizations performed for
Theano GPU computations. Therefore, computations with an image size of 2563 voxels
already exceed the available 4 GB GPU memory on the benchmark workstation.

Normalized gradient fields. The measured memory requirements for the full multi-
level registration with the NGF distance measure are visualized in the right part of
Figure 5.7. Furthermore, detailed results are given in Table 5.10.

The obtained results are generally similar to the SSD results reported above, although the
memory requirements of the matrix-based algorithms and THEANO are slightly higher.
While a full multi-level registration with L-BFGS optimization requires 17.1 GB and
13.4 GB of memory for FAIR and MBC with an image size of 2563 voxels, a registration
with MFC only requires 3.8 GB on the next larger image size with 5123 voxels. Similarly to
the SSD computations, MFC reduces memory consumption by two orders magnitude.

Again, THEANO-GPU has a lower memory consumption than the matrix-based FAIR
and MBC. THEANO has a higher baseline memory consumption, such that for L-BFGS
at 643 voxels more memory than MBC is required. For larger image sizes, the relation
reverses: for L-BFGS optimization and 2563 voxels, THEANO has a memory consumption
that is lower by a factor of 2.4 when compared to FAIR and 1.9 when compared to
MBC. For Gauss-Newton, the memory consumption is even lower by a factor of 3.6 when
compared to FAIR and 4.5 when compared to MBC. Due to this, THEANO is able to
compute a full multi-level registration with Gauss-Newton optimization and image sizes of
2563 voxels, while the matrix-based algorithms exceed the available 32 GB of memory.

126

5.4. Multi-level registration

Effect of selective precomputations. As the precomputation-based variants selec-
tively store often-used elements, they require substantially more memory. As can be
seen in Table 5.10, in particular the amount of memory required for storing ŷ and the
resulting gradient on the image grid weighs heavily for larger image sizes. For 5123 vox-
els and L-BFGS, MFC requires 3.8 GB of memory, while MFC(T ,ŷ) needs 11.1 GB. For
Gauss-Newton, the difference is even larger and MFC(T ,ŷ) needs 16.8 GB, while MFC
only requires 3.2 GB of memory.

While these differences in memory consumption can make a large difference on the abil-
ity to run an algorithm with a certain image size in practice, they have to be considered
in relation to the corresponding runtimes. As shown in Figure 5.8, the selectively pre-
computed values yield a faster runtime in most cases. While for L-BFGS optimization,
MFC(T) yields the best compromise between runtime and memory requirements, for
Gauss-Newton optimization, MFC(T ,ŷ) obtains substantially lower runtimes, such that,
if possible, the additional memory requirements should be accepted.

Additionally, it can be observed that the memory requirements for plain MFC, i.e., com-
puting everything on the fly, are identical for SSD and NGF. This lines up with theory:
Since no intermediate results are stored for gradient and Hessian computation, mem-
ory requirements are solely for the remaining parts of the algorithm, which are identical
between the SSD and NGF versions.

5.4.3. Summary

Our analysis has shown that the matrix-free computations allow for a substantially faster
runtime for all evaluated image sizes and both L-BFGS and Gauss-Newton optimization
when compared to matrix-based algorithms. With speedup factors of up to three orders
of magnitude for SSD and two orders of magnitude for NGF, depending on image size
and optimization method, MFC computations can potentially achieve clinically feasible
runtimes for image sizes that were impractical to register in daily routine before.

Additionally, MFC features highly reduced memory requirements. While the largest
image size of 5123 voxels exceeds the limits of all other algorithms tested, MFC potentially
enables computations with even larger images.

The THEANO algorithm cannot compete with MFC. However, since very little devel-
opment effort is required due to the automatic differentiation, it represents a valuable
alternative to matrix-based algorithms, especially FAIR. This makes the Theano-based
algorithm especially suitable for model development and rapid prototyping scenarios.

THEANO transfers transparently to the GPU with an additional speedup over the CPU
version on larger images. However, this limits the computations by the available GPU
memory, and results in a large runtime overhead for loading the compiled functions.

127

5. Experimental results

Algorithm Runtime (s) Memory usage (MB)

5123 2563 1283 643 5123 2563 1283 643

S
S
D MFC 88 13.4 2.4 0.5 3754 478 63 11

MFC-GPU * 1.5 0.5 0.2 * 566 159 104

N
G

F MFC(T ,ŷ) 132 17.9 2.2 0.5 11 103 1395 179 25
MFC-GPU * 1.5 0.3 0.2 * 566 155 107

Table 5.11.: Multi-level runtime (s) and memory usage (MB) for matrix-free registration
on the GPU for different image sizes. *: computations exceeded 4 GB of
GPU memory. See Figure 5.9 for more details.

5.5. GPU-based matrix-free registration

In addition to the matrix-free algorithm on the CPU, we implemented the matrix-free
gradient computations on the GPU using NVIDIA CUDA. While the Theano-based com-
putations can be automatically performed on the GPU by simply activating a runtime
flag, performing the matrix-free computations on GPU requires a completely new im-
plementation (Section 3.8.2). Therefore, we evaluate the matrix-free algorithm on GPU
(MFC-GPU) separately in this section and compare the runtime and memory usage to
its equivalent on the CPU (MFC) in order to assess the potential benefits of a specialized
implementation.

Again, we utilized the same workstation, equipped with an NVIDIA GeForce GTX 980
GPU with a base clock speed of 1.1 GHz and 4 GB of memory.

The workstation achieves a theoretical peak performance of approximately 250 GFLOPS
for CPU computations. Compared to this, the double-precision peak performance of the
GPU is much lower with only 144 GFLOPS. However, the GPU has a 32 times higher
theoretical single-precision peak performance [Arr18] with up to 4.6 TFLOPS [NVI18],
which constitutes a potential performance advantage over the CPU. Therefore, GPU-
accelerated computations are performed using single-precision computations, as in the
THEANO-GPU implementation (Section 4.6).

We evaluated MFC-GPU with the same images and parameters as used in Section 5.4.
Only the matrix-free gradient computations were implemented on GPU, as the imple-
mentation was used primarily in an L-BFGS-based application. Therefore, we restricted
the evaluation to L-BFGS optimization. Additionally, in the GPU implementations, T (ŷ)
and ŷ were precomputed. For a fair comparison, we compare the results with MFC(T ,ŷ)
from the previous section, which precomputes the same values.

5.5.1. Runtime

The runtimes are given in Table 5.11 and Figure 5.9 for SSD and NGF. The GPU compu-
tations achieve an additional speedup ranging from 2.5 to 8.9 for SSD and from 2.5 to 11.9
for NGF. Similar to the results of THEANO-GPU discussed in Section 5.4, larger image

128

5.6. Discussion and summary

100 101 102 103

5123

2563

1283

643

5123

2563

1283

643

Runtime (s)

N
G

F
S
S
D

MFC-GPU

MFC(T ,ŷ)

100 101 102 103 104

5123

2563

1283

643

5123

2563

1283

643

Memory usage (MB)

Figure 5.9.: Runtime (left) and memory usage (right) for a full multi-level registration,
using matrix-free computations on the GPU for different image sizes. The
GPU-based implementation achieves an additional speedup of up to 11.9, but
is limited by the size of the GPU memory (4 GB).

sizes are beneficial. The lowest speedup factors are achieved for images with a size of 643

voxels, while the highest speedup is obtained for image sizes with 2563 voxels, as this was
the largest size that could be evaluated with MFC-GPU. The additional speedup now
allows to perform a full multi-level registration in 1.5 s for SSD and NGF. In conclusion,
while the implementation of MFC-GPU requires additional effort for creating the CUDA
implementation, it is rewarded with a considerable additional speedup.

5.5.2. Memory requirements

The GPU implementation uses precomputations for T (ŷ) and ŷ, similar to MFC(T ,ŷ)
for NGF as well as for SSD. However, since single-precision computations are used, less
memory is required for deformations and deformed template image. As shown in Ta-
ble 5.11, a considerable amount of memory is still required for MFC-GPU. Together
with the limited GPU memory of 4 GB, this leads to limitations on the maximum image
sizes, such that the largest images with 5123 voxels cannot be computed. We presume
that an implementation without precomputations would be beneficial, at the the cost of
additional implementation effort.

5.6. Discussion and summary

Our findings in the previous sections of this chapter show that the derived matrix-free
computations for distance measure derivatives and grid conversion exhibit the desired ap-
proximately linear scaling behavior (Section 5.1). However, a sufficient number of parallel
tasks in relation to the number of computational cores is required in order not to limit the
computational performance. In comparison, we found that the scalability of the curvature
regularizer is limited, due to a small ratio of computations to memory operations, which
causes the computations to be limited by memory bandwidth. This, however, is not a

129

5. Experimental results

major concern for the final algorithm, since the evaluation of the curvature regularizer is
several orders of magnitude faster than the distance measure computations.

For the full objective function, the matrix-free computations were up to three orders of
magnitude faster than their matrix-based equivalents (Section 5.3). Additionally, higher
resolutions can be computed, where the matrix-based algorithms run out of memory.

On the full multi-level real-world registration dataset (Section 5.4) the matrix-free com-
putations are several orders of magnitude faster than the matrix-based algorithms. Ad-
ditionally, the matrix-free computations require substantially less memory: a multi-level
registration with an image size of 5123 voxels can only be performed by MFC, all other al-
gorithms exceed the available memory on our workstation. Together, fast runtimes which
scale linearly with additional computational cores, as well as very low memory require-
ments make the matrix-free computations favorable in every aspect over the matrix-based
implementations.

While substantially slower than the matrix-free methods, the Theano-based implemen-
tations achieve runtimes on par with the matrix-based methods. Therefore, considering
their excellent flexibility, the Theano framework is especially suitable for development of
new models and rapid prototyping. Switching to GPU-based computations can lead to
further speedup, although mostly for larger images due to large overheads when loading
the compiled functions on GPU. Furthermore, these methods are limited by the smaller
GPU memory.

We found that even matrix-free computations with higher memory requirements due
to precomputed values still exhibit a substantially lower memory usage than all other
evaluated algorithms. On the other extreme, the matrix-free derivative computations
without any precomputations exhibit very low, constant memory requirements which
makes the matrix-free methods capable of potentially computing registrations with very
large image sizes. In practice, the requirements of the specific application scenario are
essential deciding between faster runtime and lower memory consumption.

In Section 5.5, we evaluated a GPU-based implementation of the matrix-free algorithm.
In comparison with the CPU implementation, a considerable additional speedup could
be achieved, at the cost of considerable implementation effort and stricter size limits
due to the smaller GPU memory. In particular, for time-critical applications, the GPU
implementation is a valuable addition to further reduce runtime. Here, the low runtimes
potentially enable new application scenarios, e.g., in intra-operative settings.

Together, matrix-free and Theano-based methods offer suitable alternatives for all stages
of algorithm development, ranging from development and exploration of the mathematical
model to derivation of a fast and efficient algorithm for practical use. Here, especially
the matrix-free computations enable new potential applications due to their speed and
low memory requirements. Selected applications, where these properties are crucial, will
be presented in the following chapters.

130

Part II.

Large-scale and real-time

applications in medical imaging

131

6 Follow-up thorax-abdomen

registration in radiology

In radiology, so-called follow-up diagnoses routinely involve, comparing current CT im-
ages with CT images from an earlier time point. In particular in the thorax-abdomen
region, non-linear deformations due to different breathing states, intestinal motion, tumor
growth, and cancer therapy can make a manual comparison of images difficult.

The diagnosing radiologist is obliged to inspect the entire scan, compare it with prior
scans and document all findings and observed changes. However, manually navigating
through both datasets side-by-side in order to identify corresponding locations can be a
lengthy and tiring process: the clinician often spends a substantial amount of time with
the manual process of navigating the three-dimensional datasets.

In this setting, deformable image registration between current and prior image can sup-
port the clinician in quickly finding the corresponding location. Using the computed
deformation, positions in both images can be linked using cursor synchronization or
synchronized navigation [FGM+17; HBS06; Bal06; LPG+05]. Additionally, subtraction
images can reveal locations of subtle anatomical changes that need closer investigation
[EPW+07; TVF+02].

In a clinical setting, the computation time for registering current and prior CT scan is
important in order not to impede the clinical workflow. As thorax-abdomen CT scans
can easily exceed image sizes of 512×512×1000 voxels, this poses a challenge in terms of
both memory usage and runtime. This makes the application scenario attractive for our
proposed matrix-free registration, potentially allowing to process these large datasets in
clinically feasible runtime.

In Section 6.1, we present an automatic processing pipeline for the registration of thorax-
abdomen CT images and a method for obtaining synchronized locations on different
images using the computed deformation. The registration is evaluated on a large clinical
dataset in Section 6.2, and the experimental results are discussed in Section 6.3.

6.1. Thorax-abdomen registration

In order to support the radiologist in examining follow-up scans, we implemented a fully
automatic registration pipeline for registering intra-patient thorax-abdomen CT images.

133

6. Follow-up thorax-abdomen registration in radiology

(a) Center align (b) Grid search (c) Pre-registration (d) Deformable reg.

Figure 6.1.: Color overlay for coronal slices of prior (blue) and follow-up image (red) at
different stages of the processing pipeline and the final aligned result after
registration. At each stage, the registration is further refined, leading to
a pre-registration (c), which is a suitable starting point for the deformable
registration. Datasets courtesy of Radboud University Medical Center, Ni-
jmegen, The Netherlands.

The main goal was to robustly and automatically register large numbers of original clinical
CT scans without the need for user intervention.

As images from the same patient taken at a different time points may have been ac-
quired with different devices and with different diagnostic purpose, varying scanners,
image sizes and spacings as well as different fields of view have to be considered. The
different steps of the proposed framework are shown in Figure 6.1. Here, an image
from a Toshiba Aquilion ONE scanner, with a size of m = (512, 512, 766) voxels and
spacings of h = (0.69 mm, 0.69 mm, 0.8 mm) was registered to an image acquired with a
Siemens Sensation 64 device, with a size of m = (512, 512, 1008) voxels and spacings of
h = (0.86 mm, 0.86 mm, 0.7 mm). Each step of the pre-processing pipeline successively
refines the registration result, resulting in a pre-alignment that is suitable as a starting
point for the deformable registration.

6.1.1. Processing pipeline

Depending on the device used, gray values can be stored differently, either directly as
Hounsfield units (HU) or as unsigned integer values with a corresponding offset value,
typically −1024. Therefore, we initially normalize the image gray values such that a gray
value of zero corresponds to −1024 HU, which typically characterizes the air around the
body and is considered the image background. Lower HU values are clamped to zero,
such that all gray values are nonnegative. Furthermore, we normalize the orientation of
the patient, which is required for some images which were acquired in a prone or lateral
recumbent (lying on the side) position.

134

6.1. Thorax-abdomen registration

Coordinate center alignment. As images from different scanners often have very
different world coordinate locations, first an initial overlap of the images has to be estab-
lished. For this, we align the centers of both images with the coordinate origin. While
this already provides a good pre-alignment in some cases where scanner and field of view
of both images are identical, in other cases this only provides a starting point for the
following alignment steps.

Grid search. In the second step we perform a coarse translational grid-search, using
all possible translations with a pre-defined step width and maximum extent. The final
alignment is determined as the one that minimizes the SSD distance over all sampled
alignment positions.

As image pairs with differing fields of view typically contain parts which are contained
in only one of the images, we only evaluated the distance measure at deformation grid
points that lie within the intersection of the transformed template and reference image:
using V := {i ∈ [1, . . . , m̄]

∣
∣ ϕ(xi) ∈ ΩT }, we compute

DSSD
V (y) :=

h̄

|V|

∑

i∈V

(Ti(P (y))−Ri(x))2 ,

which includes an additional normalization by |V|.

Pre-registration. After the coarse grid search, the alignment is refined by a rigid (ro-
tation and translation only) multi-level pre-registration using the SSD distance measure,
using the coarsely aligned images as a starting point. The restriction to rigid transfor-
mations is implemented as described in Section 2.4.2. As shown in Figure 6.1(d), the
resulting alignment is a suitable starting point for the deformable registration.

The purpose of this multi-step approach is to successively move from robust methods
with fewer degrees of freedom to more precise, but less robust methods that require
better starting points due to their higher degrees of freedom.

Deformable registration. The final step in the proposed registration framework is a
matrix-free deformable registration as discussed in Chapter 3. We employ the NGF dis-
tance measure, as presented in Section 2.3.1, which focuses on aligning image gradients. In
our experiments NGF has provided more robust alignments than SSD for the deformable
registration. The registration is embedded in a multi-level scheme with L-BFGS optimiza-
tion (Section 2.5). Due to the large sizes of the CT datasets, the registration runtime
and memory consumption greatly benefits from the matrix-free algorithm, allowing to
register both images within a couple of seconds (see Section 6.2).

6.1.2. Propagation of lesion locations

To provide synchronized navigation between the prior and current image, the computed
deformation needs to be evaluated in both directions: Selecting a point in the prior image
and obtaining the corresponding location in the current image and vice versa, as shown
in Figure 6.2.

135

6. Follow-up thorax-abdomen registration in radiology

(a) Prior scan (b) Follow-up scan (c) Pre-registration (d) Deformable reg.

Figure 6.2.: Cursor synchronization for lesion investigation, cursor (yellow) in (a) prior
image, (b) follow-up image, as well as in difference images (c) before regis-
tration and (d) after registration. The cursor synchronization is performed
in real time using the deformation previously computed with the proposed
processing pipeline. The new lesion is clearly visible in the difference image
after deformable registration. Cursor synchronization allows to easily locate
the corresponding location in the prior scan. Datasets courtesy of Radboud
University Medical Center, Nijmegen, The Netherlands.

One of the directions is trivial: using the transformation ϕ, any point x ∈ ΩR on the
reference image domain can be directly mapped to the template image with ϕ(x) =
y. However, computing the opposite direction ϕ−1(y) = x requires the inverse of the
transformation. While there exist algorithms for inverting the full deformation field
[CCH07; CLC+08], these require additional computation time and memory for storing
the inverse transformation. Therefore, we compute a point-wise inverse at the current
location on the fly. For a point y ∈ ΩT in the template image domain, with f : R3 → R,
we compute an approximation x with

min
x∈ΩR

f(x) := ‖ϕ(x)− y‖2

on the reference image domain ΩR as defined in Section 2.4.1, obtaining an approximation
for ϕ−1(y). As box constraints are applied on the variable, we solve the constrained
optimization problem using the gradient projection method [NW06, §16.7] with the center
of ΩR as a starting guess and terminating if f < 10−6 or 100 iterations are reached. In this
application, the deformations have generally been found to be sufficiently smooth for the
optimization to converge. As derivatives of f can be computed rapidly, the approximation
to the inverse transformation can be computed on the fly without perceptible delay.

6.2. Evaluation

We evaluated the proposed registration framework on a large dataset of oncological
thorax-abdomen CT scans, collected at Radboud University Medical Center, Nijmegen,

136

6.2. Evaluation

(a) Follow-up 1 (b) Follow-up 2 (c) Follow-up 3 (d) Follow-up 4 (e) Follow-up 5

Figure 6.3.: Difference images of deformed follow-up images and prior scan for multiple
time points, spaced approximately two months apart. While, due to missing
correspondence, different bowel contents appear as non-gray areas in the
lower part of the images, lesion progression is clearly visible in the lung.

The Netherlands. In total, datasets from 489 different patients were available, each with
one to seven follow-up scans, resulting in a total of 986 individual registrations. The
images originated from four different scanners, with sizes of mx = 512 and my = 512
voxels for all images and an average of mz = 648 voxels, with average spacings of
h = (0.76 mm, 0.76 mm, 1.14 mm).

For the deformable registration we manually chose the NGF edge parameters as ̺, τ = 5
and a regularizer weight of α = 10, achieving visually acceptable results. We used three
levels in the multi-level scheme, with a quarter of the original resolution in each direction
as the finest level. The deformation resolution was chosen as half the image resolution in
each direction on every level.

All 986 registrations were processed successfully using the proposed scheme, without
clearly visible failures or misalignments. Since no manual annotations for evaluation of
the registration error were available on the dataset, and to the best of our knowledge
no publicly available dataset for thorax-abdomen registration with manual annotations
exists, we evaluated the results by visual inspection.

In all cases, the deformable registration substantially improved the pre-registration re-
sults, as shown for an exemplary dataset in Figure 6.2. Difference images for an exemplary
case with four follow-up scans, acquired at two month intervals are shown in Figure 6.3.
Here, lesion changes over time can be observed. Due to intestinal motion and different
bowel contents, the accuracy of the registration in the bowel region, visible in the lower
part of the image, is limited and missing correspondences appear as non-gray areas in
the difference images.

The average runtime of the complete processing pipeline was 38.1 s per dataset on a
workstation with Intel Core i7-6700K CPU with four cores and 4.00 GHz, with a maximum
value of 104.5 s and a minimum value of 18.4 s. Out of this, the matrix-free deformable
registration took 8.3 s on average, with a minimum of 2.0 s and a maximum of 69.3 s,

137

6. Follow-up thorax-abdomen registration in radiology

while the remaining runtime is spent for data loading, grid search, pre-registration and
computation of the deformed image for visualization of the difference image.

6.3. Summary and conclusion

We presented a method for automatic pre-processing and registration of thorax-abdomen
CT datasets. In this important scenario, our matrix-free approach brings down the
– usually dominant – time for computing the deformable registration to less than one
quarter of the total runtime. The computed deformation allows for real time cursor
synchronization between the images and can potentially aid radiologists in performing
follow-up diagnoses.

Evaluated on a large number of datasets, our approach shows visually convincing results.
Future evaluations with ground truth annotations on thorax-abdomen datasets could
potentially be used to further refine the registration results and to allow for a quantitative
evaluation. At the time of writing, however, such ground truth data was not available
for the thorax-abdomen region.

