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Overview

Goal: Restoration and denoising of measure-
valued images.
• Image data: f : Ω → P(X), Ω ⊂ Rd.
• X : Compact metric space (e.g., sphere S2).
• P(X): Probability measures on X .

Proposed variational model for restora-
tion:

inf
u : Ω→P(X)

∫
Ω

W1(f (x), u(x))dx + λTVW1
(u)

• W1: Wasserstein-1-distance (see below).
• TVW1

: Our proposed total variation semi-
norm for measure-valued functions (see be-
low).

Figure: Top left: 2-D fiber phantom. Bottom left: Peak directions on a 15× 15 grid, derived from the
phantom and used for the generation of synthetic HARDI data. Center: The diffusion tensor (DTI)
reconstruction approximates diffusion directions in a parametric way using tensors, visualized as
ellipsoids. Right: The ODF reconstruction represents fiber orientation using probability measures at
each point, which allows to accurately recover fiber crossings in the center region.

AMetric Space fromOptimal Transport

Goal: Measure the distance between two concentrated probability
measures by taking the metric distance between the points of con-
centration.

Definition: Wasserstein-1-metric from optimal transport:

W1(µ, µ
′) := inf

{∫
X×X
dX(x, y)dγ(x, y) : γ ∈ P(X× X), π1γ = µ, π2γ = µ′

}
• πiγ: i-th marginal of γ, π1γ(A) := γ(A× X), π2γ(A) := γ(X × A).
• Kantorovich-Rubinstein duality:

W1(µ, µ
′) = sup

{∫
X
pd(µ− µ′) : |p|Lip(X) ≤ 1

}
• Lip(X): Lipschitz-continuous functions on X .
Thedual formallows for anefficient implementationof theWasser-
stein distance using a first-order primal-dual algorithm.

Motivation: Diffusion-Weighted Imaging

In medical applications, diffusion-weighted images (such as HARDI
fromMRI) describe the local diffusivity of water, containing informa-
tion about the fiber architecture in tissues that exhibit fibrous mi-
crostructures (e.g., muscle fibres, axons in cerebral white matter).
There exist several interpretations of diffusion-weighted signals:
DiffusionTensor Imaging (DTI): A 3D-tensor encodes the diffusion
behaviour in each voxel. This approach fails to encode the fibrous
structure in regions of crossing and branching (see Figure above).
Orientation distribution functions (ODF) are estimated from the
data in Q-Ball Imaging (QBI) and Constraint Spherical Deconvolution
(CSD): In each voxel x ∈ Ω, the ODF f (x) ∈ P(S2) encodes the
marginal probability of diffusion in a given direction, allowing con-
clusions to be drawn about crossing and branching of fibers at a
scale smaller than the voxel size.

FromOptimal Transport to TV Regularization

Goal: Implement a TV-like regularizer for measure-valued images that penalises
jumps according to the Wasserstein-1-distance.

Definition: For u : Ω → P(X), let

TVW1
(u) := sup

{∫
Ω

〈−div p(x), u(x)〉dx : p ∈ C1
c(Ω; Lip(X)

d), |p(x)|Lip ≤ 1

}
.

Proposition: Let U be compactly contained in Ω with C1-boundary ∂U. Let
u+, u− ∈ P(X) and let u : Ω → P(X) be defined as

u(x) = u+ if x ∈ U and u− if x ∈ Ω \ U.

Then TVW1
(u) = Hd−1(∂U) ·W1(u+, u−).

Contrary to previous TV-approaches, the proposed formulation has the desired prop-
erty: The jump fromu+ to u− is penalised by theWasserstein distance times the length
of the edge.
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Figure: Synthetic 1D Q-ball image of bimodal and almost
uniform ODFs (cf. [Weinmann et al.]): The (a) original data was
denoised (b)–(f ) using an L2 (left) and aW1 data term (right) for
increasing values of λ (on the left-hand side λ = 0.05, 0.55, 1.05,

1.55, 2.05 and on the right-hand side λ = 0.05, 1.35, 2.65, 3.95, 5.25).
Both models preserve the edge. However, as is known from
classical ROF models, the L2 data term produces a gradual
transition (contrast loss) towards the constant image, while
theW1 data term exhibits a sudden phase transition.
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Figure: Horizontal axis: Angle of main diffusion direction relative
to the reference diffusion profile in the bottom left corner.
Vertical axis: (Normalized) distances of the ODFs in the bottom
row to the reference ODF in the bottom left corner (L1-distances
in orange andW1-distance in blue). L1-distances do not reflect
the linear change in direction, whereas theW1-distance exhibits
an almost-linear profile. Lp-distances for other values of p (such
as p = 2) show a behavior similar to L1-distances.

Comparison: (L2-)ROF Functional

A Rudin-Osher-Fatemi (ROF)model for square-integrable densities L2(X) ⊂ P(X):

inf
u : Ω→P(X)

∫
Ω

∫
X
(f (x, z)− u(x, z))2 dz dx + λTVW1

(u)

Comparedwith the proposedmodel (based on aW1 data fidelity term), this setup
exhibits the typical drawbacks of ROF models such as contrast loss across edges.
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