RIGID LENS

Locally Rigid Approximations of Deformable **Registration for Change Assessment** in Thorax-Abdomen CT Follow-Up Scans

Sonja Jäckle¹ sonja.jaeckle@mevis.fraunhofer.de

Stefan Heldmann¹

¹Fraunhofer Institute for Medical Image Computing MEVIS, Lübeck, Germany, www.mevis.fraunhofer.de

The First International Workshop on

WILLAI Granad SP Thoracic Image Analysis @

Motivation – a simple example

Motivation

Image registration problem for change assessment: Perfect match ↔ Local differences

State-of-the art:

Deformable Registration with local rigidity (Haber et al. 2009, König et al. 2016, Loeckx et al 2004, ...)

Comparative exploration of bone lesions in MRI (Dzyubachyk et al. 2013)

What we want: a tool for (automatic) change detection and assessment

Method

- Given: baseline scan R, follow-up scan T and deformation vector field y.
- Image registration: Use deformable registration to get deformation y which minimizes image similarity of R and T(y) and regularity of y.
 (Brown 1992, Goshtby 2012, Modersitzki 2004, Modersitzki 2009, Sotiras et al. 2013, ...)
 - Rigid lens concept: Reference image R with lens region L containing rigidly deformed template image T.

Rigid lens - Mathematical model

Given:

- Images $R,T:\mathbb{R}^3 o\mathbb{R}\,$ and deformation $y\,:\mathbb{R}^3 o\mathbb{R}^3$
- Lens region $\mathcal{L} \equiv \mathcal{L}_r(x_0) := \{ \text{grid point } x \text{ with } \|x x_0\|_2 \le r \}$

Goal: Find $y_{rigid}(x) = Qx + b$ such that

$$\sum_{x \in \mathcal{L}} \|y(x) - y_{\text{rigid}}(x)\|^2 \stackrel{!}{=} \min.$$

Rigid Lens - Algorithm

- Well-known problem, also called Procrustes matching (Whaba 1965): Find $y_{\text{rigid}}(x) = Qx + b$ such that $\sum_{x \in \mathcal{L}} ||y(x) - (Qx + b)||^2 \stackrel{!}{=} \min$
- Solution can be explicitly calculated with various approaches (Arun et al. 1987, Horn 1987, Horn et al. 1988, Walker et al. 1991)
- Here we use the algorithm from Arun et al. 1987:
 - based on a singular value decomposition of a 3x3 matrix
 - Numerically most stable method (Eggert et al. 1997)

Rigid Lens – demo video

Rigid Lens measures for automatic change detection

Measuring the non-rigidity of the deformation:

$$d_{\text{def}} = \frac{1}{|\mathcal{L}|} \sum_{x \in \mathcal{L}} \|y(x) - y_{\text{rigid}}(x)\|$$

(Average deformation difference)

Measuring the volume change:

$$d_{\text{jac}} = \frac{1}{|\mathcal{L}|} \sum_{x \in \mathcal{L}} \det \nabla y(x)$$

(Average jacobian)

Measuring the visible changes:

 $d_{\text{int}} = \frac{\sum_{x \in \mathcal{L}} |D(y_{\text{rigid}}, x) - D(y, x)|}{\sum_{x \in \mathcal{L}} D(y_{\text{rigid}}, x)} \quad \text{(Relative intensity difference quotient)}$

with difference image D(y, x) := |R(x) - T(y(x))|

 $d_{
m int}~pprox~0$, if deformation y is already rigid

 $d_{
m int} \, pprox \, 1$, if deformation y matches R and T perfectly

Results – qualitative study

Rigid Lens

Lens location

Results – qualitative study

Rigid Lens

 \rightarrow With rigid lens the real change is visible

Rigid Lens measures

Follow-Up	$d_{\rm def}$	$d_{ m jac}$	$d_{ m int}$
6 month	2.93	1.02	0.63
9 month	3.81	1.06	0.76

