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Abstract

In this thesis three diffeomorphic image registration methods are proposed. A

Discretize-then-Optimize approach is used to derive these methods from optimal

control formulations in the Large Deformation Diffeomorphic Metric Mapping (LD-

DMM) framework. We give a condensed overview of the theoretical background of

LDDMM and discuss the two major groups of algorithms: relaxation and shooting

approaches. Afterwards, we examine the connection to optimal control and derive

the relaxation and shooting models that are used for registration in this work. A

particular focus of this dissertation is the discretization of the proposed models and

the solution of the constrained numerical optimization problem. The latter includes

the consistent solution of the arising partial differential equations (like transport and

continuity equations) that are the constraints of the optimization problem. As we deal

with large-scale problems, explicit fourth-order Runge-Kutta methods are employed,

which offer a good compromise between fast computation and small errors.

Key elements of the proposed techniques are the flexible choice of arbitrary differ-

entiable distance measures, the memory-efficient discretization of velocity fields and

transformations as well as the generation of diffeomorphic transformations in the

discrete setting. Experiments on computed tomography (CT) data of the lungs (com-

prising large deformations and pathologies) demonstrate that our algorithms achieve

state-of-the-art accuracy: The second-best of all published results on the DIR-Lab

chronic obstructive pulmonary disease (COPD) datasets is achieved with an average

landmark distance after registration of 0.96 mm. Furthermore, the effectiveness of our

tailored discretization is confirmed by a reduction of memory consumption by 95 %

and run times that are superior to those of related LDDMM methods. While other

authors report run times of more than one hour for their LDDMM algorithms when

registering two lung CT scans on powerful computer clusters, our registration takes

about 20 minutes on a standard desktop computer.

The proposed methods are suitable for a wide range of clinical applications for diffeo-

morphic lung CT registration like lung ventilation estimation, follow-up registration,

radiotherapy, and COPD staging. Due to the flexible choice of distance measures our

methods can be properly adapted to other data types and applications.
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Zusammenfassung

In dieser Dissertation werden drei diffeomorphe Bildregistrierungsmethoden vorgestellt.

Diese sind „Large Deformation Diffeomorphic Metric Mapping“-(LDDMM)-Methoden,

die mittels der Theorie der optimalen Steuerung hergeleitet wurden. Für die Umsetzung

wurde ein „Discretize-then-Optimize“-Ansatz genutzt. Zunächst wird in der vorliegen-

den Arbeit ein Überblick über die theoretischen Grundlagen von LDDMM gegeben.

Hierbei werden die zwei großen Klassen von Algorithmen vorgestellt: Relaxations-

und Shooting-Verfahren. Anschließend wird die Verbindung zum Forschungsfeld der

optimalen Steuerung analysiert und die Relaxations- und Shooting-Methoden, die in

dieser Arbeit zur Registrierung genutzt werden, werden entwickelt. Ein besonderer

Fokus der Arbeit liegt auf der Diskretisierung der Methoden und der Lösung des

restringierten numerischen Optimierungsproblems. Dies umfasst auch die konsistente

Lösung der auftretenden partiellen Differenzialgleichungen (wie z. B. Transport- und

Kontinuitätsgleichungen), die die Nebenbedingungen des Optimierungsproblems sind.

Da hochdimensionale Probleme gelöst werden sollen, werden Runge-Kutta-Verfahren

vierter Ordnung verwendet, die einen guten Kompromiss zwischen einer schnellen

Berechnung und kleinen Approximationsfehlern darstellen.

Zentrale Bestandteile der entwickelten Methoden sind ein frei wählbares differenzier-

bares Distanzmaß, die Speicherplatz-effiziente Diskretisierung von Geschwindigkeitsfel-

dern und Transformationen sowie die Erzeugung von diffeomorphen Transformationen

auch im Diskreten. Registrierungen von Computertomografie-(CT-)Daten der Lunge,

die häufig durch große Deformationen und Pathologien gekennzeichnet sind, demons-

trieren, dass die präsentierten Algorithmen so präzise wie aktuell publizierte Verfahren

sind: Mit einem durchschnittlichen Landmarkenfehler von 0.96 mm wird das zweit-

beste aller veröffentlichten Ergebnisse für die DIR-Lab-COPD-Datensätze erreicht.

Die Effektivität der speziell entwickelten Diskretisierung wird durch eine Reduktion

der benötigten Arbeitsspeichermenge um 95 % bestätigt. Während andere LDDMM-

Algorithmen Laufzeiten von mehr als einer Stunde auf schnellen Computer-Clustern für

die Registrierung von zwei Lungen-CT-Aufnahmen benötigen, dauert die in dieser Ar-

beit vorgestellte Regisrierung ca. 20 Minuten auf einem Standard-Desktop-Computer.

Die in dieser Dissertation vorgestellten Algorithmen sind für eine große Bandbreite von

klinischen Anwendungen für diffeomorphe Lungen-CT-Registrierung anwendbar, wie

z. B. bildbasierte Lungenfunktionstests, Registrierung von Follow-up-Daten, Strahlen-

therapie und Stadieneinteilung von COPD. Durch die flexible Wahl des Distanzmaßes

können die Methoden an viele weitere Datentypen und Anwendungen angepasst werden.
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Nomenclature and Abbreviations

Abbreviations

CA . . . . . . . . . . . . . . . . Computational anatomy

COPD . . . . . . . . . . . . Chronic obstructive pulmonary disease

CPU . . . . . . . . . . . . . . Central processing unit

CT . . . . . . . . . . . . . . . . Computed tomography

DCT . . . . . . . . . . . . . . Discrete cosine transform

DO . . . . . . . . . . . . . . . . Discretize-then-Optimize

ELE . . . . . . . . . . . . . . . Euler-Lagrange equation(s)

FBS . . . . . . . . . . . . . . . Forward-Backward Sweep

FFT . . . . . . . . . . . . . . Fast Fourier Transform

GB . . . . . . . . . . . . . . . . Gigabyte

GPU . . . . . . . . . . . . . . Graphics processing unit

HU . . . . . . . . . . . . . . . . Hounsfield unit(s)

IBR . . . . . . . . . . . . . . . Image-based relaxation approach for LDDMM matching

KKT . . . . . . . . . . . . . . Karush-Kuhn-Tucker conditions

KP . . . . . . . . . . . . . . . . Keypoint

LDDMM . . . . . . . . . . Large Deformation Diffeomorphic Metric Mapping

LM . . . . . . . . . . . . . . . . Landmark

MBR . . . . . . . . . . . . . . Map-based relaxation approach for LDDMM matching

MBS . . . . . . . . . . . . . . Map-based shooting approach for LDDMM matching

MR(I) . . . . . . . . . . . . . Magnetic resonance (imaging)

NGF . . . . . . . . . . . . . . Normalized Gradient Fields

OD . . . . . . . . . . . . . . . . Optimize-then-Discretize

ODE . . . . . . . . . . . . . . Ordinary differential equation

PDE . . . . . . . . . . . . . . Partial differential equation

RAM . . . . . . . . . . . . . . Random access memory

RK . . . . . . . . . . . . . . . . Runge-Kutta

RKHS . . . . . . . . . . . . . Reproducing Kernel Hilbert Space

SSD . . . . . . . . . . . . . . . Sum of Squared Differences

TPS . . . . . . . . . . . . . . . Thin-plate spline(s)
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Nomenclature and Abbreviations

Differential Operators and Matrices

∆ . . . . . . . . . . . . . . . . . Laplacian operator

∆d . . . . . . . . . . . . . . . . Vectorial Laplacian operator for d components

∆
hi

v . . . . . . . . . . . . . . . Discrete Laplacian operator for the i-th dimension, i = 1, . . . , d

A = L†L . . . . . . . . . . Differential operator defining the Eulerian momentum: Avt = Mt

K = A−1 . . . . . . . . . . Kernel of the RKHS, smoothing operator: vt = KMt

L = (γid− α∆d)d . Helmholtz operator

L† . . . . . . . . . . . . . . . . . Adjoint Helmholtz operator (as L is selfadjoint: L† = L)

L = (γEn − α∆)β . Helmholtz regularizer matrix

Functionals

D . . . . . . . . . . . . . . . . . Distance measure

D . . . . . . . . . . . . . . . . . Discretized distance measure

E . . . . . . . . . . . . . . . . . . Objective functional, LDDMM energy

E . . . . . . . . . . . . . . . . . Discretized objective functional

H . . . . . . . . . . . . . . . . . Hamiltonian used in calculus of variations and optimal control

L . . . . . . . . . . . . . . . . . . Lagrangian (energy) in calculus of variations problems

L . . . . . . . . . . . . . . . . . . Lagrange function in constrained optimization problems

S . . . . . . . . . . . . . . . . . . Regularizer

S . . . . . . . . . . . . . . . . . . Discretized regularizer

General Notation

νk . . . . . . . . . . . . . . . . . k-th component of a vector ν

�
∗ . . . . . . . . . . . . . . . . Indicates that � is solution of an optimization problem, e.g., v∗

�̇ . . . . . . . . . . . . . . . . . Time derivative of a function �, e.g., ẋ

J� . . . . . . . . . . . . . . . . . Jacobian of a function �, e.g., JMt

�t . . . . . . . . . . . . . . . . . Restriction of a time-dependent function � to a fixed t ∈ [0, 1],

e.g., for v : [0, 1]× Ω→ R
d: vt(·) := v(t, ·)

N0 = N ∪ {0} . . . . . . Set of natural numbers and zero

R>0 . . . . . . . . . . . . . . . Set of positive real numbers: {x ∈ R : x > 0}
R≥0 . . . . . . . . . . . . . . . Set of non-negative real numbers: {x ∈ R : x ≥ 0}
Ep, p ∈ N . . . . . . . . . p-dimensional identity matrix

diag(v) ∈ R
p×p . . . . Diagonal matrix with diagonal v ∈ R

p

ρ(A) . . . . . . . . . . . . . . Spectral radius of the matrix A

⊙ . . . . . . . . . . . . . . . . . Hadamard product

⊗ . . . . . . . . . . . . . . . . . Kronecker product
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Nomenclature and Abbreviations

Images

Ω ⊆ R
d . . . . . . . . . . . . Image domain: open set, Ω 6= ∅, typically Ω = ×di=1(ω

2i−1, ω2i)

I . . . . . . . . . . . . . . . . . . Set of d-dimensional scalar images with compact support in Ω

I1 ∈ I . . . . . . . . . . . . . Reference image

I0 ∈ I . . . . . . . . . . . . . Template image

I ∈ R
m×N . . . . . . . . . Array of time-dependent images in the IBR approach

m ∈ N
d . . . . . . . . . . . Number of image grid points per spatial dimension

R ∈ R
m . . . . . . . . . . . Discrete reference image

T ∈ R
m . . . . . . . . . . . Discrete template image

T̃ ∈ R
m . . . . . . . . . . . Transformed discrete template image T̃ = T ◦ (PφN−1)

Optimal Control and Numerical Optimization

χk ∈ R
p . . . . . . . . . . . Intermediate adjoint/co-state variable in Runge-Kutta scheme

λk ∈ R
p . . . . . . . . . . . Adjoint/co-state variable at time tk

s . . . . . . . . . . . . . . . . . . Search direction in numerical optimization

yik ∈ R
p . . . . . . . . . . . Intermediate state variable in Runge-Kutta scheme

uk ∈ R
q . . . . . . . . . . . Control variable at time tk

xk ∈ R
p . . . . . . . . . . . State variable at time tk

f : Rp × R
q → R

p . . Right-hand side of the system dynamics ẋ(t) = f(x(t),u(t))

Scalars

α ∈ R>0 . . . . . . . . . . . Weight for the Laplacian within the Helmholtz operator

β ∈ N . . . . . . . . . . . . . Exponent of the Helmholtz operator

γ ∈ R>0 . . . . . . . . . . . Weight of the identity within the Helmholtz operator

σ ∈ R>0 . . . . . . . . . . . σ−2 is the weight of D in the objective functional E
η ∈ R>0 . . . . . . . . . . . Edge parameter in the NGF distance measure

d ∈ N . . . . . . . . . . . . . Spatial dimension of the data

ht = 1
N−1

. . . . . . . . . . Time step

hiI = ω2i−ω2i−1

mi . . . . . Grid spacing of I, R, T in i-th spatial direction, i = 1, . . . , d

hiv = ω2i−ω2i−1

ni . . . . . Grid spacing of v and φ in i-th spatial direction, i = 1, . . . , d

h̄v =
∏d
i=1 h

i
v . . . . . . . Volume of one discretization cell of v and φ

ı ∈ C . . . . . . . . . . . . . . Imaginary unit

ℓ ∈ N . . . . . . . . . . . . . . Number of landmarks used for evaluation

m =
∏d
i=1 m

i . . . . . . Number of image grid points

n =
∏d
i=1 n

i . . . . . . . . Number of transformation grid points

N ∈ N, N ≥ 2 . . . . Number of points in time

tk = kht ∈ [0, 1] . . . . Discretization time point, k ∈ {0, 1, . . . , N − 1}
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Nomenclature and Abbreviations

Transformations, Velocities and Momenta

n ∈ N
d . . . . . . . . . . . . Number of transformation grid points per spatial dimension

φ : [0, 1]2 × Ω→ R
d Time- and space-dependent transformation map

φs,t : Ω→ R
d . . . . . . Transformation map in LDDMM methods for fixed s, t ∈ [0, 1]

φt : Ω→ R
d . . . . . . . . φt(x) := φ(0, t,x) for all t ∈ [0, 1] and x ∈ Ω

φ−1
t : Ω→ R

d . . . . . . φ−1
t (x) := φ(1, t,x) for all t ∈ [0, 1] and x ∈ Ω

φ ∈ R
dn×N . . . . . . . . Discrete transformation maps

ϕ : Ω→ R
d . . . . . . . . Transformation aligning I0 and I1, in LDDMM methods ϕ = φ−1

0,1

ϕ ∈ R
dn . . . . . . . . . . . Discrete transformation aligning T and R

ϕpre : Ω→ R
d . . . . . . Pre-registration

ϕpre ∈ R
dn . . . . . . . . . Discrete pre-registration

v : [0, 1]× Ω→ R
d . Time-dependent velocity fields

v ∈ R
dn×N . . . . . . . . . Discrete velocities

V . . . . . . . . . . . . . . . . . RKHS containing suitable velocity fields in the LDDMM setting

M : [0, 1]× Ω→ R
d Time-dependent momentum

M ∈ R
dn×N . . . . . . . Discrete momenta

P ∈ R
m×n . . . . . . . . . Matrix used for linear interpolation of φ and v at the image grid
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1 Introduction

In this thesis a flexible Discretize-then-Optimize approach for the efficient solution

of Large Deformation Diffeomorphic Metric Mapping (LDDMM) image registration

problems is derived. Section 1.1 introduces the LDDMM image registration [Beg et al.

2005] that is the starting point for the derivation of our methods and motivates our

extensions that address drawbacks of standard LDDMM algorithms.

As LDDMM is a special image registration technique, we begin with a brief definition of

image registration. Image registration is a challenging image analysis task that aims to

find correspondences in different images [Goshtasby 2012, p. 1]. These correspondences

can be used, e.g., for the alignment of the images [Modersitzki 2009, p. 1]. Image

registration thus helps to explain and compensate for changes between the images

that are due to, e.g., variations over time, different relative positions to the acquisition

devices or even different acquisition modalities [Modersitzki 2009, p. 1].

Usually, two images are given for an image registration. These images are called

template image and reference image. The image registration problem can be formulated

as follows: “Find a reasonable transformation such that a transformed version of a

template image is similar to a reference image” [Modersitzki 2009, p. 9]. See Figure 1.1

for an exemplary registration of X-ray images of hands.

The template image is denoted by I0 : Ω→ R and the reference image by I1 : Ω→ R,

where the domain Ω ⊂ R
d and d ∈ N is the spatial dimension of the images. Broadly

speaking, we are looking for a transformation ϕ : Rd → R
d such that I0 ◦ϕ ≈ I1. This

task can be phrased as an optimization problem [Modersitzki 2009, p. 9]

E(ϕ) = D(I0 ◦ ϕ, I1) + S(ϕ)
ϕ→ min subject to ϕ ∈ A. (1.1)

The distance measure D in (1.1) determines the similarity of the images and the

regularizer S enables the possibility to include assumptions on the transformation to

address the ill-posedness of the problem [Modersitzki 2009, pp. 117]. The regularizer S
and the set of admissible transformations A define the reasonability of ϕ.

The goal of LDDMM is to align the template image I0 to the reference image I1

with a diffeomorphic transformation ϕ : Ω→ Ω [Miller et al. 2002]. If ϕ is invertible

and both ϕ and ϕ−1 are continuously differentiable, ϕ is diffeomorphic [Younes

2010, p. 161]. Diffeomorphic transformations are particularly useful due to their

1
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(a) Template Image I0 (b) Reference Image I1 (c) Transformed Template
Image I0 ◦ ϕ

Figure 1.1: Example for the registration of hand radiographs, the data is taken
from [Modersitzki 2009]. In (a) the template image and in (c) the trans-
formed template image is shown. The latter image is the result of LDDMM
registration and is well aligned with the reference image given in (b).

appealing (mathematical) properties. Foremost, diffeomorphisms on Ω have a group

structure, cf. Chapter 4 and references therein. Thus, the concatenation of two

diffeomorphisms yields a diffeomorphism and inverse transformations as well as a

neutral transformation exist. Furthermore, diffeomorphic transformations are suitable

for many (medical) registration problems as they preserve topology; thus connected

regions remain connected and disconnected regions remain disconnected [Musse et al.

2001].

Different approaches have been proposed to achieve diffeomorphic transformations.

We postpone the discussion of related work in diffeomorphic image registration and

in particular of LDDMM methods to Chapter 2. LDDMM methods guarantee diffeo-

morphic transformations, allow for large deformations, and provide a metric in the

spaces of diffeomorphisms and images [Beg et al. 2005]. The central idea of LDDMM

is to obtain the transformation as the result of the time integration of smooth velocity

fields.

While the theoretical properties of LDDMM are very appealing and well-studied, only

few papers have been published on the actual discretization and implementation. In

particular, to the best of our knowledge, no results have been published, whether the

obtained transformations are actually diffeomorphic in the discrete setting. The thesis

at hand has a special focus on the discretization and numerics. Unlike most researchers,

who develop LDDMM approaches, and contrary to popular LDDMM methods like [Beg

et al. 2005, Vialard et al. 2012] we propose a Discretize-then-Optimize scheme for

LDDMM. We present algorithms that are based on discrete optimal control formulations

of LDDMM image registration. These algorithms overcome three limitations of

2



standard LDDMM methods: Restriction to a specific distance measure [Beg et al.

2005], large computational costs and run times, see, e.g., [Sakamoto et al. 2014], and

the potential loss of invertibility in the discrete setting [Christensen et al. 1996]. Our

methods allow to incorporate arbitrary differentiable distance measures. Therefore, a

suitable similarity metric can be chosen that is appropriate for the data to be registered.

The registration of multi-modal images and inspiration-expiration lung CT scans can

benefit from this flexibility, cf. Section 1.3.

To cope with data that has a large number of degrees of freedom we employ different

discretization mesh sizes for the images and transformations as well as for the velocity

fields. We exploit that smooth transformations and velocity fields (which are key

elements of LDDMM) can be represented without large errors on a coarser grid. This

can be used to dramatically reduce the required memory and run times. Computational

efficiency also plays a role when solving the partial differential equations (PDEs) that

govern the evolution of the time-dependent transformations. We employ explicit fourth-

order Runge-Kutta (RK) methods that offer a good compromise between accuracy and

computational efficiency and achieve transformations that are in most cases homeomor-

phic and piecewise diffeomorphic in the discrete setting. Our focus in this work is an

efficient solution of the registration problems and we aim for transformations that are

homeomorphisms, i.e., bijective continuous mappings with continuous inverse [Younes

2010, p. 161]. To guarantee the latter properties, we propose a post-processing step

that is applied after the numerical optimization is finished. Strictly speaking, we do

not obtain diffeomorphic but piecewise diffeomorphic transformations, because the em-

ployed multilinear interpolation does not offer continuously differentiable interpolants

at cell boundaries, cf. Section 4.4 for details. However, the resulting transformations

are always homeomorphic and piecewise diffeomorphic and are computed with mod-

erate computational costs. Neverthless, like other authors that employ multilinear

interpolation in LDDMM methods [Beg et al. 2005, Vialard et al. 2012], we slightly

inaccurately refer to the obtained transformations as diffeomorphic. More details on

the goals and results of this dissertation are provided in Section 1.2.

The main application scenario in this thesis is the diffeomorphic registration of

computed tomography (CT) scans of lungs that can be used, e.g., for the diagnosis and

treatment of diseases like chronic obstructive pulmonary disease (COPD) and lung

cancer. In Section 1.3 we motivate the advantages of diagnostical imaging and image

analysis methods for treatment of COPD and lung cancer. In particular, we highlight

the importance of diffeomorphic lung CT registration that can be accomplished, e.g.,

with LDDMM. Afterwards, our published results in the field of image registration are

summarized in Section 1.4. Section 1.5 gives an outline of the following chapters.

3



1. Introduction

1.1 Large Deformation Diffeomorphic Metric

Mapping

The term “Large Deformation Diffeomorphic Metric Mapping” was coined in [Beg

et al. 2005]. It comprises the important features of this registration method. LDDMM

is designed to obtain diffeomorphic mappings that describe large deformations and

additionally provides a metric both in the space of diffeomorphisms and images [Beg

et al. 2005]. We present a compact introduction of LDDMM here. More details on

history and related work are given in Chapter 2. The theoretical background on

diffeomorphisms and metrics is provided in Chapter 4 and different algorithms are

discussed in Chapter 5.