Improvements to the registration accuracy could be made by including further anatomical
information into the registration, as proposed in Chapter 7. For instance in the lung
region, by explicitly aligning the lung contours the registration accuracy could potentially
be improved, using a similar approach as [RHKF13]. In the intestinal region, masking the
image distance in areas without correspondence could also help to improve alignment for
surrounding organs. Segmentations of the bowel region could additionally be used in the
result visualization to hide differences in this area, allowing the radiologist to focus on
indicated lesions in difference images. These approaches, however, require segmentations
of the respective anatomical areas, which could either be created manually by radiologists
or an automatic segmentation method.

With an average total runtime of 38.1 s, the proposed method is well suited for clin-
ical application. As part of a larger oncology workstation, the algorithm is currently
being evaluated in clinical practice, potentially leading to a faster and easier radiology
workflow.

138

7 Deformable registration with local

rigidity in radiotherapy

In this chapter, we present an extension of the matrix-free registration algorithm with a
local rigidity constraint for a clinical application in the field of radiotherapy. As discussed
in Section 1.2.2, patient imaging is an important component of every image-guided radia-
tion treatment process, which relies on an efficient image registration in order to transfer
and compare patient information between images acquired at different points in time.

In a typical clinical workflow, a diagnostic CT image of the patient is acquired before
radiation therapy is started. A then clinician delineates the tumor volume as well as
important organs and risk structures, as shown in Figure 7.1(a). With this information,
a radiation treatment plan is created. Therefore, the diagnostic CT is also called planning
CT. The treatment plan includes exact information on how the radiation is applied to
the patient by the treatment device, so that as much radiation as possible is delivered to
the clinical target volume (CTV), while keeping irradiation of surrounding tissue, organs
and other high-risk structures as low as possible.

For this, the treatment is typically split into sessions over several weeks, so-called frac-
tions, where in each fraction a part of the planned total dose is applied. In image-guided
radiotherapy, a cone-beam CT (CBCT) image of the patient is acquired before each frac-
tion, as shown in Figure 7.1(b), while the patient is already in treatment position. Using
deformable image registration, this CBCT image is then compared to the planning CT
in order to verify the correct patient position and to account for anatomical changes that
occurred since the creation of the treatment plan [JKDM07].

Additionally, with the computed deformation, delineations of CTV and risk structures
can be propagated from the planning CT to the CBCT image in order to assess the
planned radiation dose distribution with respect to the current patient anatomy. Further
applications include the retrospective accumulation of the total dose, based on CBCT
anatomy for all fractions, in order to assess potential differences between treatment plan
and actually delivered radiation [TAP+14], as well as customization of the treatment in
adaptive radiotherapy [Kes06; THT+16].

Local rigidity. Especially in the pelvic region, the deformable registration of CT and
CBCT is difficult: in the male pelvis structures with very different deformation prop-
erties are very close to each other [KLW+08; MSD03] (Figure 7.2). While the bladder
deforms in a highly elastic way, bones exhibit rigid, and prostate exhibits nearly-rigid

139

7. Deformable registration with local rigidity in radiotherapy

(a) planning CT (b) CBCT

Figure 7.1.: Male pelvis images from radiotherapy, (a): axial slice of planning CT with
delineations of bladder (yellow), prostate (red), femoral heads (blue) and
rectum (orange), (b): axial slice of CBCT. The delineations on the planning
CT are typically created manually during the creation of the treatment plan
and are to be transferred to the CBCT by using deformable registration.

deformation behavior [HMC+07], creating a challenging registration problem. As the
prostate is the CTV in the case of prostate cancer treatment in the male pelvic region, a
substantial amount of radiation needs to be delivered to this area. However, structures
in very close proximity such as the bladder wall or the femoral heads are very sensitive to
radiation. Thus, high gradients in radiation dose distribution can be expected between
these structures such that slight deviations in the propagated structures can have a large
influence on dose evaluations. Standard registration algorithms often achieve unsatisfy-
ing results with physically implausible deformations, such as elastic deformation of bones
[TPB+11].

Therefore, in this chapter, we introduce an extension of the matrix-free registration
scheme to this application scenario. In Section 7.1 and Section 7.2, we add an addi-
tional local rigidity constraint to the registration model, which restricts the deformation
of certain structures to rotation and translation, while still allowing for non-linear defor-
mations of surrounding tissue.

In Section 7.3, we will evaluate the algorithm on a dataset of ten cases from clinical
practice. Besides evaluating the algorithm against manually created gold standard con-
tours, we will also compare the algorithm to the registration available in the commercial
software Varian SmartAdapt [WDO+05; RPH+15]. Additionally, we compare the regis-
tration with local rigidity to the unconstrained matrix-free registration as presented in
Chapter 3 and evaluate different choices of rigid structures. Finally, we discuss the results
in Section 7.4.

This application highly benefits from the fast runtimes and low memory consumption of
the matrix-free algorithm. Since the registration is embedded in a clinical environment,
the runtimes must be feasible for daily practice. Especially when applied in adaptive
radiotherapy, the duration between image acquisition and treatment must be as short as
possible, since the patient is already in treatment position. Furthermore, a high deforma-
tion resolution is required to allow the deformation grid to closely match the shape of the
rigid structures in the images. This makes our matrix-free registration algorithm an ex-

140

7.1. Registration framework

(a) Organ locations in pelvis (back) (b) Organ locations in pelvis (front)

Figure 7.2.: Three-dimensional rendering of planning CT with organ locations of bladder
(yellow), prostate CTV (red), femoral heads (blue) and rectum (orange) in
the pelvic area, (a): back view, (b): front view. The proximity of organs with
very different deformation properties requires special consideration during
registration.

cellent candidate, as it allows for registration of large images and deformation resolutions
which could otherwise not be processed with matrix-based methods.

Acknowledgments and related publications. The evaluation results presented in
this chapter are published in [KDPH16*; KDH+15*]. This chapter contains an extended
version with an advanced mathematical description of the method. We especially thank
Alexander Derksen, Nils Papenberg and Benjamin Haas for their collaboration on this
project and Lúıs Vasco Luoro, Nuno Pimentel and Joep Stroom from Champalimaud
Centre for the Unknown, Lisbon, Portugal for providing the evaluation datasets and
delineations.

7.1. Registration framework

In this section, we present the mathematical framework for integrating the local rigidity
constraint into the deformable image registration algorithm.

7.1.1. Related work

Different approaches for including further anatomical knowledge in registration algo-
rithms have been previously pursued in the field of radiotherapy. Some approaches in-
corporate improved deformation models, using bio-mechanical models based on finite-
element approaches [BHE+08; ZKL+12; WS15] to achieve more realistic deformation
behavior. Others rely on contour-guided registration [GDW+13] or include shape based
regularization [WS15]. All of these works show in their respective applications that
adding additional information to the deformation model generally improves registration
accuracy.

141

7. Deformable registration with local rigidity in radiotherapy

Local rigidity has been previously integrated into deformation models in the field of med-
ical image registration in various ways, based on a B-spline deformation model [SKP07;
RWU+14] and in a variational framework [HHM09; Mod08]. Additionally, B-spline-based
approaches have been proposed with focus on radiation therapy [KKL+13; GCP+09],
showing that applications in this field can benefit from locally rigid deformations.

In this chapter, we present an extension of a theoretical framework by [HHM09] to three-
dimensional real-world data in a radiotherapy application. The method models local
rigidity as a hard constraint, i.e., it is enforced. We embed this local rigidity constraint in
our fast and efficient matrix-free registration algorithm described in Chapter 3 in order to
process clinically relevant image sizes and deformation resolutions and to achieve clinically
acceptable runtimes.

7.1.2. Local rigidity

As basis of the registration algorithm, we rely on the variational framework presented in
Chapter 2. Since CBCT images do not exhibit a normalized range of intensity values such
as CT images, the radiotherapy registration problem is treated as a multi-modal setting.
We therefore rely on the normalized gradient fields (NGF) distance measure DNGF from
Section 2.3.1.

As given in Section 2.3, we then obtain the optimization problem

min
ϕ:ΩR→Rd

J (ϕ) = DNGF(R, T (ϕ)) + αS(ϕ). (7.1)

However, this model does not include any local knowledge about the anatomy. Therefore,
non-linear deformations can be applied to bones and other rigid structures, which leads
to physically implausible results.

We therefore add an additional rigidity constraint to the registration framework as follows:
Given k segmentations of rigid structures in the reference image R, we define the domains
Σk, k = 1, . . . ,M of the segmentations as disjoint sub-domains of the reference image
domain, i.e., Σk ⊂ ΩR. Each of these areas can each exhibit a different rigid motion.

To integrate local rigidity into the optimization problem (7.1), we introduce auxiliary
optimization variables in the form of three-dimensional rotation matrices Q(θk) : R3 →
R

3×3, depending on the three rotation angles θk := (θxk , θ
y
k, θ

z
k)

⊤ ∈ R
3, and translation

vectors bk := (bxk, b
y
k, b

z
k)

⊤ ∈ R
3.

We now substitute a rigid transformation in the deformation ϕ for all points that are
inside any of the sub-domains Σk, k = 1, . . . ,M , such that

ϕφ :=









ϕ0

ϕ1
...
ϕM









=









ϕ0

Q(θ1)x+ b1
...

Q(θM)x+ bM









,

where

ϕ0(x) := ϕ(x) if x /∈ Σk ∀ k ∈ {1, . . . ,M}

142

7.1. Registration framework

and

ϕk(x) := Q(θk)x+ bk if x ∈ Σk, k ∈ {1, . . . ,M}.

Substituting this in the optimization problem (7.1), we obtain an unconstrained opti-
mization problem

min
ϕ0,θ1,...,k,b1,...,k

J (ϕφ) = DNGF(R, T (ϕφ)) + αS(ϕφ),

where the deformation of each rigid region is controlled by the transformation parameters
θk and bk.

Note that Σk ⊂ ΩR, i.e., the rigid regions are defined on the reference image domain. We
therefore choose the planning CT image as reference image and the CBCT image as tem-
plate image, since manual segmentations of all important structures are readily available
on the CT from the planning process in the radiotherapy setting. As the deformation
maps a coordinate location in the reference image domain to the template image domain,
when treated as sets of points, the segmentations can directly be propagated from the
CT to the CBCT image.

Derivatives and discretization. The extended approach can be discretized analo-
gously to Section 2.4. The discretized optimization problem is then optimized using a
L-BFGS optimization scheme as described in Section 2.5.2 and embedded in a coarse-to-
fine multi-level scheme, as described in Section 2.5.6.

On each level, the points yc need to be determined that lie within any of the Σk on the
deformation grid and are thus constrained by the local rigidity. Assuming that we have
n rigid deformation grid points within any of the Σk, and d = 3, it holds yc ∈ R

3n. In
return, there are yu ∈ R

3(m̄y−n) unconstrained points. Since the reference image domain
remains unchanged during the registration, these points only need to be determined once
at the beginning of each level in the multi-level scheme.

To obtain the new parameter set for optimization, all constrained points yc in the defor-
mation y ∈ R

3m̄y
must now be replaced by six rigid transformation parameters θk, bk for

each rigid region. This results in a vector

yφ :=













yu

θ1

b1
...
θM
bM













∈ R
m̄φ , (7.2)

with

m̄φ := 3(m̄y − n) + 6M,

consisting of deformations for all unconstrained grid points and six rigid transformation
parameters each for all M rigid regions.

143

7. Deformable registration with local rigidity in radiotherapy

A function that maps from yφ to a full deformation y can now be defined as φ : Rm̄
φ
→

R
3m̄y

with

φ(yφ) := y.

This function computes transformed deformation grid points Q(θk)x
y
i + bk at points that

lie within the rigid areas of the deformation grid and uses the existing deformation values
yu for unconstrained points, such that a full deformation y ∈ R

3m̄y
is obtained.

We can now write the discretized, unconstrained objective function as

J(yφ) = DNGF(φ(yφ)) + αS(φ(yφ))

in analogy to (2.25), such that the optimization problem becomes

min
yφ∈Rm̄

φ
J(yφ).

For minimization of this objective function using the previously presented methods again
its derivatives are required, as described in Chapter 3. In comparison to (3.1), the local
rigidity constraint concatenates another function to the distance measure and regularizer
evaluation, such that the distance measure evaluation can now be written as

D(yφ) = ψ(r(T (P (φ(yφ))))).

Furthermore, following Section 3.1, this additional function appends another Jacobian
matrix ∂φ

∂y
∈ R

3m̄y×m̄φ to the derivative computation (3.3), i.e,

∇D(yφ) =

(
∂ψ

∂r

∂r

∂T

∂T

∂P

∂P

∂φ

∂φ

∂yφ

)⊤

∈ R
m̄φ×1,

and similarly for the curvature regularizer. Since the new Jacobian matrix is multiplied
from the right side, the left part of the gradient can be reused (see Chapter 3).

Multi-level. When utilizing the local rigidity scheme in a multi-level registration as
described in Section 2.5.6, further consideration has to be given to the prolongation of the
final result of the optimization yφ on a coarse level to the next finer level. Since yφ does
no longer represent a full deformation, as shown in (7.2), it cannot simply be interpolated
to the next finer level. Here, using φ(yφ), a full deformation has to be created first from
the final optimization result. Then, this full deformation can be prolongated to the next
finer level as usual. On the fine level, the sets of deformation grid points that lie within
the rigid areas have to be determined anew, and a new vector yφ needs to be created from
the prolongated deformation. The rigid parameters θk, bk, on the other hand, can simply
be adopted unchanged from the coarse level, as they do not depend on the deformation
resolution.

Since the local rigidity constraint acts on the deformation grid, it is important that a
sufficiently high number of deformation grid points is chosen, in order to closely match
the boundaries of the rigid structures on the image. Therefore, in the following we will
use the same deformation and image resolution on each level, with my

i = mi + 1.

As shown in Chapter 5, such high resolutions cannot be computed with matrix-based
algorithms within reasonable runtime, or not all due to memory constraints, making the
matrix-free algorithm a suitable choice.

144

7.2. Example dataset

(a) with local rigidity (b) unconstrained

Figure 7.3.: Single axial slice of the deformation for registrations with and without lo-
cal rigidity constraints, using the images shown in Figure 7.1. Contours of
bones and prostate are shown in yellow, (a): deformation with local rigidity
for bones and prostate, (b): deformation for an unconstrained registration.
While bones and prostate are kept rigid when using local rigidty, non-linear
deformations can be observed in the unconstrained registration.

(a) with local rigidity (b) unconstrained

0.3

0.65

1

1.35

1.7

Figure 7.4.: Single axial slice of the Jacobian determinant of the deformation in Figure 7.3.
Color indicates volume change, green areas correspond to det(∇yi) = 1.
While the locally rigid areas can be easily identified in (a), undesirable
volume-changing deformations occur in (b), especially in the prostate area.

7.2. Example dataset

In order to analyze the effect of the rigidity constraint on the resulting deformation, we
evaluated the registration with local rigidity on the exemplary dataset shown in Figure 7.1
and visualized the results. We registered the CBCT image to the CT with and without
local rigidity constraint. We modeled the prostate, the femoral bones and the pelvic
bones as four individual rigid structures.

The resulting deformation is visualized in Figure 7.3. In Figure 7.3(a), using the local
rigidity constraint, the rigid areas (yellow) exhibit a regular grid structure. In contrast,
the unconstrained deformable registration in Figure 7.3(b) results in unrealistic non-linear
deformations of bones and prostate.

The differences become even more apparent when visualizing the Jacobian determinant
of the deformation det(∇yi) [KD04] (Figure 7.4). For volume preserving deformations,

145

7. Deformable registration with local rigidity in radiotherapy

which includes rigid deformations, it holds det(∇yi) = 1. Values smaller than one cor-
respond to a compression of the deformation field, while larger values correspond to an
expansion [RMBJ03]. In Figure 7.4(a), the rigid regions can clearly be seen as uniform
areas under the local rigidity constraint. In contrast, when performing an unconstrained
registration, non-linear deformations can be observed in the area of bones and prostate,
as shown in Figure 7.4(b). Especially for the bones, these deformations are physically
highly implausible, which can reduce the physician’s confidence in the automatic regis-
tration process.

7.3. Evaluation on clinical datasets

For a quantitative evaluation of the deformable registration with local rigidity constraints,
we examined the approach on clinical datasets with gold-standard annotations.

7.3.1. Method

Datasets. We used a dataset of ten prostate cancer cases from clinical routine with
images of the male pelvic region. Every case consists of a planning CT image, acquired
using a diagnostic CT scanner, and a CBCT image, which was acquired using the On-
Board Imager of a Varian TrueBeam radiotherapy system, similar to those shown in
Figure 7.1. The CT images have an average size of 512 × 512 × 238 voxels, while the
CBCT images are slightly smaller in z-direction with an average size of 512 × 512 × 81
voxels. In six cases (cases 0, 2 − 6), a rectal balloon was utilized to restrict prostate
movement [TMU+01]. Four cases were treated without a rectal balloon.

During treatment plan creation, the CT images were manually contoured. Each CT image
is annotated with contours of femoral heads, pelvic bones, prostate (CTV) and bladder.
For evaluation, each CBCT image was manually supplemented with contours of femoral
heads, pelvic bones, prostate and bladder by a radiation oncologist, which serve as a gold
standard during evaluation.

Evaluation. Due to the general availability of contours on the CT images in this clin-
ical setting, we used the CT image as reference image, providing the structures for the
local rigidity constraint, and the CBCT image as template image, as also described in
Section 7.1.2. After the registration, the contours for all structures were then propagated
from the CT to the CBCT image using the obtained deformation.

We compared the proposed approach to unconstrained matrix-free methods as well as a
commercial software package. Initially, for all methods, CT and CBCT images were reg-
istered using a rigid pre-alignment (RIG). Based on this rigid pre-alignment, the images
were registered using different deformable registration algorithms. First, we evaluated the
deformable image registration algorithm from the Varian SmartAdapt software (VSA).
This method utilizes a demons-based algorithm (see Section 2.2.3) [WDO+05; RPH+15].
Second, we registered the images using the unconstrained matrix-free registration algo-
rithm in Chapter 3 (MFC0). Third, we employed the constrained registration algorithm

146

7.3. Evaluation on clinical datasets

as described in this chapter with two configurations: Using only bones as rigid structures
(MFC1) and bones as well as prostate as rigid structures (MFC2).

For each registration, we compared the propagated contours on the CBCT images with
the gold standard delineations using the Dice similarity coefficient (DSC) [Dic45]. Given
two finite sets A and B, the DSC is defined as

DSC(A,B) :=
2|A ∩B|

|A|+ |B|
,

where | · | is the set cardinality. The DSC measures the spatial overlap between the
propagated structures and the gold standard delineations and ranges from 0 to 1, with
1 corresponding to perfect agreement. While the DSC is widely used for reporting reg-
istration results, its validity is limited when used as the only evaluation metric [Roh12].
Therefore, we additionally computed the Hausdorff distance (HD) between propagated
and gold standard contours, which is defined as [HRK93]

HD(A,B) := max(h(A,B), h(B,A)),

where

h(A,B) := max
a∈A

min
b∈B
‖a− b‖.

For all points, the distance from a point in one set to the closest point in the other set
is determined. The HD then gives the maximum of these distances, and becomes 0 for
perfect agreement.

In addition to the accuracy of the propagated contours, physical plausibility of the de-
formation is important. Therefore, we used the Jacobian determinant of the deformation
det(∇yi), which was already introduced in Section 7.2, to evaluate the deformations. For
bones and prostate, which were used as rigid areas, we evaluated the average value of the
Jacobian determinant for all algorithms.

Besides non-linear deformation of bones, we used the Jacobian determinant to detect
so-called grid foldings in the deformation grid. These correspond to a mapping that is
not topology preserving and are indicated by a non-positive determinant det(∇yi) ≤ 0
[KD04]. We evaluated the Jacobian determinant using a discretization of 64 tetrahedrons
per grid cell as described in [KD04], which is essential, since only a proper discretization
ensures that all grid foldings can be detected [HM04]. In most cases, a non-positive
Jacobian determinant corresponds to physically implausible deformations, especially in
tissue or bone areas. Exceptions concern in particular fluids or gases, such as fluids within
the bladder or air within the rectum or surrounding the body.

To allow a fair runtime comparison to the commercial VSA registration, we performed
all evaluations on a Varian Medical Systems workstation with Microsoft Windows 7, with
two six-core Intel Xeon E5-2620 processors running at 2.0 GHz and 32 GB of RAM.

147

7. Deformable registration with local rigidity in radiotherapy

Parameterization. In order to determine a suitable parameterization for this appli-
cation, we performed a parameter search for the regularizer weight α, as well as for the
NGF edge filtering parameters τ and ̺. We examined the registration results for all
combinations of α = [1, 5, 10, 20, 50], τ = [1, 5, 10], ̺ = [1, 5, 10]. Based on this, we then
chose α = 10, τ, ̺ = 5 for all evaluations as the parameters that obtained the best mean
DSC value. However, we found that slightly varying the parameters did not yield a large
difference in the results, such that a coarse adjustment of the parameters seems sufficient
in practice.

For the multi-level computations, we chose one quarter of the image size in each dimension
as finest level and additionally computed two coarser levels. The same deformation and
image resolution was chosen, such that my

i = mi + 1 on each level in order to achieve
consistency of rigid areas in the deformation field and the corresponding structures in the
image (see Section 7.1.2). This resulted in an average deformation size of 105× 65× 41
grid points on the finest level.

7.3.2. Results

We performed registrations for all ten cases and the five algorithms RIG, VSA, MFC0,
MFC1 and MFC2.

Segmentation overlap. The DSC values of the propagated contours are shown in
Table 7.1, while the HD values are given in Table 7.2. Averaged over all cases and
contours, the rigid pre-alignment RIG achieved an average DSC of 0.79± 0.11 with a HD
of 12.65 mm± 6.83 mm.

In comparison, the unconstrained registration with VSA resulted in a DSC of 0.86± 0.07
and a HD of 10.22 mm± 6.62 mm, while MFC0 obtained a DSC of 0.87± 0.06 with a
HD of 8.74 mm± 5.95 mm, averaged over all contours and cases. Note that larger DSC
values and smaller HD values are better.