 $\rightarrow\,$ The change can be also detected with the rigid lens measures

$$d_{\mathrm{def}} = \frac{1}{|\mathcal{L}|} \sum_{x \in \mathcal{L}} \|y(x) - y_{\mathrm{rigid}}(x)\|, \ d_{\mathrm{jac}} = \frac{1}{|\mathcal{L}|} \sum_{x \in \mathcal{L}} \det \nabla y(x), \ d_{\mathrm{int}} = \frac{\sum_{x \in \mathcal{L}} |D(y_{\mathrm{rigid}}, x) - D(y, x)|}{\sum_{x \in \mathcal{L}} D(y_{\mathrm{rigid}}, x)}$$

Results – quantitative study for change detection

Design:

1263 thorax-abdomen CT scans and 2898 tumor annotations of 487 patients from the oncology department at the Radboud UMC.

- tumor annotations with a diameter ≥ 2 cm
- Definition of rigid lens region with position and diameter of annotation

Results:	Tumor Type	Number	$d_{ m def}$	$d_{ m jac}$	$d_{ m int}$
	Liver	352	2.88 ± 1.91	1.01 ± 0.34	0.52 ± 0.12
	Lung	157	2.65 ± 2.26	1.03 ± 0.33	0.49 ± 0.14
	Other	983	3.27 ± 1.98	0.99 ± 0.37	0.55 ± 0.14
	All	1492	3.11 ± 2.01	1.00 ± 0.36	0.54 ± 0.14

$$d_{\mathrm{def}} = \frac{1}{|\mathcal{L}|} \sum_{x \in \mathcal{L}} \|y(x) - y_{\mathrm{rigid}}(x)\|, \ d_{\mathrm{jac}} = \frac{1}{|\mathcal{L}|} \sum_{x \in \mathcal{L}} \det \nabla y(x), \ d_{\mathrm{int}} = \frac{\sum_{x \in \mathcal{L}} |D(y_{\mathrm{rigid}}, x) - D(y, x)|}{\sum_{x \in \mathcal{L}} D(y_{\mathrm{rigid}}, x)}$$

Results – quantitative study for change detection

- We observe a large range of d_{def} from 0.05mm up to 16.13mm.
- The measured d_{jac} is in average \approx 1, but the standard deviation is > 30%.
- We measured a high intensity quotients on a significant high level.

 \rightarrow The rigid lens measures are sensitive to changes

Results:	Tumor Type	Number	$d_{ m def}$	$d_{ m jac}$	$d_{ m int}$
	Liver	352	2.88 ± 1.91	1.01 ± 0.34	0.52 ± 0.12
	Lung	157	2.65 ± 2.26	1.03 ± 0.33	0.49 ± 0.14
	Other	983	3.27 ± 1.98	0.99 ± 0.37	0.55 ± 0.14
	All	1492	3.11 ± 2.01	1.00 ± 0.36	0.54 ± 0.14

$$d_{\mathrm{def}} = \frac{1}{|\mathcal{L}|} \sum_{x \in \mathcal{L}} \|y(x) - y_{\mathrm{rigid}}(x)\|, \ d_{\mathrm{jac}} = \frac{1}{|\mathcal{L}|} \sum_{x \in \mathcal{L}} \det \nabla y(x), \ d_{\mathrm{int}} = \frac{\sum_{x \in \mathcal{L}} |D(y_{\mathrm{rigid}}, x) - D(y, x)|}{\sum_{x \in \mathcal{L}} D(y_{\mathrm{rigid}}, x)}$$

CONCLUSION

- Rigid lens a simple, fast and interactive tool for change detection
- Rigid lens measures
 - features for detecting shape, size and appearance changes
 - sensitive to changes (quantitative study)
- Future work:
 - \rightarrow Extension for automatic change detection
 - \rightarrow Generalization to multi-modal registration