In LDDMM a diffeomorphic transformation ϕ : Ω → Ω is obtained by integration

of smooth, time-dependent velocity fields v : [0, 1] × Ω → R
d over time [Beg et al.

2005]. Accordingly, a time-dependent transformation φ : [0, 1]× Ω→ R
d is modeled

where φ(t,x) ∈ R
d describes the position of a particle at time t that was at time 0

in x ∈ Ω. The flow equation used to obtain the diffeomorphic transformation is the

following ordinary differential equation (ODE) [Dupuis et al. 1998]

φ̇(t,x) = v(t, φ(t,x)), φ(0,x) = x for all x ∈ Ω and t ∈ [0, 1]. (1.2)

Here and throughout the thesis we use the notation φ̇ = ∂1φ = ∂φ
∂t

, i.e., φ̇ is the

partial derivative with respect to the time component. While the introduction of the

additional time component and the solution of (1.2) allows for diffeomorphic solutions

(in the continuous setting), it also increases the computational complexity. Hence

more run time and memory are needed. Moreover, for all practical purposes (1.2) is

only solved for a finite number of grid points and thus the diffeomorphic property

of the evolving transformations might be lost [Christensen et al. 1996]. We address

these two issues in this work and thereby achieve better run times and lower memory

requirements as well as diffeomorphic solutions in the discrete setting.

If v has the necessary smoothness, (1.2) has a unique solution ϕ : Ω → Ω

with ϕ(x) = φ(1,x) for all x ∈ Ω as shown in [Trouvé 1995a, Trouvé 1995b, Dupuis

et al. 1998]. This solution is also called associated flow [Younes 2010, p. 165]. The

required smoothness of the velocity fields can be determined depending on d using

Sobolev embedding theory [Dupuis et al. 1998]. For instance, for d = 3 it is required

that for all t ∈ [0, 1]: vt ∈ W 3,2(Ω,Rd), where vt(·) := v(t, ·). In Chapter 4 details

about the velocity fields and their associated flows are provided.

To obtain the necessary smoothness, the velocity fields are regularized using an

appropriate differential operator L. The standard LDDMM optimization problem is
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1.1 Large Deformation Diffeomorphic Metric Mapping

formulated using L = (γid− α∆d)β [Beg et al. 2005], where α, γ > 0, β ∈ N and ∆d

denotes the vectorial Laplacian. Using this so-called Helmholtz operator [Holm et al.

1998] and (1.2) as constraint, the LDDMM optimization problem can be phrased as

follows [Beg et al. 2005]. Find a minimizer v∗ : [0, 1]× Ω→ R
d of

E(φ, v) s.t. φ̇(t,x) = v(t, φ(t,x)), φ(0,x) = x, (1.3)

where E(φ, v) =
1

σ2

∫

Ω
(I0 ◦ φ−1(1,x)− I1(x))2dx

︸ ︷︷ ︸
=D(I0◦ϕ−1,I1)

+
1

2

∫ 1

0

∫

Ω
‖Lv(t,x)‖2dxdt

︸ ︷︷ ︸
=S(v)

. (1.4)

The distance measure D in (1.4) is the Sum of Squared Differences (SSD) [Modersitzki

2009, p. 71] scaled by the factor 2σ−2 for σ > 0. The regularizer S is essential to define

a metric on the space of diffeomorphisms, see Section 4.2 for details. This metric can

also be used to derive a metric on the image space [Beg et al. 2005]. Additionally, it can

be shown that S(v∗) is the geodesic length of the path described by the optimal velocity

fields v∗, which determine the diffeomorphism that transforms the considered shapes or

images [Miller et al. 2002]. Furthermore, St(v) := 1
2

∫
Ω ‖Lv(t,x)‖2dx can be interpreted

as kinetic energy of the system at time t [Younes et al. 2009]. For an optimal v∗ this

kinetic energy is constant over time: St(v∗) = Ss(v∗) for all s, t ∈ [0, 1] [Miller et al.

2006]. This can be considered as conservation of momentum [Miller et al. 2006].

The two main solution strategies in LDDMM methods differ in the usage of the

conservation of momentum property. While relaxation approaches like [Beg et al.

2005] estimate velocity fields for multiple time points that feature a conservation

of momentum only at convergence, shooting approaches like [Vialard et al. 2012]

enforce the conservation of momentum and determine the evolution of the transformed

template image based solely on the initial momentum, see Chapter 5 for details.

LDDMM is a versatile method that is suitable for many image registration applications.

It is often used for the registration of brain magnetic resonance imaging (MRI), see,

e.g., [Beg et al. 2005, Ashburner and Friston 2011, Durrleman et al. 2011, Vialard et al.

2012, Gerig et al. 2016]. A second prominent example is the LDDMM registration

of lung CT scans [Gorbunova et al. 2009, Risser et al. 2013, Sakamoto et al. 2014],

which is the primary data considered in this thesis. For lung CT data LDDMM is an

excellent choice as the large motion occurring within the lungs can be described by a

diffeomorphism [Risser et al. 2013]. Thus it is possible to estimate, e.g., respiratory

motion from inspiration-expiration image data. This is useful for the diagnosis and

treatment of COPD and lung cancer as motivated in Section 1.3. However, as discussed

in Section 1.3, replacing SSD in the LDDMM objective functional (1.4) by a different
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distance measure can improve the registration accuracy. Therefore, we use a flexible

approach that allows to use arbitrary differentiable distance measures.

Another difficulty arises due to the discretization that is required for the numerical

solution of LDDMM registration. It is not straightforward to obtain diffeomorphic

solutions in the discrete setting as infinitesimally small time and space steps are

impractical and numerical errors occur. Thus a careful discretization is required

to actually profit from the benefits of LDDMM. But, details on the discretization

of LDDMM are rare in the literature, which makes it difficult to compare different

methods. Standard LDDMM approaches like [Beg et al. 2005, Vialard et al. 2012]

derive optimality conditions in the continuous setting. These optimality conditions

are then discretized and used within the algorithms. This approach is called Optimize-

then-Discretize (OD). For an introduction of the OD approach for image registration

see, e.g., [Modersitzki 2004].

In this thesis a different way of solving the problem is used. We start with the

discretization of the distance measure, the regularizer, and the constraints. Afterwards,

methods for constrained numerical optimization are employed to obtain a solution

by exploiting the optimality conditions of the discretized problem. This is commonly

referred to as Discretize-then-Optimize (DO) [Modersitzki 2009, p. 12].

In the following section we provide more details of our approach and summarize the

contributions of this work.

1.2 Goals and Results

The main focus of this thesis is the complete derivation of a DO scheme for LDDMM

registration. We chose the DO scheme because it yields analytical derivatives of

differentiable objective functions, which allow for fast numerical optimization [Gun-

zburger 2003, pp. 57–62]. On the contrary, in OD approaches the approximated

derivatives might be inconsistent with the objective functional [Gunzburger 2003,

p. 59]. Using the general DO scheme, we investigate three image registration problems

in a discrete optimal control formulation. These problems comprise relaxation and

shooting approaches that involve PDE constraints. The transport equation is one of

these PDEs that, along with their adjoint equations (being continuity equations) in

the optimal control formulation, have to be solved numerically. We employ explicit

fourth-order RK methods because they provide a fast solution of the PDEs, offer a

sufficient accuracy and allow for reasonably-sized time steps.

Additionally, we cope with the reduction of run time and memory consumption for

LDDMM methods. This is achieved by employing different discretizations for images,
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velocity fields and associated transformations. The images are kept at maximal available

resolution to offer all information for a highly accurate registration. In contrast, the

discretization of the velocities and transformations is coarser as they are by LDDMM

design smooth and can be represented at a coarser resolution without large errors. We

found in experiments with challenging lung CT data that a reduction to a quarter of

the image resolution per spatial dimension does not have substantial influence on the

registration accuracy but greatly alleviates the overall memory consumption and run

time. In particular, we were able to reduce the required memory by 95 % without

losing registration accuracy.

To increase the flexibility of the LDDMM registration, we extend the standard frame-

work such that general differentiable distance measures can be included. In particular,

we propose the integration of the Normalized Gradient Fields (NGF) distance mea-

sure [Haber and Modersitzki 2007b] that is well-suited for lung CT registration. Using

NGF in our proposed methods, we achieve a mean landmark (LM) distance of 0.96 mm

on challenging lung CT full inspiration-expiration scans. This is the (shared) second-

best result of all published methods.

Finally, we propose a method that computes diffeomorphic solutions in the discrete

setting. This method amounts to a computationally lightweight post-processing of the

obtained transformation fields.

1.3 Motivation

COPD is highly prevalent and causes immense economic costs [NHLBI 2012]. It

was estimated that in 2011 over 13.7 million US adults suffered from COPD [Ford

et al. 2013] and that it is the underlying cause of about 135 000 deaths per year in

the USA making it the third leading cause of death [Ford et al. 2013, Heron 2016].

These numbers relate to a prevalence of 4.3 % and a mortality of 42 in 100 000 US

Americans. Approximately 24 million (i.e. 7.5 %) US inhabitants have symptoms

that are COPD-related, which indicates an under-diagnosis of COPD [Mannino et al.

2002, Stansfield et al. 2008]. Furthermore, the National Heart, Lung and Blood

Institute estimated that in 2008 $53.7 billion were spent for the health care for COPD

and asthma patients [NHLBI 2012]. Studies carried out in different parts of the world

also indicate a high COPD prevalence ranging from about 3 % to more than 20 %,

see [Mannino and Buist 2007] and references therein.

COPD is defined by the Global initiative for Obstructive Lung Disease (GOLD) as

follows [GOLD 2017]: “Chronic Obstructive Pulmonary Disease (COPD) is a common,

preventable and treatable disease that is characterized by persistent respiratory symp-
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toms and airflow limitation that is due to airway and/or alveolar abnormalities usually

caused by significant exposure to noxious particles or gases.” COPD is a heterogeneous

disease, i.e. it is the result of various combinations and severities of different disor-

ders [Galbán et al. 2012]. These pathological processes include gross airway disease,

functional small-airways disease, and emphysematous lung tissue destruction [Galbán

et al. 2012]. Diabetes, ischaemic heart disease, and lung cancer are comorbidities of

COPD [Decramer et al. 2012]. The main risk factor for COPD is smoking [Ford et al.

2013]. Other risk factors are, e.g., second-hand smoking, exposure to air pollution,

but also heredity [Stansfield et al. 2008].

In clinical routine, COPD diagnosis is based on spirometry [Lynch et al. 2015]. However,

recently the GOLD initiative proposed to extend their previously proposed spirometric

staging because spirometric quantities like the forced expiratory volume within 1 s are

poor descriptors of disease status [GOLD 2017]. While the spirometric diagnosis is

easy to acquire, noninvasive and inexpensive [Matsuoka et al. 2010], it fails to identify

morphological changes due to emphysema and airways disease in a substantial number

of patients [Pratt 1987, Klein et al. 1992].

In addition to spirometry, CT is used for diagnosis and treatment of COPD and other

pulmonary diseases. Lung CT scans are vital in medical routine as they “can depict

the disease process far more clearly than chest radiographs” [Kubo et al. 2008]. CT

is also the standard imaging method for diseases within the chest because it offers

high contrast and image resolution [Prokop et al. 2003, p. 281]. Furthermore, fast

acquisition protocols allow for 4D-CT scans that are well-suited for analysis of the

respiratory function [Low et al. 2003].

In combination with medical image analysis tools like registration CT images can

be used to improve diagnosis of COPD [Ostridge and Wilkinson 2016]. Radiologists

can classify several subtypes of COPD by assessing CT scans [Matsuoka et al. 2010].

Morevover, image analysis methods can be used to derive from CT scans (acquired

during inhale and exhale phase) which regions of the lung are functional or suffer, e.g.,

from gas trapping [Lynch et al. 2015]. Gas trapping, also known as air trapping [Mets

et al. 2013], describes the phenomenon that during the respiratory cycle no functional

gas exchange occurs in specific regions of the lung [Matsuoka et al. 2008]. The effect of

air trapping on CT scans is as follows: Affected lung areas have a normal or reduced

intensity on inspiratory scans while they show little or no increase in intensity on the

expiratory scans [Prokop et al. 2003, p. 310].

Emphysema can be directly detected in the inspiratory CT scans by thresholding

of Hounsfield units (HU) [Gevenois et al. 1995], see Figure 1.2a and Figure 1.2b.

Analogously, gas trapping can be detected in the expiratory CT scans [Newman et al.

1994]. However, by using either exhale or inhale scan the distinction between the
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(a) Scan with highlighted
emphysema

(b) Same as (a) without
highlighting

(c) Scan with potential
lung cancer

Figure 1.2: Axial views of the DIR-Lab COPD dataset 1 [Castillo et al. 2013]
and a dataset from the “Public Lung Database To Address Drug Re-
sponse” [Reeves et al. 2009]. The same slice of an inhale scan of a COPD
patient is shown in (a) and (b). In (a) emphysematous regions are high-
lighted in red by a thresholding of voxels with less than -949 HU as
proposed, e.g., in [Lynch and Al-Qaisi 2013]. For comparison, the scan
without highlighting is shown in (b); note the dark spots corresponding
to regions that are affected by emphysema. In (c) a lung CT scan with a
highlighted large nodule is shown [Reeves et al. 2009] that might relate to
lung cancer.

individual contributions of different pathological components of COPD like functional

small airway disease and emphysema is not possible [Lynch and Al-Qaisi 2013]. Via

image processing and analysis more information can be derived when inspiration

and expiration scans are used. For instance, in [Galbán et al. 2012] a combination

of different image processing techniques is applied to a pair of inhale and exhale

scans yielding a biomarker for phenotyping into functional small airway disease and

emphysema. Image registration is a key step within the proposed pipeline as it

establishes correspondences between the same regions in both images. Afterwards, a

classification based on the observed HU pairs can be performed.

The combined information from inspiration and expiration scan can also be used to

estimate local volume change by exploiting the properties of CT [Simon 2000, Castillo

et al. 2010b]. The more air is inhaled, the less absorption of X-rays within a single

lung voxel occurs and thus smaller HU can be observed. Another way to obtain the

local volume change is to compute the Jacobians of the transformations that are

obtained by registration [Castillo et al. 2017, Kabus et al. 2008, Reinhardt et al. 2008].

Different studies found that both ways of registration-based ventilation estimation

correlate well with the ventilation results obtained with pulmonary function tests [Choi

et al. 2013, Yamamoto et al. 2014], SPECT (single-photon emission CT) [Yamamoto

et al. 2014] and xenon CT [Reinhardt et al. 2008]. Therefore, CT-based ventilation
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(a) Exhale scan (b) Inhale scan (c) Estimated volume change

Figure 1.3: Coronal views of the dataset COPD04 [Castillo et al. 2013]. The same
central slice of (a) the exhale scan and (b) the inhale scan is shown. Note
the large volume change that occurs during respiration, which influences
the intensity within the lungs due to the varying X-ray absorption. The
estimated local volume change that was computed with one of our LDDMM
image registration methods is shown in (c). Values smaller than 1 indicate
that the volume decreased during expiration.

assessment is a promising approach that, in contrast to spirometry, provides information

about the local volume changes.

Although CT scans are more expensive than spirometric tests and the patient is subject

to ionizing radiation, which might induce cancer [Brenner and Hall 2007], CT offers a

substantial diagnostic value and helps to recognize morphological features of several

lung pathologies [Ostridge and Wilkinson 2016]. The radiation issue is mitigated

by reduced dose CT [Buzug 2008, pp. 485] which provides images with acceptable

diagnostic quality [Takahashi et al. 1998, Kubo et al. 2008, Murphy et al. 2012]. For

instance, reduced dose CT was used for the acquisition of a large number of CT scans

during screening for lung cancer in current and former heavy cigarette smokers [Mets

et al. 2011, Mets et al. 2013]. The data was successfully used for diagnosis of COPD.

Similarly, in the COPDgene study [Regan et al. 2011] low-dose CT datasets of 10 000

cigarette smokers, both diagnosed with and without COPD, were acquired.

According to a study of the OECD [OECD 2015], in 2013 on average 24.4 CT scanners

per 1 million population in the OECD countries were available, which acquired

approximately 120 scans per 1 000 population. In particular, in the country with the

highest rate of CT examinations – the USA – ca. 77 million scans per year were

acquired in 2013, which is an increase of 10 % compared to the year 2007 (70 million

scans) [Berrington de González et al. 2009]. This increased number is partly caused

by the implementation of CT for lung cancer screening [Lynch and Al-Qaisi 2013].
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Lung cancer has the highest incidence of all cancers in worldwide statistics (1.825 million

new cases per year) as well as the highest mortality rate (1.59 million deaths, which

relates to 19.4 % of the total number of cancer deaths) [Ferlay et al. 2015]. In the USA

about 220 000 patients are diagnosed with lung or bronchus cancer and these cancers

account for 160 000 deaths [Siegel et al. 2016]. Early detection and treatment of lung

cancer increase the chances of a cure, but it is difficult to diagnose lung cancer in early

stages [Stansfield et al. 2008]. The National Lung Screening Trial Research Team

conducted a study with more than 50 000 smokers and former smokers [NLSTRT 2011].

The participants were randomly assigned to two groups: One group was screened

for lung cancer using low-dose CT while for the other group chest radiographs were

acquired. The relative reduction in mortality from lung cancer was 20 % for the CT

group compared to the radiograph group. However, in both groups about 95 % of the

positive screening tests were false positives, i.e., the lung cancer was not confirmed by

follow-up analyses [NLSTRT 2011].

Image processing may help to reduce the number of false positives, e.g., by a computer-

aided detection of cancerous lung nodules [Marten and Engelke 2007, Jacobs et al.

2014]; see Figure 1.2c for an example CT scan with a large nodule. Nevertheless,

high sensitivity should be prioritized over specificity to detect all potential cancerous

nodules [Jacobs et al. 2016]. In particular, the comparison of follow-up scans is greatly

alleviated for clinicians by the application of lung CT registration [Murphy et al.

2011b]. The registration compensates for revertible differences in two images of the

same patient that are due to, e.g., respiratory motion. Thus, distinctive features

that are caused by an intervention, by medical treatment or growth of tumors can be

isolated in the follow-up scans using image registration.

For lung cancer screening (even if restricted to the high-risk group of smokers) a huge

amount of data has to be acquired and evaluated. Automatic image processing, which

typically includes image registration, might help to lower the burden of work in the

hospital and allow for cost-effective screening [Rühaak 2017, p. 130].

Image registration cannot only be used for diagnosis of lung cancer but also for

the improvement of radiotherapy [Jaffray et al. 2010]. For instance, in [Wang et al.

2005] image-registration was proposed for delineation (also known as contouring) and

tracking of dose in CT-guided radiotherapy. Another application is dose replanning by

incorporation of information about the deformation and movement of organs [Brock

et al. 2003]. Moreover, as respiratory motion is one of the main reasons for motion

within the thorax and abdomen, lung registration can be used for motion correction of

images of other organs [Vogel et al. 2007] or for an improved CT reconstruction [van

Stevendaal et al. 2008].
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The large motion that occurs during respiration and the highly deformable character of

the different lung parts [Kamm 1999] pose a very difficult problem for lung registration

algorithms. Three main factors are contributing to this challenge. First, due to

the change in tissue density caused by in- and outflow of air the absorption of X-

rays and thus the CT data is altered. The average of the HU within the lung is

greater in the expiration images than in the inspiration images. This issue can be

handled by employing suitable distance measures that either model this intensity

change [Gorbunova et al. 2008, Yin et al. 2009] or consider derived features like

edges [Haber and Modersitzki 2007b, Rühaak et al. 2013].

The second major difficulty is that structures of interest within the lung like vessels

and airways are finely branched and often quite small compared to the overall motion

and volume [Kamm 1999]. On the other hand the lung parenchyma offers only

little information and guidance for the human eye or registration algorithms. As

vessels are distributed over the entire lung, they might be confounded even by human

experts when different images of the same patient are compared. Similarly, local

optimization methods are prone to local minima during image registration and might

obtain an erroneous match by aligning non-corresponding vessels. Regularized discrete

optimization methods might overcome this problem [Heinrich et al. 2015] and can

be used as the basis of a subsequent nonlinear registration method that allows for

sub-voxel accuracy [Rühaak et al. 2017].

The third challenge for pulmonary image registration is sliding motion that occurs at

the interface between lung boundary and ribcage. Sliding motion is discontinuous and

requires a proper modeling [Al-Mayah et al. 2009, Schmidt-Richberg et al. 2012, Derksen

et al. 2015]. If the interest is restricted to the motion within the lungs, a direct way to

cope with the sliding motion is to use lung segmentations and remove the unwanted

image information [Werner et al. 2009, Rühaak et al. 2013]. By masking the images, a

globally diffeomorphic transformation can be assumed as within the lungs the motion

is smooth [Schmidt-Richberg et al. 2012]. This masking strategy is no limitation for

ventilation assessment or follow-up registration for diagnosis of pulmonary diseases. On

the contrary it might be inadequate for any application that requires information about

the change of surrounding structures. For such application scenarios specific strategies

were developed, cf. [Schmidt-Richberg 2014, Chapter 6] and references therein. An

explicit modeling of sliding motion was also proposed as an extension to LDDMM

in [Risser et al. 2013]. However, in this thesis we are only interested in the lungs and

chose to employ the masking strategy as high-quality masks could automatically be

created with the algorithm proposed in [Lassen et al. 2011].

Therefore, the diffeomorphic property should be guaranteed by the registration method.