The approaches with local rigidity constraints achieved comparable results. Here, MFC1
obtained an average DSC of 0.87± 0.07 and a HD of 8.91 mm± 5.89 mm, while MFC2
resulted in a DSC of 0.87± 0.06 with a HD of 8.73 mm± 6.02 mm.

For comparison of the results, we performed a number of statistical tests: We compared
the DSC results of the rigid pre-alignment RIG with VSA and MFC0–MFC2, and the
DSCs for VSA with MFC0–MFC2. For the analysis a two-sided paired-sample t-test
was chosen, corresponding to the assumption that the differences in the DSC values of
different algorithms are normally distributed. Additionally, to test whether the rectal
balloons, present in six of ten cases, had an influence on the results, a two-sided two-
sample t-test was performed, comparing the DSC values for cases with rectal balloon
and those without for VSA and MFC0–MFC2. Bonferroni correction was applied for the
definition of significance (p < 0.0045).

Compared with the rigid pre-alignment RIG, all other algorithms showed a significant
increase in DSC overlap with p < 10−4 with 95% CI: 0.040–0.092 for VSA, p < 10−5

148

7.3. Evaluation on clinical datasets

ID Prostate Bladder Right femoral head

RIG VSA MFC0 MFC1 MFC2 RIG VSA MFC0 MFC1 MFC2 RIG VSA MFC0 MFC1 MFC2

0 0.79 0.81 0.85 0.84 0.82 0.84 0.91 0.90 0.91 0.91 0.94 0.94 0.96 0.96 0.96

1 0.80 0.89 0.85 0.85 0.85 0.83 0.91 0.86 0.86 0.86 0.89 0.94 0.94 0.95 0.95

2 0.53 0.71 0.75 0.71 0.75 0.66 0.87 0.86 0.85 0.85 0.89 0.91 0.91 0.91 0.91

3 0.74 0.70 0.80 0.80 0.79 0.76 0.85 0.89 0.89 0.89 0.89 0.92 0.93 0.93 0.93

4 0.70 0.73 0.81 0.81 0.81 0.74 0.82 0.80 0.80 0.80 0.92 0.94 0.94 0.94 0.94

5 0.82 0.82 0.85 0.85 0.87 0.82 0.87 0.92 0.92 0.92 0.89 0.93 0.94 0.94 0.94

6 0.84 0.81 0.84 0.84 0.84 0.83 0.88 0.84 0.84 0.84 0.90 0.89 0.90 0.90 0.90

7 0.71 0.82 0.85 0.85 0.85 0.49 0.75 0.78 0.78 0.78 0.91 0.95 0.97 0.98 0.98

8 0.70 0.86 0.77 0.77 0.82 0.63 0.81 0.83 0.83 0.80 0.93 0.95 0.95 0.95 0.95

9 0.76 0.81 0.79 0.80 0.79 0.80 0.89 0.89 0.89 0.89 0.90 0.94 0.95 0.95 0.95

Avg. 0.74 0.80 0.82 0.81 0.82 0.74 0.86 0.86 0.86 0.85 0.91 0.93 0.94 0.94 0.94

Std. 0.09 0.06 0.04 0.05 0.04 0.11 0.05 0.04 0.05 0.05 0.02 0.02 0.02 0.02 0.02

Table 7.1.: Comparison of final registration accuracy between different forms of matrix-
free deformable registration, rigid registration, and the commercial VSA al-
gorithm. Dice similarity coefficient values for propagated structures of ten
prostate CT/CBCT cases, evaluated on CBCT gold standard contours of
prostate, bladder and right femoral head. Higher values indicate better
agreement with the gold standard annotations. RIG: rigid pre-alignment,
VSA: Varian SmartAdapt deformable registration, MFC0: matrix-free uncon-
strained registration, MFC1: registration with rigid bones, MFC2: registra-
tion with rigid bones and prostate, Avg., Std.: average, standard deviation
over all cases. The deformable registration approaches achieve better DSC val-
ues than the rigid alignment; MFC0-MFC2 achieve DSC values in the same
range as VSA.

ID Prostate Bladder Right femoral head

RIG VSA MFC0 MFC1 MFC2 RIG VSA MFC0 MFC1 MFC2 RIG VSA MFC0 MFC1 MFC2

0 7.2 5.5 5.8 6.0 5.5 11.1 8.5 6.0 6.0 8.2 5.7 4.0 4.0 4.0 4.0

1 7.9 6.0 6.5 6.5 6.5 11.2 8.0 8.8 8.3 8.5 5.5 4.2 4.5 10.4 4.5
2 12.8 10.9 14.0 14.0 14.0 18.2 13.1 10.0 11.8 9.8 8.3 6.0 7.1 7.5 7.5
3 7.2 10.0 7.5 7.0 7.5 13.1 14.8 11.9 9.4 9.4 4.5 5.3 4.0 4.0 4.1
4 11.1 10.6 8.4 8.4 8.4 26.4 23.5 24.5 24.5 24.8 5.0 4.4 4.5 4.4 4.4

5 6.7 18.9 8.1 8.1 8.8 9.4 19.3 6.0 6.0 8.1 6.4 4.2 4.4 4.4 4.4
6 6.6 9.3 8.8 8.6 7.0 11.9 11.3 12.1 12.1 13.4 5.0 6.4 5.5 6.0 5.5
7 11.3 13.5 9.3 9.7 9.2 34.4 32.5 31.3 31.2 31.6 5.0 3.8 3.6 3.3 2.9

8 10.3 6.5 7.5 7.5 6.2 14.4 15.9 10.0 10.0 10.2 5.0 5.5 4.4 4.5 4.4

9 12.2 10.8 11.1 11.1 10.8 9.8 9.9 8.7 8.7 8.7 4.7 4.1 4.0 4.0 4.0

Avg. 9.3 10.2 8.7 8.7 8.4 16.0 15.7 12.9 12.8 13.3 5.5 4.8 4.6 5.2 4.6

Std. 2.4 4.0 2.4 2.4 2.5 8.2 7.7 8.3 8.3 8.2 1.1 0.9 1.0 2.2 1.2

Table 7.2.: HD values in mm for propagated structures of ten prostate CT/CBCT cases,
evaluated on CBCT gold standard contours of prostate, bladder and right
femoral head. Lower values indicate better agreement with the gold standard
annotations. See Table 7.1 for further description.

149

7. Deformable registration with local rigidity in radiotherapy

with 95% CI: 0.050–0.102 for MFC0, p < 10−5 with 95% CI: 0.050–0.100 for MFC1 and
p < 10−5 with 95% CI: 0.051–0.102 for MFC2.

Comparing the results of MFC0–MFC2 with VSA, a statistical significant difference in
DSC overlap could not be shown with p = 0.18 with 95% CI: −0.005–0.024 for MFC0,
p = 0.21 with 95% CI: −0.005–0.023 for MFC1 and p = 0.10 with 95% CI: −0.002–0.023
for MFC2.

Furthermore, comparing DSC values of cases with rectal balloon to cases without rectal
balloon did not show a statistical significant difference with p = 0.36 with 95% CI:
−0.082–0.031 for VSA, p = 0.98 with 95% CI: −0.052–0.051 for MFC0, p = 0.98 with
95% CI: −0.052–0.051 for MFC1 and p = 0.95 with 95% CI: −0.050–0.047 for MFC2.

Displacement regularity. As discussed in the previous section, certain aspects of the
computed deformation need to be considered. First, the deformation should not fold onto
itself. Second, physically unlikely – but not entirely impossible – deformations, such as
non-linear deformations of bones, must be avoided.

In Table 7.3, we list the percentage of grid foldings within the deformation fields of
all algorithms for prostate, bladder and the complete body outline. Additionally, in
Table 7.4, we evaluated the average deviation of the Jacobian determinant from a value
of one within the prostate and right femoral head contours, exemplarily chosen as two
structures which are predisposed for local rigidity constraints.

As can be seen in Table 7.3, VSA generates grid foldings within the body contour in all
ten cases, while MFC0 and MFC1 exhibit a small number of grid foldings in three cases,
MFC2 in only two cases. Within the prostate, VSA shows grid foldings in three cases,
while MFC0–MFC2 do not show any grid foldings in this area. Similarly for bladder, VSA
computes deformations with grid foldings in five cases, while deformations of MFC0 and
MFC1 only contain grid foldings in a single case and MFC2 computes no deformations
with grid foldings within the bladder.

The values in Table 7.4 show the expected behavior. For the unconstrained algorithms
VSA and MFC0, values smaller and larger than one are reported for prostate and right
femoral head, corresponding to a contraction or expansion of the deformation field, which
relates to physically implausible deformations. As expected, MFC1 and MFC2 with local
rigidity exhibit det(∇yi) = 1 for all points within the bone structure. Additionally, MFC2
also shows rigid deformations within the prostate as desired.

Case 4 shows especially large numbers of grid foldings for VSA in prostate and bladder.
Details of the deformation field are visualized in Figure 7.5. Here, the grid foldings
within prostate and the bladder wall can be clearly seen in Figure 7.5(a). Additional,
non-linear deformations inside the bones can also be observed. In comparison, we present
the deformation field of MFC2 for this case in Figure 7.5(b). The deformation is smooth
within bladder and surrounding tissue while bones and prostate are deformed rigidly.

150

7.3. Evaluation on clinical datasets

ID Prostate Bladder Body

VSA MFC0 MFC1 MFC2 VSA MFC0 MFC1 MFC2 VSA MFC0 MFC1 MFC2

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.01 0.02 0.04

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00 1.61 0.00 0.00 0.00 0.13 0.00 0.00 0.00
3 5.46 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.18 0.00 0.00 0.00
4 11.97 0.00 0.00 0.00 4.21 0.00 0.00 0.00 0.45 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 11.43 0.00 0.00 0.00 0.15 0.00 0.00 0.00
6 0.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.05 0.04 0.03 0.04

8 0.00 0.00 0.00 0.00 0.00 0.82 0.82 0.00 0.07 0.00* 0.00* 0.00
9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00

Avg. 1.81 0.00 0.00 0.00 1.74 0.08 0.08 0.00 0.14 0.01 0.01 0.01

Std. 3.75 0.00 0.00 0.00 3.48 0.25 0.25 0.00 0.12 0.01 0.01 0.02

Table 7.3.: Percentage of deformation grid foldings per organ and case for registration re-
sults of ten prostate CT/CBCT cases. ∗: contains a small amount of grid fold-
ings which rounds to zero. See Table 7.1 for further abbreviations. While VSA
generates grid foldings for all cases within the body contour and large amounts
of grid foldings within the prostate and bladder for some cases, MFC0–MFC2
only exhibit a low percentage of grid foldings for a smaller number of cases.
This indicates that the proposed algorithm is an effective method for greatly
reducing physically implausible folding deformations.

ID Prostate Right femoral head

VSA MFC0 MFC1 MFC2 VSA MFC0 MFC1 MFC2

0 0.22 0.08 0.09 0.00 0.13 0.05 0.00 0.00
1 0.17 0.15 0.13 0.00 0.16 0.05 0.00 0.00
2 0.21 0.26 0.29 0.00 0.13 0.06 0.00 0.00
3 0.20 0.07 0.07 0.00 0.13 0.09 0.00 0.00
4 0.26 0.09 0.09 0.00 0.15 0.05 0.00 0.00
5 0.24 0.11 0.14 0.00 0.13 0.05 0.00 0.00
6 0.24 0.12 0.14 0.00 0.13 0.03 0.00 0.00
7 0.21 0.08 0.09 0.00 0.14 0.06 0.00 0.00
8 0.30 0.33 0.32 0.00 0.18 0.06 0.00 0.00
9 0.19 0.11 0.09 0.00 0.15 0.07 0.00 0.00

Avg. 0.23 0.14 0.15 0.00 0.14 0.06 0.00 0.00
Std. 0.04 0.09 0.09 0.00 0.02 0.01 0.00 0.00

Table 7.4.: Average deviation of the Jacobian determinant of the deformation from a
value of one, i.e., 1

m̄y

∑m̄y

i=1 |det(∇yi) − 1|. Evaluated for the prostate and
right femoral head for each deformation in the registration of ten prostate
CT/CBCT cases. See Table 7.1 for abbreviations. Due to the implemented
hard constraints, MFC1 and MFC2 keep the designated areas perfectly rigid,
while the unconstrained algorithms VSA and MFC0 exhibit less realistic non-
linear deformations in bones and prostate.

151

7. Deformable registration with local rigidity in radiotherapy

(a) VMS (b) MFC2

Figure 7.5.: Single coronal slice of the deformation for case 4, (a): computed with the
unconstrained commercial software package VMS, (b): computed with the
proposed approach MFC2 with rigidity for bones and prostate. The image
is overlaid by deformation grid and delineations of bladder (yellow), prostate
(red) and bones (orange). The VMS deformation shows two properties that
are problematic in clinical practice: Non-linear deformation of bones and grid
foldings within critical areas such as bladder wall and prostate. In contrast,
the MFC2 deformation shows the desired rigid behavior in bones and prostate
and an overall smooth deformation.

Runtime. The measured runtimes for all evaluated cases and algorithms are given in
Table 7.5. On average, both unconstrained algorithms achieve comparable runtimes with
10.7 s for VSA and 10.5 s for MFC0. Incorporating the local rigidity constraints increases
the average runtime to 26.1 s for MFC1. Additionally adding the prostate as a rigid
structure further increases the runtime to 31.1 s on average for MFC2.

7.3.3. Discussion

All evaluated results show a significant improvement of DSC values in comparison with a
rigid pre-registration, confirming the need for deformable registration in this application
scenario. A statistically significant difference in DSC values for VSA and MFC0–MFC2
could not be shown and the results in terms of DSC and HD are in a comparable range.
However, the resulting deformations of MFC0–MFC2 are smoother and exhibit far less
unphysical deformation grid foldings, especially in critical areas such as the bladder wall
or prostate.

In these areas deformation grid foldings are particularly dangerous: While the prostate is
the clinical target volume in this case, and as such receives a very high radiation dose, its
surroundings and the bladder are spared from radiation. This leads to high dose gradients
in the prostate region. Grid foldings in this area can thus potentially cause critical errors
in propagated structures or evaluated doses. While maintaining the same accuracy, the
results of MFC0–MFC2 do not contain grid foldings in these critical areas in most cases,
which makes them preferable over VSA.

While there exist approaches to completely avoid grid foldings in the utilized registration
framework [RPH+17], such foldings might be tolerable or even realistic in areas with fluid

152

7.3. Evaluation on clinical datasets

ID VSA MFC0 MFC1 MFC2

0 10.1 10.9 25.5 30.8
1 13.8 12.8 33.3 40.1
2 11.4 10.1 26.6 30.8
3 11.0 11.4 28.5 32.8
4 9.4 9.6 23.1 28.7
5 10.4 10.4 24.5 34.7
6 8.9 8.0 19.9 19.4
7 11.8 10.5 25.5 33.6
8 9.3 10.5 26.0 27.3
9 10.6 11.1 28.6 33.2

Avg. 10.7 10.5 26.1 31.1
Std. 1.4 1.3 3.6 5.4

Table 7.5.: Runtime in seconds for the registration of ten prostate CT/CBCT cases for the
four evaluated deformable registration algorithms. See Table 7.1 for abbre-
viations. The unconstrained algorithms VMS and MFC0 achieve comparable
runtimes, while utilizing the local rigidity constraints increases the registration
runtime (MFC1, MFC2).

motion, such as the bladder contents or areas with air or missing correspondence such as
bowel contents.

As in practice, non-linear deformations of bones are unlikely, the confidence in deforma-
tions computed by VSA or MFC for appropriately solving the given registration problem
is limited. In comparison, MFC1 and MFC2 compute physically plausible deformations
of bones due to the introduced local rigidity constraints, while still maintaining DSC
and HD values in the same range as VSA and MFC0, such that MFC1 and MFC2 are
preferable in this setting.

Comparing MFC1 and MFC2, there is no substantial difference in keeping the prostate
rigidly constrained. Both methods achieve comparable results in terms of DSC and HD
values as well as displacement regularity.

The overall achieved DSC values are comparable to DSC values documented in the liter-
ature. In [KKL+13], average DSC values of 0.7 for prostate and bladder were reported.
In [TPB+11], VSA was also evaluated for registration in the pelvic region and obtained
average DSC values of 0.80 for prostate and 0.73 for bladder.

In some cases, large bladder volume changes between CT and CBCT image show a limi-
tation of the presented approach. Excessive volume differences cannot fully be matched
by the registration algorithm. Here, specialized algorithms focused on matching the
bladder as presented in [DKMH16*; DKM16*] can potentially improve the registration
result. When utilized without additional constraints, they may, however, lead to further
deformation grid foldings within the bladder.

While the unconstrained algorithms VSA and MFC0 obtain comparable runtimes, adding
the local rigidity constraints results in longer computation times. This is mostly due
to the additionally added computations required for the function φ(yφ). Furthermore,

153

7. Deformable registration with local rigidity in radiotherapy

we observed a slower convergence of the optimization scheme, potentially relating to
the additionally added constraints, where large areas with a great influence on distance
measure and regularizer are controlled by only six rigid parameters each. However, within
a clinical setting, the average runtimes of MFC1 and MFC2 of 26.1 s and 31.1 s are
potentially still feasible in most cases, especially when compared with other approaches
using local rigidity such as [KKL+13], where runtimes between 30 and 80 min are reported
for registrations in the pelvic area.

7.4. Summary and conclusion

We presented an extension of the matrix-free deformable registration framework described
in Chapter 3 with an additional local rigidity constraint for an application in radiotherapy.
The approach keeps selected areas rigid using a hard constraint while allowing to re-use
the unconstrained optimization framework presented earlier. This model guarantees the
rigidity of selected structures, while still allowing tissue and organs to deform in a non-
linear way.

Evaluated on ten male pelvis cases with gold standard delineations, the proposed ap-
proach achieved comparable accuracy in comparison with the unconstrained version and
a commercially used algorithm. Furthermore, the locally rigid algorithm showed far less
grid foldings, especially in critical areas such as the prostate or the bladder, and success-
fully prevented physically implausible non-linear deformation of bones.

In cases with large deformations in the bladder region, the algorithm could potentially
be extended with additional constraints to enforce matching the bladder contours. Ad-
ditional integration of further anatomical information, such as masking of areas with
non-corresponding structures in the bowel region, could potentially further increase the
physical plausibility of the results.

In summary, with clinically feasible runtimes, the proposed algorithm presents a more
plausible alternative to unconstrained algorithms. The obtained results show great po-
tential for improving the physical plausibility of clinically-used registration results, which
may ultimately increase clinicians’ confidence in deformable registration algorithms.

154

8 Real-time registration for liver

ultrasound tracking

Patient motion is a critical factor in many areas of medical treatment. In addition to
voluntary movement of patients, which in some cases can be controlled or restricted, also
involuntary motion such as heartbeat or respiration has to be taken into account. The
reliable determination and tracking of these movements may allow for advanced therapy
and treatment. In radiotherapy, especially respiratory motion can limit the treatment
of thoracic, abdominal and pelvic tumors [KMB+06], such that real-time tracking is
beneficial [SSKO07].

In these cases, ultrasound imaging can provide the necessary data to determine organ
motion. Ultrasound provides real-time image acquisition at low cost and with relatively
easy setup. Furthermore, ultrasound uses non-ionizing radiation, which greatly reduces
imaging-induced side effects. However, ultrasound images are typically subject to high
noise levels, making the determination of motion information a challenging task.

Furthermore, the visibility of tumors in the ultrasound image is limited, depending on
the size and type of tumor. Therefore, easily visible structures such as liver vessels are
used as tracking landmarks [MHSK13; TBSS12]. Tracking these features over time makes
it possible to determine liver movement caused by respiratory motion. Especially in long
time series with several minutes in length, this can be difficult due to propagated tracking
errors and increased probability for tracking failures [DTST13].

Many different approaches for ultrasound tracking exist, ranging from optical flow meth-
ods, speckle tracking and block matching approaches to various image registration ap-
proaches; see [DeLuc13, §2] for an overview. Due to the typically non-linear organ motion,
deformable registration is of special interest. However, its widespread use is impeded by
high computational cost in connection with the high frame rates in ultrasound imaging.

In this chapter, we derive a real-time point tracking method for liver ultrasound images,
based on the matrix-free deformable image algorithm presented in Chapter 3. In Sec-
tion 8.1, we first present the image registration algorithm that is used as a basis for the
proposed method. In Section 8.2, we integrate it into a novel tracking scheme, which
allows processing of long time series. Finally, in Section 8.3, we evaluate the tracking
algorithm on 28 long liver ultrasound sequences, as shown in Figure 8.1, against manual
gold-standard annotations and other algorithms. The datasets originate from the MIC-
CAI challenge on liver ultrasound tracking (CLUST14) [DBK+15*], where our approach
achieved the best mean tracking error in two-dimensional tracking.

155

8. Real-time registration for liver ultrasound tracking

(a) ETH 05 (b) MED 04 (c) MED 13

Figure 8.1.: Initial frame of two-dimensional liver ultrasound datasets with annotations
for three different scanners from the CLUST14 datasets [DBK+15*]. The
images show different numbers of annotations, different noise levels and fields
of view. Figure adapted from [DBK+15*].

This application uses a full deformable registration as its basis. The matrix-free approach
is employed to achieve real-time performance that cannot be achieved with matrix-based
approaches, allowing for a new area of application for deformable image registration.

Acknowledgments and related publications. The evaluation results and a short
description of the method presented in this chapter have been previously published in
[DBK+15*]. A preliminary version of the tracking algorithm was presented in [KKR14*].
This chapter contains an extended version with a detailed description of the method. We
especially thank Till Kipshagen and Jan Rühaak for their joint work on the proposed
tracking scheme as well as Valeria De Luca and Christine Tanner for organizing the
challenge on liver ultrasound tracking at the MICCAI 2014 conference.