This is beneficial for lung ventilation analysis as non-diffeomorphic transformations
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may yield negative Jacobians that are implausible for the volume estimation [Castillo

et al. 2017]. Several diffeomorphic registration approaches exist, see Section 2.2 for

details. One option is to use constraints or penalties on the Jacobians of the transforma-

tion [Rohlfing et al. 2003, Haber and Modersitzki 2004, Haber and Modersitzki 2007a].

Other approaches use the so-called hyper-elastic regularization [Droske and Rumpf

2004, Le Guyader and Vese 2011, Burger et al. 2013]. The third category of methods

uses flows of velocities to generate the diffeomorphic transformations [Christensen

et al. 1996, Trouvé 1995a, Dupuis et al. 1998]. As discussed in Section 1.1, LDDMM

belongs to this category.

Theoretically, standard LDDMM methods allow for diffeomorphic transformations that

can describe large motion and thus two of the mentioned problems can be properly

addressed. But, as pointed out before, despite its mathematical soundness and useful

theoretical properties, LDDMM also has drawbacks. The main disadvantages concern

the numerical discretization and implementation. To guarantee diffeomorphic solutions

in the discrete setting, we propose a post-processing step in Section 6.3.

Due to the time integration of the velocity fields the computational work and the

memory requirements of the algorithms are increased [Younes 2007] when compared,

e.g., to elastic registration approaches [Broit 1981] or stationary velocity field reg-

istration methods [Arsigny et al. 2006]. For instance, in the context of lung CT

registration, run times of up to three hours on a computer cluster with 32 central

processing units (CPUs) and 128 GB of (random access) memory (RAM) were re-

ported for LDDMM methods [Sakamoto et al. 2014]. This is clearly inferior to, e.g.,

a displacement-based method taking on average 20 seconds on a standard personal

computer with a single CPU and 16 GB of RAM [König and Rühaak 2014]. We

address the reduction of run time and memory consumption by choosing different

discretization widths for the images and velocities as well as transformations.

As motivated above, it is useful for lung CT registration (as well as for all other

kinds of data) to choose an appropriate distance measure. For instance, in the

diffeomorphic registration method [Song et al. 2010] cross-correlation is successfully

used for pulmonary image registration. Nevertheless, there are also examples that

employ the standard LDDMM model with SSD for lung CT registration [Gorbunova

et al. 2009, Risser et al. 2013, Sakamoto et al. 2014]. But, SSD is not the best choice

for lung CT data as corresponding locations do not have the same image intensity

in inspiration-expiration data. This imperfection of SSD is confirmed by results

of [Gorbunova et al. 2009]. The group reports an average LM distance of 1.76 mm

on the publicly available DIR-Lab 4DCT data [Castillo et al. 2009, Castillo et al.

2010a], which is much worse than state-of-the-art methods that consistently obtain

less than 1 mm [DIR-Lab results website 2018]. Consequently, other distance measures
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might be better suited for lung CT registration. For example, all algorithms that

employ the NGF distance measure and participate in the DIR-Lab 4DCT benchmark

achieve an average LM distance of less than 0.96 mm [Rühaak et al. 2013, Polzin et al.

2013b, König and Rühaak 2014]. Due to its alignment of edges NGF simultaneously

allows to focus on the alignment of the vessels and to handle the occurring intensity

changes properly. In our flexible approach arbitrary differentiable distance measures

like NGF can be integrated in the LDDMM framework.

Altogether, with the extensions proposed in this thesis, LDDMM is a well-suited

method for the registration of lung CT scans.

1.4 Published Work

Prior to and in conjuction with this thesis seven papers on variational image registra-

tion, in particular focused on lung CT data, have been published by my colleagues

and me [Polzin et al. 2013a, Polzin et al. 2013b, Polzin et al. 2014, Derksen et al.

2015, Heldmann et al. 2015, Polzin et al. 2016, Rühaak et al. 2017]. The main

contributions were

• the integration of automatically detected LMs into joint intensity- and feature-

based registration methods [Polzin et al. 2013a, Polzin et al. 2013b, Polzin et al.

2014, Rühaak et al. 2017],

• the presentation of a memory efficient LDDMM method used for highly accurate

lung CT registration [Polzin et al. 2016] and

• the treatment of sliding motion constraints in medical imaging [Derksen et al.

2015, Heldmann et al. 2015].

Furthermore, we prepare a book chapter on the Discretize-then-Optimize approach for

LDDMM [Polzin et al. 2018] that includes results of this dissertation.

The theoretical justifications and the extensive derivation of the methods discussed

in [Polzin et al. 2016, Polzin et al. 2018] are a substantial part of the manuscript

at hand. Another common ground is the integration of a feature-based thin-plate

spline (TPS) pre-registration into the registration pipeline. As proposed in [Polzin

et al. 2013a, Polzin et al. 2013b, Polzin et al. 2014, Rühaak et al. 2017], automatically

detected LMs are used, see Chapter 8.
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1.5 Outline

This thesis is organized as follows: In Chapter 2 the historical development of LDDMM

is summarized. We include references to related approaches and highlight applications.

Furthermore, other diffeomorphic registration methods are discussed.

Afterwards, functional analysis basics are given in Chapter 3 that are needed for

the derivation of the diffeomorphic properties within the LDDMM methods. To

allow for the formulation and solution of LDDMM as optimal control problems,

an introduction in this field and the connection between calculus of variations and

Hamiltonian dynamics is presented. We also define the image registration problem,

which includes definitions for the terms distance measure, regularizer as well as

admissible transformations.

Given this knowledge, we focus on diffeomorphic transformations and derive how

diffeomorphisms can be obtained by the integration of sufficiently smooth, time-

dependent velocity fields in Chapter 4. In particular, we discuss what sufficiently

smooth velocity fields are and how they can be obtained using inner products on suitable

spaces induced by differential operators. Additionally, we cover the group structure

of diffeomorphisms and show that LDDMM provides a distance on the elements

of this group. At the end of the chapter we show how (piecewise) diffeomorphic

transformations in the discrete setting are achieved in our methods.

The connection of the results of Chapter 4 to image registration and a derived distance

on images are topics of Chapter 5. We also give details on the two major approaches

for LDDMM registration, which are called relaxation and shooting. Moreover, we show

the transition to optimal control problems and derive optimal control formulations of

the three LDDMM registration models employed in this thesis.

In Chapter 6, the numerical solution of our proposed models in the Discretize-then-

Optimize approach is presented. This involves a PDE-constrained, derivative-based

numerical optimization. Therefore, we describe the numerical solution of the arising

PDEs as well as the computation of the consistent gradients for the discretized energies.

In Appendix A, we additionally provide a result on how stability of the employed

RK methods can be achieved for the solution of the transport equation. At the end

of Chapter 6, we discuss how the diffeomorphic property can be guaranteed not only

in the continuous, but also in the discrete setting.

Details on the implementation and multi-level optimization are given in Chapter 7.

Numerical experiments on 2D and 3D medical images are presented in Chapter 8.

Central results in the evaluation are the high accuracy, the diffeomorphic property of

the estimated transformations and the reduction in memory consumption in comparison

to standard LDDMM methods. The thesis is concluded by a discussion in Chapter 9,

which includes options for future work and a summary.
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2 LDDMM: History and Related Work

In this chapter an overview of the history of LDDMM methods is provided and the

key features of LDDMM are summarized. Additionally, other diffeomorphic matching

methods and their relation to LDDMM methods are discussed. In Section 2.1 the

historic development of LDDMM methods, which is closely connected with the interest

in computational anatomy, is summarized. The focus is on a high-level description and

thus only basic, but central, mathematical equations and results are given. More details

on LDDMM theory are provided in Chapter 4 and Chapter 5. Related approaches for

diffeomorphic image registration are discussed in Section 2.2.

2.1 Development and Applications of LDDMM

The rise of LDDMM correlates with the emergence of computational

anatomy (CA) [Grenander and Miller 1998, Younes et al. 2009]. Researchers

working in CA are interested in the evolution and biological variability of anatomical

shapes [Miller 2004]. This evolution is usually described by changes over time

particularly regarding positions of certain anatomical structures or their changes in

size. A definition of CA was given, e.g., by Miller: “Computational anatomy is the

mathematical study of anatomy [as an orbit of anatomical exemplars] under groups of

diffeomorphisms (i.e., smooth invertible mappings)” [Miller 2004].

An orbit O of anatomical images in CA is a family of transformed versions of one

deformable template image Itemp : Ω→ R, where the transformation ϕ is constrained

to be diffeomorphic [Grenander and Miller 1998]. Note that orbits with different

templates can be modeled [Grenander and Miller 1998], but in LDDMM methods

usually the generation from one template is assumed, see [Beg et al. 2005]. We thus

restrict our investigations to one template. The orbit is then defined as [Grenander

and Miller 1998]

O := {Itemp ◦ ϕ | ϕ : Ω→ Ω is diffeomorphic}. (2.1)

In Figure 2.1 three images of an exemplary orbit are shown. In addition to Itemp, two

images I, Ĩ ∈ O with I = Itemp ◦ ψ and Ĩ = Itemp ◦ ψ̃ are depicted. If the goal is

to transform I such that it is aligned (i.e., corresponding structures have the same
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Itemp

I Ĩ

ψ̃

ψ̃−1

ψ

ψ−1

ϕ = ψ−1 ◦ ψ̃

Figure 2.1: Three exemplary elements of the image orbit O are shown: Itemp = Itemp◦id,
I = Itemp ◦ ψ and Ĩ = Itemp ◦ ψ̃. It is possible to transform I and Ĩ to
Itemp via the inverse transformations ψ−1 and ψ̃−1, respectively. These
inverse mappings always exist as ψ and ψ̃ are assumed to be diffeomorphic.
Furthermore, it is possible to align I and Ĩ via ϕ = ψ−1 ◦ ψ̃. Image
material: The MR images show my head and were acquired in 2009 during
an internship at the University of Greifswald.

spatial location after being transformed) with Ĩ, there always exists a diffeomorphic

transformation ϕ such that Ĩ = I ◦ ϕ. This is possible due to the group structure of

diffeomorphisms, cf. Section 4.1. From the axioms of groups we know that for each

group element ψ there is also an inverse ψ−1 such that ψ◦ψ−1 = id. The diffeomorphism

ϕ can be obtained as ϕ = ψ−1 ◦ ψ̃ and it is easy to verify that I ◦ ϕ = Ĩ.

The first comprehensive scientific work on anatomical shapes and their changes date

back to 1917 when D’Arcy Wentworth Thompson’s book “On Growth and Form”

was published [Thompson 1917]. Thompson referred to Albrecht Dürer’s work on

investigations about growth of the human head and body as well as on geometrical

transforms of human body parts like faces [Dürer 1528]. The artist and mathematician

Albrecht Dürer used for his drawings orthographic projections, which are still commonly

used in radiology nowadays, and investigated non-human shapes and geometry in his

first book [Dürer 1525]. One major contribution of Thompson was the connection

of morphological transformations and mathematics [Thompson 1917, p. 723]. He

discussed that in morphology, i.e., in the description of shapes and anatomy, it is

essential to compare different forms and understand deformations occurring between
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them. This process of comparison and recognizing one form as the deformed version

of another form is an inherently mathematical topic [Thompson 1917, p. 723].

Shape deformations due to growth or atrophy are smooth and hence can be modeled

using diffeomorphisms [Durrleman et al. 2009b, Fishbaugh et al. 2011]. The group of

diffeomorphisms is rich enough to generate a large family of possible shapes, which

can be represented by, e.g., points, curves, surfaces or volumetric images, and these

diffeomorphic transformations maintain the global topology of the deformed template

shape [Grenander and Miller 1998]. Therefore, diffeomorphisms are suitable for

comparing and aligning corresponding, but deformed, shapes.

The term “Large Deformation Diffeomorphic Metric Mapping” was proposed in [Beg

et al. 2005] to highlight the differences to other registration approaches. First, with

LDDMM diffeomorphic mappings are computed, which is in general not guaranteed for

deformable registration approaches. Second, the method additionally allows for large

deformations, which might not be the case for methods modeling transformations as a

sum of identity and displacement u : Ω→ R
d, i.e., ϕ(x) = x+u(x). The latter methods

are often called elastic deformation models due to the regularization of u by limiting

its linear elastic energy and were pioneered in [Fischler and Elschlager 1973, Broit

1981, Bajcsy et al. 1983]. In [Beg et al. 2005] they were additionally entitled “small

deformations” approaches to differentiate from the large deformation models used

in LDDMM. It is well known that elastic deformation models cannot guarantee

diffeomorphic solutions if large deformations are required within the registration, see,

e.g., [Christensen et al. 1996].

To overcome the small deformation limitations of the elastic models, fluid transforma-

tions were proposed in [Christensen et al. 1993, Christensen et al. 1994, Christensen

et al. 1996]. As derived in [Beg et al. 2005], the transformation map (assuming that

start time is always 0) φ : [0, 1]× Ω→ R
d is generated as the result of an integration

over time of smooth velocity fields v : [0, 1]× Ω→ R
d:

φ̇(τ,x) = v(τ, φ(τ,x)), φ(0,x) = x, φ̇ :=
∂φ

∂t
(2.2)

for all x ∈ Ω and τ ∈ [0, 1]. Like fluid registration approaches LDDMM generates

diffeomorphisms as flows of velocities. Additionally, LDDMM has the advantage that

∫ 1

0
‖vt‖V dt =

∫ 1

0
〈vt, vt〉V dt (2.3)

is the length of the path connecting the images I0, I1 : Ω → R and defines a met-

ric on the image orbit [Beg et al. 2005]. Here, vt : Ω → R
d with vt(·) = v(t, ·)

and ‖vt‖V = ‖Lvt‖L2(Ω) is the norm of the reproducing kernel Hilbert space (RKHS) V

with differential operator L. The mathematical details are given in Chapter 4 and Chap-

ter 5.

19



2. LDDMM: History and Related Work

LDDMM models were used to transform and align different types of data, like

• LMs/point clouds [Joshi and Miller 2000, Camion and Younes 2001, Twining and

Marsland 2003, Marsland and Twining 2004, Glaunès et al. 2004b, Glaunès et al.

2004a, Vaillant et al. 2004, Marsland and McLachlan 2007, Glaunès et al. 2008],

• Textured meshes [Allassonnière et al. 2005],

• Surfaces/curves [Vaillant and Glaunès 2005, Vaillant et al. 2007, Glaunès et al.

2008, Durrleman et al. 2009a, Azencott et al. 2010],

• Varifolds [Charon and Trouvé 2013],

• Intensity images [Beg et al. 2005],

• Diffusion tensor images [Cao et al. 2005, Cao et al. 2006] and

• Combinations of curves and images [Du et al. 2011].

Note that the references were restricted to the early works, of course there are many

more. We refer to [Younes 2010, Miller et al. 2015] for a more detailed list of LDDMM

publications.

A fascinating extension of the LDDMM framework is metamorphosis [Miller and

Younes 2001, Trouvé and Younes 2005b, Holm et al. 2009, Berkels et al. 2015, Maas

et al. 2015, Richardson and Younes 2016]. Metamorphosis is designed to handle

geometrical as well as intensity changes in the images to be registered. An illustrative

example for metamorphosis is mass-preserving image registration. Mass preservation

during image registration for cardiac PET scans was proposed, e.g., in [Gigengack

et al. 2012] (although the authors do not employ LDDMM), to handle local intensity

variations, which are induced by flow of tracer during the cardiac cycle. Several papers

in the LDDMM context tackled the metamorphosis problem to model appearance of a

brain tumor in MRI [Miller and Younes 2001] or changes in photographs [Trouvé and

Younes 2005b]. Furthermore, methods for mass-preserving image-registration [Holm

et al. 2009] and morphing head MRI data, grayscale photographs [Berkels et al. 2015,

Maas et al. 2015] or color paintings [Berkels et al. 2015] were proposed. In [Richardson

and Younes 2016] metamorphosis was used for cardiac and leaf images as well as

handwritten digits and letters.

In the remainder of this thesis we will focus on intensity image registration and omit

discussions about methods for surface, curve, varifold and tensor image matching as

well as metamorphosis. However, in the context of pre-alignment and to increase the

robustness of our algorithms we will also employ point-based registrations.

In the vast majority of LDDMM papers, MR images of the human or primate head

are registered [Beg et al. 2005, Hart et al. 2009, Niethammer et al. 2009, Singh et al.

2010, Ashburner and Friston 2011, Durrleman et al. 2011, Risser et al. 2011, Hong

et al. 2012a, Vialard et al. 2012, Fishbaugh et al. 2014, Hernandez 2014, Zhang
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and Fletcher 2015, Gerig et al. 2016]. Applications range from assessing pediatric

brain development [Hong et al. 2012a, Fishbaugh et al. 2014] via quantification of

atrophy in Alzheimer’s disease patients [Wang et al. 2007, Risser et al. 2010] and

neurodegeneration in Huntington’s disease [Miller 2004, Fishbaugh et al. 2014] to

image-based simulations of brain tumor evolution [Miller and Younes 2001, Fishbaugh

et al. 2013b] and construction of brain atlases [Avants and Gee 2004, Tang et al.

2013, Zhang and Fletcher 2015]. In the aforementioned publications, the neural image

data, which is registered to understand or visualize changes, is typically acquired from

the same subject at different points in time (longitudinal data). This data shows

changes due to, e.g., atrophy, growth, disease progression or treatment of diseases.

Alignment of longitudinal data (time-series) using LDDMM is also called geodesic

regression [Niethammer et al. 2011, Fletcher 2012, Hong et al. 2012b, Fishbaugh

et al. 2013a, Singh and Niethammer 2014]. As motivated in, e.g., [Durrleman et al.

2013, Fishbaugh et al. 2014], a regression also allows the prediction of changes for

future times.

Besides brain MR image registration, LDDMM was used, e.g., for the following

applications:

• Cardiac MRI registration [Beg et al. 2004], cardiac atlas generation [Fonseca et al.

2011], and mass-preserving registration of cardiac PET images of the mouse [Mang

and Ruthotto 2017],

• Pelvis surface registration [Günther et al. 2011],

• Handwritten digit recognition [Allassonnière et al. 2005],

• Photograph matching [Trouvé and Younes 2005b],

• Generation of 3D models of biological cells [Cao-Berg et al. 2013],

• Registration of 3D CT thoracic images using vessel trees and lung surfaces [Gor-

bunova et al. 2009], coping with sliding motion via piecewise diffeomorphic trans-

formations [Risser et al. 2013], and for the computer-aided diagnosis of changes in

lung nodules [Sakamoto et al. 2014].
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2.2 Related Diffeomorphic Registration

Approaches

In this section other diffeomorphic image registration approaches are discussed. We

limit the review to approaches that are closely related to LDDMM methods or are

widely used for image registration as a complete survey is beyond the scope of this

thesis. The interested reader is referred to [Sotiras et al. 2013] and references therein.

Diffeomorphic image registration approaches typically can be classified to one of three

major approaches. The class considered in detail in this thesis is the generation of

diffeomorphisms as flows of velocity fields. Methods belonging to this class can be

further categorized as fluid registration approaches, stationary velocity approaches

or non-stationary velocity approaches and are reviewed in Section 2.2.1. We refer to

the non-stationary approaches as LDDMM methods and present more related work

in Chapter 5.

The second class of diffeomorphic registration methods is discussed in Section 2.2.2

and is based on a physical motivation. Originating in the field of elasticity these

methods employ energies of hyperelastic materials and are thus called hyperelas-

tic registration approaches. Hyperelastic approaches yield orientation-preserving

transformations ϕ : Ω→ R
d with det(∇ϕ) > 0 for all x ∈ Ω. Orientation preserving-

transformations are locally invertible [Ciarlet 1988, p. 222], which is used in the

third class of diffeomorphic registration methods. These approaches are presented

in Section 2.2.3 and achieve diffeomorphic transformations by solving constrained

optimization problems that require det(∇ϕ) to be positive, lie within a certain positive

interval or det(∇ϕ) = 1 (which means that incompressible materials are modeled).

2.2.1 Diffeomorphisms via Flows of Velocities

Fluid registration approaches were proposed in [Christensen et al. 1993, Christensen

et al. 1994, Christensen et al. 1996, Miller et al. 1999] and can be considered as the

predecessor of LDDMM methods. They are closely related as the diffeomorphisms are

also generated as associated flows of velocity fields, cf. Section 4.2. The term fluid

registration originates in the solution of a PDE describing the motion of (viscous)

fluids, i.e., a (modified) Navier-Stokes equation is solved [Christensen et al. 1996].

The second link between fluid and LDDMM registration is that the conservation

of momentum is essential for the fluid approaches [Christensen et al. 1996] and is

also the foundation of so-called shooting approaches within the LDDMM framework,

see Section 5.2. The third major similarity to LDDMM is the usage of the shape

models proposed by Grenander, see, e.g., [Grenander 1970, Grenander 1994].
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In [Christensen et al. 1996] it was discussed that the transformation evaluated on a

finite grid might become singular “even though the transformation evaluated on the

continuum would not”. The authors propose a regridding of the template image every

time the Jacobian determinant falls below 0.5 and then restart the algorithm with this

interpolated new template. This requires (possibly multiple) interpolations leading

to an accumulation of interpolation errors that affect the quality of the template

image and thus the computed transformation fields. Furthermore, it increases the

computational costs as the Jacobian has to be tracked and additional interpolations are

needed. Some authors, e.g., [Haber and Modersitzki 2007b, Burger et al. 2013] argue

that this regridding step has neither mathematical nor physical justifications. However,

it is a practical approach to handle the problem that theoretically diffeomorphisms are

obtained in the continuous setting, but might be compromised due to the discretization.

Similarly, as will be discussed in Chapter 6, in our methods we might also encounter

non-diffeomorphic solutions in the discrete setting due to numerical inaccuracies that

occur when computing the transformation from a given time-dependent velocity field.

We propose in Section 6.3 to correct for this by using a single post-processing step

(i.e. after finishing the numerical optimization) to avoid impeding the computation by

continuous tracking of the Jacobian.

The main difference of LDDMM methods to fluid approaches is that the length of

the shortest path connecting the images to be matched defines a metric on the image

orbit [Beg et al. 2005], cf. Section 4.2. Nevertheless, the differences are rather small and

the transition from fluid approaches to LDDMM was fluent as can be seen in [Miller

et al. 1999] and is supported by the fact that Michael I. Miller, who pioneered with

Gary E. Christensen and Richard D. Rabbitt fluid registration, is a leading investigator

of LDDMM methods.

In [Chefd’hotel et al. 2002] an extension of large deformation matching methods

to multimodal image registration was introduced. The authors proposed to use

statistical similarity measures like cross-correlation or mutual information. Similar to

LDDMM methods, large deformations are achieved through the composition of small

deformations. However, the optimization is not realized as minimization of a joint

objective with distance measure, regularizer and constraints on the transformation

map evolution, but the gradient of the distance measure defines the displacement field,

which is smoothed afterwards (like in Thirion’s demons algorithm [Thirion 1998]).

The inexact LM-matching approach based on geodesic interpolating splines of [Camion

and Younes 2001] was modified and extended to a method for exact LM-based reg-

istration in [Twining and Marsland 2003, Marsland and Twining 2004]. In contrast

to [Camion and Younes 2001], where an L2 penalty on the LM distances was used,

Twining’s and Marsland’s methods achieve an exact matching by imposing LM con-
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straints via the method of Lagrange multipliers. Identical to [Camion and Younes 2001]

is the usage of the LDDMM regularizer that defines the geodesic distance between

the LMs, cf. Chapter 4. In addition to matching experiments, Twining and Marsland

employed the geodesic distance for binary classification of contours of lateral ventricles

in the brain into legal or illegal shape variations.

In [Marsland and McLachlan 2007] image matching was modeled using the movement

of particles within a Hamiltonian formulation, cf. Section 3.2. The use of few particles

was motivated by the sparsity of the momentum in diffeomorphic image registration.

The evolution of the particles over time was computed using the EPDiff equation (see

Definition 5.1) that is also used for the so-called shooting approaches in LDDMM,

cf. Section 5.2. The conducted experiments showed that when particles are placed only

every fourth pixel per spatial dimension, the effect on the accuracy of registrations is

negligible. The authors proposed to increase the number of particles according to the

locations of the largest mismatch. Additionally, in [Marsland and McLachlan 2007]

the usage of different regularization kernels was suggested to capture small and large

motion in a multiscale manner as realized, e.g., in [Risser et al. 2010].

In [Allassonnière et al. 2005] a Hamiltonian formulation of an optimal control problem

for diffeomorphic matching was presented. This led to a geodesic shooting approach

that was applied to both LM and image matching, where the latter problem was cast

into the former via triangulation and textured meshes (assuming an affine deformation

on the surfaces inbetween triangulation nodes). For numerical optimization of the

objective functional (that is only depending on the initial momentum in the proposed

shooting formulation, cf. Section 5.2), Newton’s method was used. The applications

were matching of handwritten digits (with the aim to use it for classification purposes)

and face photographs.

In the LDDMM context an explicit volume-preserving method was proposed in [Mang

and Biros 2015] and realized by a constraint that restricts the divergence of the velocity

to vanish. Thus, the method yields incompressible transformations. This idea was ex-

tended to allow for pre-defined deviations from an incompressible transformation [Mang

and Biros 2016a, Mang and Biros 2016b]. However, as the constraints are defined on

the velocity fields it is not trivial to predict the effect on Jacobian determinants of the

transformations; nevertheless it can be guaranteed that the computed transformations

are diffeomorphic [Mang and Biros 2016b].

The group around Mang is particularly interested in the efficient solution of the linear

systems arising within the employed second-order optimization. Their main focus

for efficiency is twofold: pre-conditioning [Mang and Biros 2015, Mang and Biros

2016a, Mang and Biros 2016b, Mang and Ruthotto 2017] and parallel computing (up

to 1024 nodes having each up to 10 cores) [Mang et al. 2016]. For numerical integration
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of the velocity fields they used either Eulerian [Mang and Biros 2015, Mang and Biros

2016b], semi-Lagrangian [Mang and Biros 2016a, Mang et al. 2016] or Lagrangian

methods [Mang and Ruthotto 2017], see Chapter 9 for a discussion of Eulerian,

semi-Lagrangian and Lagrangian methods for solving PDEs.

In [Mang and Biros 2016a, Mang and Biros 2016b, Mang et al. 2016] diffeomorphic

methods are proposed that are based on stationary velocity fields, i.e., the velocities

at each point x ∈ Ω are assumed to be constant over time: v(t,x) = v(0,x) for

all t ∈ [0, 1]. Other diffeomorphic registration approaches based on stationary velocity

fields are, e.g., [Arsigny et al. 2006, Ashburner 2007, Hernandez et al. 2009]. In [Arsigny

et al. 2006] a Log-Euclidean framework for the representation of diffeomorphisms and

for the registration using stationary velocity fields was established. This allows for

Euclidean statistics on the diffeomorphisms (contrary to statistics on displacement

fields) to compute, e.g., a mean deformation of the registration of an atlas to subjects.

The DARTEL algorithm proposed in [Ashburner 2007] makes use of the fact that

the inverse transformation is easy to compute in the case of stationary velocities as

it is generated by the negative velocity field −v. This is used for the formulation of

an inverse consistent registration, i.e., the computed transformation is inverse to the

one that is obtained if template and reference image are swapped. The optimization

problems are solved using the Levenberg-Marquardt method [Nocedal and Wright

2006, pp. 285–262].

In [Hernandez et al. 2009] a stationary and a non-stationary approach were compared

for the registration of brain MR images. The authors found only marginal differences.

However, it can be shown that diffeomorphisms that are generated as flows of stationary

velocity fields are a proper subgroup of the set of all diffeomorphisms on Ω (Diff(Ω),

cf. Section 4.1) and thus not all diffeomorphisms on Ω can be generated using the

stationary approach [Hernandez et al. 2008, Grabowski 1988]. Thus, the advantages of

reduced memory requirements and unknowns in the optimization come at the expense

of reduced flexibility within the matching.

For the lung CT application considered in this thesis, the deformations can be very

large (a doubling of lung volume within the considered data is possible [Castillo et al.

2013]), but might also vary strongly and comprise small volume changes, e.g., due

to lung diseases like COPD. Therefore we expect diffeomorphic methods with non-

stationary velocity fields to perform better than stationary velocity fields. However,

to the best of our knowledge, there is no literature on the comparison of stationary

vs. non-stationary approaches for diffeomorphic lung registration and it remains an

open question, whether the non-stationary approach is really superior. Unfortunately,

investigating this topic is beyond the scope of this thesis and due to the given reason

we opted for using non-stationary velocity fields.
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The concept of stationary velocity fields was also used to adapt the demons registra-

tion [Thirion 1998] and thereby to obtain diffeomorphic demons methods [Vercauteren

et al. 2007, Vercauteren et al. 2008, Vercauteren et al. 2009, Lorenzi et al. 2013].

Symmetric approaches, i.e., methods that minimize a symmetric distance between the

images by simultaneously estimating two transformations, were proposed within the

LDDMM framework with non-stationary velocity fields in [Joshi et al. 2004, Avants

et al. 2007, Beg and Khan 2007, Avants et al. 2008, Hernandez et al. 2009]. One of

the key ideas is to estimate the transformations and their inverses, which are easy to

compute, only up to time t = 0.5 (the center of the time interval [0, 1]) and to compose

them to obtain the full transformation with only minor computational overhead [Avants

et al. 2007, Avants et al. 2008]. This procedure is justifiable if the transformation

occurring between the images A and B is exactly inverse to the map that transforms B

to A. Therefore, we decided against a symmetric approach as our main application is

the registration of lung CTs that were acquired, e.g., at different respiratory phases.

Though the lung motion that occurs during inspiration is invertible, individual parts

of the lung do not necessarily move along the exact inverse path. This phenomenon is

known as hysteresis [McClelland et al. 2013].

Recently, a symmetric LDDMM-related registration was proposed [Hernandez 2017]

that uses the primal-dual optimization algorithm [Chambolle and Pock 2011]. Hernan-

dez compares three alternatives as replacement for St. The proposed regularizers are

based on the Huber norm [Huber 1964] of first derivatives, the Huber norm of Lvt (so-

called V-Huber), or second-order total generalized variation [Bredies et al. 2010].

Additionally, it is proposed in [Hernandez 2017] to replace the SSD by the Huber norm

of the difference images and to use a symmetric distance measure. The convexification

of the objective functional, which is necessary for the primal-dual algorithm [Chambolle

and Pock 2011], is achieved via first-order Taylor expansions of the image residuals.

An implementation using multiple graphics processing units (GPUs) is employed to

speed up computations and to cope with the memory requirements arising from the

primal and dual variables as well as the required number of discretization points in

time.
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2.2 Related Diffeomorphic Registration Approaches

2.2.2 Hyperelastic Regularization

A physically motivated approach, which is not based on time-dependent velocity fields,

enforces diffeomorphic transformations by employment of hyperelastic regulariza-

tion (also called nonlinear-elastic [Le Guyader and Vese 2011]) and was proposed in the

image registration context, e.g., in [Rabbitt et al. 1995, Droske and Rumpf 2004, Droske

and Rumpf 2007, Le Guyader and Vese 2011, Gigengack et al. 2012, Burger et al. 2013].

In contrast to linear elastic models, see, e.g., [Fischler and Elschlager 1973, Broit

1981, Bajcsy et al. 1983], that cannot safeguard against singularities of the trans-

formation induced by large strain [Rabbitt et al. 1995], hyper-elastic regularization

techniques overcome this limitation. This is achieved by simultaneous penalization of

length, area and volume changes that are generated by the transformation [Droske

and Rumpf 2004, Droske and Rumpf 2007, Le Guyader and Vese 2011, Burger et al.

2013]. The nonlinear-elastic regularization proposed in [Yanovsky et al. 2008], which

is based on the Green–St.-Venant strain tensor [Ciarlet 1988, p. 130], accounts for

large displacement, but can handle only small strains [Ciarlet 1988, p. 132]. In par-

ticular it can be shown that it allows for a finite energy if the Jacobian determinant

approaches zero or becomes negative [Ciarlet 1988, pp. 155] and thus the method

proposed in [Yanovsky et al. 2008] computes transformations that are not guaranteed

to be diffeomorphic. Therefore, this work was extended in [Le Guyader and Vese

2011] to obtain a hyperelastic regularization that controls the Jacobians and ensures

diffeomorphisms.

While [Le Guyader and Vese 2011] focus on mono-modal registration, in [Droske

and Rumpf 2007] multi-modal registration was addressed by including a distance

measure that aligns normals of segmentations of the images that were jointly esti-

mated by the algorithm. The idea to match images by aligning normals of level sets

was already proposed in [Droske and Rumpf 2004] and is similar to the normalized

gradient fields distance measure [Haber and Modersitzki 2007b] employed in this

thesis, cf. Section 3.3.1. In [Droske and Rumpf 2004] the authors did not explicitly

consider gradients induced by noise in the images and thus misalignments are possible.

This problem was addressed in [Haber and Modersitzki 2007b] by introducing a noise

parameter that allows to suppress the matching of noise-related gradients. In extension

of [Droske and Rumpf 2004], Droske and Rumpf coped with the noise problem of

image gradient-based distance measures by denoising and using a joint segmentation

and registration in [Droske and Rumpf 2007].

The combination of geodesic calculus (similar to LDDMM) and hyperelastic regular-

ization was proposed in [Wirth et al. 2011, Rumpf and Wirth 2013]. Time discrete

geodesics were proposed for diffeomorphic matching of shapes in [Wirth et al. 2011],
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2. LDDMM: History and Related Work

where shapes are implicitly defined as contours of objects (multi-label segmentations).

Time discrete geodesics are obtained via a sequence of pairwise matching problems

resulting in a solution that is invariant to rigid motion of the objects. The authors also

proved that in the limit, i.e., for an infinite number of time steps, the geodesic length

between the two shapes to be matched can be obtained. Thus their time-discrete

model is “consistent with the time-continuous viscous dissipation model of geodesic

paths” [Wirth et al. 2011]. In [Rumpf and Wirth 2013] the authors derived a complete

discrete framework including exponential and logarithmic maps and time-discrete par-

allel transport based on the time discrete geodesics. Their methods were successfully

applied to two-dimensional shape matching and extrapolation.

2.2.3 Constrained Optimization Approaches

Different approaches directly tackled the problem from an optimization-based view-

point rather than by employing a physical motivation. In [Rohlfing et al. 2003] a

method was proposed that penalizes both volume expansion and compression during

registration and avoids foldings. This is achieved using a log-barrier penalty term of

the Jacobian. The motivation for using volume-preserving registration is to cope with

the registration of images that were subject to contrast agents. With the proposed

method potential confusions of contrast uptake and motion should be reduced. Using

a similar motivation, Haber and Modersitzki introduced a volume-preserving regis-

tration method [Haber and Modersitzki 2004]. In contrast to [Rohlfing et al. 2003] a

constrained numerical optimization problem is solved using the Sequential Quadratic

Programming framework [Nocedal and Wright 2006, pp. 529–561] and thus real incom-

pressibility is achieved. Arguing that volume preservation is too restrictive for a wide

range of applications, e.g., when registering cardiac images, the authors augmented

the method such that the Jacobian is constrained to a pre-defined range [Haber and

Modersitzki 2007a]. In this publication the inequality constraints are realized using a

log-barrier framework to obtain an unconstrained optimization problem. This allows

to keep the Jacobian within a user-defined interval, but also penalizes deviations from

the center of this interval [Haber and Modersitzki 2007a].

Note that ϕ : Ω → R
d with det(∇ϕ) > 0 for all x ∈ Ω are orientation-preserving

and locally invertible [Ciarlet 1988, p. 222], cf. Section 4.4 for details. However, for

global invertibility additionally global injectivity of ϕ is needed [Ciarlet 1988, pp. 222].

See [Suhr 2015, pp. 99] for a discussion of injectivity in image registration problems.
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3 Essentials of Functional Analysis, Opti-

mal Control and Image Registration

The key idea of LDDMM is to obtain diffeomorphic transformations from smooth

velocity fields. The backbone for the theoretical results on the necessary smoothness

and the induced diffeomorphisms is functional analysis. The foundations of functional

analysis needed for LDDMM are presented in Section 3.1. We give an introduction to

optimal control in Section 3.2, because we phrase image registration with LDDMM as

optimal control problem. In Section 3.3, the image registration problem is formalized.

For this purpose the terms distance measure, regularizer, as well as admissible set

of transformations are introduced and the image registration problem is phrased

mathematically.

3.1 Functional Analysis Basics

Using the textbooks [Ziemer 1989, Adams and Fournier 2003] we summarize the

essentials of functional analysis that are needed in the LDDMM framework, which is

detailed in Chapter 4 and Chapter 5. We report main results and refer to the literature

for proofs.

We start with the notation for some special sets of numbers used within this thesis.

Definition 3.1 (Sets of Numbers, adapted from [Rosen and Krithivasan 2013,

p. 118])

We denote the set of natural numbers as N, the set of real numbers as R, and the set of

complex numbers as C. Furthermore, we define N0 := N∪{0}, R>0 := {y ∈ R | y > 0},
and R≥0 := {y ∈ R | y ≥ 0}.

For the image registration problems considered in this thesis the spatial domains of

the diffeomorphic transformations and velocities coincide with the image domain.

Definition 3.2 (Image Domain Ω [Modersitzki 2009, p. 10])

Let d ∈ N be the spatial dimension of the image I. We denote the open set Ω ⊆ R
d

with Ω 6= ∅ as the (image) domain of I : Ω→ R.
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3. Essentials of Functional Analysis, Optimal Control and Image Registration

The support of the images is assumed to be compact within the domain, cf. Defini-

tion 3.12. Therefore we introduce the following notations.

Definition 3.3 (Set Notations [Adams and Fournier 2003, p. 2])

Let A ⊆ R
d be nonempty. We denote the closure of A as A. The set A is compactly

contained in Ω if A ⊂ Ω is compact, i.e., bounded and closed.

Smoothness of the velocity fields v : [0, 1]× Ω→ R
d is achieved by controlling norms

of the spatial derivatives of v(t, ·) for all t ∈ [0, 1]. This means that each v(t, ·) has to

be an element of appropriate (depending on the spatial dimension d) Sobolev spaces.

Sobolev embedding theorems are then employed to show existence of solutions of the

LDDMM image registration problem [Dupuis et al. 1998]. The following definition of

an embedding is used within this thesis.

Definition 3.4 (Embedding X →֒ Y , adapted from [Adams and Fournier 2003,

p. 9])

Let X and Y be normed spaces over R. We say X is embedded in Y and write

X →֒ Y if

1. X is a vector subspace of Y , and

2. the operator j : X → Y with j(x) = x for all x ∈ X is continuous.

If j is compact, X is compactly embedded in Y .

We will employ derivatives, e.g., for assessing smoothness of functions, numerical

optimization or describing evolution over time.

Definition 3.5 (Partial Derivatives in R
d [Adams and Fournier 2003, p. 2])

Let k ∈ N
d
0 be a multi-index with order |k| =

∑d
i=1 k

i. We abbreviate the partial

derivative with respect to the i-th coordinate as

∂i :=
∂

∂xi
.

Here, and throughout the thesis, xi denotes the i-th component of the vector x ∈ R
d.

The differential operator of order |k| is then defined as

∂k := ∂k
1

1 ∂
k2

2 . . . ∂k
d

d .

Here ∂k
i

i , i = 1, . . . , d, denotes the ki-times application of ∂i and we obtain the

identity mapping if no derivative operator is applied: ∂0
i := id.

In Definition 3.5, classical derivatives are considered. However, we do not use different

notations for classical and weak derivatives. The introduction of weak derivatives is
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beyond the scope of this thesis; for details on weak derivatives see, e.g., the preliminaries

of [Adams and Fournier 2003]. Partial derivatives are components of Jacobians and

gradients that are defined now.

Definition 3.6 (Jacobians and Gradients [Rudin 1976, p. 211])

Let u : U → V where U ⊆ R
m and V ⊆ R

n are two open sets. We denote the

components of u(x) as follows:

u(x) := (u1(x), u2(x), . . . , un(x))⊤

If u is continuously differentiable, we denote the Jacobian of u at the point x ∈ U as

Ju(x) :=




∂1u
1(x) ∂2u

1(x) . . . ∂mu
1(x)

∂1u
2(x) ∂2u

2(x) . . . ∂mu
2(x)

...
...

. . .
...

∂1u
n(x) ∂2u

n(x) . . . ∂mu
n(x)



∈ R

n×m

If n = 1, we call ∇u the gradient of u:

∇u(x) := Ju(x)⊤ = (∂1u(x), ∂2u(x), . . . , ∂mu(x))⊤

Diffeomorphisms ϕ : Ω→ Ω are at least one-time continuously differentiable, see Chap-

ter 4; we write ϕ ∈ C1(Ω,Ω):

Definition 3.7 (Space Cm [Adams and Fournier 2003, p. 10])

Let m ∈ N0 and Ω ⊆ R
d be the domain of u : Ω → R. The space of m-times

continuously differentiable functions is defined as

Cm := Cm(Ω) := {u : Ω→ R | ∂ku is continuous for |k| ≤ m}.

The special case C := C0(Ω) denotes all continuous functions and

C∞ := C∞(Ω) :=
⋂

m∈N0

Cm.

Cm
0 (Ω) ⊂ Cm with m ∈ N0 ∪ {∞} contains all m-times continuously differentiable

functions that have compact support in Ω. For functions ϕ : A→ B, where A and B

are two open subsets of Rd, ϕ is given by its componentwise mappings ϕi : Rd → R,

i = 1, . . . , d:

ϕ(x) := (ϕ1(x), ϕ2(x), . . . , ϕd(x))⊤.

The function ϕ is called m-times continuously differentiable if ϕi ∈ Cm(A) for each

i = 1, . . . , d. For clarity also the codomain is given: ϕ ∈ Cm(A,B).
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The distance measures and regularizers used in image registration usually involve

integration over space and/or time, cf., e.g., Definition 3.14 and Definition 3.16

respectively. Therefore, we briefly repeat some definitions and results on Lp spaces.

Definition and Theorem 3.1 (Lebesgue Space Lp(Ω) and Lp Norm [Adams and

Fournier 2003, pp. 23–24])

Let Ω ⊆ R
d be a domain and p ∈ R>0. The Lebesgue space Lp(Ω) contains all

measurable functions u : Ω→ R with

∫

Ω
|u(x)|pdx <∞.

Let v : Ω→ R
d, we define that v ∈ Lp(Ω,Rd) if for all component functions vi : Ω→ R

we have vi ∈ Lp(Ω), i = 1, . . . , d.

Let 1 ≤ p <∞. The following functional ‖ · ‖p : Lp(Ω)→ R≥0 is defined as Lp norm:

‖u‖p :=
(∫

Ω
|u(x)|pdx

) 1
p

.

Lp(Ω) equipped with the norm ‖ · ‖p is a Banach space.

Proof: See [Adams and Fournier 2003, pp. 29–30].