8.1. Image registration algorithm

As basis of the tracking algorithm, we utilize a deformable image registration framework,
as discussed in Chapter 2. In contrast to the previous applications, we consider tracking
of features on two-dimensional images, i.e., d = 2. The images Ik ∈ R

mx×my are part
of a two-dimensional video sequence with T individual frames I1, . . . , IT . In the first
registration step, we solve the two-frame registration problem

min
ϕ:ΩI→R2

J (ϕ), J (ϕ) = D(I1, I2(ϕ)) + αS(ϕ),

where I1, I2 are the continuous image functions of the first two frames. The obtained
deformation then allows us to propagate an annotation a1 ∈ R

2 from I1 to I2 by evaluating
ϕ(ak).

Since intensities in ultrasound images can vary throughout the sequence, we consider this
a multi-modal registration problem and chose DNGF as the distance measure. However,

156

8.2. Tracking algorithm

since we are tracking vessel structures that are generally visible as dark structures with
a bright border (Figure 8.1), we additionally incorporate DSSD, so that

D := DSSD + βDNGF,

and

J (ϕ) = DSSD(I1, I2(ϕ)) + βDNGF(I1, I2(ϕ)) + αS(ϕ).

In addition to the regularizer weight α, this introduces another parameter β. In order to
equally weight both distance measures, we automatically determine

β :=
DSSD(ϕ0)

DNGF(ϕ0)

at the beginning of the registration using the initial transformation ϕ0, which is typically
the identity transformation.

As can be seen from Section 3.3.1, specifically (3.32), computing the NGF gradient already
yields all required components for the computation of the SSD gradient (3.16). Therefore,
the addition of SSD comes with virtually no additional computational effort.

For minimizing the objective function, we employ L-BFGS optimization, as discussed
in Section 2.5.2, embedded in a coarse-to-fine multi-level scheme, see Section 2.5.6. As
stated earlier, we utilize the fast and efficient matrix-free algorithm from Chapter 3, us-
ing the CPU implementation as described in Section 3.8.1, which is fully parallelized and
uses AVX instructions for additional speedup. Due to the relatively small image and
deformation sizes in this application, which will be discussed later on, the GPU-based
implementation achieved only incomplete utilization of the high number of parallel com-
putational units on the GPU, resulting in a slower runtime than the CPU implementation.
Therefore, we restrict ourselves to the CPU implementation in this chapter.

8.2. Tracking algorithm

In the evaluated ultrasound datasets, the movement of liver vessels is characterized by
different types of motion occurring throughout the sequence, as can also be seen in Fig-
ure 8.2. Large movements of the vessel across the image, induced by the respiratory
motion, are combined with deformations due to non-linear organ motion. Additionally,
voluntary movement of the patient and scanner occasionally causes further displacement.
Therefore, we embed the method described in Section 8.1 into a larger tracking frame-
work.

We use a moving window approach with an additional fallback strategy to capture large,
translational motion in addition to non-linear deformations, which will be described in
the following.

Given a sequence of images I1, . . . , IT and annotation coordinates a1 ∈ R
2 on the first

frame I1, the goal is to track movement of the annotation a1 over time for all frames in
the sequence. For this, we define

Wn(Ik) := W (Ik, cn) : Rmx×my → R
wx×wy , n, k = 1, . . . , T

157

8. Real-time registration for liver ultrasound tracking

(a) MED 08 (b) MED 11

Figure 8.2.: Trajectories of liver vessel motion for manual annotations of the complete
sequence, projected onto the first frame for two datasets with challenging
motion patterns. An enlarged version of a single trajectory is shown in the
lower right corner of each image. While the movement is largely periodic due
to breathing, it also contains more erratic components, caused by additional
scanner or irregular patient movement.

as a function which crops Ik to a smaller region of interest, with center point cn ∈ R
2

and extents wx < mx, wy < my. While the center point cn varies for each image in the
sequence, the extents wx, wy are fixed throughout the tracking process.

Starting with c1 := a1, we then register W1(I1) and W1(I2), which results in the trans-
formation ϕ1, so that a1 can be propagated from I1 to I2 via a2 := ϕ1(a1), as shown in
Figure 8.3. The propagated annotation a2 now serves as the center point c2 := a2 for
a new window W2(I3) on I3. Now, we register W1(I1) and W2(I3), resulting in ϕ2 and
again compute the propagated annotation with a3 := ϕ2(a1). This process can then be
repeated until the end of the sequence, see Algorithm 8.1.

As discussed, the registration of the current window is always performed relative to
W1(I1) on the first frame. This is essential for an accurate tracking of long sequences, as
it prevents the accumulation of small registration errors.

The annotation can move considerably throughout the tracking process. Since we always
register to the first frame, this eventually leads to large deformations. However, such large
deformations are difficult to achieve with a deformable registration scheme, which could
lead to failed registrations, and, due to the real-time requirements, we cannot utilize a
rigid or affine pre-registration step in this application. Using the moving window strategy,
large movements are compensated by the window location. While the window can move
considerably throughout the tracking process, the contents of the window remain similar
and only smaller movements have to be identified by the registration in each step, as
shown in Figure 8.4.

158

8.2. Tracking algorithm

Figure 8.3.: Proposed tracking scheme. The registration between window Wk−1(Ik) on
the current frame and window W1(I1) yields the transformation ϕk. If this
registration fails, we employ a fallback strategy and compute ϕ∗

k by registering
Wk−1(Ik) to the window of the previous frame Wk−1(Ik−1). The annotation
ak−1 is then propagated using the computed deformation. The resulting
propagated annotation ak serves as the center of a new window Wk(Ik).
Figure adapted from [KKR14*].

8.2.1. Fallback strategy

In some cases, the appearance of the vessel changes substantially compared to the first
frame. Reasons for this can be out-of-plane movements or non-linear organ deformations.
This can cause a mis-registration and ultimately a failure in the tracking process. For
cases where the vessel only changes its appearance temporarily, we therefore added an
additional fallback strategy.

For each step, we compare the image intensity at the location of annotation a1, denoted
as I1(a1), to the image intensity Ik(ak). If the intensities differ by at least a certain
threshold, specifically,

|I1(a1)− Ik(ak)| > I1(a1)θ + ǫ, (8.1)

we switch the registration strategy: instead of registering the current window to the
window of the first frame, we register Wk−1(Ik) to the window of the previous frame
Wk−1(Ik−1), obtaining ϕ∗

k, as shown in Figure 8.3 and Algorithm 8.1. The parameters θ
and ǫ need to be chosen manually, depending on the ultrasound device, see Section 8.3.2.
The parameter ǫ acts as a safeguard in cases where the image intensity of I1(a1) is very
small.

This strategy is based on the assumption that if the current window largely differs from
the window on the first frame, the previous frame will still be sufficiently similar to allow
for a successful registration. Unfortunately, this registration scheme is susceptible to
error accumulation since we compute ϕ∗

k(ak) instead of ϕk(a1). Therefore, this fallback
strategy is only performed temporarily until (8.1) is not fulfilled anymore. Then, the
original scheme takes over again, which eliminates the accumulated error by registering
to W1(I1).

159

8. Real-time registration for liver ultrasound tracking

(a) I100 (b) I150 (c) I500

(d) W99(I100) (e) W149(I150) (f) W499(I500)

Figure 8.4.: Selected frames of dataset ETH 07 with moving window (red) and tracked
annotation (yellow). While the window around the annotation is subject
to large global movements (top row), the contents of each window remain
similar (bottom row), which serves as a good starting point for the deformable
registration algorithm. Figure adapted from [KKR14*].

8.2.2. Multiple annotations and annotation coupling

In order to track more than one annotation, multiple tracking algorithms are executed
simultaneously.

As each step of the tracking algorithm computes a dense deformation within the current
window, further annotations in the vicinity can be propagated cheaply, “coupling” them
to the main annotation (Figure 8.5). This can be used to further reduce the overall
runtime of the tracking scheme.

However, the window movement is still determined by the movement of the main anno-
tation. Thus, this strategy can only be used for close-by annotations for which a similar
movement is expected. In the following, all annotations were tracked separately, as this
was already sufficient to achieve real-time performance.

160

8.3. Evaluation

1: load I1, a1 ⊲ Load first frame and initial annotation
2: for k in [2, T] do ⊲ Loop over all frames of the sequence
3: load Ik ⊲ Load current frame
4: ϕk−1 ← registration(W1(I1),Wk−1(Ik)) ⊲ Register to first window
5: ak ← ϕk−1(a1) ⊲ Compute new annotation
6:

7: if |I1(a1)− Ik(ak)| > I1(a1)θ + ǫ then ⊲ Check fallback criterion
8: ϕ∗

k−1 ← registration (Wk−1(Ik−1),Wk−1(Ik)) ⊲ Register to prev. window
9: ak ← ϕ∗

k−1(ak−1) ⊲ Replace new annotation
10: end if

11: end for

Algorithm 8.1: Pseudocode of the tracking algorithm for a single annotation. The current
window is registered to the window of the first frame, unless the fallback
criterion becomes active. Then, the registration scheme is changed and
registrations are performed to the previous frame. This prevents tracking
failures in cases where the tracked feature changes its appearance from
the first frame for a limited period of time.

8.3. Evaluation

We submitted our tracking algorithm to the MICCAI challenge of liver ultrasound track-
ing (CLUST14) [DBK+15*]. The datasets, evaluation method and results are described
in the following.

8.3.1. Datasets and evaluation method

For two-dimensional tracking, the CLUST14 organizers provided 30 long liver ultrasound
sequences from volunteers under free breathing. The sequences were acquired by the
Computer Vision Laboratory, ETH Zürich (ETH) and mediri GmbH, Heidelberg (MED)
[DBK+15*] using three different scanners, with datasets ETH 01 – ETH 12, MED 01 –
MED 12 (MED1) and MED 13 – MED 16 (MED2) being recorded on the same device.
As shown in Table 8.3, the sequence length ranges from 2424 to 14516 frames, at 11 to
25 frames per second. For the ETH datasets, sizes and resolution slightly vary with an
average size of m = (453, 530) and average resolutions of h = (0.41 mm, 0.41 mm). For
the MED1 and MED2 datasets, size and resolution are identical for all datasets of each
device with a size of m = (512, 512) and resolution of h = (0.41 mm, 0.41 mm) for MED1

and a size of m = (524, 591) and resolution of h = (0.35 mm, 0.35 mm) for MED2.

Each sequence was provided with up to five annotations on the first frame, placed at
locations of liver vessels. The first frame of an exemplary dataset for each of the three
scanners is shown in Figure 8.1. As discussed in Section 8.2, motion patterns include
mainly respiratory motion, but also non-linear organ motion and movement of the patient
and scanner (Figure 8.2).

161

8. Real-time registration for liver ultrasound tracking

(a) I1 (b) I1750

Figure 8.5.: Possible coupling of five annotations in dataset MED 09, (a): first frame, (b):
intermediate result. The windows are shown as colored rectangles. The sec-
ond annotation is coupled with the third, and the fifth annotation is coupled
with the fourth (numbering from top to bottom), so that only three windows
are required for tracking five annotations. Coupling uses the deformation
from tracking of the main annotation to track further annotations within
the same window. This further reduces the runtime. Figure adapted from
[KKR14*].

Prior to the challenge, the datasets ETH 05 and MED 04 were released as training data
with annotations for all frames of the sequence, leaving 28 datasets for evaluation.

For benchmarking, the organizers of the challenge manually annotated 10% of the frames
of all 28 evaluation datasets. Then, the tracking error for each frame with manual anno-
tation was measured using the Euclidean distance between the tracked coordinates and
the manual annotation.

8.3.2. Parameterization

In a real-time clinical scenario, free “tuning” parameters such as the regularizer weight α,
the NGF edge filtering parameters τ, ̺, and the fallback strategy thresholds θ, ǫ need to be
fixed at the beginning of the tracking process and cannot be chosen in retrospective. We
therefore used a fixed, manually chosen parameterization for each of the three different
devices for all evaluation datasets. For the ETH datasets, we used α = 10, the NGF
edge filtering parameters τ = ̺ = 20, and θ = 0.5, ǫ = 5 for the criterion of the fallback
strategy. For MED1 we used α = 5, τ = ̺ = 5, θ = 0.75, ǫ = 5, and for MED2 we used
α = 100, τ = ̺ = 2, θ = 0.5, ǫ = 5.

For all registrations between windows, we used a multi-level scheme with two levels, using
the original image resolution as finest level with a deformation grid size of my = (17, 17).
The window size wx, wy was chosen as 50 mm in each direction for all datasets. The
smaller deformation size also acts as additional regularization.

162

8.3. Evaluation

Dataset MTE1 MTE2 MTE3 MTE4 MTE5

ETH 01 0.98± 1.12
02 0.54± 0.26
03 0.94± 0.84 0.43± 0.28 0.31± 0.19
04 0.59± 0.85
06 0.33± 0.24 0.55± 0.36
07 0.83± 0.52
08 0.63± 0.29 0.71± 0.48
09 0.39± 0.23 0.79± 0.52
10 0.60± 0.68 0.46± 0.44 0.71± 1.05 0.58± 0.97
11 0.97± 0.75 1.50± 1.34
12 2.21± 2.75 2.61± 2.26

MED 01 1.36± 0.68 0.91± 0.36 0.90± 0.48
02 1.09± 0.61 1.20± 0.71 0.95± 0.44
03 1.16± 0.62 1.95± 1.12 1.05± 0.60 0.94± 0.49
05 1.65± 0.78 1.91± 0.77 2.75± 1.24
06 1.58± 0.85 1.17± 0.52 1.30± 0.57
07 3.84± 2.47 1.48± 0.77 2.10± 0.99
08 1.80± 0.95 8.75± 8.86
09 1.68± 0.98 1.31± 0.68 1.14± 0.75 2.40± 0.85 1.38± 0.60
10 2.14± 1.12 1.20± 0.61 2.30± 0.93 2.67± 2.45
11 1.88± 0.94 3.15± 2.19 1.20± 0.63
12 3.33± 6.36 3.81± 4.80 5.17± 4.23

MED 13 1.02± 0.74 1.48± 0.72 1.45± 0.80
14 1.59± 0.78 1.72± 0.91 3.17± 1.91
15 1.46± 1.53
16 3.47± 1.60 2.02± 1.02

Table 8.1.: Mean tracking error (MTEn) in mm with standard deviation for annotation n
on the the CLUST14 two-dimensional tracking evaluation datasets, using the
proposed tracking algorithm. Datasets contain between one and five annota-
tions.

8.3.3. Results

We tracked 66 annotations on 28 datasets in total. The results were submitted to the
CLUST14 organizers and evaluated on the manually annotated frames, which were not
publicly released.

Tracking error. The mean tracking error (MTE) achieved with the proposed tracking
algorithm over all frames is shown in Table 8.1 for each individual annotation. Generally,
we achieved a lower tracking error of 0.83 mm± 1.15 mm for the ETH datasets, averaged
over all frames, compared with the MED datasets, most likely related to different noise
levels and motion patterns. For the MED1 datasets, a MTE of 2.07 mm± 2.75 mm was
obtained, for MED2 we achieved a MTE of 1.93 mm± 1.42 mm. For the second anno-
tation of dataset MED 08, an unusually high error can be observed. Here, the tracking
failed around frame 1500 due to motion close to the image border, causing the tracked an-

163

8. Real-time registration for liver ultrasound tracking

Method MTE MTE (ETH) MTE (MED1) MTE (MED2)

min. max. min. max. min. max.

König et al. (proposed) 1.44 ± 2.04 0.31 2.61 0.90 8.75 1.02 3.47
Rothlübbers et al. [RSJG14] 1.53± 2.45 0.32 3.02 0.94 5.12 1.20 12.71

Benz et al. [BKN14] 1.64± 1.84 0.43 7.48 0.56 4.24 0.95 2.83

Kondo [Kon14] 1.83± 3.16 0.37 1.73 0.93 13.22 1.62 3.63
Somphone et al. [SAMD14] 2.00± 2.87 0.51 3.47 0.79 12.72 0.88 3.54

Lübke and Grozea [LG14] 2.09± 2.87 0.52 10.05 0.59 11.27 0.88 3.36

Identity transformation 6.64± 4.81 2.90 13.56 3.78 12.48 4.33 12.31

Table 8.2.: Mean tracking error (MTE) in mm for all datasets and minimum/maximum
MTE values for individual devices for all algorithms competing in the two-
dimensional tracking benchmark of the CLUST14 challenge. The pro-
posed approach achieves the best (lowest) overall MTE. Table modified from
[DBK+15*].

notation to drift away from the original structure. The algorithm then continued tracking
a similar nearby structure.

Over all frames, our method achieved a mean tracking error of 1.44 mm± 2.04 mm. As
shown in Table 8.2, in comparison with the other five participants of the two-dimen-
sional tracking in the CLUST14 challenge, we achieved the lowest mean tracking error.
In comparison with the identity transformation, all algorithms achieved a significant
reduction in mean tracking error.

Runtime. For the challenge submission reported in [DBK+15*], we used a preliminary
version of the matrix-free registration algorithm without AVX acceleration. Additionally,
the tracking algorithm from Section 8.2 was implemented in Python and not optimized
for performance. Therefore, for this thesis, we re-evaluated our computations with an
implementation in C++, using the matrix-free registration from Chapter 3. All evalu-
ations were performed on a workstation with Intel Core i7-6700K CPU with four cores
and 4.00 GHz.

The achieved tracking speed in frames per second (FPS) is shown in Table 8.3. For all
datasets we achieved real-time performance above acquisition rate, ranging from 25.1
to 130.9 FPS. Since multiple annotations are tracked with separate tracking algorithms,
more annotations lead to a slower tracking speed.

8.4. Discussion and summary

We presented an algorithm for annotation tracking in long ultrasound sequences. Using
the fast and efficient matrix-free registration algorithm from Chapter 3 as a basis, the
tracking method achieved the best mean tracking error for two-dimensional tracking in
the MICCAI CLUST14 challenge at real-time performance.

164

8.4. Discussion and summary

Dataset Frames Acq. FPS No. of ann. Tracking FPS

ETH 01 14 516 25 1 130.9
02 5244 16 1 103.3
03 5578 17 3 33.5
04 2620 15 1 86.2
06 5586 17 2 50.3
07 4588 14 1 68.1
08 5574 17 2 55.6
09 5247 16 2 57.8
10 4587 15 4 31.0
11 4615 15 2 47.0
12 4284 14 2 42.6

MED 01 2470 20 3 45.1
02 2478 20 3 41.8
03 2456 20 4 30.7
05 2458 20 3 41.6
06 2443 20 3 38.7
07 2450 20 3 38.1
08 2442 20 2 54.6
09 2436 20 5 25.1
10 2427 20 4 28.9
11 2424 20 3 31.4
12 2450 20 3 36.4

MED 13 3304 11 3 31.9
14 3304 11 3 37.0
15 3304 11 1 97.0
16 3304 11 2 46.7

Table 8.3.: Image acquisition rate in frames per seconds (FPS) and achieved tracking
speed of the proposed tracking algorithm. For all datasets, we achieve real-
time performance. Multiple annotations are tracked independently and thus
lead to lower frame rates.

Here, the matrix-free image registration algorithm is key to successfully using a full
deformable image registration in an application setting with real-time constraints.

The algorithm uses a moving window approach and therefore can compensate for large
translational movements in addition to non-linear motion. A fallback strategy enables
continued tracking in cases where the vessel temporarily changes its appearance. However,
no assumptions about the observed motion, such as periodicity, are made and no further
feature recognition is required, making the proposed method a versatile tool also for other
potential applications in motion tracking.

A current limitation of the algorithm is the limited – but necessary – parameter selection.
While a single set of parameters for each device proved to be sufficient on the challenge
dataset, parameters are currently chosen manually and also depend on observed motion
artifacts, such as missing frames or motion of the scanner. Automatic parameter selection
could improve the usability of the method in a clinical environment. Additionally, besides

165

8. Real-time registration for liver ultrasound tracking

NGF and SSD, further distances should be evaluated: based on our tracking approach,
the authors of [HPC+15] proposed a demons-based registration with a scale invariant
feature transform (SIFT) distance measure and achieved excellent results.

166

9 Conclusion and outlook

In this thesis, we presented a matrix-free algorithm for deformable image registration.
Based on the variational image registration model presented in Chapter 2, we derived
novel, fully matrix-free methods for the registration objective function derivative compu-
tations in Chapter 3. Initially, in Section 3.2, we considered the SSD distance measure.
After analyzing the derivative structure, we derived fully matrix-free computations for
the gradient as well as for the matrix-vector multiplication with the Gauss-Newton Hes-
sian. After this, in Section 3.3 we considered the multi-modal NGF distance measure.
Using the previously derived computations, we extended the matrix-free methods to the
more complicated derivative structure of the NGF, again deriving matrix-free expres-
sions for gradient computations and the Hessian-vector multiplication. Additionally, we
determined a matrix-free formulation of the curvature regularizer in Section 3.4. Com-
pleting the objective function derivatives, we furthermore considered the necessary grid
conversion operators in Section 3.5, mapping between image grid and deformation grid
and derived efficient matrix-free computation schemes, including a red-black method for
computing the transposed grid conversion operator.

With this, we have derived fully matrix-free, closed-form expressions for all important
components of the objective function derivatives. These expressions have multiple bene-
fits:

• they are fully parallelizable,

• do not require sparse matrix arithmetic, and

• do not need intermediate storage.

This reduces the memory requirements of the derivative computations to a constant
amount and enables the full utilization of multi-core architectures. Instead of storing pre-
computed intermediate results, the matrix-free computations perform all required com-
putations directly on the fly, based on the original image data. However, considering the
number of computational operations, this is associated with a certain overhead of recal-
culations, when intermediate results are required that have been computed before, but
were not stored. Therefore, in Section 3.7, we presented different implementation alter-
natives, optionally precomputing selected structures with high numbers of recalculations.
We showed that these alternatives, with a trade-off of moderate memory requirements,
further reduce the number of computational operations required.

167

9. Conclusion and outlook

The proposed matrix-free computations can also be extended to other deformation mod-
els; most notably the rigid and affine deformation model in Section 3.6, which requires a
modified computational scheme for efficient parallelization. Furthermore, the matrix-free
computations are not limited to a specific implementation or architecture: In Section 3.8,
we presented specific implementations for multi-core CPUs, GPUs and a distributed DSP
platform.