In analogy to the maximum norm in the finite-dimensional case, the extension to p =∞
involves the supremum.

Definition and Theorem 3.2 (Banach Space L∞ [Adams and Fournier 2003,

p. 27])

Given a measurable function u : Ω → R, we call u essentially bounded on Ω if a

constant K exists such that |u(x)| ≤ K almost everywhere. The greatest lower

bound of all possible K is named essential supremum of |u| on Ω and is written as

ess supx∈Ω |u(x)|. The space of all essentially bounded functions on Ω is denoted by

L∞(Ω). The functional ‖ · ‖∞ : L∞(Ω)→ R≥0 with

‖u‖∞ := ess sup
x∈Ω

|u(x)|

is a norm on L∞(Ω) and L∞(Ω) equipped with ‖ · ‖∞ is a Banach space.

Proof: See [Adams and Fournier 2003, pp. 29–30].

Hilbert spaces are essential for LDDMM as the considered velocity fields are elements of

so-called reproducing kernel Hilbert spaces V ⊂ L2(Ω,Rd)), cf. Section 4.3. Therefore,

we emphasize that L2(Ω) is a Hilbert space [Adams and Fournier 2003, p. 31]. For
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instance for the computation of the length of the shortest path in (2.3) an inner

product for vector-valued functions v ∈ V , whose components are L2 mappings, is

required.

Definition and Theorem 3.3 (Hilbert Space L2 [Adams and Fournier 2003, p. 31])

The L2 inner product 〈·, ·〉2 : L2(Ω)× L2(Ω)→ R for u, v ∈ L2(Ω) is defined as

〈u, v〉2 :=
∫

Ω
u(x)v(x)dx.

The space L2(Ω) with inner product 〈u, v〉2 and induced norm ‖u‖2 is a Hilbert space.

The induced norm is the L2 norm, cf. Definition and Theorem 3.1: ‖u‖2
2 = 〈u, u〉2.

Let u, v : Ω → R
d be elements of a Hilbert space V ⊂ L2(Ω,Rd). We define the

inner product 〈·, ·〉 : V × V → R for vector-valued functions:

〈u, v〉 :=
∫

Ω
u(x)⊤v(x)dx =

∫

Ω

d∑

i=1

ui(x)vi(x)dx.

Proof: See [Adams and Fournier 2003, pp. 24, 29–31].

If all ui, vi ∈ L2(Ω), i = 1, . . . , d, we have uivi ∈ L1(Ω) and

〈u, v〉 =
∫

Ω

d∑

i=1

ui(x)vi(x)dx =
d∑

i=1

∫

Ω
ui(x)vi(x)dx =

d∑

i=1

〈ui, vi〉2 <∞

as given by the following theorem. Moreover, in the theorem it is shown for u ∈ Lp(Ω)

and v ∈ Lq(Ω) with 1
p

+ 1
q

= 1 that uv ∈ L1(Ω).

Theorem 3.1 (Hölder’s Inequality [Adams and Fournier 2003, pp. 24, 27, 31])

Let Ω ⊂ R
d be the domain of u, v : Ω→ R. Let 1 ≤ p ≤ ∞ and

q =





p
p−1

, 1 < p <∞,
∞, p = 1,

1, p =∞.

If u ∈ Lp(Ω) and v ∈ Lq(Ω), then uv ∈ L1(Ω) and
∫

Ω
|u(x)v(x)|dx ≤ ‖u‖p‖v‖q (3.1)

If p = q = 2, the Cauchy-Schwarz inequality can be derived from the Hölder inequality:

|〈u, v〉2| ≤ ‖u‖2‖v‖2. (3.2)

Proof: See [Adams and Fournier 2003, pp. 24–25, 31].
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To generate diffeomorphic transformations the velocity fields modeled within LDDMM

need to be smooth in space [Dupuis et al. 1998]. Typically, derivatives are employed

to determine the smoothness. Furthermore, it is required that the velocity fields

have a finite kinetic energy when integrated over time [Dupuis et al. 1998]. Both

assumptions can be fulfilled by functions that are elements of Sobolev spaces. We

start with the definition of Sobolev norms and spaces and continue with an important

Sobolev embedding theorem.

Definition 3.8 (Sobolev Norm ‖ · ‖m,p and Sobolev Space Wm,p(Ω) [Adams and

Fournier 2003, pp. 59–60])

Let m ∈ N and 1 ≤ p ≤ ∞. We define the following functional ‖ · ‖m,p as Sobolev

norm:

‖u‖m,p :=





(
∑

0≤|k|≤m
‖∂ku‖pp

) 1
p

, if 1 ≤ p <∞

max
0≤|k|≤m

‖∂ku‖∞ , if p =∞.
(3.3)

The following set together with ‖ · ‖m,p is called a Sobolev space:

Wm,p(Ω) := {u ∈ Lp(Ω) | ∂ku ∈ Lp(Ω) for 0 ≤ |k| ≤ m}, (3.4)

where ∂k is the weak partial derivative. A Sobolev space that consists of elements with

compact support is given by Wm,p
0 (Ω), which is the closure of C∞

0 (Ω,R) in Wm,p(Ω).

A significant amount of research was performed on Sobolev spaces and their embeddings

in other spaces, see [Adams and Fournier 2003, p. 60] and references therein. The

necessary smoothness, i.e. the values for m and p, of the velocity fields v depends on

the spatial dimension d as can be seen in the following Sobolev embedding theorem

that is used to define an admissible space for the velocity fields, cf. [Dupuis et al. 1998].

Theorem 3.2 (Sobolev Embedding Theorem for Wm,p
0 (Ω) [Ziemer 1989, pp. 62–63])

Let Ω ⊂ R
d be a bounded domain, m ∈ N0, j ∈ N0 and p ∈ R with 1 ≤ p <∞.

1. If mp < d, then Wm,p
0 (Ω) →֒ Lq(Ω) is compact, where q < dp

d−mp
.

2. If mp > d+ jp, then Wm,p
0 (Ω) →֒ Cj(Ω) is compact.

Proof: See [Ziemer 1989, pp. 62–63].

Details on the space of admissible velocity fields are given in Chapter 4.
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3.2 Introduction to Optimal Control

3.2 Introduction to Optimal Control

In this section an introduction to optimal control problems is presented, details can

be found, e.g., in [Pontryagin et al. 1986, Clarke 1989, Hull 2003]. The connections

to LDDMM problems as well as to our LDDMM models are given in Chapter 5.

In Chapter 6 we describe the discretization of our proposed optimal control models.

In this thesis we consider optimal control problems of the following type.

EOC(x,u) := CF(x(1)) +
∫ 1

0
CR(x(t),u(t))dt u→ min (3.5)

s.t. ẋ(t) = f(x(t),u(t)), t ∈ [0, 1] and x(0) = x0. (3.6)

A precise definition is given in Section 3.2.2. Broadly speaking, by identifying φ

as x and v as u in (1.3) and (1.4) respectively, LDDMM problems can be phrased

in the form of (3.5) and (3.6). Throughout this section we use bold notation for

time-dependent functions that are vector-valued. For instance x : [0, 1]→ R
p for p ∈ N

is called state variable in optimal control and does not necessarily describe a spatial

coordinate in the general setting.

As optimal control problems can be solved using Hamiltonian dynamics [Evans 2005],

we start with the connection of Lagrangian and Hamiltonian mechanics in Section 3.2.1.

Afterwards, an exact definition of optimal control problems is presented and it is

shown how they can be solved using Hamiltonian dynamics in Section 3.2.2.

3.2.1 Relation of Calculus of Variations and Optimal Control

We follow [Arnol’d 1989] in this derivation and begin with the so-called Lagrangian L
that typically describes an energy.

Definition 3.9 (Lagrangrian [Arnol’d 1989, p. 56])

Let d ∈ N and [0, 1] be the considered time interval. A continuously differentiable

function

L : Rd × R
d × [0, 1]→ R≥0

is called Lagrangian.

Of course, other time intervals than [0, 1] are possible, but we consider this case as it is

standard in LDDMM methods. A classic example for L is the difference of kinetic and

potential energy of a particle in three-dimensional space with mass m > 0 at time t:

L : R3 × R
3 × [0, 1]→ R≥0, L(x(t),v(t), t) =

mv(t)⊤v(t)

2
− U(x(t)), (3.7)

where U : R3 → R describes the potential energy and the first summand is the kinetic

energy of the particle. The variable x(t) ∈ R
3 is the time-dependent position of the par-

ticle and v(t) ∈ R
3 is its velocity. We assume that the motion mapping x : [0, 1]→ R

3,
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3. Essentials of Functional Analysis, Optimal Control and Image Registration

which describes the positions of the particle over time, is twice continuously differ-

entiable. Analogously, we have the time-dependent velocity v : [0, 1] → R
3. It is

well-known that the infinitesimal change of position of the particle equals its veloc-

ity: ẋ(t0) = v(t0) for t0 ∈ [0, 1], where ẋ(t0) := dx
dt
|t=t0 [Arnol’d 1989, p. 7]. We will

later return to the Lagrangian given in (3.7) and derive the law of conservation of

energy from it.

We consider the functional

S(x,v) =
∫ 1

0
L(x(t),v(t), t)dt

and look for the solution (x∗,v∗) having minimal energy S(x∗,v∗) that connects

x(0) = x0 and x(1) = x1 for given x0, x1 ∈ R
d. Using v∗ = ẋ∗, the problem reads:

Problem 3.1 (Basic Calculus of Variations Problem, [Evans 2005])

Given x0 ∈ R
d and x1 ∈ R

d, find an optimal mapping x∗ : [0, 1] → R
d that along

with its derivative ẋ∗ : [0, 1] → R
d minimizes S(x, ẋ) among all x with x(0) = x0

and x(1) = x1.

It is not clear, whether a solution of Problem 3.1 exists and even if it exists it does not

have to be unique. For now, we assume that a solution exists and try to characterize

it via optimality conditions.

Necessary optimality conditions, which are called Euler-Lagrange equation (ELE), can

be derived by considering perturbations h ∈ C1([0, 1],Rd). Due to the constraints

on x, it is required that h(0) = h(1) = 0. The ELE states that the first variation of S
vanishes. Therefore, we show that S is differentiable and compute its first variation.

In the following, we use the common notation ∂L
∂x

= ∂1L and ∂L
∂ẋ

= ∂2L for the partial

derivative with respect to the first and second argument respectively.

Theorem 3.3 (Differentiability of S, [Arnol’d 1989, p. 56])

The functional S is differentiable and its first variation with respect to h ∈
C1([0, 1],Rd) is given as

δS(x, ẋ; h) =
∫ 1

0

[
∂L
∂x
− d

dt

∂L
∂ẋ

]
· h dt+

(
∂L
∂ẋ
· h
) ∣∣∣∣

1

0
. (3.8)

Proof: We follow [Arnol’d 1989, p. 56] and use the functional Γ with Γ(x) = S(x, ẋ).

δS(x, ẋ; h) = lim
ε→0

Γ(x + εh)− Γ(x)

ε
= lim

ε→0

S(x + εh, ẋ + εḣ)− S(x, ẋ)

ε

= lim
ε→0

1

ε

∫ 1

0
L(x + εh, ẋ + εḣ, t)− L(x, ẋ, t) dt

=
∫ 1

0

∂L
∂x
· h +

∂L
∂ẋ
· ḣ dt =

∫ 1

0

[
∂L
∂x
− d

dt

∂L
∂ẋ

]
· h dt+

(
∂L
∂ẋ
· h
) ∣∣∣∣

1

0
.

In the last row we used that L is continuously differentiable and integration by parts.
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A solution of Problem 3.1 has to satisfy the ELE [Arnol’d 1989, p. 57].

Definition and Theorem 3.4 (Euler-Lagrange Equation, [Arnol’d 1989, p. 57])

The variation δS(x, ẋ,h) = 0 for X := {x(t) | t ∈ [0, 1]} ⊂ R
d and arbitrary

h ∈ C1([0, 1],Rd) with h(0) = h(1) = 0 if and only if

∂L
∂x
− d

dt

∂L
∂ẋ

= 0 along the curve X. (3.9)

Equation (3.9) is called Euler-Lagrange equation (ELE).

Proof: We follow [Arnol’d 1989, p. 56]: Due to the continuity of ∂L
∂x
− d

dt
∂L
∂ẋ

the first

integral in (3.8) vanishes if and only if (3.9) holds. Furthermore, we have ∂L
∂ẋ
· h|10 = 0

due to the boundary conditions h(0) = h(1) = 0.

For a fixed time t ∈ [0, 1], (3.9) describes a system of d second-order equations,

depending on 2d constants x(t) ∈ R
d and ẋ(t) ∈ R

d. Now we show how this system can

be transformed into an equivalent system of 2d first-order equations called Hamiltonian

dynamics. For the derivation we employ an approach typically used in mechanics.

Therefore, the following notation is used.

Definition 3.10 (Generalized Coordinates, Velocities, Momenta [Arnol’d 1989,

p. 60])

The Lagrangian energy in mechanics is given as L(x, ẋ, t) = T (x, ẋ, t)−U(x, t), where

the mapping x : [0, 1]→ R
d describes the generalized coordinates and ẋ : [0, 1]→ R

d

the generalized velocities. The generalized momenta are defined as λ : [0, 1] → R
d,

where

λi :=
∂L
∂ẋi

, i = 1, . . . , d (3.10)

and ∂L
∂xi denotes the generalized forces in the i-th spatial direction.

The function T is typically describing the kinetic energy, whereas U is the potential en-

ergy. In (3.7) we have T (x(t), ẋ(t), t) = 0.5m ẋ(t)⊤ẋ(t). The ELE for this Lagrangian

is the description of motions in Newtonian mechanical systems [Arnol’d 1989, p. 59].

d

dt
(mẋ) +

∂U

∂x
= mẍ +

∂U

∂x
= 0, (3.11)

where ẍ : [0, 1]→ R
d is the acceleration and ∂U

∂x
= −∂L

∂x
is according to Definition 3.10

a force. As in many cases the action x satisfying the ELEs is not only extremal, but

even results in a minimal value of S, the equivalence of the motion equations and the

ELE is called Hamilton’s form of the principle of least motion [Arnol’d 1989, p. 60].
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Using (3.10) the ELE can be phrased as

∂L
∂x
− d

dt
λ = 0⇔ ∂L

∂x
= λ̇. (3.12)

If no force is exerted in the i-th component, i.e., ∂L
∂xi = 0, then xi is called cyclic [Arnol’d

1989, p. 61]. Thus a cyclic xi does not enter into the Lagrangian, which results in the

conservation of its corresponding momentum λi. This follows directly from (3.12):

d

dt
λi(t) = 0 for all t ∈ [0, 1]⇒ λi(t) = c ∈ R for all t ∈ [0, 1].

In the following we will use the Legendre transform to obtain the so-called Hamilto-

nian H from the Lagrangian L. We assume that the functions to which we apply the

Legendre transform are strictly convex, but this assumption can be dropped when its

generalization – the Legendre-Fenchel transformation – is used. The Legende-Fenchel

transform is well-known in convex analysis and can also be applied to non-convex

functions and functions that are convex but not (globally) differentiable [Clarke 1989,

p. 67]. However, for our purposes it suffices to consider strictly convex functions and

thus we employ the Legendre transform.

To motivate the Legendre transform, we start with a one-dimensional, strictly convex

function f ∈ C2(R,R) with f ′′(x) > 0 for all x ∈ R. The Legendre transform can be

used to obtain a function g : R→ R from f such that g carries the same information

as f , but depends on the derivative f ′ [Zia et al. 2009]. Mathematically, the same

information is guaranteed as f ′′ > 0 and thus f ′ is strictly monotonic. Denoting the

slope as a function s : R → R with s := f ′, it follows that there exists a bijective

mapping between the slope s(x) of the tangent at f(x) and the position x for all x ∈ R.

Accordingly we can express x as x(s).

The Legendre transform g of f is then given as [Zia et al. 2009]

g(s) = sx(s)− f(x(s)). (3.13)

Analogously, we could also write that f with f(x) = s(x)x− g(s(x)) is the Legendre

transform of g. Note that only one independent variable, i.e. either x or s, exists [Zia

et al. 2009]. In particular, by differentiating f and g respectively using the chain rule

we retain our definitions s(x) = f ′(x) and x(s) = g′(s). The Legendre transform for

multivariate functions is the following straightforward extension.
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Definition 3.11 (Legendre Transform [Arnol’d 1989, p. 64])

Let f : Rd → R be a strictly convex function. The Legendre transform of f is the

function g : Rd → R with

g(a) = 〈a,b〉 − f(b) and b such that a = ∇f(b). (3.14)

In (3.14) 〈·, ·〉 denotes an inner product.

In this section we use the Euclidean inner product 〈a,b〉 =
∑d
i=1 a

ibi for a, b ∈ R
d.

In contrast, for the derivation of the Hamiltonian of the continuous LDDMM problem

derived in Section 5.2, 〈·, ·〉 is the inner product of functions vt, Mt ∈ L2(Ω,Rd)

for t ∈ [0, 1].

A useful property of the Legendre transform is that it is involutive, i.e., it is its own

inverse transform: If g is the Legendre transform of f , then f is the Legendre transform

of g [Arnol’d 1989, p. 63].

The Legendre transform is useful if the derivative of a function makes it easier to

describe a mathematical problem than the description in the original coordinates. This

is the case for T within the Lagrangian energy that typically is determined by the

derivative with respect to ẋ, i.e. the generalized momentum λ = ∂L
∂ẋ

. Now we have all

tools to show the equivalence of ELE and the Hamiltonian dynamics.

Definition and Theorem 3.5 (Equivalence of ELE and Hamilton’s equa-

tions [Arnol’d 1989, p. 65])

Let L : Rd × R
d × [0, 1] → R be a Lagrangian that is convex with respect to the

second argument (ẋ). The Euler-Lagrange equations

λ̇ =
∂L
∂x

, where λ :=
∂L

∂ẋ

are equivalent to the system of 2d first-order equations

ẋ =
∂H
∂λ

, λ̇ = −∂H
∂x

, (3.15)

where H : Rd × R
d × [0, 1]→ R is the Legendre transform of L with respect to the

second argument:

H(x(t),λ(t), t) = 〈λ(t), ẋ(x(t),λ(t))〉 − L(x(t), ẋ(x(t),λ(t)), t). (3.16)

The function H is called Hamiltonian and (3.15) are referred to as Hamilton’s

equations or Hamiltonian dynamics.
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Proof: We follow [Evans 2005] and compute

∂1H(x,λ, t) = λ⊤∂1ẋ(x,λ)− ∂1L(x, ẋ(x,λ), t)−

=( ∂L

∂ẋ
)

⊤

=λ⊤

︷ ︸︸ ︷
(∂2L(x, ẋ(x,λ), t))⊤ ∂1ẋ(x,λ)

= −∂1L(x, ẋ(x,λ), t),

∂2H(x,λ, t) = ẋ(x,λ) + λ⊤∂2ẋ(x,λ)−
=λ⊤

︷ ︸︸ ︷
(∂2L(x, ẋ(x,λ), t))⊤ ∂2ẋ(x,λ) = ẋ(x,λ),

where we omitted the (t) of x(t) and λ(t) and ∂i denotes the partial derivative with

respect to the i-th argument for i = 1, 2. The last row of the equation array is the

first Hamilton equation

ẋ = ∂2H =
∂H
∂λ

.

Using (3.12) and ∂1H = −∂1L we obtain the second Hamilton equation

λ̇ = −∂1H = −∂H
∂x

.

Note that this theorem is not restricted to the Lagrangian equations of mechanics, but

applies to all variational problems involving a Lagrangian [Arnol’d 1989, p. 66]. For

the Lagrangian used in mechanics L = T − U it can be shown that the Hamiltonian

is the total energy H = T + U [Zia et al. 2009]. Therefore, if the potential energy U

vanishes, we have L = H. We return to our example given in (3.7) for which the ELE

is given in (3.11) and compute its Hamiltonian dynamics using v = ẋ. To avoid an

excess of notation, we drop the time argument (t) of x, v and λ for the remainder of

this section. By defining the acceleration a : [0, 1]→ R
d as a := ẍ = v̇ the ELE reads

ma = −∂U
∂x

for all t ∈ [0, 1]. (3.17)

Thus the acceleration is proportional to the (negative) change of the potential energy U .

Using the momentum λ = ∂L
∂v

= mv, the Hamiltonian is given as

H(x,λ, t) = λ⊤v−
(
mv⊤v

2
− U(x)

)
=
mv⊤v

2
+ U(x) =

λ⊤λ

2m
+ U(x)

⇒ −∂H
∂x

= −∂U
∂x

= λ̇ = ma and
∂H
∂λ

=
λ

m
= v = ẋ. (3.18)

The equations in (3.18) describe the well-known equations of motion in Newtonian

mechanics [Arnol’d 1989, p. 8]. If we substitute a = v̇ = ẍ into (3.17), we see that the

ELE describes a system of d second-order ODEs, while in (3.18) 2d first-order ODEs

have to be solved. From the above Hamiltonian the law of conservation of energy can
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be deduced:

d

dt
H(x,λ, t) =

d

dt

(
λ⊤λ

2m
+ U(x)

)
=
λ̇⊤λ

2m
+
λ⊤λ̇

2m
+
∂U

∂x
· ẋ (3.18)

=
λ̇⊤λ

m
− (λ̇)⊤ λ

m
= 0.

Hence, the total energy H is constant over time. This holds for every Hamiltonian

that is not explicitly dependent on t as shown in the following theorem.