As the derivation of the matrix-free methods can require a considerable amount of effort,
for comparison, we additionally implemented the registration algorithm using automatic
differentiation in Chapter 4. Based on the Theano framework, this method automatically
determines analytically exact derivatives. Furthermore, the computations can be option-
ally executed on the GPU without additional effort. However, for the optimization of the
computational graph, the utilized framework requires a certain compilation time. As this
time is higher on the GPU, but only required once on initialization, the benefit of the
GPU computations depends on the number of expected function evaluations.

The proposed methods were evaluated comprehensively in Chapter 5, ranging from in-
dividual components to a full multi-level registration. In Section 5.1, we showed that,
given a sufficient number of computational cores, all relevant matrix-free objective func-
tion components exhibit virtually linear scalability, allowing them to fully benefit from
parallel execution. Furthermore, we compared the matrix-free computations and the
Theano-based algorithm with matrix-based implementations for the evaluation of the
objective function derivatives in Section 5.3 and for a full multi-level registration in Sec-
tion 5.4:

• The matrix-free computations were several orders of magnitude faster than their
matrix-based equivalents for different image and deformation sizes and were able
to handle higher resolutions without exceeding the available memory.

• Our matrix-free algorithm was the only algorithm able to process registrations with
image sizes of 5123 voxels, while all other algorithms ran out of memory, making the
matrix-free algorithm favorable over matrix-based computations in every important
aspect.

Additionally, we evaluated different implementation alternatives for the matrix-free com-
putations in Section 5.2 and Section 5.4, each realizing a different trade-off between
recalculations and selectively precomputed values. Even the version with the highest
number of precomputations achieved a lower memory consumption than the matrix-based
approaches, while still being faster. At the cost of an increased runtime, the memory re-
quirements can be further reduced to a constant amount for the objective function deriva-
tives, potentially enabling the computation of very large image sizes. In Section 5.5, we
evaluated a GPU implementation of the matrix-free registration algorithm, achieving a
considerable additional speedup of up to one order of magnitude.

The automatic Theano-based algorithm did not reach the performance we achieved
through manual analysis. However, it performs similar to the matrix-based approaches.
Given that it does not require any manual effort for computing derivatives and can
seamlessly utilize GPU acceleration, it constitutes an interesting alternative for rapid
prototyping and algorithm development.

168

Applications. In the second part of this thesis, we presented three real-world applica-
tions of the matrix-free registration algorithm with very different requirements, ranging
from processing of large datasets and high deformation resolutions to real-time perfor-
mance.

In Chapter 6, we presented an automatic registration pipeline for thorax-abdomen

CT images in follow-up diagnosis for oncology. Here, synchronized navigation between
prior and follow-up scans can support the radiologist by reducing the time required for
manually navigating the data. As images can easily exceed sizes of 512×512×1000 voxels
and need to be processed in a clinically feasible runtime, this is a challenging applica-
tion scenario. We evaluated the algorithm on a large dataset of 489 patients with 986
registrations in total. Despite different scanners, image sizes and fields of view, the au-
tomatic registration pipeline successfully registered all datasets, with an average runtime
of 38.1 s for the complete analysis, including an average of only 8.3 s for the deformable
registration part. Therefore, the proposed method is well-suited for clinical application.
It is currently being evaluated in practice as part of an oncology workstation.

Moving on from unconstrained deformable image registration, we incorporated further
anatomical knowledge into the registration model for a radiotherapy application in
Chapter 7: during the registration of male pelvic CT images with intra-treatment cone-
beam CT images, very different deformation properties of adjacent organs have to be
considered. Using unconstrained deformable registration can lead to physically implausi-
ble non-linear deformations of bones. Therefore, we added an additional local rigidity

constraint to the registration model, allowing to keep bones and other structures such
as the prostate rigid, while the remaining organs and tissue are allowed to deform non-
linearly. This application is well suited for the matrix-free algorithm, as it requires high
deformation resolutions in order to accurately preserve the desired rigidity boundaries.
We evaluated the registration with local rigidity constraints on a dataset of ten male
pelvis cases. In comparison with the unconstrained matrix-free algorithm and an uncon-
strained state-of-the-art registration method used in a commercial clinical workstation,
we achieved comparable accuracy. Additionally, our method largely reduced the grid
foldings and successfully preserved the rigid deformation properties of bones. Utilizing
the matrix-free computations, we achieved clinically feasible runtimes on real-world

datasets.

The third application, presented in Chapter 8, is characterized by strict real-time require-
ments. Here, using liver ultrasound sequences, vessel annotations are tracked with the
goal of determining respiratory motion and ultimately correct the target location, e.g., in
radiotherapy. For this, we integrated the matrix-free registration algorithm into a larger
tracking scheme using a pairwise moving window approach with deformable reg-
istration. We evaluated the proposed algorithm on 28 ultrasound sequences with a total
of 66 annotations as part of the MICCAI CLUST14 two-dimensional tracking challenge.
Out of the six participants, our algorithm achieved the lowest mean tracking error at a
real-time tracking speed of up to 130.9 frames per second. Here, the proposed matrix-free
algorithm is key to successfully using a full non-linear registration in an application

with real-time constraints.

169

9. Conclusion and outlook

Outlook. A currently unsolved problem is the automatic determination of a suitable
parameterization of the registration algorithm. At the moment, several parameters such
as the regularizer weight α, the NGF edge filtering parameters ̺ and τ , the deformation
resolution and multi-level settings have to be determined manually for every application
scenario, usually by performing an exhaustive search over a larger set of parameters and
datasets. Here, methods which enable an automatic determination of these parameters,
comparable to [HDH10], could potentially further increase the possible areas of clinical
application for the matrix-free registration algorithm.

While the automatic registration pipeline in Chapter 6 successfully registered a large
number of datasets, robustness in daily practice can often still be improved. Given a
reasonable starting guess, the deformable registration generally achieves satisfying re-
sults. However, coarsely aligning the datasets automatically is often a challenge. Here,
novel methods for image pre-alignment, potentially based on deep learning algorithms
[LMT+17], can further increase the robustness of image registration solutions on the
path to a truly generic registration framework.

Just as the matrix-free algorithm has enabled new use cases for registration in the three
presented applications, it can potentially enable registration in further clinical areas where
image registration was impractical before. Using the matrix-free computations as a basis,
it would be interesting to incorporate further anatomical knowledge, which was not feasi-
ble before in a clinical setting due to runtime or memory constraints. We hope that this
will further increase the use of reliable automatic image registration in clinical practice,
with the ultimate goal of improving diagnosis and treatment.

170

Bibliography

[AAA+16] R. Al-Rfou, G. Alain, A. Almahairi, C. Angermueller, D. Bahdanau, N.
Ballas, F. Bastien, et al., “Theano: A Python framework for fast computa-
tion of mathematical expressions”, ArXiv preprint, no. arXiv:1605.02688v1,
2016. Cit. on pp. 91, 94, 95.

[ABC+16] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
et al., “TensorFlow: A system for large-scale machine learning”, in 12th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), 2016, pp. 265–284. Cit. on p. 94.

[AF11] J. Ashburner and K. J. Friston, “Diffeomorphic registration using geodesic
shooting and Gauss-Newton optimisation”, NeuroImage, vol. 55, no. 3,
pp. 954–967, 2011. Cit. on pp. 19, 36.

[Ami94] Y. Amit, “A nonlinear variational problem for image matching”, SIAM
Journal on Scientific Computing, vol. 15, no. 1, pp. 207–224, 1994. Cit. on

pp. 2, 17, 18.

[ARH05] M. Auer, P. Regitnig, and G. A. Holzapfel, “An automatic nonrigid reg-
istration for stained histological sections”, IEEE Transactions on Image
Processing, vol. 14, no. 4, pp. 475–486, 2005. Cit. on p. 34.

[Arr18] ArrayFire, Explaining FP64 performance on GPUs, 2018. [Online]. Avail-
able: https://arrayfire.com/explaining-fp64-performance-on-gpus

(visited on 05/28/2018). Cit. on p. 128.

[Bal06] R. Bale, “Multimodality registration in daily clinical practice”, in Math-
ematical Models for Registration and Applications to Medical Imaging, O.
Scherzer, Ed., Springer Berlin Heidelberg, 2006, pp. 165–183. Cit. on pp. 3,

133.

[BB09] P. Bui and J. Brockman, “Performance analysis of accelerated image reg-
istration using GPGPU”, in 2nd Workshop on General Purpose Processing
on Graphics Processing Units (GPGPU-2), 2009, pp. 38–45. Cit. on pp. 20,

21.

[BBB+10] J. Bergstra, O. Breuleux, F. F. Bastien, P. Lamblin, R. Pascanu, G. Des-
jardins, J. Turian, et al., “Theano: A CPU and GPU math compiler in
Python”, in Python for Scientific Computing Conference (SciPy), 2010,
pp. 1–7. Cit. on p. 95.

[Ber12] R. Berg, “Leistungssteigerung in der medizinischen Bildregistrierung
durch Mehrkern-Signalprozessoren”, Bachelor’s thesis, Wilhelm Büchner
Hochschule Darmstadt, 2012. Cit. on pp. 21, 44, 85.

171

https://arrayfire.com/explaining-fp64-performance-on-gpus

Bibliography

[BG96] M. Bro-Nielsen and C. Gramkow, “Fast fluid registration of medical im-
ages”, in 4th International Conference on Visualization in Biomedical Com-
puting, 1996, pp. 265–276. Cit. on p. 19.

[BHE+08] K. K. Brock, M. Hawkins, C. Eccles, J. L. Moseley, D. J. Moseley, D. A.
Jaffray, and L. A. Dawson, “Improving image-guided target localization
through deformable registration”, Acta Oncologica, vol. 47, no. 7, pp. 1279–
1285, 2008. Cit. on p. 141.

[BHG04] J. Bernier, E. J. Hall, and A. Giaccia, “Radiation oncology: A century of
achievements”, Nature Reviews. Cancer, vol. 4, no. 9, pp. 737–747, 2004.
Cit. on p. 4.

[BHWB18] M. Bücker, P. Hovland, C. Wente, and H. Bach, www.Autodiff.org, 2018.
[Online]. Available: http://www.autodiff.org (visited on 05/18/2018).
Cit. on p. 94.

[BK89] R. Bajcsy and S. Kovačič, “Multiresolution elastic matching”, Computer
Vision, Graphics, and Image Processing, vol. 46, no. 1, pp. 1–21, 1989. Cit.

on p. 19.

[BKN14] T. Benz, M. Kowarschik, and N. Navab, “Kernel-based tracking in ul-
trasound sequences of liver”, in MICCAI Challenge on Liver Ultrasound
Tracking (CLUST14), 2014, pp. 21–28. Cit. on p. 164.

[BKR+14*] R. Berg, L. König, J. Rühaak, R. Lausen, and B. Fischer, “Highly effi-
cient image registration for embedded systems using a distributed multicore
DSP architecture”, Journal of Real-Time Image Processing, vol. 14, no. 2,
pp. 341–361, 2014. Cit. on pp. 8, 20, 21, 26, 44, 85, 86.

[BLP+12] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Bergeron,
N. Bouchard, et al., “Theano: New features and speed improvements”, in
Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop,
2012, pp. 1–10. Cit. on p. 94.

[BLYY12] R. Baskar, K. A. Lee, R. Yeo, and K. W. Yeoh, “Cancer and radiation
therapy: Current advances and future directions”, International Journal of
Medical Sciences, vol. 9, no. 3, pp. 193–199, 2012. Cit. on p. 4.

[BMR13] M. Burger, J. Modersitzki, and L. Ruthotto, “A hyperelastic regularization
energy for image registration”, SIAM Journal on Scientific Computing, vol.
35, no. 1, pp. B132–B148, 2013. Cit. on pp. 2, 19, 25.

[BMTY05] M. F. Beg, M. I. Miller, A. Trouvé, and L. Younes, “Computing large defor-
mation metric mappings via geodesic flows of diffeomorphisms”, Interna-
tional Journal of Computer Vision, vol. 61, no. 2, pp. 139–157, 2005. Cit. on

p. 19.

[BPRS18] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind, “Auto-
matic differentiation in machine learning: A survey”, Journal of Machine
Learning Research, vol. 18, no. 153, pp. 1–43, 2018. Cit. on pp. 91, 93–95.

[Bro81] C. Broit, “Optimal registration of deformed images”, PhD thesis, University
of Pennsylvania, 1981. Cit. on p. 19.

172

http://www.autodiff.org

Bibliography

[Bro92] L. G. Brown, “A survey of image registration techniques”, ACM Computing
Surveys, vol. 24, no. 4, pp. 325–376, 1992. Cit. on p. 15.

[BT01] T. Butz and J.-P. Thiran, “Affine registration with feature space mutual
information”, in Medical Image Computing and Computer-Assisted Inter-
vention – MICCAI, 2001, pp. 549–556. Cit. on pp. 15, 20, 21.

[CBMK04] M. M. Coselmon, J. M. Balter, D. L. McShan, and M. L. Kessler, “Mu-
tual information based CT registration of the lung at exhale and inhale
breathing states using thin-plate splines”, Medical Physics, vol. 31, no. 11,
pp. 2942–2948, 2004. Cit. on p. 34.

[CCBF09] M. D. Craene, O. Camara, B. H. Bijnens, and A. F. Frangi, “Large diffeo-
morphic FFD registration for motion and strain quantification from 3D-US
sequences”, in International Conference on Functional Imaging and Mod-
eling of the Heart (FIMH), 2009, pp. 437–446. Cit. on p. 35.

[CCH07] W. R. Crum, O. Camara, and D. J. Hawkes, “Methods for inverting dense
displacement fields: Evaluation in brain image registration”, in Medical
Image Computing and Computer-Assisted Intervention – MICCAI, 2007,
pp. 900–907. Cit. on p. 136.

[CCM+10] E. Castillo, R. Castillo, J. Martinez, M. Shenoy, and T. Guerrero, “Four-
dimensional deformable image registration using trajectory modeling”,
Physics in Medicine and Biology, vol. 55, no. 1, pp. 305–327, 2010. Cit.

on p. 14.

[CDH+06] U. Clarenz, M. Droske, S. Henn, M. Rumpf, and K. Witsch, “Computational
methods for nonlinear image registration”, in Mathematical Models for
Registration and Applications to Medical Imaging, vol. 10, Springer Berlin
Heidelberg, 2006, pp. 81–101. Cit. on pp. 2, 18.

[CH08] N. Courty and P. Hellier, “Accelerating 3D non-rigid registration using
graphics hardware”, International Journal of Image and Graphics, vol. 1,
no. 8, pp. 1–18, 2008. Cit. on pp. 21, 22.

[CHH04] W. R. Crum, T. Hartkens, and D. L. G. Hill, “Non-rigid image registration:
Theory and practice”, The British Journal of Radiology, vol. 77, pp. S140–
S153, 2004. Cit. on pp. 15, 20.

[Chr94] G. E. Christensen, “Deformable shape models for anatomy”, PhD thesis,
Washington University, 1994. Cit. on p. 19.

[Chr98] ——, “MIMD vs. SIMD parallel processing: A case study in 3D medical
image registration”, Parallel Computing, vol. 24, pp. 1369–1383, 1998. Cit.

on pp. 21–23.

[CHZ11] J. Cong, M. Huang, and Y. Zou, “Accelerating fluid registration algorithm
on multi-FPGA platforms”, 21st International Conference on Field Pro-
grammable Logic and Applications (FPL), pp. 50–57, 2011. Cit. on pp. 21,

23.

[CJ01] G. E. Christensen and H. J. Johnson, “Consistent image registration”, IEEE
Transactions on Medical Imaging, vol. 20, no. 7, pp. 568–582, 2001. Cit. on

p. 18.

173

Bibliography

[CJM97] G. E. Christensen, S. C. Joshi, and M. I. Miller, “Volumetric transformation
of brain anatomy”, IEEE Transactions on Medical Imaging, vol. 16, no. 6,
pp. 864–877, 1997. Cit. on p. 19.

[CJS03] C. R. Castro-Pareja, J. M. Jagadeesh, and R. Shekhar, “FAIR: A hardware
architecture for real-time 3-D image registration”, IEEE Transactions on
Information Technology in Biomedicine, vol. 7, no. 4, pp. 426–434, 2003.
Cit. on p. 21.

[CLC+08] M. Chen, W. Lu, Q. Chen, K. J. Ruchala, and G. H. Olivera, “A simple
fixed-point approach to invert a deformation field”, Medical Physics, vol.
35, no. 1, pp. 81–88, 2008. Cit. on p. 136.

[CLQS12] W. M. Chiew, F. Lin, K. Qian, and H. S. Seah, “Demons kernel computa-
tion with single-pass stream processing on FPGA”, in IEEE 14th Interna-
tional Conference on High Performance Computing and Communications
(HPCC), 2012, pp. 1321–1328. Cit. on pp. 20, 21, 23.

[CMD+95] A. Collignon, F. Maes, D. Delaere, D. Vandermeulen, P. Suetens, and G.
Marchal, “Automated multi-modality image registration based on informa-
tion theory”, in 14th International Conference on Information Processing
in Medical Imaging, 1995, pp. 263–274. Cit. on p. 24.

[CPA99] P. Cachier, X. Pennec, and N. Ayache, “Fast non rigid matching by gradient
descent: Study and improvements of the ’demons’ algorithm”, Technical
Report, no. RR-3706, INRIA, pp. 1–25, 1999. Cit. on p. 17.

[CRM96] G. E. Christensen, R. D. Rabbitt, and M. I. Miller, “Deformable templates
using large deformation kinematics”, IEEE Transactions on Image Pro-
cessing, vol. 5, no. 10, pp. 1435–1447, 1996. Cit. on p. 19.

[CS05] C. R. Castro-Pareja and R. Shekhar, “Hardware acceleration of mutual
information based 3D image registration”, Journal of Imaging Science and
Technology, vol. 49, no. 2, pp. 105–113, 2005. Cit. on pp. 1, 20, 21, 23.

[CWN02] A. Chung, W. Wells, and A. Norbash, “Multi-modal image registration
by minimising kullback-leibler distance”, in Medical Image Computing and
Computer-Assisted Intervention – MICCAI, 2002, pp. 525–532. Cit. on p. 34.

[DBK+15*] V. De Luca, T. Benz, S. Kondo, L. König, D. Lübke, S. Rothlübbers, O.
Somphone, et al., “The 2014 liver ultrasound tracking benchmark”, Physics
in Medicine and Biology, vol. 60, no. 14, pp. 5571–5599, 2015. Cit. on pp. 6,

8, 16, 25, 155, 156, 161, 164.

[DDW+16] X. Du, J. Dang, Y. Wang, S. Wang, and T. Lei, “A parallel nonrigid reg-
istration algorithm based on B-Spline for medical images”, Computational
and Mathematical Methods in Medicine, vol. 2016, pp. 1–14, 2016. Cit. on

pp. 22, 24.

[DeLuc13] V. De Luca, “Liver motion tracking in ultrasound sequences for tumor
therapy”, PhD thesis, ETH Zürich, 2013. Cit. on p. 155.

[Dic45] L. R. Dice, “Measures of the amount of ecologic association between
species”, Ecology, vol. 26, no. 3, pp. 297–302, 1945. Cit. on p. 147.

174

Bibliography

[DKM16*] A. Derksen, L. König, and H. Meine, “An alternating image registration
approach for large scale bladder deformations in radiation therapy”, in 18th
International Conference on the use of Computers in Radiation Therapy
(ICCR), 2016, pp. 1–2. Cit. on p. 153.

[DKMH16*] A. Derksen, L. König, H. Meine, and S. Heldmann, “A joint registration
and segmentation approach for large bladder deformations in adaptive ra-
diotherapy”, in Medical Physics: Proceedings of the AAPM 58th annual
meeting, vol. 43, 2016, p. 3429. Cit. on p. 153.

[DM98] L. Dagum and R. Menon, “OpenMP: an industry standard API for shared-
memory programming”, IEEE Computational Science and Engineering,
vol. 5, no. 1, pp. 46–55, 1998. Cit. on p. 82.

[DMM+03] E. D’Agostino, J. Modersitzki, F. Maes, D. Vandermeulen, B. Fischer, and
P. Suetens, “Free-form registration using mutual information and curvature
regularization”, in International Workshop on Biomedical Image Registra-
tion (WBIR), 2003, pp. 11–20. Cit. on p. 19.

[DR04] M. Droske and M. Rumpf, “A variational approach to non-rigid morpho-
logical registration”, SIAM Journal on Applied Mathematics, vol. 64, no.
2, pp. 668–687, 2004. Cit. on pp. 2, 18, 24.

[DS07] O. Dandekar and R. Shekhar, “FPGA-accelerated deformable image regis-
tration for improved target-delineation during CT-guided interventions”,
IEEE Transactions on Biomedical Circuits and Systems, vol. 1, no. 2,
pp. 116–127, 2007. Cit. on pp. 21, 23.

[DS96] J. E. Dennis, Jr. and R. B. Schnabel, Numerical Methods for Unconstrained
Optimization and Nonlinear Equations. Society for Industrial and Applied
Mathematics (SIAM), 1996. Cit. on pp. 34–36, 38.

[DSHK99] D. Dey, P. J. Slomka, L. J. Hahn, and R. Kloiber, “Automatic three-
dimensional multimodality registration using radionuclide transmission CT
attenuation maps: A phantom study”, Journal of Nuclear Medicine, vol.
40, no. 3, pp. 448–455, 1999. Cit. on p. 34.

[DTST13] V. De Luca, M. Tschannen, G. Székely, and C. Tanner, “A learning-based
approach for fast and robust vessel tracking in long ultrasound sequences”,
in Medical Image Computing and Computer-Assisted Intervention – MIC-
CAI, 2013, pp. 518–525. Cit. on p. 155.

[EPW+07] B. J. Erickson, J. Patriarche, C. Wood, N. Campeau, E. Paul, V. Savcenko,
N. Arslanlar, et al., “Image registration improves confidence and accuracy
of image interpretation”, Cancer Informatics, vol. 4, pp. 19–24, 2007. Cit. on

pp. 16, 133.