Theorem 3.4 (Conservation of Hamiltonian Energy, [Arnol’d 1989, p. 67])

Let H be a Hamiltonian as given in Definition and Theorem 3.5. Then dH
dt

= ∂H
∂t

.

Furthermore, for a system whose H does not depend explicitly on time (i.e., ∂H
∂t

= 0)

the law of conservation of the Hamiltonian energy holds: H(x(t),λ(t), t) = const for

all t ∈ [0, 1].

Proof: Cf. [Arnol’d 1989, p. 67]:

dH
dt

=
∂H
∂x
· ẋ +

∂H
∂λ
· λ̇+

∂H
∂t

(3.15)
=

∂H
∂x
· ∂H
∂λ

+
∂H
∂λ
·
(
−∂H
∂x

)
+
∂H
∂t

=
∂H
∂t

.

3.2.2 Definition and Solution of Optimal Control Problems

In this section we transfer the results from the calculus of variations to optimal control

problems. While the calculus of variations problems considered by now were mainly

solved to study the laws of nature, the goal of optimal control is to model the influence

of variables on the investigated systems and find optimal control variables [Clarke

1989, p. 67]. Thus, we do not assume that the state variable x : [0, 1]→ R
p is given,

but model it to be dependent on the so-called control variables u(t) ∈ R
q for t ∈ [0, 1].

Then the optimal control u∗ : [0, 1]→ R
q should be determined to achieve a minimal

energy subject to the constraint

ẋ(t) = f(x(t),u(t)) for all t ∈ [0, 1].

This is summarized in the following problem.

41



3. Essentials of Functional Analysis, Optimal Control and Image Registration

Problem 3.2 (Optimal Control Problem with Initial Conditions and Fixed Time,

adapted from [Hull 2003, p. 11])

Let p, q ∈ N, x : [0, 1] → R
p and u : [0, 1] → U ⊂ R

q. We consider the state vari-

ables x(t) ∈ R
p and the control variables u(t) ∈ R

q for all t ∈ [0, 1], where the change

of x over time is determined by f ∈ C1(Rp × U,Rp). Furthermore, a given initial

state x0 ∈ R
p defines x(0).

The optimal control problem is to find admissible control variables u∗(t), t ∈ [0, 1] and

corresponding states x∗(t), t ∈ [0, 1] such that the energy EOC is minimized. This en-

ergy is also called performance index and is composed of a terminal cost CF : Rp → R

and a running cost CR : Rp × R
q → R.

arg min
u

EOC(x,u) (3.19)

s.t. ẋ(t) = f(x(t),u(t)), t ∈ [0, 1] and x(0) = x0, (3.20)

with EOC(x,u) := CF(x(1)) +
∫ 1

0
CR(x(t),u(t))dt. (3.21)

The evolution of x according to (3.20) is called system dynamics.

Following [Pontryagin et al. 1986, pp. 9] we restrict the discussion to admissible

controls u : [0, 1] → U with the so-called control region U ⊂ R
q. We say that u

is admissible if it is piecewise continuous with a finite number of discontinuities

within (0, 1) and continuous at {0, 1}. Note that (3.20) is autonomous, i.e., f has no

explicit time dependence. Therefore, we can apply Theorem 3.4 and obtain that the

Hamiltonian energy, which is based on f , is constant over time.

It can be shown that under the given assumptions (3.20) has a unique solu-

tion x : [0, 1]→ R
p [Pontryagin et al. 1986, p. 12]. This x is differentiable for t ∈ [0, 1]

for which u is continuous, and continuous at discontinuities of u [Pontryagin et al.

1986, p. 12]. We identify CR as the Lagrangian of the problem and assume that it is

continuously differentiable, cf. Definition 3.9. Additionally, we assume that CF is

continuously differentiable.

Now we can define the Hamiltonian used in optimal control problems and derive the

Hamiltonian dynamics.
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Definition and Theorem 3.6 (Hamiltonian Dynamics in Optimal Control, adapted

from [Pontryagin et al. 1986, p. 18])

Consider Problem 3.2 and the co-states λ : [0, 1]→ R
p, which are also called adjoint

variables. We use the notation ut := u(t), xt := x(t) and λt := λ(t). The control

theory Hamiltonian is defined for all t ∈ [0, 1] as

H : Rp × R
q × R

p → R, with H(xt,ut,λt) := λ⊤
t f(xt,ut) + CR(xt,ut). (3.22)

Then the following Hamiltonian dynamics hold for all t ∈ [0, 1]:

ẋt =
∂H
∂λ

(xt,ut,λt) = f(xt,ut), (3.23)

λ̇t = −∂H
∂x

(xt,ut,λt) = −∂f
∂x

(xt,ut)λt −
∂CR

∂x
(xt,ut). (3.24)

The equations in (3.23) are called state equations and (3.24) are referred to as adjoint

equations.

Proof: Use Definition and Theorem 3.5 and straightforward computations.

In (3.22) we see that H can be interpreted as a Lagrange function for the objective CR

and the Lagrange multipliers λt, t ∈ [0, 1]. Furthermore, we remark that λ is like x

continuously differentiable for all t for which u is continuous and λ is continuous if u

is discontinuous [Pontryagin et al. 1986, p. 19]. Now, we provide necessary conditions

for an optimal u∗. These conditions were historically named Pontryagin maximum

principle, cf. [Pontryagin et al. 1986, p. 19]. However, we want to minimize EOC and

thus consider the infimum to obtain the Pontryagin minimum principle.

Theorem 3.5 (Pontryagin Minimum Principle, adapted from [Pontryagin et al. 1986,

pp. 19])

Let u∗ : [0, 1]→ U be an admissible solution of Problem 3.2 and x∗ its corresponding

state. Then there exists a continuous co-state λ∗(t) 6= 0 for all t ∈ [0, 1] such that:

1. For every t ∈ [0, 1] the Hamiltonian H attains its minimum at u∗(t):

H(x∗(t),u∗(t),λ∗(t)) = inf
u∈U
H(x∗(t),u,λ∗(t)). (3.25)

2. Equations (3.23) and (3.24) are satisfied.

3. At terminal time t = 1 the co-state is determined as

λ∗(1) = ∇CF(x∗(1)). (3.26)

Furthermore, the mapping t 7→ H(x∗(t),u∗(t),λ∗(t)) is constant.
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Proof: Provided that (3.23) and (3.24) hold and because H has no explicit time-

dependence, Theorem 3.4 can be applied to show that t 7→ H(x∗(t),u∗(t),λ∗(t)) is

constant. We only show (3.23), (3.24), and (3.26) and refer for the rest of the proof

to [Pontryagin et al. 1986]. We rewrite EOC using H, f(x(t),u(t)) = ẋ(t), and the

notation xt = x(t)

EOC = CF(x1) +
∫ 1

0
CR(xt,ut)dt = CF(x1) +

∫ 1

0
H(xt,ut,λt)− λ⊤

t ẋtdt.

Following [Hull 2003, pp. 142], we compute the variation of EOC with respect to δx
t , δu

t

and δλt for t ∈ [0, 1]:

δEOC = ∇CF(x1) · δx
1 +

∫ 1

0

∂H
∂x
· δx

t +
∂H
∂u
· δu

t +

(
∂H
∂λ
− ẋt

)
· δλt − λt ·

d

dt
δx
t dt,

where we omitted the arguments (xt,ut,λt) of H for better readability. As for the

optimum δEOC = 0 has to hold, we obtain as necessary conditions

∂H
∂u

= 0 and
∂H
∂λ
− ẋt = 0

The latter equation in combination with f(x(t),u(t)) = ẋ(t) yields (3.23). It remains

to show that the variation with respect to δx
t vanishes:

0 = ∇CF(x1) · δx
1 +

∫ 1

0

∂H
∂x
· δx

t − λt ·
d

dt
δx
t dt

(∗)⇔ 0 = ∇CF(x1) · δx
1 − λt · δx

t |1t=0 +
∫ 1

0

(
∂H
∂x

+ λ̇t

)
· δx

t dt

(∗∗)⇔ 0 =
(
∇CF(x1)− λ1

)
· δx

1 +
∫ 1

0

(
∂H
∂x

+ λ̇t

)
· δx

t dt.

In (∗) integration by parts was used and in (∗∗) we used δx
t (0) = 0 because otherwise

the initial condition x0 = x0 would not be fulfilled. From the last equation (3.24)

and (3.26) follow.

In Chapter 6 we use [Hager 2000] for the derivation of the discretized adjoint

equations. In this paper so-called Mayer problems are considered that differ

slightly from the Bolza problem given in Problem 3.2 [Hull 2003, p. 11]. For

Mayer problems the performance index (energy) only depends on the terminal

cost EOC(x,u) = CF(x(1)) [Hull 2003, p. 11]. This is no problem as shown in the

following remark.
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Remark 3.1 (Equivalence of Mayer and Bolza Problems)

The results of [Hager 2000] still apply to our LDDMM problems and the results

of this section hold because Mayer and Bolza problems can be converted into each

other [D’Alessandro 2007, p. 159]. The value of the running cost is integrated

as additional component to the state. Hence, x(t) ∈ R
p+1 with xi(t) = xi(t) for

all i = 1, . . . , p and t ∈ [0, 1]. As

∫ 0

0
CR(x(t),u(t))dt = 0,

we have the initial condition xp+1(0) = 0. The evolution of the state x is determined

by f : Rp+1 × R
q → R

p+1 as follows:

ẋ(t) = f(x(t),u(t)) :=


 f(x(t),u(t))

CR(x(t),u(t))


 , t ∈ [0, 1] and x(0) = x0 :=


x0

0


 .

Then the objective functional (3.21) can be written as

EOC(x(1)) = CF(x(1)) + xp+1(1). (3.27)

To compute the Hamiltonian dynamics the Hamiltonian is required. As there is no

running cost anymore, the Hamiltonian has the following form:

H : Rp+1 × R
q × R

p+1 → R, H(x(t),u(t),λ(t)) = λ(t)⊤f(x(t),u(t)).

In analogy to the extended state we have the extended co-state λ : [0, 1] → R
p+1.

With the above H the equation ẋ = ∂H
∂λ

= f is satisfied. The adjoint equations (3.24)

are

λ̇(t) = −∂H
∂x

= −∂f
∂x
λ(t) for all t ∈ [0, 1].

But, as all component functions of f do not depend on xp+1(t), we have

∂f

∂xp+1
= 0⇒ λ̇

p+1
(t) = 0 for all t ∈ [0, 1]⇒ λp+1 = const.

Due to the terminal condition on the co-state given in (3.26)

λp+1(1) =
∂EOC

∂xp+1
(x(1))

(3.27)
= 1⇒ λp+1(t) = 1 for all t ∈ [0, 1].

The extended Hamiltonian coincides with the Hamiltonian from the Bolza case:

H(xt,ut,λt) = λ⊤
t f(xt,ut) = λ⊤

t f(xt,ut) +

=λp+1
t︷︸︸︷
1 ·

=(f(xt,ut))p+1

︷ ︸︸ ︷
CR(xt,ut) = H(xt,ut,λt).
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In Remark 3.1 we have shown that the Hamiltonians of Bolza and Mayer problems are

equal. Hence, the Hamiltonian dynamics are identical and Theorem 3.5 can be used

for both types of problems. For ease of representation, we change the notation for the

Mayer problem back to the one used in Problem 3.2, i.e., we use x, λ, p and f instead

of x, λ, p+ 1 and f . Replacing the energy in Problem 3.2 by (3.27), we obtain the

Mayer problem formulation of optimal control.

Problem 3.3 (Optimal Control Problem with Initial Conditions and Fixed

Time (Mayer Form), adapted from [Hull 2003, p. 11])

Let x : [0, 1]→ R
p and u : [0, 1]→ R

q, as well as f : Rp × R
q → R

p. Given x0 ∈ R
p,

the optimal control problem is to find admissible u∗(t), t ∈ [0, 1] and correspond-

ing x∗(t), t ∈ [0, 1] such that the energy EOC : Rp → R≥0 is minimized:

arg min
u

EOC(x(1)) (3.28)

s.t. ẋ(t) = f(x(t),u(t)), t ∈ [0, 1] and x(0) = x0. (3.29)

Now we describe how the stated optimal control problems can actually be solved. As

the problems typically cannot be solved analytically, a numerical solution is required.

There are numerous methods for the numerical solution of optimal control problems,

see, e.g., the references in [McAsey et al. 2012]. We use the iterative Forward-Backward

Sweep (FBS) method [Lenhart and Workman 2007, pp. 49] that relies on the solution

of the Hamiltonian dynamics using the Pontryagin minimum principle. This method

is also referred to as back-propagation in machine learning [LeCun 1988] and is related

to the reverse mode in automatic differentiation [Griewank and Walther 2008, pp. 37].

The FBS is thus a well-established and often used technique. Furthermore, it is fast

and easy to implement [McAsey et al. 2012] making it our choice for solving optimal

control problems. The FBS (when applied to time-continuous problems) converges

if the functions of the right-hand side of the Hamiltonian dynamics given in (3.23)

and (3.24) are Lipschitz continuous [McAsey et al. 2012]. Using the same assumptions,

convergence was also shown for time-discrete problems if, e.g., RK integration is

used [McAsey et al. 2012]. In Section 6.2 time-discrete problems are discussed and

FBS algorithms for LDDMM registration with the shooting and relaxation approach

are presented. Here, we briefly introduce the FBS algorithm and refer for details

to [Lenhart and Workman 2007].

In addition to the Hamiltonian dynamics we require a descent direction for the discrete

control variables such that when the variables are updated the energy EOC decreases. As

we assumed that both the terminal cost CF and the running cost CR are differentiable,

we can apply derivative-based optimization using the gradient of the energy with
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respect to the control variables u that is denoted by ∇uEOC. This derivative depends

on the current iterates for the states, co-states and controls, cf. Section 6.2. Using

a time discretization with N ∈ N time steps, where tk := kht for k = 0, 1, . . . , N − 1

and ht := 1
N−1

, we obtain the time-discrete states xk, co-states λk and controls uk

for k = 0, . . . , N − 1. We collect these variables in the following arrays:

X = (xk)
N−1
k=0 ∈ R

p×N , Λ = (λk)
N−1
k=0 ∈ R

p×N , U = (uk)
N−1
k=0 ∈ R

q×N .

The FBS method used in this thesis is adapted from [Lenhart and Workman 2007, p. 50]

and given in Algorithm 1.

Algorithm 1 Forward-Backward Sweep for Optimal Control Problems

Input: Initial state x0 ∈ R
p

Output: Optimal arrays U ∈ R
q×N , X ∈ R

p×N and Λ ∈ R
p×N

1: Initialize the array of controls U ∈ R
q×N , e.g. as U← 0.

2: Set x0 ← x0.
3: while Not converged do

4: Solve the state equation ẋ = f(x,u) forward in time to obtain the current X.
5: Compute the final condition of the co-state λN−1 ← ∇CF(xN−1).
6: Solve the adjoint equation (3.24) backward in time to obtain the current Λ.
7: Set U← U + δU, where the update δU is obtained using ∇uEOC(X,U,Λ).
8: end while

We postpone the description of the numerical solution of the differential equa-

tions (Hamiltonian dynamics) in lines 4 and 6 of Algorithm 1 to Section 6.2. Further-

more, the description of the numerical optimization methods that are used to obtain

the update δU as well as the convergence criteria are given in Chapter 7. In Section 5.2

we discuss the use of Hamiltonian dynamics for LDDMM and propose our optimal

control models for LDDMM image registration in Section 5.4. Now, we give a detailed

description of image registration and how it can be phrased mathematically.

3.3 Image Registration

Image registration is an image analysis task that establishes spatial correspondences

between images [Goshtasby 2012, p. 1]. In medical imaging, image registration is

inevitable for applications such as the alignment of pre-, inter-, and/or post-intervention

images or the fusion of data acquired from different and complementary imaging

devices [Modersitzki 2009, p. 1].

Image registration is not limited to medical imaging, but is important for a wide range

of applications like astronomy, biology, criminology, genetics, cartography, computer
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vision, and surveillance [Modersitzki 2009, p. 1]. Consequently, a vast number of

approaches and techniques is available. A complete survey of registration methods is

beyond the scope of this thesis; the interested reader is referred to the review papers and

books [Brown 1992, Fischer and Modersitzki 2008, Fitzpatrick et al. 2000, Goshtasby

2012, Hill et al. 2001, Hajnal et al. 2001, Maintz and Viergever 1998, Modersitzki

2004, Modersitzki 2009, Ruthotto and Modersitzki 2015, Scherzer 2006, Sotiras et al.

2013, van den Elsen et al. 1993, Zitová and Flusser 2003] and references therein.

We restrict the discussion to diffeomorphic image registration methods and related

work that was already reviewed in Section 2.2. In particular, we focus on the LDDMM

method and describe its building blocks: distance measure D (see Section 3.3.1),

regularizer S, and set of admissible transformations A (see Section 3.3.2).

Starting from the image orbit model given in Section 2.1 the goal of LDDMM is to find

a diffeomorphic transformation ϕ such that for two given images I0 ∈ O and I1 ∈ O
the alignment I0 ◦ ϕ = I1 is obtained [Beg et al. 2005]. Note that we changed the

notation from ϕ−1 used in [Beg et al. 2005] to ϕ. This is justifiable because the

diffeomorphic transformations on Ω have a group structure and the existence of inverse

transformations is always guaranteed, see Chapter 4. The group structure also allows

to equivalently phrase the goal of LDDMM as finding ϕ−1 such that I0 = I1 ◦ ϕ−1.

However, for ease of presentation and in accordance with most image registration

methods we use ϕ to denote the sought transformation. We refer to the image I0 that

should be transformed as template, source or moving image [Sotiras et al. 2013]. After

a successful registration the deformed template image I0 ◦ ϕ should be equal to I1,

which is called reference, target or fixed image [Sotiras et al. 2013]. In the CA model

given in [Grenander and Miller 1998] and pioneered in [Grenander 1970, Grenander

1994], which forms the basis for LDDMM methods like [Beg et al. 2005], it is not

relevant (due to the group structure) which image is the template and which is the

reference because both images to be aligned are elements of the same orbit O.

However, for application to real world problems the assumption I0 ◦ ϕ = I1 is not

realistic, e.g., because the images are typically corrupted by noise [Modersitzki 2009,

p. 33]. Therefore, the usual way to phrase this problem is to find a reasonable ϕ such

that I0 ◦ ϕ and I1 are similar [Modersitzki 2009, p. 1]. Distance measures are used to

determine the similarity of two images as detailed in Section 3.3.1.

In this thesis we cope with the registration of lung CT images and other gray-

valued images. This is also the task for most LDDMM methods, cf., e.g., [Beg et al.

2005, Vialard et al. 2012]. However, we would like to remark that many other types

of images like RGB or tensor images as well as methods for the registration of those

image types exist, see, e.g., [Mileva et al. 2007] and [Cao et al. 2005], respectively.
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Nevertheless, with the lung CT registration in mind we confine to gray-value image

registration.

Definition 3.12 (Gray-valued Images, adapted from [Modersitzki 2004, Definition

3.1])

Let d ∈ N be the spatial dimension of the considered images. We define the set of

d-dimensional gray-valued images with compact support in the domain Ω ⊆ R
d as

I := {I : Ω→ R | supp(I) is compact} . (3.30)

The image registration task of finding ϕ such that I0◦ϕ is similar to I1, where ϕ should

be a reasonable transformation, is usually solved by minimization of a (constrained)

optimization problem [Modersitzki 2009, p. 9]. This is also the case for LDDMM

methods with the difference that we are looking for a time-dependent velocity field v

that generates a diffeomorphic transformation ϕ = ϕ(v) [Beg et al. 2005].

Problem 3.4 (LDDMM Image Registration Problem, adapted from [Beg et al.

2005, Modersitzki 2009])

Let I0, I1 ∈ I, and σ ∈ R>0. The goal of LDDMM image registration is to

find an optimal time-dependent velocity field v∗ : [0, 1]× Ω→ R
d that generates a

diffeomorphic transformation ϕ∗ : Ω → Ω by solving the constrained optimization

problem

arg min
v
E(v, ϕ) s. t. ϕ(v) ∈ A, (3.31)

with E(v, ϕ) :=
1

σ2
D(I0 ◦ ϕ, I1) + S(v). (3.32)

Here, A denotes the set of admissible transformations, which depends on the specific

registration problem.

For example, A could coincide with the group of diffeomorphisms Diff(Ω) that is

detailed in Section 4.1. The objective functional E is a weighted sum of the distance

measure D and the regularizer S. The weighting 1/σ2 allows to balance the influence

of the data fit D and the regularizer S. Note that instead of weighting D in (3.31)

equivalently a weighting of S or both D and S could be used. We decided for the

weighting of D with 1/σ2 to obtain an objective functional that is similar to objective

functionals used in most LDDMM papers, see, e.g., [Beg et al. 2005].

In the upcoming sections we give details on the distance measure D (Definition 3.13), the

regularizer S (Definition 3.16), and define the set of admissible transformations A (Def-

inition 3.17).
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3.3.1 Distance Measures

As the task of image registration is to align images, a metric is needed for quantifica-

tion of the image matching. This metric is usually called distance measure in image

registration and represents a data fit that describes how similar two images are [Mod-

ersitzki 2009, p. 12]. We start with a definition of differentiable distance measures and

afterwards define the two particular distance measures that are used within this thesis.

These distance measures are called Sum of Squared Differences (SSD) and Normalized

Gradient Fields (NGF). At the end of this section we discuss advantages and disadvan-

tages of SSD and NGF. The appropriate distance measure depends on the data to be

registered and consequently there exists a variety of distance measures; unfortunately,

the discussion of other distance measures than SSD and NGF is beyond the scope

of this thesis and the interested reader is referred to [Modersitzki 2009, Sotiras et al.

2013].

We aim to solve optimization problems like Problem 3.4 using first- or second-order

derivative-based methods and thus distance measures are required that are at least

twice continuously differentiable. Furthermore, in analogy to [Modersitzki 2009, p. 109],

we assume that D is composed of a residual function r and an outer function ψ. This

formulation allows for a Gauß-Newton optimization [Nocedal and Wright 2006, pp. 254],

which is advocated for image registration in [Modersitzki 2009, pp. 77–79, 109]. Gauß-

Newton optimization was employed in the LDDMM context, e.g., in [Ashburner and

Friston 2011, Mang and Ruthotto 2017].

The distance measure is defined as follows.

Definition 3.13 (Distance Measure for Images [Modersitzki 2009, p. 109])

We call D : I × I → R≥0 a distance measure. Let A, B ∈ I, we define

D(A,B) := ψ(r(A,B)) (3.33)

with residual function r and outer function ψ, which are both assumed to be twice

continuously differentiable.

The exact definition of r and ψ depends on the specific distance measure. We give the

well-known distance measure SSD as first example [Modersitzki 2009, p. 71].

Definition 3.14 (Sum of Squared Differences (SSD) [Modersitzki 2009, p. 71])

For two gray-valued images A, B ∈ I the SSD is defined as

DSSD(A,B) := ψSSD(rSSD(A,B)) := 1
2

∫
Ω(A(x)−B(x))2dx

with ψSSD(r) := 1
2

∫
Ω r(x)2dx and rSSD(A,B) := A−B.



 (3.34)
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As second distance measure we consider NGF [Haber and Modersitzki 2007b]. NGF

indicates that images are similar, if their gradients are aligned.

Definition 3.15 (Normalized Gradient Fields (NGF) [Haber and Modersitzki 2007b,

Rühaak et al. 2013])

Let A, B ∈ I with existing gradients ∇A(x), ∇B(x) for all x ∈ Ω and η ∈ R>0.

The NGF distance measure is defined as

DNGF(A,B) := ψNGF(rNGF(A,B)) :=
∫

Ω 1− 〈∇A(x),∇B(x)〉2
η

‖∇A(x)‖2
η‖∇B(x)‖2

η
dx

with ψNGF(r) :=
∫

Ω 1− r(x)2dx, rNGF(A,B) := 〈∇A(x),∇B(x)〉η

‖∇A(x)‖η‖∇B(x)‖η

and for u, v ∈ R
d : 〈u,v〉η := η2 +

∑d
i=1 u

ivi, ‖u‖2
η := 〈u,u〉η.





(3.35)

The parameter η is called edge parameter [Modersitzki 2009, p. 107] as it determines

which gradients represent edges in the image and which gradients are noise-related

and should be neglected when computing image similarity. We employ either SSD or

NGF based on the data to be registered.

The most often used distance measure in LDDMM approaches is SSD, see, e.g. [Beg

et al. 2005, Vialard et al. 2012]. SSD is well-suited for mono-modal image registration,

i.e., for images that were acquired with the same device and parameters, which should

have (apart from noise or other image artifacts) similar intensities for corresponding

points [Modersitzki 2009, p. 97]. However, the assumption that corresponding points

have corresponding intensities might be a drawback for multi-modal registration

problems [Modersitzki 2009, p. 97].

Our main application is the registration of lung CT images, see Figure 3.1 for a typical

dataset in a coronal view. Although this is no classical multi-modal registration

problem, intensity changes between inhale and exhale scans exist and should not be

neglected. This can be seen when comparing Figure 3.1a and Figure 3.1b and we can

thus deduce that corresponding points do not necessarily have the same intensity in

template and reference image. Intensity changes occur because the density of lung

tissue varies depending on the filling of the lungs with air [Guerrero et al. 2006]. This

influences the absorption of X-rays and thereby the intensities/HU of the images [Buzug

2008, pp. 475]. In Figure 3.2 the histograms of two lung CT scans (DIR-Lab COPD

dataset 4 [Castillo et al. 2013]) acquired during maximum inhale (blue) and maximum

exhale phase (black) are plotted. Note the different ranges of HU and the different

maxima in the histograms. For the inhale scan a local maximum at about 50 HU can

be seen in Figure 3.2b, which is the blood window in CT images [Buzug 2008, p. 477]

and thus corresponds to vessels within the lungs. This maximum is not clearly visible

in the histogram of the exhale image because the scan contains more noise than the

inhale image, cf. Section 8.2.
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(a) Inhale scan I1 (b) Exhale scan I0 (c) 1−χrNGF(I0,I1)<0.99

for η = 1000
(d) 1−χrNGF(I0,I1)<0.99

for η = 100

Figure 3.1: Coronal visualization of lung CT images generated from the DIR-Lab
COPD dataset 1 [Castillo et al. 2013]. Inhale (a) and exhale (b) images
were subject to the same windowing; note the intensity change, which is
also demonstrated by the mean intensity within the lung of the inhale
scan (−878 HU) and the exhale scan (−812 HU) respectively. In the
NGF residual images η = 100 (c) and η = 1000 (d) were used. In (c)
and (d) binary values 1 − χr<0.99 are visualized where χ is an indica-
tor function. Accordingly, black pixels correspond to regions where the
NGF residual indicates a mismatch (χrNGF(x)(I0,I1)<0.99 = 1) and white
pixels (χrNGF(x)(I0,I1)<0.99 = 0) indicate that the regions match. This
demonstrates that for larger η more gradients are considered noise-related
and discarded for the matching process.
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(a) Full histograms

-1000 -800 -600 -400 -200 0 200

Hounsfield unit

2000

4000

6000

8000

10000 Inhale

Exhale

Exhale after Histogram Matching
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Figure 3.2: Histograms of lung CT dataset COPD04 [Castillo et al. 2013]. The
Hounsfield unit distribution within the lungs at inhale phase (blue), exhale
phase (black) and exhale phase after histogram matching (red) are shown.
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The majority of voxels within the lungs shows parenchyma, which is the functional

tissue for gas exchange [Tustison et al. 2011], (ca. −950 HU to −400 HU in the inhale

and −900 HU to −350 HU in the exhale scan) and the number of vessel voxels is very

small. While non-vessel regions offer little information for the registration, vessels are

very salient, see Figure 3.1. This is the motivation to employ distance measures that

are based on a vesselness filter [Cao et al. 2010, Cao et al. 2012]. Due to noise in the

image data, that might be due to reduced dose, cf. Section 8.2, the derivative-based

vesselness computation might be prone to errors and an adequate vesselness filter has

to be employed, which requires careful tuning of, e.g., smoothing weights for multi-

scale vesselness filters [Frangi et al. 1998]. Other approaches cope with the intensity

changes from inspiration to expiration by employing a (physically plausible) mass-

preserving registration [Gorbunova et al. 2008, Yin et al. 2009, Cao et al. 2010, Cao

et al. 2012], which produces better results than the registration with SSD. It was also

proposed to use SSD as distance measure after employing a histogram matching, see,

e.g., [Schmidt-Richberg et al. 2010] in the lung CT application. In Figure 3.2 the result

of a histogram matching of the exhale to the inhale scans is plotted in red. The maxima

of the inhale and intensity-transformed exhale image are nicely aligned. However, as

a-priori the local volume change is not known and the intensity transformation is acting

only on a voxel-by-voxel basis without considering its neighborhood (i.e. no coupling

via, e.g., regularization), it is possible that intensities are matched which belong to

non-corresponding points and thus impede the alignment with SSD. Nevertheless, it is

advisable to perform a histogram matching, if SSD is the chosen distance measure.

In our group we coped with the intensity changes by choosing NGF to align the edges

that exist within the lung CT images, e.g. at the transition from the parenchyma and

vessels; see [Rühaak et al. 2013, Polzin et al. 2013b, Polzin et al. 2014, Polzin et al.

2016, Rühaak et al. 2017]. Edges are apparent in template as well as reference image,

independently from the breathing phase, cf. Figure 3.1, and can be used for alignment

with NGF. In Figure 3.1c and Figure 3.1d the influence of η is visualized. By choosing

a large η (η = 1000 in Figure 3.1c) only non-matching regions with large intensity

gradients, e.g., at lung boundaries or vessels will increase the distance measure. If a

smaller η (η = 100 in Figure 3.1d) is used, the intensity differences in less voxels are

considered as noise-related and thus when minimizing DNGF the indicated mismatch

forces the transformation to change.

Note that in the original NGF formulation there is no η in the numerator [Haber and

Modersitzki 2007b]. The adapted NGF definition given in Definition 3.15 was first

published in [Rühaak et al. 2013] and performed very well for the registration of lung

CT images. In particular, according to our own experiments on lung CT images (not

included in this thesis) it outperforms the original NGF distance measure (in terms of
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expert LM alignment). As we address the problem of lung CT registration, we choose

the definition given in [Rühaak et al. 2013].

3.3.2 Regularizers and Sets of Admissible Functions

In this section we motivate the use of regularization in image registration and briefly

discuss how smooth transformations ϕ can be obtained. Details are given in Chapter 4

and Chapter 5.

Aligning images by minimizing D is an ill-posed problem and regularizers are used

to make it well-posed [Modersitzki 2009, p. 117]. According to Hadamard, problems

are well-posed if a unique solution exists that depends continuously on the data and

ill-posed otherwise [Hadamard 1902]. If no regularizer is included into the registration

objective functional, unrealistic transformations ϕ might be found, see, e.g., [Rohlfing

2012]. Thus, well-posedness of image registration problems is inevitable and allows

to influence the nature of transformation [Sotiras et al. 2013]. Well-posedness of

image registration problems in context with medical imaging is often associated with

smoothness of transformations [Modersitzki 2004, p. 78]. The medical question and

application as well as the data to be registered dictate the necessary smoothness

of the solutions. For instance, motion inside as well as outside of the lungs is very

smooth during the respiration when the regions considered separately. However,

at the interface between lungs and thoracic cavity sliding motion occurs, which is

discontinuous [Schmidt-Richberg 2014, pp. 65–66].

Smoothing is either achieved by convolution with suitable kernels, e.g., Gaussian kernels

are used in [Thirion 1998, Vercauteren et al. 2009], or by penalizing norms of derivatives

of the displacement u = ϕ− id, see, e.g., [Modersitzki 2009, pp. 120]. There are several

regularizers employing derivatives of first or second order: linear elastic [Fischler and

Elschlager 1973, Broit 1981], diffusive [Horn and Schunck 1981], curvature [Fischer

and Modersitzki 2002, Fischer and Modersitzki 2003b], hyperelastic [Droske and

Rumpf 2004, Burger et al. 2013], etc. From this list only hyperelastic regularization

guarantees diffeomorphic solutions as for the remaining approaches transformations ϕ

with det∇ϕ = 0 yield finite energy for S [Burger et al. 2013]. A detailed discussion of

regularizers cannot be addressed within this thesis and the interested reader is referred

to [Modersitzki 2009, Sotiras et al. 2013].

Diffeomorphic transformations can also be obtained with LDDMM methods, which

is derived comprehensively in Chapter 4 and Chapter 5. In the LDDMM literature

both smoothing kernels (e.g. [Durrleman et al. 2008]) and derivative-based regular-

izers (e.g. [Beg et al. 2005]) are employed. The main difference to the methods

which are regularizing the displacement u is that a whole time-dependent transforma-
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tion φ : [0, 1]× Ω→ R
d is computed via a vector field v : [0, 1]×Ω→ R

d. In LDDMM

approaches the velocities v are smoothed and the regularity of ϕ, where ϕ(x) := φ(1,x)

for all x ∈ Ω [Beg et al. 2005], is gained from the smoothness of v [Dupuis et al. 1998].

Smoothing of the velocity field v(t, ·) at time t is along the same lines as smoothing u

and thus the aforementioned smoothing techniques can be applied.

The LDDMM regularizers considered in this thesis are L2-norms of Lv(t, ·), t ∈ [0, 1],

where L is a linear differential operator.

Definition 3.16 (LDDMM Regularizers, adapted from [Dupuis et al. 1998])

Let Ω ⊆ R
d be the domain of the images I0, I1 ∈ I, which should be registered.

Furthermore, let v : [0, 1]× Ω→ R
d be a time-dependent velocity field and L be a

differential operator. We define for a specific t ∈ [0, 1]

St(v) :=
1

2

∫

Ω
‖Lv(t,x)‖2dx =

1

2

∫

Ω
〈Lv(t,x), Lv(t,x)〉dx.

The regularizer of the whole velocity field is given as

S(v) :=
∫ 1

0
St(v)dt.

The discussion about suitable L that guarantee existence of solutions of the LDDMM

image registration problem [Dupuis et al. 1998] is postponed to Chapter 4.

Techniques that implicitly act as regularizers are multi-level and multi-scale registra-

tions as they “convexify” the objective functional [Modersitzki 2009, p. 68]. Multi-level

approaches reduce the number of degrees of freedom of the problem by averaging

adjacent pixels/voxels to represent the image initially with a coarser resolution. After

registration on this low-detail images the transformation grid is prolongated to a finer

resolution and more image details are used for the registration. This procedure can be

iterated multiple times and reduces the possibility for the optimization to get stuck in

local minima of the objective function [Modersitzki 2009, p. 68].

Multi-scale approaches apply either approximating image interpolation [Modersitzki

2009, pp. 32], e.g., using Tikhonov regularization, or different low-pass filters to smooth

the images and thereby get rid of noise and blend in details gradually. For instance,

in [Lowe 2004] Gaussian kernels with varying standard deviations are used to identify

distinctive so-called SIFT features within the images. Multiple smoothing kernels are

also used in LDDMM methods, see, e.g., [Risser et al. 2010]. The idea is to regularize

the velocities on multiple scales and thereby account for large (corresponding to a

strong smoothing) as well as small motion (corresponding to a weak smoothing) to

align both coarse structures and small details within the images.

55



3. Essentials of Functional Analysis, Optimal Control and Image Registration

Using D and S, the typical image registration problem can be phrased [Modersitzki

2009, p. 9]. However, for some applications it is reasonable to define additional

constraints that have to hold. For example, it might be necessary to obtain transfor-

mations ϕ that are rigid (i.e. det(∇ϕ(x)) = 1) in structures like bones [Haber et al.

2009, Mang and Biros 2015, König et al. 2016]. Other examples for constrained image

registration include mass-preserving (e.g. [Gigengack et al. 2012, Mang and Ruthotto

2017]) or intensity-preserving (e.g. [Horn and Schunck 1981]) models.

As will be discussed in Chapter 4, for LDDMM methods the evolution given in (2.2),

which describes the constraining relation between time-derivative of the position of a

particle and its velocity, has to be fulfilled. Furthermore, momentum-based constraints

are used in the so-called shooting approaches, cf. Chapter 5.

Constraints can be integrated in Problem 3.4 via the set of admissible transforma-

tions A.

Definition 3.17 (Set of Admissible Transformations A, adapted from [Dacorogna

2004, p. 3])

Let Prop(ϕ) be a proposition about the constraint on ϕ. We define the set of

admissible transformations as

A := A(Prop) := {ϕ | Prop(ϕ) holds}.

Now we can phrase the LDDMM image registration as a constrained optimization

problem as given in Problem 3.4 and continue with details on the regularization of v

and how diffeomorphic transformations are obtained from v in the LDDMM framework.
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This chapter provides the central ideas and building blocks of LDDMM. At the

beginning of this chapter we give an outlook over the important steps of the LDDMM

framework. Afterwards, based mainly on [Younes 2010], we derive the LDDMM

method in detail including major theoretical results and definitions.

The goal of LDDMM in image registration is to obtain a diffeomorphic transforma-

tion φ0,1 that aligns two images I0 and I1, which are assumed to be acquired at

different times t = 0 and t = 1. Note that other time intervals could be considered,

but we fix it to [0, 1] throughout this work. This time interval is used in most LD-

DMM papers, e.g. [Beg et al. 2005]. The alignment of I0 and I1 might require a

large deformation, see Figure 3.1 for a lung CT example. To cope with the large

deformation, φ0,1 is composed from multiple smaller deformations that conserve the

diffeomorphic property [Younes 2010, pp. 163]. These small deformations depend on

the time-dependent velocity fields v : [0, 1]× Ω→ R
d [Younes 2010, pp. 165].

In the following derivation we assume that the images are composed from particles (e.g.

ink molecules) that can describe the change from I0 to I1 by their movement. Consider

a particle p with initial location x := x(s) ∈ Ω at fixed time s ∈ [0, 1]. The position

of p at t ∈ [0, 1] in a Lagrangian framework is φ(s, t,x), cf. Figure 4.1. Hence, the

x := x(s) = φ(s, s,x) = φ−1(s, t, φ(s, t,x)) = φ(t, s, φ(s, t,x))

φ(s, t,x) = x̂(t)

p at time t

φ−1
·,t = φt,·

φs,·

Figure 4.1: Lagrangian visualization of the velocity-induced flow of a particle p over
time [s, t]. Flow φs,· : [0, 1] × Ω → R

d and inverse flow φ−1
·,t = φt,· are

color-coded and drawn as dashed lines for clarity. The red path describes
the positions of p at times in the interval [s, t] when the particle started
at x(s); the movement direction is given by the red arrow tip. The position
of p at time s when started at x̂(t) and moving “back in time” (which is
indicated by the blue arrow tip) for t > s is φt,s(x̂(t)).
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mapping φ : [0, 1]2 × Ω→ R
d has two time arguments and one space argument. This

can be read as: φ(s, t,x) is the position of the particle p, which started at time s at

location x, at time t.

We are interested in the transformation ϕ : Ω→ R
d with ϕ(·) := φ(0, 1, ·) [Beg et al.

2005], cf. Section 3.3.2 and start with some remarks on notation and properties of φ.

Remark 4.1 (Notations and Properties of φ)

1. For arbitrary s, t ∈ [0, 1], we write φs,t : Ω→ R
d, φs,t(·) := φ(s, t, ·) to obtain a

compact notation.

2. If s = t no time has passed and thus the particle did not move. This means

φs,s(x) = x for all s ∈ [0, 1] and x ∈ Ω. (4.1)

3. Assuming φs,t is invertible for fixed s and t (given by LDDMM construction as

shown later), it holds that φ−1
s,t = φt,s. This can be understood when thinking

of running forward and backward in time (cf. also Figure 4.1) in the following

relation

x(s) = φ−1
s,t (φs,t(x(s))) = φt,s(φs,t(x(s))︸ ︷︷ ︸

=:x̂(t)

). (4.2)

4. Particularly for s = 0, we simplify the notation to φt(x) := φ(0, t,x). Accordingly,

we use for s = 1 the following notation: φ−1
t (x) := φ(1, t,x).

The current position of p on the path from x = x(0) to x̂(t) := φt(x) for τ ∈ [0, t] is

thus φτ (x). In analogy to classical mechanics, the velocity field v : [0, 1]×Ω→ R
d can

be interpreted as the instantaneous change of position at a specific time and space; v

is defined using the time derivative φ̇ of position φ [Arnol’d 1989, p. 7], cf. (2.2):

vτ (φτ (x)) := φ̇τ (x), for all τ ∈ [0, 1] and x ∈ Ω, (4.3)

with φ̇τ :=

[
∂φ0,·

∂t

]

t=τ

, vτ (x) := v(τ,x). (4.4)

Hence, for given x := x(0) the transformation/position at time τ > 0 denoted by φτ (x)

can be obtained by integration of v over time.

A path φs,·(x) : [0, 1] → R
d, with fixed s ∈ [0, 1] and x ∈ Ω, is called characteristic

curve or characteristic, and has the property that the transported mass (e.g. image

intensity) along its way is constant [LeVeque 2002, p. 18]. If the paths of two particles p1

and p2 with different initial locations cross, then ϕ = φ0,1 is not diffeomorphic [Mang

and Ruthotto 2017].

To guarantee that ϕ is diffeomorphic, regularity of v is required as will be shown in Sec-

tion 4.2; here we only give a brief introduction. The central idea is that the velocities
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in neighboring regions vary smoothly (i.e., they do not abruptly change directions)

and thus no crossing of characteristics can occur and the resulting transformation is

diffeomorphic. As motivated in Section 3.3.2, smoothness is achieved by controlling

norms of derivatives. Thus, smoothness of v is determined using Sobolev norms ‖ · ‖m,p
in space and Lq norms in time, m ∈ N and 1 ≤ p, q ≤ ∞. Here, m describes the

differentiability class in space; p and q are the integrability order in space and time,

respectively. To obtain a compact notation we define the combined norm |||·|||m,p,q.

Definition 4.1 (Norm |||·|||m,p,q)
Let m ∈ N, 1 ≤ p, q ≤ ∞ and v : [0, 1] × Ω → R

d with vt ∈ Wm,p
0 (Ω,Rd), where

vt(·) := v(t, ·). We define the following norm

|||v|||m,p,q := ‖‖v‖m,p‖q =
(∫ 1

0
‖vt‖qm,pdt

) 1
q

.

If |||v|||m,p,q < ∞ for certain m, p, q it can be shown that ϕ is diffeomorphic,

see Section 4.2 and references therein. In LDDMM methods vt ∈ V are consid-

ered, where V ⊂ L2(Ω,Rd) [Younes 2010, p. 182] is a RKHS, cf. Section 4.3, and

thus p = 2. While typically q = 2 is chosen, see, e.g. [Vialard et al. 2012], the

choice of a proper m depends on the spatial dimension d, see the Sobolev embedding

in Theorem 3.2. For example for d = 3 we can deduce (using Theorem 3.2 with j = 1)

that m ≥ 3 is required for p = q = 2 [Dupuis et al. 1998] to obtain an admissible

space V →֒ C1
0(Ω,Rd) that is compactly embedded [Younes 2010, p. 171]. Hence,

if |||v|||3,2,2 <∞, then the associated flow ϕ is diffeomorphic, see Section 4.2 for details.