[EWSH11] J. Ehrhardt, R. Werner, A. Schmidt-Richberg, and H. Handels, “Statistical
modeling of 4D respiratory lung motion using diffeomorphic image registra-
tion”, IEEE Transactions on Medical Imaging, vol. 30, no. 2, pp. 251–265,
2011. Cit. on pp. 16, 19.

175

Bibliography

[EYSL15] N. D. Ellingwood, Y. Yin, M. Smith, and C. L. Lin, “Efficient methods for
implementation of multi-level nonrigid mass-preserving image registration
on GPUs and multi-threaded CPUs”, Computer Methods and Programs in
Biomedicine, vol. 127, pp. 290–300, 2015. Cit. on pp. 21, 22.

[FAB+17] C. Fitzmaurice, C. Allen, R. M. Barber, L. Barregard, Z. A. Bhutta, H.
Brenner, D. J. Dicker, et al., “Global, regional, and national cancer inci-
dence, mortality, years of life lost, years lived with disability, and disability-
adjusted life-years for 32 cancer groups, 1990 to 2015”, JAMA Oncology,
vol. 3, no. 4, pp. 524–548, 2017. Cit. on p. 2.

[FDW+15] M. Fatyga, N. Dogan, E. Weiss, W. C. Sleeman, B. Zhang, W. J. Lehman,
J. F. Williamson, et al., “A voxel-by-voxel comparison of deformable vector
fields obtained by three deformable image registration algorithms applied
to 4DCT lung studies”, Frontiers in Oncology, vol. 5, no. 17, pp. 1–9, 2015.
Cit. on p. 1.

[FGM+17] D. Forsberg, A. Gupta, C. Mills, B. MacAdam, B. Rosipko, B. A. Bangert,
M. D. Coffey, et al., “Synchronized navigation of current and prior studies
using image registration improves radiologist’s efficiency”, International
Journal of Computer Assisted Radiology and Surgery, vol. 12, no. 3, pp. 431–
438, 2017. Cit. on pp. 3, 15, 16, 133.

[FHW08] C. Frohn-Schauf, S. Henn, and K. Witsch, “Multigrid based total variation
image registration”, Computing and Visualization in Science, vol. 11, no.
2, pp. 101–113, 2008. Cit. on p. 19.

[Fle87] R. Fletcher, Practical Methods of Optimization, 2nd ed. John Wiley &
Sons, 1987. Cit. on pp. 34, 37.

[FM01] B. Fischer and J. Modersitzki, “Fast diffusion registration”, in Contempo-
rary Mathematics, vol. 313, 2001, pp. 117–127. Cit. on pp. 17, 19, 25.

[FM03a] ——, “Combination of automatic non-rigid and landmark based registra-
tion: The best of both worlds”, in SPIE Medical Imaging 2003: Image
Processing, vol. 5032, 2003, pp. 1037–1048. Cit. on p. 19.

[FM03b] ——, “Curvature based image registration”, Journal Mathematical Imaging
and Vision, vol. 18, no. 1, pp. 81–85, 2003. Cit. on pp. 19, 26, 33.

[FM03c] ——, “FLIRT: A flexible image registration toolbox”, in International
Workshop on Biomedical Image Registration (WBIR), 2003, pp. 261–270.
Cit. on p. 19.

[FM04a] ——, “A unified approach to fast image registration and a new curvature
based registration technique”, Linear Algebra and Its Applications, vol. 380,
no. 1-3, pp. 107–124, 2004. Cit. on pp. 19, 25, 26.

[FM04b] ——, “Intensity-based image registration with a guaranteed one-to-one
point match”, Methods of Information in Medicine, vol. 43, no. 4, pp. 327–
330, 2004. Cit. on p. 19.

[FM08] ——, “Ill-posed medicine—an introduction to image registration”, Inverse
Problems, vol. 24, no. 034008, pp. 1–16, 2008. Cit. on pp. 1, 19, 23.

176

Bibliography

[FMB+15] D. Fontanarosa, S. van der Meer, J. Bamber, E. Harris, T. O’Shea, and
F. Verhaegen, “Review of ultrasound image guidance in external beam ra-
diotherapy: I. Treatment planning and inter-fraction motion management”,
Physics in Medicine and Biology, vol. 60, no. 3, pp. R77–R114, 2015. Cit. on

p. 6.

[FRD+09] W. Feng, S. J. Reeves, T. S. Denney, S. Lloyd, L. Dell’Italia, and H. Gupta,
“A new consistent image registration formulation with a B-Spline deforma-
tion model”, IEEE 6th International Symposium on Biomedical Imaging
(ISBI), pp. 979–982, 2009. Cit. on p. 18.

[FVW+11] O. Fluck, C. Vetter, W. Wein, A. Kamen, B. Preim, R. Westermann, and
D.-. Magdeburg, “A survey of medical image registration on graphics hard-
ware”, Computer Methods and Programs in Biomedicine, vol. 104, no. 3,
pp. e45–e57, 2011. Cit. on p. 20.

[GB98] J. C. Gee and R. K. Bajcsy, “Elastic matching: Continuum mechanical and
probabilistic analysis”, in Brain Warping, 1998, pp. 183–197. Cit. on p. 19.

[GCP+09] W. H. Greene, S. Chelikani, K. Purushothaman, J. P. Knisely, Z. Chen, X.
Papademetris, L. H. Staib, et al., “Constrained non-rigid registration for
use in image-guided adaptive radiotherapy”, Medical Image Analysis, vol.
13, no. 5, pp. 809–817, 2009. Cit. on p. 142.

[GDW+13] X. Gu, B. Dong, J. Wang, J. Yordy, L. Mell, X. Jia, and S. B. Jiang,
“A contour-guided deformable image registration algorithm for adaptive
radiotherapy”, Physics in Medicine and Biology, vol. 58, no. 6, pp. 1889–
1901, 2013. Cit. on p. 141.

[GMTT13] B. A. Gutman, S. K. Madsen, A. W. Toga, and P. M. Thompson, “A family
of fast spherical registration algorithms for cortical shapes”, in International
Workshop on Multimodal Brain Image Analysis, 2013, pp. 246–257. Cit. on

p. 17.

[GMW81] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization. Academic
Press, 1981. Cit. on pp. 34, 39.

[Gos05] A. Goshtasby, 2-D and 3-D Image Registration. John Wiley & Sons, 2005.
Cit. on p. 14.

[GPL+10] X. Gu, H. Pan, Y. Liang, R. Castillo, D. Yang, D. Choi, E. Castillo, et
al., “Implementation and evaluation of various demons deformable image
registration algorithms on a GPU”, Physics in Medicine and Biology, vol.
55, pp. 207–219, 2010. Cit. on pp. 17, 21, 22.

[GRB+12] F. Gigengack, L. Ruthotto, M. Burger, C. H. Wolters, and X. Jiang, “Motion
correction in dual gated cardiac PET using mass-preserving image registra-
tion”, IEEE Transactions on Medical Imaging, vol. 31, no. 3, pp. 698–712,
2012. Cit. on pp. 2, 19.

[GSTA10] G. Goeckenjan, H. Sitter, M. Thomas, and E. Al., “Prevention, diagnosis,
therapy, and follow-up of lung cancer: Interdisciplinary guideline of the Ger-
man Respiratory Society and the German Cancer Society”, Pneumologie,
vol. 65, no. 1, pp. 39–59, 2010. Cit. on p. 3.

177

Bibliography

[GV13] G. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed. Johns
Hopkins University Press, 2013. Cit. on pp. 37, 38, 47.

[GW08] A. Griewank and A. Walther, Evaluating Derivatives: Principles and Tech-
niques of Algorithmic Differentiation, 2nd ed. Society for Industrial and
Applied Mathematics (SIAM), 2008. Cit. on pp. 91, 92, 94.

[Har07] M. Harris, “Optimizing parallel reduction in CUDA”, NVIDIA Developer
Technology, 2007. Cit. on p. 84.

[HBHH01] D. L. G. Hill, P. G. Batchelor, M. Holden, and D. J. Hawkes, “Medical
image registration”, Physics in Medicine and Biology, vol. 46, no. 3, pp. 1–
45, 2001. Cit. on p. 24.

[HBO09] M. Hernandez, M. N. Bossa, and S. Olmos, “Registration of anatomical
images using paths of diffeomorphisms parameterized with stationary vec-
tor field flows”, International Journal of Computer Vision, vol. 85, no. 3,
pp. 291–306, 2009. Cit. on p. 19.

[HBS06] B. F. Hutton, M. Braun, and P. Slomka, “Image registration techniques in
nuclear medicine imaging”, in Quantitative Analysis in Nuclear Medicine
Imaging, H. Zaidi, Ed. Springer US, 2006, pp. 272–307. Cit. on pp. 3, 133.

[HCF04] G. Hermosillo, C. Chefd’hotel, and O. Faugeras, “Variational methods for
multimodal image matching”, International Journal of Computer Vision,
vol. 50, no. 3, pp. 329–343, 2004. Cit. on pp. 2, 18.

[HD11] D. Holland and A. M. Dale, “Nonlinear registration of longitudinal images
and measurement of change in regions of interest”, Medical Image Analysis,
vol. 15, no. 4, pp. 489–497, 2011. Cit. on p. 1.

[HDH10] D. A. Hahn, V. Daum, and J. Hornegger, “Automatic parameter selection
for multimodal image registration”, IEEE Transactions on Medical Imag-
ing, vol. 29, no. 5, pp. 1140–1155, 2010. Cit. on p. 170.

[Hel06] S. Heldmann, Non-Linear Registration Based on Mutual Information: The-
ory, Numerics, and Application. Logos-Verlag, 2006. Cit. on pp. 19, 26, 32, 33,

37, 38, 59.

[Hen03] S. Henn, “A levenberg–marquardt scheme for nonlinear image registration”,
BIT Numerical Mathematics, vol. 43, pp. 743–759, 2003. Cit. on p. 36.

[Hen06] ——, “A full curvature based algorithm for image registration”, Journal of
Mathematical Imaging and Vision, vol. 24, no. 2, pp. 195–208, 2006. Cit. on

pp. 19, 26, 33.

[HHH01] J. V. Hajnal, D. L. G. Hill, and D. J. Hawkes, Medical Image Registration.
CRC Press, 2001. Cit. on p. 14.

[HHM09] E. Haber, S. Heldmann, and J. Modersitzki, “A computational framework
for image-based constrained registration”, Linear Algebra and Its Applica-
tions, vol. 431, no. 3–4, pp. 459–470, 2009. Cit. on pp. 19, 142.

[HJB+12] M. P. Heinrich, M. Jenkinson, M. Bhushan, T. Matin, F. V. Gleeson, J. M.
Brady, and J. A. Schnabel, “MIND: Modality independent neighbourhood
descriptor for multi-modal deformable registration”, Medical Image Analy-
sis, vol. 16, no. 7, pp. 1423–1435, 2012. Cit. on pp. 19, 36.

178

Bibliography

[HJBS11] M. P. Heinrich, M. Jenkinson, J. M. Brady, and J. A. Schnabel, “Non-
rigid image registration through efficient discrete optimization”, in Medical
Image Analysis and Understanding, 2011, pp. 187–192. Cit. on pp. 20, 35.

[HM04] E. Haber and J. Modersitzki, “Numerical methods for volume preserving
image registration”, Inverse Problems, vol. 20, no. 5, pp. 1621–1638, 2004.
Cit. on pp. 18, 19, 147.

[HM05] ——, “Beyond mutual information: A simple and robust alternative”, in
Bildverarbeitung für die Medizin, 2005, pp. 350–354. Cit. on p. 24.

[HM06a] ——, “A multilevel method for image registration”, SIAM Journal on Sci-
entific Computing, vol. 27, no. 5, pp. 1–17, 2006. Cit. on pp. 13, 19, 27, 36.

[HM06b] ——, “Intensity gradient based registration and fusion of multi-modal im-
ages”, in Medical Image Computing and Computer-Assisted Intervention –
MICCAI, 2006, pp. 726–733. Cit. on p. 24.

[HM07a] ——, “Image registration with guaranteed displacement regularity”, In-
ternational Journal of Computer Vision, vol. 71, no. 3, pp. 361–372, 2007.
Cit. on p. 19.

[HM07b] ——, “Intensity gradient based registration and fusion of multi-modal im-
ages”, Methods of Information in Medicine, vol. 46, no. 3, pp. 292–299,
2007. Cit. on pp. 19, 24.

[HMC+07] J. M. Hensel, C. Ménard, P. W. M. Chung, M. F. Milosevic, A. Kir-
ilova, J. L. Moseley, M. A. Haider, et al., “Development of multiorgan
finite element-based prostate deformation model enabling registration of
endorectal coil magnetic resonance imaging for radiotherapy planning”, In-
ternational Journal of Radiation Oncology Biology Physics, vol. 68, no. 5,
pp. 1522–1528, 2007. Cit. on p. 140.

[HNCB10] M. Hossny, S. Nahavandi, D. Creighton, and A. Bhatti, “Towards au-
tonomous image fusion”, in IEEE 11th International Conference on Con-
trol, Automation, Robotics and Vision (ICARCV), 2010, pp. 1748–1754.
Cit. on p. 15.

[HPC+15] A. Hallack, B. W. Papiez, A. Cifor, M. J. Gooding, and J. A. Schnabel,
“Robust liver ultrasound tracking using dense distinctive image features”,
in MICCAI Challenge on Liver Ultrasound Tracking (CLUST15), 2015,
pp. 28–35. Cit. on p. 166.

[HRK93] D. Huttenlocher, W. Rucklidge, and G. Klanderman, “Comparing images
using the Hausdorff distance under translation”, IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 15, no. 9, pp. 850–863,
1993. Cit. on p. 147.

[HS81] B. K. B. Horn and B. G. Schunck, “Determining optical flow”, Artificial
Intelligence, vol. 17, no. 1–3, pp. 185–203, 1981. Cit. on pp. 17, 19.

[HSG10] M. P. Heinrich, J. A. Schnabel, and F. Gleeson, “Non-rigid multimodal
medical image registration using optical flow and gradient orientation”, in
Medical Image Analysis and Understanding, 2010, pp. 141–145. Cit. on p. 19.

179

Bibliography

[HSP+16] M. P. Heinrich, I. J. A. Simpson, B. W. Papiez, J. M. Brady, and J. A.
Schnabel, “Deformable image registration by combining uncertainty esti-
mates from supervoxel belief propagation”, Medical Image Analysis, vol.
27, pp. 57–71, 2016. Cit. on pp. 20, 35.

[HZ03] R. Hartley and A. Zisserman, Multiple View Geometry. Cambridge Uni-
versity Press, 2003. Cit. on p. 15.

[IIH14] K. Ikeda, F. Ino, and K. Hagihara, “Efficient acceleration of mutual infor-
mation computation for nonrigid registration using CUDA”, IEEE Journal
of Biomedical and Health Informatics, vol. 18, no. 3, pp. 956–968, 2014.
Cit. on pp. 21, 22.

[IOH05] F. Ino, K. Ooyama, and K. Hagihara, “A data distributed parallel algorithm
for nonrigid image registration”, Parallel Computing, vol. 31, no. 1, pp. 19–
43, 2005. Cit. on pp. 21, 22.

[Jäh05] B. Jähne, Digital Image Processing, 6th ed. Springer, 2005. Cit. on p. 39.

[JBBS02] M. Jenkinson, P. Bannister, J. M. Brady, and S. Smith, “Improved opti-
mization for the robust and accurate linear registration and motion correc-
tion of brain images”, NeuroImage, vol. 17, no. 2, pp. 825–841, 2002. Cit. on

p. 15.

[JKDM07] D. Jaffray, P. Kupelian, T. Djemil, and R. M. Macklis, “Review of image-
guided radiation therapy”, Xpert Review of Anticancer Therapy, vol. 7, no.
1, pp. 89–103, 2007. Cit. on pp. 4, 5, 139.

[JLR02] J. Jiang, W. Luk, and D. Rueckert, “FPGA-based computation of free-form
deformations”, in IEEE International Conference on FieId-Programmable
Technology (FPT), 2002, pp. 407–410. Cit. on pp. 20, 21, 23.

[JSD+14] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S.
Guadarrama, et al., “Caffe: Convolutional architecture for fast feature em-
bedding”, in 22nd ACM International Conference on Multimedia (MM),
2014, pp. 675–678. Cit. on p. 94.

[KBD17] A. P. Keszei, B. Berkels, and T. M. Deserno, “Survey of non-rigid registra-
tion tools in medicine”, Journal of Digital Imaging, vol. 30, no. 1, pp. 102–
116, 2017. Cit. on pp. 14, 24.

[KCC+14] K.-W. Kwok, G. C. Chow, T. C. Chau, Y. Chen, S. H. Zhang, W. Luk,
E. J. Schmidt, et al., “FPGA-based acceleration of MRI registration: an
enabling technique for improving MRI-guided cardiac therapy”, Journal of
Cardiovascular Magnetic Resonance, vol. 16, no. 1, pp. W11–W13, 2014.
Cit. on pp. 21, 23.

[KCW06] A. Khamene, R. Chisu, and W. Wein, “A novel projection based approach
for medical image registration”, in International Workshop on Biomedical
Image Registration (WBIR), 2006, pp. 247–256. Cit. on pp. 20, 21.

[KD04] B. Karaçali and C. Davatzikos, “Estimating topology preserving and
smooth displacement fields”, IEEE Transactions on Medical Imaging, vol.
23, no. 7, pp. 868–880, 2004. Cit. on pp. 145, 147.

180

Bibliography

[KDH+15*] L. König, A. Derksen, S. Heldmann, N. Papenberg, J. Modersitzki, and B.
Haas, “Deformable image registration with guaranteed local rigidity”, in
Radiotherapy and Oncology: Proceedings of the 3rd ESTRO Forum, vol. 115,
2015, pp. S197–S198. Cit. on pp. 8, 141.

[KDHP15*] L. König, A. Derksen, M. Hallmann, and N. Papenberg, “Parallel and mem-
ory efficient multimodal image registration for radiotherapy using normal-
ized gradient fields”, in IEEE 12th International Symposium on Biomedical
Imaging (ISBI), 2015, pp. 734–738. Cit. on pp. 8, 21, 23, 44, 106.

[KDPH16*] L. König, A. Derksen, N. Papenberg, and B. Haas, “Deformable image
registration for adaptive radiotherapy with guaranteed local rigidity con-
straints”, Radiation Oncology, vol. 11, no. 1, pp. 122–130, 2016. Cit. on pp. 8,

25, 26, 141.

[KDR+06] A. Köhn, J. Drexl, F. Ritter, M. König, and H. O. Peitgen, “GPU acceler-
ated image registration in two and three dimensions”, in Bildverarbeitung
für die Medizin, 2006, pp. 261–265. Cit. on pp. 21, 22.

[Kel99] C. T. Kelley, Iterative Methods for Optimization. Society for Industrial and
Applied Mathematics (SIAM), 1999. Cit. on p. 34.

[Kes06] M. L. Kessler, “Image registration and data fusion in radiation therapy”,
The British Journal of Radiology, vol. 79, pp. S99–S108, 2006. Cit. on p. 139.

[KKL+13] J. Kim, S. Kumar, C. Liu, H. Zhong, D. Pradhan, M. Shah, R. Cattaneo, et
al., “A novel approach for establishing benchmark CBCT/CT deformable
image registrations in prostate cancer radiotherapy”, Physics in Medicine
and Biology, vol. 58, no. 22, pp. 8077–8097, 2013. Cit. on pp. 142, 153, 154.

[KKR14*] L. König, T. Kipshagen, and J. Rühaak, “A non-linear image registration
scheme for real-time liver ultrasound tracking using normalized gradient
fields”, in MICCAI Challenge on Liver Ultrasound Tracking (CLUST14),
2014, pp. 29–36. Cit. on pp. 7, 8, 156, 159, 160, 162.

[KLT03] T. G. Kolda, R. M. Lewis, and V. Torczon, “Optimization by direct search:
New perspectives on some classical and modern methods”, SIAM Review,
vol. 45, no. 3, pp. 385–482, 2003. Cit. on p. 34.

[KLW+08] P. A. Kupelian, K. M. Langen, T. R. Willoughby, O. A. Zeidan, and S. L.
Meeks, “Image-guided radiotherapy for localized prostate cancer: Treating
a moving target”, Seminars in Radiation Oncology, vol. 18, no. 1, pp. 58–
66, 2008. Cit. on p. 139.

[KMB+06] P. J. Keall, G. S. Mageras, J. M. Balter, R. S. Emery, K. M. Forster, S. B.
Jiang, J. M. Kapatoes, et al., “The management of respiratory motion in
radiation oncology report of AAPM Task Group 76”, Medical Physics, vol.
33, no. 10, pp. 3874–3900, 2006. Cit. on pp. 6, 155.

[KNFM04] S. Kabus, T. Netsch, B. Fischer, and J. Modersitzki, “B-Spline registration
of 3D images with Levenberg-Marquardt optimization”, in SPIE Medical
Imaging 2004: Image Processing, vol. 5370, 2004, pp. 304–313. Cit. on p. 36.

181

Bibliography

[Kon14] S. Kondo, “Liver ultrasound tracking using long-term and short-term tem-
plate matching”, in MICCAI Challenge on Liver Ultrasound Tracking
(CLUST14), 2014, pp. 13–20. Cit. on p. 164.

[KR14*] L. König and J. Rühaak, “A fast and accurate parallel algorithm for non-
linear image registration using normalized gradient fields”, in IEEE 11th
International Symposium on Biomedical Imaging (ISBI), 2014, pp. 580–
583. Cit. on pp. 8, 21, 23, 44, 106.

[KRDL18*] L. König, J. Rühaak, A. Derksen, and J. Lellmann, “A matrix-free approach
to parallel and memory-efficient deformable image registration”, SIAM
Journal on Scientific Computing, vol. 40, no. 3, pp. B858–B888, 2018. Cit.

on pp. 3, 8, 21, 23, 44, 80, 81, 106.

[KSP07] S. Klein, M. Staring, and J. P. W. Pluim, “Evaluation of optimization
methods for nonrigid medical image registration using mutual information
and B-Splines”, IEEE Transactions on Image Processing, vol. 16, no. 12,
pp. 2879–2890, 2007. Cit. on pp. 18, 34, 35.

[KTC03] J. E. Kennedy, G. R. Ter Haar, and D. Cranston, “High intensity focused
ultrasound: Surgery of the future?”, The British Journal of Radiology, vol.
76, no. 909, pp. 590–599, 2003. Cit. on p. 6.

[LAFP13] M. Lorenzi, N. Ayache, G. B. Frisoni, and X. Pennec, “LCC-Demons: A
robust and accurate symmetric diffeomorphic registration algorithm”, Neu-
roImage, vol. 81, pp. 470–483, 2013. Cit. on p. 17.

[LC01] M. Lefebure and L. D. Cohen, “Image registration, optical flow and local
rigidity”, Journal of Mathematical Imaging and Vision, vol. 14, pp. 131–
147, 2001. Cit. on p. 19.

[LCSC15] J. Lee, X. Cai, C.-B. Schönlieb, and D. A. Coomes, “Nonparametric image
registration of airborne LiDAR, hyperspectral and photographic imagery
of wooded landscapes”, IEEE Transactions on Geoscience and Remote
Sensing, vol. 53, no. 11, pp. 6073–6084, 2015. Cit. on pp. 15, 25.

[LFKC10] Y. Liu, A. Fedorov, R. Kikinis, and N. Chrisochoides, “Non-rigid registra-
tion for brain MRI: Faster and cheaper”, International Journal of Func-
tional Informatics and Personalised Medicine, vol. 3, no. 1, pp. 48–57, 2010.
Cit. on pp. 21, 22.

[LG14] D. Lübke and C. Grozea, “High performance online motion tracking in
abdominal ultrasound imaging”, in MICCAI Challenge on Liver Ultrasound
Tracking (CLUST14), 2014, pp. 37–44. Cit. on p. 164.

[LGB00] T. M. Lehmann, H. G. Gröndahl, and D. K. Benn, “Computer-based reg-
istration for digital subtraction in dental radiology”, Dentomaxillofacial
Radiology, vol. 29, no. 6, pp. 323–346, 2000. Cit. on p. 16.

[LGS99] T. M. Lehmann, C. Gönner, and K. Spitzer, “Survey: Interpolation methods
in medical image processing”, IEEE Transactions on Medical Imaging, vol.
18, no. 11, pp. 1049–1075, 1999. Cit. on p. 30.

182

Bibliography

[LHL+16] J. M. Lotz, F. Hoffmann, J. Lotz, S. Heldmann, D. Trede, J. Oetjen, M.
Becker, et al., “Integration of 3D multimodal imaging data of a head and
neck cancer and advanced feature recognition”, Biochimica et Biophysica
Acta (BBA) – Proteins and Proteomics, vol. 1865, no. 7, pp. 946–956, 2016.
Cit. on p. 26.

[LK03] F. P. Leon and S. Kammel, “Image fusion techniques for robust inspection
of specular surfaces”, in Multisensor, Multisource Information Fusion: Ar-
chitectures, Algorithms, and Applications 2003, vol. 5099, 2003, pp. 77–86.
Cit. on p. 15.

[LKHC15] A. Li, A. Kumar, Y. Ha, and H. Corporaal, “Correlation ratio based volume
image registration on GPUs”, Microprocessors and Microsystems, vol. 39,
no. 8, pp. 998–1011, 2015. Cit. on p. 21.

[LM08] Y. Lin and G. Medioni, “Mutual information computation and maximiza-
tion using GPU”, in IEEE Computer Society Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), 2008, pp. 1–6. Cit.

on pp. 20, 21.

[LMT+17] R. Liao, S. Miao, P. de Tournemire, S. Grbic, A. Kamen, T. Mansi, and D.
Comaniciu, “An artificial agent for robust image registration”, in Thirty-
First AAAI Conference on Artificial Intelligence, 2017, pp. 4168–4175.
Cit. on p. 170.

[LMVS04] D. Loeckx, F. Maes, D. Vandermeulen, and P. Suetens, “Nonrigid image
registration using free-form deformations with a local rigidity constraint”, in
Medical Image Computing and Computer-Assisted Intervention – MICCAI,
2004, pp. 639–646. Cit. on p. 18.

[LNE11] J. Le Moigne, N. S. Netanyahu, and R. D. Eastman, Image Registration
for Remote Sensing, J. Le Moigne, N. S. Netanyahu, and R. D. Eastman,
Eds. Cambridge University Press, 2011. Cit. on pp. 1, 14.

[LOM+16] J. Lotz, J. Olesch, B. Muller, T. Polzin, P. Galuschka, J. M. Lotz, S. Held-
mann, et al., “Patch-based nonlinear image registration for gigapixel whole
slide images”, IEEE Transactions on Biomedical Engineering, vol. 63, no.
9, pp. 1812–1819, 2016. Cit. on pp. 25, 26.

[Lom11] C. Lomont, “Introduction to Intel advanced vector extensions”, Intel
Whitepaper, 2011. Cit. on p. 82.

[LPG+05] C. Lau, S. D. Pathak, L. Gong, P. Kinahan, P. Cheng, and L. Ng, “Advanced
PET/CT fusion workstation for oncology imaging”, in SPIE Medical Imag-
ing 2005: Visualization, Image-Guided Procedures, and Display, vol. 5744,
2005, pp. 670–676. Cit. on pp. 3, 133.

[LPH+09] T. Lange, N. Papenberg, S. Heldmann, J. Modersitzki, B. Fischer, H.
Lamecker, and P. M. Schlag, “3D ultrasound-CT registration of the liver
using combined landmark-intensity information”, International Journal of
Computer Assisted Radiology and Surgery, vol. 4, no. 1, pp. 79–88, 2009.
Cit. on p. 1.

183

Bibliography

[LRS+10] H. Lu, M. Reyes, A. Serifovi, Y. Sakurai, S. Weber, H. Yamagata, and
P. C. Cattin, “Multi-modal diffeomorphic demons registration based on
point-wise mutual information”, in IEEE 7th International Symposium on
Biomedical Imaging (ISBI), 2010, pp. 372–375. Cit. on p. 17.

[LSM+10] D. Loeckx, P. Slagmolen, F. Maes, D. Vandermeulen, and P. Suetens,
“Nonrigid image registration using conditional mutual information”, IEEE
Transactions on Medical Imaging, vol. 29, no. 1, pp. 19–29, 2010. Cit. on

p. 35.

[LYC08] B. Li, A. A. Young, and B. R. Cowan, “GPU accelerated non-rigid registra-
tion for the evaluation of cardiac function”, in Medical Image Computing
and Computer-Assisted Intervention – MICCAI, 2008, pp. 880–887. Cit. on

pp. 21, 22, 36.

[MCV+97] F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens,
“Multimodality image registration by maximization of mutual informa-
tion”, IEEE Transactions on Medical Imaging, vol. 16, no. 2, pp. 187–
198, 1997. Cit. on pp. 24, 34.

[Mei16] M. Meike, “GPU-basierte nichtlineare Bildregistrierung”, Master’s thesis,
University of Lübeck, 2016. Cit. on pp. 23, 44, 83, 84, 106.

[MF93] C. R. Maurer and J. M. Fitzpatrick, “A review of medical image registra-
tion”, in Interactive Image-Guided Neurosurgery, American Association of
Neurological Surgeons, 1993, pp. 17–44. Cit. on p. 14.

[MGB16] A. Mang, A. Gholami, and G. Biros, “Distributed-memory large deforma-
tion diffeomorphic 3D image registration”, in ACM/IEEE Conference on
Supercomputing, 2016, pp. 1–12. Cit. on pp. 21, 22.

[MHSK13] J. R. McClelland, D. J. Hawkes, T. Schaeffter, and A. P. King, “Respiratory
motion models: A review”, Medical Image Analysis, vol. 17, no. 1, pp. 19–
42, 2013. Cit. on p. 155.

[MHV+03] D. Mattes, D. R. Haynor, H. Vesselle, T. K. Lewellen, and W. Eubank,
“PET-CT image registration in the chest using free-form deformations”,
IEEE Transactions on Medical Imaging, vol. 22, no. 1, pp. 120–128, 2003.
Cit. on pp. 16, 35.

[MLSO01] J. Modersitzki, G. Lustig, O. Schmitt, and W. Obelöer, “Elastic registra-
tion of brain images on large PC-Clusters”, Future Generation Computer
Systems, vol. 18, no. 1, pp. 115–125, 2001. Cit. on pp. 21–23.

[Mod04] J. Modersitzki, Numerical Methods for Image Registration. Oxford Univer-
sity Press, 2004. Cit. on pp. 2, 13, 14, 17–19, 24, 25.

[Mod08] ——, “FLIRT with rigidity – image registration with a local non-rigidity
penalty”, International Journal of Computer Vision, vol. 76, no. 2, pp. 153–
163, 2008. Cit. on p. 142.

[Mod09] ——, FAIR: Flexible Algorithms for Image Registration. Society for Indus-
trial and Applied Mathematics (SIAM), 2009. Cit. on pp. 2, 13, 14, 19, 26, 27,

30, 33, 34, 38, 40, 43, 55, 66, 105, 112.

184

Bibliography

[MOXS08] P. Muyan-Özcelik, J. D. Owens, J. Xia, and S. S. Samant, “Fast deformable
registration on the GPU: A CUDA implementation of demons”, in IEEE
International Conference on Computational Sciences and Its Applications
(ICCSA), 2008, pp. 223–233. Cit. on pp. 21, 22.

[MPR+12] K. Murphy, J. P. W. Pluim, E. M. van Rikxoort, P. A. de Jong, B. de Hoop,
H. A. Gietema, O. Mets, et al., “Toward automatic regional analysis of
pulmonary function using inspiration and expiration thoracic CT”, Medical
Physics, vol. 39, no. 3, pp. 1650–1662, 2012. Cit. on p. 16.

[MRD+11] M. Modat, G. R. Ridgway, P. Daga, M. J. Cardoso, D. J. Hawkes, J. Ash-
burner, and S. Ourselin, “Log-Euclidean free-form deformation”, in SPIE
Medical Imaging 2011: Image Processing, vol. 7962, 2011, pp. 79621Q1–
79621Q6. Cit. on p. 18.

[MRT+10] M. Modat, G. R. Ridgway, Z. A. Taylor, M. Lehmann, J. Barnes, D. J.
Hawkes, N. C. Fox, et al., “Fast free-form deformation using graphics pro-
cessing units”, Computer Methods and Programs in Biomedicine, vol. 98,
no. 3, pp. 278–284, 2010. Cit. on pp. 21, 22.

[MSD03] L. P. Muren, R. Smaaland, and O. Dahl, “Organ motion, set-up variation
and treatment margins in radical radiotherapy of urinary bladder cancer”,
Radiotherapy and Oncology, vol. 69, no. 3, pp. 291–304, 2003. Cit. on p. 139.

[MV98] J. B. Maintz and M. A. Viergever, “A survey of medical image registration”,
Medical Image Analysis, vol. 2, no. 1, pp. 1–36, 1998. Cit. on p. 14.

[MVS99] F. Maes, D. Vandermeulen, and P. Suetens, “Comparative evaluation of
multiresolution optimization strategies for multimodality image registration
by maximization of mutual information”, Medical Image Analysis, vol. 3,
no. 4, pp. 373–386, 1999. Cit. on p. 34.

[NBD+09] S. Nithiananthan, K. K. Brock, M. J. Daly, H. Chan, J. C. Irish, and J. H.
Siewerdsen, “Demons deformable registration for CBCT-guided procedures
in the head and neck: Convergence and accuracy”, Medical Physics, vol.
36, no. 10, pp. 4755–4764, 2009. Cit. on p. 17.

[Noc80] J. Nocedal, “Updating quasi-Newton matrices with limited storage”, Math-
ematics of Computation, vol. 35, no. 151, pp. 773–782, 1980. Cit. on p. 37.

[NVI09] NVIDIA Corporation, NVIDIA CUDA Programming Guide, Version 2.3.1.
2009. Cit. on p. 85.

[NVI17] ——, CUDA C Programming Guide, PG-02829-001 v8.0. 2017. Cit. on pp. 20,

83, 84.

[NVI18] ——, GeForce GTX980 Whitepaper, 2018. [Online]. Available: https://

international.download.nvidia.com/geforce-com/international/

pdfs/GeForce_GTX_980_Whitepaper_FINAL.PDF (visited on 05/28/2018).
Cit. on p. 128.

[NW06] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. Springer,
2006. Cit. on pp. 34–38, 91, 92, 94, 136.

185

https://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_980_Whitepaper_FINAL.PDF
https://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_980_Whitepaper_FINAL.PDF
https://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_980_Whitepaper_FINAL.PDF

Bibliography

[OSP02] S. Ourselin, R. Stefanescu, and X. Pennec, “Robust registration of multi-
modal images: Towards real-time clinical applications”, in Medical Image
Computing and Computer-Assisted Intervention – MICCAI, 2002, pp. 140–
147. Cit. on pp. 20, 21.

[OT14] F. P. Oliveira and J. M. R. Tavares, “Medical image registration: A review”,
Computer Methods in Biomechanics and Biomedical Engineering, vol. 17,
no. 2, pp. 73–93, 2014. Cit. on pp. 14, 34.

[Pap08] N. Papenberg, “Ein genereller Registrierungsansatz mit Anwendung in der
navigierten Leberchirurgie”, PhD thesis, University of Lübeck, 2008. Cit. on

pp. 25–27.

[PCA99] X. Pennec, P. Cachier, and N. Ayache, “Understanding the ”Demon’s Al-
gorithm”: 3D non-rigid registration by gradient descent”, in Medical Image
Computing and Computer-Assisted Intervention – MICCAI, 1999, pp. 597–
605. Cit. on p. 17.

[PCL+17] A. Paszke, G. Chanan, Z. Lin, S. Gross, E. Yang, L. Antiga, and Z. De-
vito, “Automatic differentiation in PyTorch”, in 31st Conference on Neural
Information Processing System (NIPS), 2017, pp. 1–4. Cit. on p. 94.

[PDBS08] W. Plishker, O. Dandekar, S. S. Bhattacharyya, and R. Shekhar, “Towards
systematic exploration of tradeoffs for medical image registration on hetero-
geneous platforms”, in IEEE Biomedical Circuits and Systems Conference
(BIOCAS), 2008, pp. 53–56. Cit. on pp. 20–22, 24.

[PDBS10] ——, “Utilizing hierarchical multiprocessing for medical image registra-
tion”, IEEE Signal Processing Magazine, vol. 27, no. 2, pp. 61–68, 2010.
Cit. on pp. 21, 22.

[PGSB16] M. Peroni, P. Golland, G. C. Sharp, and G. Baroni, “Stopping criteria for
log-domain diffeomorphic demons registration: An experimental survey for
radiotherapy application”, Technology in cancer research & treatment, vol.
15, no. 1, pp. 77–90, 2016. Cit. on p. 17.

[PMR05] D. Perperidis, R. H. Mohiaddin, and D. Rueckert, “Spatio-temporal free-
form registration of cardiac MR image sequences”, Medical Image Analysis,
vol. 9, no. 5, pp. 441–456, 2005. Cit. on p. 18.

[PMV00] J. P. W. Pluim, J. B. A. Maintz, and M. A. Viergever, “Image registration
by maximization of combined mutual information and gradiant informa-
tion”, IEEE Transactions on Medical Imaging, vol. 19, no. 8, pp. 809–814,
2000. Cit. on p. 34.

[PNH+16] T. Polzin, M. Niethammer, M. P. Heinrich, H. Handels, and J. Modersitzki,
“Memory efficient LDDMM for lung CT”, in Medical Image Computing and
Computer-Assisted Intervention – MICCAI, 2016, pp. 28–36. Cit. on pp. 19,

20, 25.

[POL+09] N. Papenberg, J. Olesch, T. Lange, P. M. Schlag, and B. Fischer, “Land-
mark constrained non-parametric image registration with isotropic toler-
ances”, in Bildverarbeitung für die Medizin, 2009, pp. 122–126. Cit. on

p. 19.

186

Bibliography

[PRW+14] T. Polzin, J. Rühaak, R. Werner, H. Handels, and J. Modersitzki, “Lung
registration using automatically detected landmarks”, Methods of Informa-
tion in Medicine, vol. 53, no. 4, pp. 250–256, 2014. Cit. on p. 19.

[PV93] E. J. D. Pol and M. H. Viergever, “Medical image matching – A review
with classification”, IEEE Engineering in Medicine and Biology Magazine,
vol. 12, no. 1, pp. 26–39, 1993. Cit. on p. 14.

[RAH+06] D. Rueckert, P. Aljabar, R. A. Heckemann, J. V. Hajnal, and A. Hammers,
“Diffeomorphic registration using B-Splines”, in Medical Image Computing
and Computer-Assisted Intervention – MICCAI, 2006, pp. 702–709. Cit. on

p. 18.

[RBMM04] T. Rohlfing, R. Brandt, R. Menzel, and C. R. Maurer, “Evaluation of atlas
selection strategies for atlas-based image segmentation with application to
confocal microscopy images of bee brains”, NeuroImage, vol. 21, no. 4,
pp. 1428–1442, 2004. Cit. on p. 16.

[RDH+15] J. Ruehaak, A. Derksen, S. Heldmann, M. Hallmann, and H. Meine, “Ac-
curate CT-MR image registration for Deep Brain Stimulation: A multi-
observer evaluation study”, in SPIE Medical Imaging 2015: Image Process-
ing, 2015, pp. 941337–941337–7. Cit. on p. 15.

[RHKF13] J. Rühaak, S. Heldmann, T. Kipshagen, and B. Fischer, “Highly accurate
fast lung CT registration”, in SPIE Medical Imaging 2013: Image Process-
ing, vol. 8669, 2013, pp. 86690Y1–86690Y–9. Cit. on pp. 2, 19, 25, 35, 138.

[RJ02] P. Remagnino and G. A. Jones, “Automated registration of surveillance
data for multi-camera fusion”, in 5th International Conference on Infor-
mation Fusion (FUSION), vol. 2, 2002, pp. 1190–1197. Cit. on p. 15.

[RJR00] J.-M. Rouet, J.-J. Jacq, and C. Roux, “Genetic algorithms for a robust 3-D
MR-CT registration”, IEEE Transactions on Information Technology in
Biomedicine, vol. 4, no. 2, pp. 126–136, 2000. Cit. on pp. 20, 35.

[RKH+13*] J. Rühaak, L. König, M. Hallmann, N. Papenberg, S. Heldmann, H. Schu-
macher, and B. Fischer, “A fully parallel algorithm for multimodal image
registration using normalized gradient fields”, in IEEE 10th International
Symposium on Biomedical Imaging (ISBI), 2013, pp. 572–575. Cit. on pp. 8,

21, 25, 44.

[RKT+17*] J. Rühaak, L. König, F. Tramnitzke, H. Köstler, and J. Modersitzki, “A
matrix-free approach to efficient affine-linear image registration on CPU
and GPU”, Journal of Real-Time Image Processing, vol. 13, no. 1, pp. 205–
225, 2017. Cit. on pp. 8, 15, 21, 44.

[RM01] T. Rohlfing and C. R. Maurer, “Intensity-based non-rigid registration using
adaptive multilevel free-form deformation with an incompressibility con-
straint”, in Medical Image Computing and Computer-Assisted Intervention
– MICCAI, 2001, pp. 111–119. Cit. on p. 18.

[RM03] T. Rohlfing and C. R. Maurer, “Nonrigid image registration in shared-
memory multiprocessor environments with application to brains, breasts,
and bees”, IEEE Transactions on Information Technology in Biomedicine,
vol. 7, no. 1, pp. 16–25, 2003. Cit. on pp. 1, 20–22, 43.

187

Bibliography

[RMAP98] A. Roche, G. Malandain, N. Ayache, and X. Pennec, “Multimodal image
registration by maximization of the correlation ratio”, Technical Report,
no. RR-3378, INRIA, pp. 1–42, 1998. Cit. on p. 24.

[RMBJ03] T. Rohlfing, C. R. Maurer, D. A. Bluemke, and M. A. Jacobs, “Volume-
preserving nonrigid registration of MR breast images using free-form de-
formation with an incompressibility constraint”, IEEE Transactions on
Medical Imaging, vol. 22, no. 6, pp. 730–741, 2003. Cit. on pp. 18, 146.

[Roh12] T. Rohlfing, “Image similarity and tissue overlaps as surrogates for image
registration accuracy: Widely used but unreliable”, IEEE Transactions on
Medical Imaging, vol. 31, no. 2, pp. 153–163, 2012. Cit. on p. 147.

[RPH+15] I. S. Ramadaan, K. Peick, D. A. Hamilton, J. Evans, D. Iupati, A. Nichol-
son, L. Greig, et al., “Validation of Varian’s SmartAdapt® deformable image
registration algorithm for clinical application”, Radiation Oncology, vol. 10,
no. 1, pp. 73–82, 2015. Cit. on pp. 140, 146.

[RPH+17] J. Rühaak, T. Polzin, S. Heldmann, I. J. A. Simpson, H. Handels, J. Mod-
ersitzki, and M. P. Heinrich, “Estimation of large motion in lung CT by
integrating regularized keypoint correspondences into dense deformable reg-
istration”, IEEE Transactions on Medical Imaging, vol. 36, no. 8, pp. 1746–
1757, 2017. Cit. on pp. 19, 25, 26, 152.

[RSH+99] D. Rueckert, L. I. Sonoda, C. Hayes, D. L. G. Hill, M. O. Leach, and D. J.
Hawkes, “Nonrigid registration using free-form deformations: Application
to breast MR images”, IEEE Transactions on Medical Imaging, vol. 18, no.
8, pp. 712–721, 1999. Cit. on pp. 17, 18.

[RSJG14] S. Rothlübbers, J. Schwaab, J. Jenne, and M. Günther, “Bayesian real-
time liver feature ultrasound tracking”, in MICCAI Challenge on Liver
Ultrasound Tracking (CLUST14), 2014, pp. 45–52. Cit. on p. 164.

[RUCH09] A. Ruiz, M. Ujaldon, L. Cooper, and K. Huang, “Non-rigid registration for
large sets of microscopic images on graphics processors”, Journal of Signal
Processing Systems, vol. 55, no. 1–3, pp. 229–250, 2009. Cit. on pp. 21, 22.

[Rüh17] J. Rühaak, “Matrix-free techniques for efficient image registration and their
application to pulmonary image analysis”, PhD thesis, Jacobs University
Bremen, 2017. Cit. on p. 44.

[RWU+14] S. Reaungamornrat, A. S. Wang, A. Uneri, Y. Otake, A. J. Khanna, and
J. H. Siewerdsen, “Deformable image registration with local rigidity con-
straints for cone-beam CT-guided spine surgery”, Physics in Medicine and
Biology, vol. 59, no. 14, pp. 3761–3787, 2014. Cit. on p. 142.

[SA16] F. Seide and A. Agarwal, “CNTK: Microsoft’s open-source deep-learning
toolkit”, in 22nd ACM International Conference on Knowledge Discovery
and Data Mining (KDD), 2016, p. 2135. Cit. on p. 94.

[SAMD14] O. Somphone, S. Allaire, B. Mory, and C. Dufour, “Live feature tracking
in ultrasound liver sequences with sparse demons”, in MICCAI Challenge
on Liver Ultrasound Tracking (CLUST14), 2014, pp. 53–60. Cit. on p. 164.

188

Bibliography

[SBL+13] D. P. Shamonin, E. E. Bron, B. P. F. Lelieveldt, M. Smits, S. Klein, and M.
Staring, “Fast parallel image registration on CPU and GPU for diagnostic
classification of Alzheimer’s disease”, Frontiers in Neuroinformatics, vol.
7, no. 50, pp. 1–15, 2013. Cit. on pp. 21, 22.

[SC97] R. Szeliski and J. Coughlan, “Spline-based image registration”, Interna-
tional Journal of Computer Vision, vol. 22, no. 3, pp. 199–218, 1997. Cit. on

p. 17.

[SCD11] J. Santamaŕıa, O. Cordón, and S. Damas, “A comparative study of state-of-
the-art evolutionary image registration methods for 3D modeling”, Com-
puter Vision and Image Understanding, vol. 115, no. 9, pp. 1340–1354, 2011.
Cit. on pp. 20, 35.

[Sdi08] M. Sdika, “A fast non rigid image registration with constraints on the ja-
cobian using large scale constrained optimization”, IEEE Transactions on
Medical Imaging, vol. 27, no. 2, pp. 271–281, 2008. Cit. on pp. 18, 35.

[SDP13] A. Sotiras, C. Davatzikos, and N. Paragios, “Deformable medical image
registration: A survey”, IEEE Transactions on Medical Imaging, vol. 32,
no. 7, pp. 1153–1190, 2013. Cit. on pp. 1, 14–19, 23, 24, 34.

[SGR+08] D. Salas-Gonzalez, J. M. Gorriz, J. Ramirez, A. Lassl, C. Puntonet, and
In, “Improved Gauss-Newton optimisation methods in affine registration of
SPECT brain images”, Electronics Letters, vol. 44, no. 22, pp. 1291–1292,
2008. Cit. on pp. 15, 36.

[SHP+08] M. Sen, Y. Hemaraj, W. Plishker, R. Shekhar, and S. S. Bhattacharyya,
“Model-based mapping of reconfigurable image registration on FPGA plat-
forms”, Journal of Real-Time Image Processing, vol. 3, no. 3, pp. 149–162,
2008. Cit. on p. 21.

[SKP07] M. Staring, S. Klein, and J. P. Pluim, “A rigidity penalty term for nonrigid
registration”, Medical Physics, vol. 34, no. 11, pp. 4098–4108, 2007. Cit. on

p. 142.

[SKS13] J. Shackleford, N. Kandasamy, and G. Sharp, High Performance De-
formable Image Registration Algorithms For Manycore Processors. Newnes,
2013. Cit. on pp. 21, 22.

[SKSF07] G. C. Sharp, N. Kandasamy, H. Singh, and M. Folkert, “GPU-based stream-
ing architectures for fast cone-beam CT image reconstruction and demons
deformable registration”, Physics in Medicine and Biology, vol. 52, no. 19,
pp. 5771–5783, 2007. Cit. on pp. 21, 22.

[SOPD15] A. Sotiras, Y. Ou, N. Paragios, and C. Davatzikos, “Graph-based de-
formable image registration”, in Handbook of Biomedical Imaging, Springer,
2015, pp. 331–359. Cit. on pp. 20, 35.

[SPA03] R. Stefanescu, X. Pennec, and N. Ayache, “Parallel non-rigid registration
on a cluster of workstations”, in HealthGrid’03, 2003, pp. 1–8. Cit. on pp. 21,

22.

189

Bibliography

[SRG10] V. Saxena, J. Rohrer, and L. Gong, “A parallel GPU algorithm for mutual
information based 3D nonrigid image registration”, in European Conference
on Parallel Processing, Springer, 2010, pp. 223–234. Cit. on pp. 20–22.

[SRQ+01] J. A. Schnabel, D. Rueckert, M. Quist, J. M. Blackall, A. D. Castellano-
Smith, T. Hartkens, G. P. Penney, et al., “A generic framework for nonrigid
registration based on non uniform multi-level free-form deformations”, in
Medical Image Computing and Computer-Assisted Intervention – MICCAI,
2001, pp. 573–581. Cit. on pp. 17, 18.

[SSKH10a] R. Shams, P. Sadeghi, R. Kennedy, and R. Hartley, “A survey of medical
image registration on multicore and the GPU”, IEEE Signal Processing
Magazine, vol. 27, no. 2, pp. 50–60, 2010. Cit. on pp. 2, 20, 24, 30, 34.

[SSKH10b] ——, “Parallel computation of mutual information on the GPU with appli-
cation to real-time registration of 3D medical images”, Computer Methods
and Programs in Biomedicine, vol. 99, no. 2, pp. 133–146, 2010. Cit. on pp. 15,

20, 21.

[SSKO07] H. Shirato, S. Shimizu, K. Kitamura, and R. Onimaru, “Organ motion in
image-guided radiotherapy: Lessons from real-time tumor-tracking radio-
therapy”, International Journal of Clinical Oncology, vol. 12, no. 1, pp. 8–
16, 2007. Cit. on p. 155.

[STU05] C. Ó. S. Sorzano, P. Thévenaz, and M. Unser, “Elastic registration of bi-
ological images using vector-spline regularization”, IEEE Transactions on
Biomedical Engineering, vol. 52, no. 4, pp. 652–663, 2005. Cit. on p. 18.

[Sut05] H. Sutter, “The free lunch is over: A fundamental turn toward concurrency
in software”, Dr. Dobb’s Journal, vol. 30, no. 3, pp. 202–210, 2005. Cit. on

p. 1.

[SW14] B. W. Stewart and C. P. Wild, Eds., World Cancer Report 2014. Interna-
tional Agency for Research on Cancer, 2014. Cit. on p. 2.

[SWHE12] A. Schmidt-Richberg, R. Werner, H. Handels, and J. Ehrhardt, “Estimation
of slipping organ motion by registration with direction-dependent regular-
ization”, Medical Image Analysis, vol. 16, no. 1, pp. 150–159, 2012. Cit. on

p. 19.

[SXMO08] S. S. Samant, J. Xia, P. Muyan-Özçelik, and J. D. Owens, “High per-
formance computing for deformable image registration: Towards a new
paradigm in adaptive radiotherapy”, Medical Physics, vol. 35, no. 8,
pp. 3546–3553, 2008. Cit. on pp. 21, 22.

[SZ02] R. Shekhar and V. Zagrodsky, “Mutual information-based rigid and non-
rigid registration of ultrasound volumes”, IEEE Transactions on Medical
Imaging, vol. 21, no. 1, pp. 9–22, 2002. Cit. on p. 34.

[SZP+12] W. Shi, X. Zhuang, L. Pizarro, W. Bai, H. Wang, K.-P. Tung, P. Edwards,
et al., “Registration using sparse free-form deformations”, in Medical Image
Computing and Computer-Assisted Intervention – MICCAI, 2012, pp. 659–
666. Cit. on p. 18.

190

Bibliography

[TAP+14] M. Thor, E. S. Andersen, J. B. Petersen, T. S. Sorensen, K. O. Noe, K.
Tanderup, L. Bentzen, et al., “Evaluation of an application for intensity-
based deformable image registration and dose accumulation in radiother-
apy”, Acta Oncologica, vol. 53, no. 10, pp. 1329–1336, 2014. Cit. on p. 139.

[TAS+06] N. J. Tustison, B. B. Avants, T. A. Sundaram, J. T. Duda, and J. C. Gee,
“A generalization of free-form deformation image registration within the
ITK finite element framework”, in International Workshop on Biomedical
Image Registration, 2006, pp. 238–246. Cit. on p. 18.

[TBSS12] C. Tanner, D. Boye, G. Samei, and G. Szekely, “Review on 4D models for
organ motion compensation”, Critical Reviews™ in Biomedical Engineer-
ing, vol. 40, no. 2, pp. 135–154, 2012. Cit. on p. 155.

[TC07] T. W. H. Tang and A. C. S. Chung, “Non-rigid image registration using
graph-cuts.”, in Medical Image Computing and Computer-Assisted Inter-
vention – MICCAI, 2007, pp. 916–924. Cit. on pp. 20, 35.

[The18] Theano Development Team, Theano Documentation, 2018. [Online].
Available: http : / / deeplearning . net / software / theano/ (visited on
05/18/2018). Cit. on p. 96.

[Thi95] J.-P. Thirion, “Fast non-rigid matching of 3D medical images”, Technical
Report, no. RR-2547, INRIA, pp. 1–37, 1995. Cit. on p. 17.

[Thi96] ——, “Non-rigid matching using demons”, in IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 1996, pp. 245–251. Cit. on

p. 17.

[Thi98] ——, “Image matching as a diffusion process: An analogy with Maxwell’s
demons”, Medical Image Analysis, vol. 2, no. 3, pp. 243–260, 1998. Cit. on

p. 17.

[THT+16] S. Thörnqvist, L. B. Hysing, L. Tuomikoski, A. Vestergaard, K. Tanderup,
L. P. Muren, and B. J. M. Heijmen, “Adaptive radiotherapy strategies for
pelvic tumors – a systematic review of clinical implementations”, Acta
Oncologica, vol. 55, no. 8, pp. 943–958, 2016. Cit. on pp. 5, 139.

[TMU+01] B. S. Teh, W. Y. Mai, B. M. Uhl, M. E. Augspurger, W. H. Grant, H. H.
Lu, S. Y. Woo, et al., “Intensity-modulated radiation therapy (IMRT) for
prostate cancer with the use of a rectal balloon for prostate immobilization:
Acute toxicity and dose-volume analysis”, International Journal of Radi-
ation Oncology Biology Physics, vol. 49, no. 3, pp. 705–712, 2001. Cit. on

p. 146.

[TPB+11] M. Thor, J. B. B. Petersen, L. Bentzen, M. Høyer, and L. P. Muren, “De-
formable image registration for contour propagation from CT to cone-beam
CT scans in radiotherapy of prostate cancer”, Acta Oncologica, vol. 50, no.
6, pp. 918–925, 2011. Cit. on pp. 5, 16, 140, 153.

[Tra14] F. Tramnitzke, “GPU based affine linear image registration”, Master’s
thesis, University of Lübeck, 2014. Cit. on pp. 21, 44, 83.

191

http://deeplearning.net/software/theano/

Bibliography

[TRK+14*] F. Tramnitzke, J. Rühaak, L. König, J. Modersitzki, and H. Köstler, “GPU
based affine linear image registration using normalized gradient fields”,
in Seventh International Workshop on High Performance Computing for
Biomedical Image Analysis (HPC-MICCAI), 2014, pp. 1–10. Cit. on pp. 8,

21, 44, 83.

[TRU98] P. Thévenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to
subpixel registration based on intensity”, IEEE Transactions on Image
Processing, vol. 7, no. 1, pp. 27–41, 1998. Cit. on pp. 15, 36.

[TSC+00] C. Tanner, J. A. Schnabel, D. Chung, M. J. Clarkson, D. Rueckert, D. L. G.
Hill, and D. J. Hawkes, “Volume and shape preservation of enhancing
lesions when applying non-rigid registration to a time series of contrast
enhancing MR breast images”, in Medical Image Computing and Computer-
Assisted Intervention – MICCAI, 2000, pp. 327–337. Cit. on p. 18.

[TVF+02] I. L. Tan, R. A. Van Schijndel, F. Fazekas, M. Filippi, P. Freitag, D. H.
Miller, T. A. Yousry, et al., “Image registration and subtraction to detect
active T2 lesions in MS: An interobserver study”, Journal of Neurology,
vol. 249, no. 6, pp. 767–773, 2002. Cit. on pp. 16, 133.

[VPM+07] T. Vercauteren, X. Pennec, E. Malis, A. Perchant, and N. Ayache, “Insight
into efficient image registration techniques and the demons algorithm”, in
20th International Conference On Information Processing in Medical Imag-
ing (IPMI), 2007, pp. 495–506. Cit. on p. 17.

[VPPA07] T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache, “Non-parametric
diffeomorphic image registration with the demons algorithm”, in Medical
Image Computing and Computer-Assisted Intervention – MICCAI, 2007,
pp. 319–326. Cit. on p. 17.

[VPPA09] ——, “Diffeomorphic demons: Efficient non-parametric image registration”,
NeuroImage, vol. 45, no. 1, pp. S61–S72, 2009. Cit. on p. 17.

[VRK+10] J. Vandemeulebroucke, S. Rit, J. Kybic, P. Clarysse, and D. Sarrut, “Spa-
tiotemporal motion estimation for respiratory-correlated imaging of the
lungs”, Medical Physics, vol. 38, no. 1, pp. 166–178, 2010. Cit. on p. 35.

[VRS10] J. Vandemeulebroucke, S. Rit, and D. Sarrut, “Deformable image regis-
tration with automated motion-mask extraction”, in Grand Challenges in
Medical Image Analysis (MICCAI workshop), 2010, pp. 119–125. Cit. on

p. 17.

[VW11] C. Vetter and R. Westermann, “Optimized GPU histograms for multi-
modal registration”, IEEE 8th International Symposium on Biomedical
Imaging (ISBI), no. 1, pp. 1227–1230, 2011. Cit. on pp. 20, 21.

[VW97] P. Viola and W. Wells, “Alignment by maximization of mutual informa-
tion”, International Journal of Computer Vision, vol. 24, no. 2, pp. 137–
154, 1997. Cit. on p. 24.

[WCV11] S. van der Walt, S. C. Colbert, and G. Varoquaux, “The NumPy array:
A struture for efficient numerical computation”, Computing in Science &
Engeneering, vol. 13, pp. 22–30, 2011. Cit. on p. 95.

192

Bibliography

[WDO+05] H. Wang, L. Dong, J. O’Daniel, R. Mohan, A. S. Garden, K. K. Ang,
D. a. Kuban, et al., “Validation of an accelerated ’demons’ algorithm for
deformable image registration in radiation therapy”, Physics in Medicine
and Biology, vol. 50, no. 12, pp. 2887–2905, 2005. Cit. on pp. 17, 140, 146.

[WES+10] R. Werner, J. Ehrhardt, A. Schmidt-Richberg, A. Hei, and H. Handels,
“Estimation of motion fields by non-linear registration for local lung motion
analysis in 4D CT image data”, International Journal of Computer Assisted
Radiology and Surgery, vol. 5, no. 6, pp. 595–605, 2010. Cit. on pp. 16, 17, 19.

[WFW+97] J. West, J. M. Fitzpatrick, M. Y. Wang, B. M. Dawant, C. R. J. Maurer,
R. M. Kessler, J. Macjunas, Robert, et al., “Comparison and evaluation
of retrospective intermodality image registration techniques”, Journal of
Computer Assisted Tomography, vol. 21, pp. 554–568, 1997. Cit. on p. 14.

[WJK98] S. K. Warfield, F. A. Jolesz, and R. Kikinis, “A high performance computing
approach to the registration of medical imaging data”, Parallel Computing,
vol. 24, no. 9-10, pp. 1345–1368, 1998. Cit. on pp. 20, 21.

[WK98] H. Wu and Y. Kim, “Fast wavelet-based multiresolution image registration
on a multiprocessing digital signal processor”, International Journal of
Imaging Systems and Technology, vol. 9, no. 1, pp. 29–37, 1998. Cit. on

pp. 20, 21.

[WNA+16] H. Wang, M. Naghavi, C. Allen, R. M. Barber, Z. A. Bhutta, A. Carter,
D. C. Casey, et al., “Global, regional, and national life expectancy, all-cause
mortality, and cause-specific mortality for 249 causes of death, 1980–2015:
a systematic analysis for the Global Burden of Disease Study 2015”, The
Lancet, vol. 388, no. 10053, pp. 1459–1544, 2016. Cit. on p. 2.

[WP06] M. P. Wachowiak and T. M. Peters, “High-performance medical image reg-
istration using new optimization techniques”, IEEE Transactions on Infor-
mation Technology in Biomedicine, vol. 10, no. 2, pp. 344–353, 2006. Cit. on

pp. 20, 21, 34.

[WS15] O. Weistrand and S. Svensson, “The ANACONDA algorithm for deformable
image registration in radiotherapy”, Medical Physics, vol. 42, no. 1, pp. 40–
53, 2015. Cit. on p. 141.

[YLL+08] D. Yang, H. Li, D. A. Low, J. O. Deasy, and I. El Naqa, “A fast inverse
consistent deformable image registration method based on symmetric op-
tical flow computation”, Physics in Medicine and Biology, vol. 53, no. 21,
pp. 6143–6165, 2008. Cit. on p. 17.

[ZF03] B. Zitová and J. Flusser, “Image registration methods: A survey”, Image
and Vision Computing, vol. 21, no. 11, pp. 977–1000, 2003. Cit. on p. 15.

[ZKL+12] H. Zhong, J. Kim, H. Li, T. Nurushev, B. Movsas, and I. J. Chetty, “A
finite element method to correct deformable image registration errors in
low-contrast regions”, Physics in Medicine and Biology, vol. 57, no. 11,
pp. 3499–3515, 2012. Cit. on p. 141.

[ZKN10] D. Zikic, A. Kamen, and N. Navab, “Revisiting Horn and Schunck: In-
terpretation as Gauss-Newton optimisation”, in British Machine Vision
Conference (BMVC), 2010, pp. 113.1–113.12. Cit. on p. 19.

193

Bibliography

[ZUC09] X. Zheng, J. K. Udupa, and X. Chen, “Cluster of workstation based
nonrigid image registration using free-form deformation”, in SPIE Med-
ical Imaging 2009: Visualization, Image-Guided Procedures, and Modeling,
vol. 7261, 2009, pp. 72611N–72611N–9. Cit. on pp. 21, 22.

194

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	List of publications
	List of symbols
	Introduction and overview
	Motivation
	Applications
	Follow-up imaging in radiology
	Image-guided treatment in radiotherapy
	Real-time ultrasound tracking for motion compensation

	Contributions and outline

	Matrix-free approaches for deformable image registration
	Image registration
	Registration framework
	Images and transformation model

	Related work
	Deformation models
	Application scenarios
	Image registration methods
	Fast and efficient image registration algorithms

	Variational model
	Distance measures
	Regularizer

	Discretization
	Discretization grids
	Rigid and affine transformation models
	Image interpolation
	Distance measures
	Curvature regularizer

	Numerical optimization
	Newton's method
	Limited-memory BFGS
	Gauss-Newton
	Line search
	Stopping criteria
	Multi-level scheme

	Summary

	Matrix-free methods for efficient derivative computations
	Distance measure derivatives
	Image interpolation derivatives

	Derivative computations for SSD
	Gradient computations
	Hessian-vector multiplication

	Derivative computations for NGF
	Gradient computations
	Hessian-vector multiplication

	Derivative computations for curvature regularization
	Gradient computations
	Hessian computations

	Grid conversion
	Image grid to deformation grid
	Transposed operator
	In-place vs. separate grid conversion

	Rigid and affine deformation model
	Derivative computations

	Algorithm analysis
	Sum of squared differences
	Normalized gradient fields
	Regularizer
	Rigid and affine deformation model
	Summary and conclusion

	Implementation details
	Matrix-free computations on the CPU
	Graphics processing units
	Digital signal processors

	Summary

	Automatic differentiation
	Introduction
	Forward mode
	Reverse mode
	Theano framework
	Implementation details
	Tensor types and function compilation
	Vectorization
	Graph optimization and compilation
	Reuse of compiled functions
	Hessian computation
	Further remarks

	Runtime comparison
	Function compilation
	Function evaluation

	Summary

	Experimental results
	Scalability on the CPU
	Small images
	Large images

	Selective precomputation
	Objective function derivative runtime
	Sum of squared differences
	Normalized gradient fields
	Theano on the GPU
	Summary

	Multi-level registration
	Runtime
	Memory requirements
	Summary

	GPU-based matrix-free registration
	Runtime
	Memory requirements

	Discussion and summary

	Large-scale and real-time applications in medical imaging
	Follow-up thorax-abdomen registration in radiology
	Thorax-abdomen registration
	Processing pipeline
	Propagation of lesion locations

	Evaluation
	Summary and conclusion

	Deformable registration with local rigidity in radiotherapy
	Registration framework
	Related work
	Local rigidity

	Example dataset
	Evaluation on clinical datasets
	Method
	Results
	Discussion

	Summary and conclusion

	Real-time registration for liver ultrasound tracking
	Image registration algorithm
	Tracking algorithm
	Fallback strategy
	Multiple annotations and annotation coupling

	Evaluation
	Datasets and evaluation method
	Parameterization
	Results

	Discussion and summary

	Conclusion and outlook
	Bibliography