The interpretation of infv∈V |||v|||m,p,q as a distance [Trouvé 1995b] allows to quantify

the difference between two objects (shapes, images) to be aligned. This is a very

important feature of the Large Deformation Diffeomorphic Metric Mapping method

and can be used to assess the similarity of various objects by analysis of the velocity

fields v that induce the transformation φ, which aligns these objects.

This chapter is organized as follows. First, in Section 4.1 it is motivated why dif-

feomorphisms are important and desirable for many image registration problems.

In Section 4.2, we describe how diffeomorphisms can be generated from velocity fields v

within the LDDMM framework. This includes the derivation of suitable v ∈ V and

the definition of admissible spaces V . At the end of Section 4.2 the metric property

that is based on v is discussed. In Section 4.3 it is sketched how admissible spaces V

are built using linear differential operators. At the end of this chapter we describe

in Section 4.4 how (piecewise) diffeomorphic transformations can be obtained from a

transformation that is discretized on a regular finite grid.
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4. Diffeomorphisms and Flows of Velocities

I1

I0 Î1

ψ̃ψ

ψ̂−1 = (ψ ◦ ψ̃)−1 = ψ̃−1 ◦ ψ−1

id

ψ̂ = ψ ◦ ψ̃

ψ̃−1ψ−1

Figure 4.2: Visualization of the group structure of Diff(Ω). Each arrow can be read as:
“target = source ◦ transformation”, e.g., I1 = I0 ◦ ψ. Image material: The
MR images show my head and were acquired in 2009 during an internship
at the University of Greifswald.

4.1 Diffeomorphisms for Image Registration

We start with a motivation why diffeomorphic transformations (and their group

structure) are desirable for image registration problems. Using Figure 4.2 we discuss

in the next paragraphs, why diffeomorphic image registration is useful and which

implications it has. We chose a brain image as example because the brain is the most

often investigated organ in the LDDMM literature, see Section 2.1.

Given an image I0 ∈ I of, e.g., a brain of an infant, we are interested in the mor-

phological changes during the maturation, cf. [Gerig et al. 2016]. To find out which

regions of the brain grow or shrink and how they evolve over time, a transformation ψ

is estimated that aligns I0 to I1 ∈ I, which could be an image of the same individual’s

brain some months or years later. We assume that ψ is diffeomorphic as we do not

expect that subregions of the object to be registered vanish or that holes due to tearing

of matter are created.

A diffeomorphic transformation ψ in particular has an inverse transformation ψ−1 (with

the same smoothness). Thus, it is not important whether I0 is registered to I1 or

vice versa as I1 = I0 ◦ ψ and I0 = I1 ◦ ψ−1 holds, cf. Figure 4.2. Another possible

application scenario is to align I0 to a third image Î1 ∈ I, which could for example be

an atlas (in the sense of a mean or “normal” shape) of brains of humans of the same
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4.1 Diffeomorphisms for Image Registration

age and gender as for the subject of image I1. The idea could be to concatenate two

transformations ψ and ψ̃ to align I0 to Î1 via I1 as the individual transformations are

easier to compute as they describe different processes (aging and biological variations)

than the direct transformation ψ̂. Formalizing this into equations yields:

[
I1 = I0 ◦ ψ and Î1 = I1 ◦ ψ̃

]
⇒ Î1 = (I0 ◦ ψ) ◦ ψ̃ = I0 ◦

=:ψ̂︷ ︸︸ ︷
ψ ◦ ψ̃ .

Of course, ψ̂ has an inverse, too. Due to the properties of concatenation, the order of

transformations is reversed when computing ψ̂−1, see Figure 4.2.

ψ̂−1 = (ψ ◦ ψ̃)−1 = ψ̃−1 ◦ ψ−1.

Together with the relation ψ ◦ id = ψ for arbitrary functions ψ, which relates to (4.1),

the basic ingredients of a group structure of diffeomorphisms are given.

We return to addressing Problem 3.4 with the restriction of ϕ being diffeomorphic.

Diffeomorphic transformations are bijective and the following two basic assumptions

motivate the choice for modeling a bijective transformation ϕ : Ω→ Ω in the image

registration process [Younes 2010, p. 161]:

1. No holes should be created by the mapping ϕ, i.e., for each y ∈ Ω there should be

an x ∈ Ω such that y = ϕ(x). This is the definition of ϕ being onto.

2. Singularities like foldings should be prohibited: For arbitrary x1, x2 ∈ Ω with

x1 6= x2 it should hold that ϕ(x1) 6= ϕ(x2) meaning ϕ is one-to-one.

Furthermore, we want the deformation and its inverse to be smooth, as often assumed

for image registration applications, especially in the medical context [Modersitzki

2004]. The necessary smoothness depends on the registration problem; unless otherwise

stated ϕ should be at least once differentiable and invertible. Hence, we are looking

for a diffeomorphic solution.

Definition 4.2 (Diffeomorphisms on Ω [Younes 2010, Definition 8.1])

Let Ω be an open subset of Rd and the domain of a function ϕ : Ω→ Ω. We call ϕ a

diffeomorphism of Ω if

1. ϕ ∈ C1(Ω,Ω),

2. ϕ is bijective, and

3. its inverse ϕ−1 ∈ C1(Ω,Ω).

If ϕ fulfills these three requirements, we write ϕ ∈ Diff(Ω).

Extensions of Definition 4.2 are possible. For example, diffeomorphisms can be defined

for smooth manifolds and for functions in Cr, r ∈ N [Banyaga 1997, p. 1]. As an

introduction to manifolds or differential geometry is beyond the scope of this thesis,

we will omit these subjects.
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4. Diffeomorphisms and Flows of Velocities

We start with modeling the transformation ϕ in a small deformation setting, cf. Sec-

tion 2.1. In this model ϕ = id + εu is a sum of identity id : Ω → Ω and deforma-

tion u : Ω→ R
d scaled by ε > 0. We assume that the deformation u vanishes at the

boundary ∂Ω: u(x)→ 0 for x→ ∂Ω and perturbations from id only occur within Ω.

Because Ω is open, there exists an ε > 0 such that

ϕ(x) = x + εu(x) ∈ Ω for all x ∈ Ω. (4.5)

However, even a globally rigid transformation ϕ (which fulfills almost all propositions

of Definition 4.2, but in general Ω is not the codomain of ϕ) on a box-shaped Ω

could easily be constructed such that ϕ(x) 6∈ Ω. In the general case, including rigid

transformations in the LDDMM concept is possible via appropriate invariances of

inner products acting on the velocity fields vt as derived in [Younes 2010, pp. 188–197].

The basic idea for obtaining diffeomorphic solutions in the LDDMM registration

is that the composition of diffeomorphisms yields a diffeomorphism [Younes 2010,

pp. 164–165]. This suggests the group structure of diffeomorphisms, which is visualized

in Figure 4.2 and was motivated at the beginning of this section.

Theorem 4.1 (Group of Diffeomorphisms [Younes 2010, p. 161])

The set of diffeomorphisms Diff(Ω) forms together with the composition of functions (◦)
and the identity mapping (id) a group.

Proof: See [Younes 2010, p. 161].

In this section we discussed why diffeomorphisms are suitable for many image registra-

tion purposes and showed that they offer an advantageous group structure. In the

following section we investigate how diffeomorphic transformations can be achieved as

flows of smooth velocity fields v. Additionally, we show (based on [Younes 2010]), how

the difference between two shapes can be quantified using the appropriate norm on v.

4.2 Diffeomorphisms via Flows of Velocities

The basic idea for the generation of diffeomorphisms in LDDMM approaches is the

subsequent construction of the transformation maps from small displacements [Younes

2010, p. 164], which are also called velocities. In the following theorem it is shown

that adding a small displacement to the identity yields a diffeomorphism.

62



4.2 Diffeomorphisms via Flows of Velocities

Theorem 4.2 (Preservation of Diffeomorphisms after Small Displacements [Younes

2010, Proposition 8.6])

Let u ∈ C1(Ω,Rd) and assume that:

• Both u(x) and Ju(x) tend to 0 when x tends to ∞.

• There exists δ0 > 0 such that x + δu(x) ∈ Ω for all x ∈ Ω and δ < δ0.

Then, for small enough ε > 0, ϕ : Ω→ Ω with x 7→ x + εu(x) is a diffeomorphism.

Proof: See [Younes 2010, pp. 163–164].

To obtain diffeomorphic transformations that allow for large deformations, LDDMM

approaches employ diffeomorphisms, which are built from small displacements, and

concatenate these diffeomorphisms [Younes 2010, p. 164]. In the LDDMM framework

typically the velocity field notation v instead of the displacement notation u is used.

We return to the moving particle motivation started on page 57. Imagine that

particles, e.g., some ink molecules in a closed water basin, are moved over time

by streams in the water. In the LDDMM framework the transformation, i.e. the

changed position of particles, is computed from the velocities of the streams. Follow-

ing [Younes 2010, p. 164] we consider a finite number N ∈ N of vector fields vk given

at discrete times tk ∈ [0, 1], k = 0, . . . , N − 1 with t0 = 0, tN−1 = 1 and tk < tk+1.

We assume these vk and ε > 0 are given such that Theorem 4.2 holds and each

map id + εvk, k = 0, . . . , N − 1, is a diffeomorphism of Ω and investigate

φN−1 = (id + εvN−1) ◦ (id + εvN−2) ◦ · · · ◦ (id + εv0). (4.6)

As the particles have not changed their location at t0, we define φ0 := id and obtain

inductively

φk+1 = (id + εvk) ◦ φk = φk + εvk ◦ φk ⇔
φk+1 − φk

ε
= vk ◦ φk. (4.7)

Let a specific particle p have the initial position x ∈ Ω at t = t0 = 0, then φk(x) is

its location at tk as visualized in Figure 4.3. Substitution of yk := φk(x) into (4.7)

yields (yk+1 − yk)/ε = vk(yk). This equation represents a time discretization of the

following ODE with continuous time variable t ∈ [0, 1]:

ẏ(t) = v(t,y(t)), t ∈ [0, 1], y(0) = x, (4.8)

where ẏ denotes the time derivative of y. As introduced in (4.4), we write vt(·) = v(t, ·),
see also, e.g., [Beg et al. 2005]. Note that vt does not refer to a partial derivative but a

time-dependent velocity field for a fixed time t ∈ [0, 1]. For d = 3, the ODE (4.8) has a
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4. Diffeomorphisms and Flows of Velocities

p at t0 = 0, φ0(x) = x

φ1
p at t1, φ1(x) = φ0(x) + v0(x) = x + v0(x)

φ2 p at t2, φ2(x) = φ1(x) + v1(x)

φ3 p at t3 = 1, φ3(x) = φ2(x) + v2(x)

Figure 4.3: Eulerian visualization of the velocity-induced flow of a particle p over time.
Here, N = 4 and ε = 1 was used.

unique solution if vt ∈ W 3,2
0 for all t ∈ [0, 1] and the integral

∫ 1
0 ‖vt‖V dt <∞ [Dupuis

et al. 1998]. However, we postpone the definition of ‖vt‖V to Section 4.3 and suppose

that vt is m-times continuously differentiable for all t ∈ [0, 1]. To obtain the diffeo-

morphism from (4.8) time integration is performed. Therefore, we need velocity fields

that are elements of the following space.

Definition 4.3 (X q
m [Younes 2010, p. 165])

Let Ω ⊂ R
d be a domain, m ∈ N, and 1 ≤ q ≤ ∞. Given a time-dependent velocity

field v : [0, 1]× Ω→ R
d, we define:

X q
m :=

{
v : [0, 1]×Ω→ R

d
∣∣∣ ∀t ∈ [0, 1] : vt ∈ Cm

0 (Ω,Rd) and |||v|||m,∞,q <∞
}
. (4.9)

In [Younes 2010, pp. 385–390] it is shown that (4.8) has a unique solution for v ∈ X 1
1 .

As we are interested in the vector-valued diffeomorphic transformation φ, rather than

in the velocity fields, we now return to the particle description and investigate how φ

can be generated from v.

In the LDDMM model φ is generated as a flow of the velocity field v and is hence called

associated flow, this is indicated within this section by the superscript v yielding φv.

The following flow equation (4.10) is an extension of (4.8) to all points of Ω.

Definition 4.4 (Associated Flow φvs,t, [Younes 2010, p. 165])

Let v ∈ X 1
1 . For fixed s ∈ [0, 1] the associated flow at time t ∈ [0, 1] is a func-

tion φvs,t : Ω→ Ω defined by the ODE on φvs,·(·) : [0, 1]× Ω→ Ω

φ̇vs,τ (x) = v(τ, φvs,τ (x)), φvs,s(x) = x, with φ̇vs,τ :=

[
∂φvs,·
∂t

]

t=τ

(4.10)

for all τ ∈ [0, 1] and x ∈ Ω.

By integration of (4.10) over time we obtain:

φvs,t(x) =
∫ t

s
v(r, φvs,r(x))dr + y, y ∈ R

d
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4.2 Diffeomorphisms via Flows of Velocities

Since (4.10) requires φvs,t = id for t = s (cf. Remark 4.1)

φvs,t(x) = x +
∫ t

s
v(r, φvs,r(x))dr (4.11)

follows. It can be shown that for fixed s and t, φvs,t is Lipschitz continuous with

constant exp(|||v|||1,∞,1) and a homeomorphism [Younes 2010, p. 165]. Moreover, φvs,t
is also a diffeomorphism as stated by the following theorem which is the central result

needed for obtaining diffeomorphisms in LDDMM approaches.

Theorem 4.3 (Associated Flow is a Diffeomorphism [Younes 2010, Theorem 8.7])

Let v ∈ X 1
1 . The associated flow φvs,t is at all times s, t ∈ [0, 1] a diffeomorphism.

Proof: See [Younes 2010, pp. 166–167].

Note that for a diffeomorphic pre-registration ϕpre : Ω→ Ω the concatenation φvs,t ◦ϕpre

also is diffeomorphic due to the group structure of Diff(Ω). In practical problems

pre-registrations can be crucial for a good image registration as they can be used for

a gross alignment and reduce the chance of failing for deformable image registration

methods [Ruthotto and Modersitzki 2015]. We use pre-registrations, but postpone

details to Chapter 7 and assume ϕpre = id in this chapter.

By Theorem 4.3 a practical guideline for choosing suitable v is given. Using v

with |||v|||1,∞,1 <∞ and vt ∈ C1
0(Ω,Rd) for all t ∈ [0, 1] will result in a diffeomorphic

flow φvs,t for all s, t ∈ [0, 1]. However, vt ∈ C1
0(Ω,Rd) is a strong assumption and in

the following we extend the results of this section to Banach spaces V . Most LDDMM

methods consider Hilbert spaces V as described in Section 4.3, but we use the less

restrictive Banach spaces whenever possible. The associated flow is a diffeomorphism

for vt ∈ V with V ⊆ C1
0 (Ω,Rd) [Younes 2010, p. 171] and V is hence called admissible

space.

Definition 4.5 (Admissible Banach Spaces and X q
V [Younes 2010, Definition 8.12])

A Banach space (V, ‖ · ‖V ) with V ⊆ C1
0 (Ω,Rd) is called admissible if it is canonically

embedded in C1
0(Ω,Rd), i.e., ∃C > 0 such that for all vt ∈ V : ‖vt‖V ≥ C‖vt‖1,∞.

Let 1 ≤ q ≤ ∞. We define for admissible V :

‖v‖X q
V

:=
(∫ 1

0
‖vt‖qV dt

)1
q

(4.12)

and

X q
V :=

{
v : [0, 1]× Ω→ R

d
∣∣∣ ∀t ∈ [0, 1] : vt ∈ V and ‖v‖X q

V
<∞

}
. (4.13)

Now we define the set of diffeomorphisms that are generated by velocity fields vt that

are elements of admissible Banach spaces.
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4. Diffeomorphisms and Flows of Velocities

Definition 4.6 (Associated flows for v ∈ X 1
V [Younes 2010, Definition 8.13])

Let V ⊆ C1
0(Ω,Rd) be an admissible Banach space. The set of diffeomorphisms

associated to v ∈ X 1
V is defined as

GV := {φv0,1 | v ∈ X 1
V }. (4.14)

Due to Theorem 4.3 it is clear that GV ⊆ Diff(Ω), but moreover it can be shown

that GV is a subgroup of Diff(Ω). The group structure of GV is advantageous as

discussed in Section 4.1.

Theorem 4.4 (Subgroup GV ⊂ Diff(Ω), adapted from [Younes 2010, Theorem 8.14])

GV is a subgroup of (Diff(Ω), ◦, id) and for each φv0,1 ∈ GV the inverse is given as

(φv0,1)
−1 = φw0,1, wt = −v1−t. (4.15)

Proof: GV ⊂ Diff(Ω) by Definition 4.6. Since the identity map is associated tov ≡ 0:

id = φ0
0,1, we have id ∈ GV and GV 6= ∅.

Showing the closure of the subgroup is slightly more difficult, we extend the

proof [Younes 2010, p. 172]: Let v, ṽ ∈ X 1
V be arbitrary but fixed. We define ψ := φv0,1

and ψ̃ := φṽ0,1. We consider w : [0, 1]× Ω→ R
d with

wt =




v2t, t ∈ [0, 1

2
],

ṽ2t−1, t ∈ (1
2
, 1].

The velocity field w is then defined for all t ∈ [0, 1] and we have wt ∈ V for all t ∈ [0, 1].

Additionally, as ‖w‖X 1
V

= 1
2

(
‖v‖X 1

V
+ ‖ṽ‖X 1

V

)
< ∞, it can be deduced that w ∈ X 1

V .

Furthermore, it follows that ψ̃ ◦ ψ =: φw0,1 ∈ GV .

We now define ŵ ∈ X 1
V , ŵ : [0, 1] × Ω → R

d with ŵt = −v1−t as the field whose

associated flow is the inverse of ψ: ψ−1 = φŵ0,1. This can be shown using Definition 4.4

and (4.11) as follows:

φŵ0,1−t(x) = x +
∫ 1−t

0
ŵ
(
s, φŵ0,s(x)

)
ds = x−

∫ 1−t

0
v
(
1− s, φ−v

0,1−s(x)
)

ds

r=1−s
= x−

∫ t

1
−v

(
r, φv1,r(x)

)
dr = x +

∫ t

1
v
(
r, φv1,r(x)

)
dr = φv1,t(x)

As the solution of (4.10) is unique (see [Younes 2010]), φŵ0,1−t(x) = φv1,t(x) holds. In

particular for t = 0 we obtain φŵ0,1 = φv1,0. As φv1,0 ◦ φv0,1 = id, we have ψ−1 = φŵ0,1 and

have shown that (GV , ◦, id) is a subgroup of (Diff(Ω), ◦, id).

For velocity fields vt that are elements of admissible Banach spaces at all times t ∈ [0, 1]

it is thus guaranteed that φv0,1 is a diffeomorphism. It is useful to quantify how different

two elements of GV are. Based on the distance of these diffeomorphisms differences
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4.2 Diffeomorphisms via Flows of Velocities

of the shapes or images can be assessed [Miller et al. 2002]. The extension from the

distance of diffeomorphisms to the geodesic distance between images is addressed

in Theorem 5.4. Here, we start with the definition of the distance between two

diffeomorphisms in GV .

Definition 4.7 (Distance dV , adapted from [Beg et al. 2005])

Let V be an admissible Banach space and ψ, ψ̃ ∈ GV . We define

dV (ψ, ψ̃) := inf
v∈X 1

V

{
‖v‖X 1

V

∣∣∣ ψ̃ = φv0,1 ◦ ψ
}
. (4.16)

It was shown in [Trouvé 1995b] that dV (ψ, ψ̃) is a distance as stated in the following

theorem.

Theorem 4.5 (Metric Space (GV , dV ) [Trouvé 1995b])

The function dV is a distance on GV , and (GV , dV ) is a complete metric space.

Proof: See [Trouvé 1995b].

The metric dV is right-invariant. This means that if both ψ and ψ̃ are composed with

an arbitrary diffeomorphism ϕ ∈ GV , dV is not changed.

dV (ψ, ψ̃) = dV (ψ ◦ ϕ, ψ̃ ◦ ϕ) for all ϕ ∈ GV . (4.17)

Typically, LDDMM methods consider square-integrable (over time) velocity fields, see

for instance [Beg et al. 2005], and it can be shown that the results obtained in this

section also hold for square-integrable v. Therefore we now switch our focus to v ∈ X 2
V .

Remarkably, dV also is a distance for square-integrable vector fields. To derive this

result, we start with showing that X 2
V is a Banach space and provided V is a Hilbert

space, X 2
V is a Hilbert space, too.

Theorem 4.6 (Space X 2
V (Ω) [Younes 2010, Proposition 8.17])

Let V be an admissible Banach space and v ∈ X 2
V . X 2

V equipped with the norm ‖ · ‖X 2
V

is a Banach space. Furthermore, if (V, 〈·, ·〉V ) is a Hilbert space, then (X 2
V , 〈·, ·〉X 2

V
)

is a Hilbert space, too. The inner product is defined for v, w ∈ X 2
V as:

〈v, w〉X 2
V

:=
∫ 1

0
〈vt, wt〉V dt. (4.18)

Proof: See [Younes 2010, pp. 174–175] and the following discussion.

We will now informally prove that X 2
V ⊆ X 1

V and thereby obtain that for v ∈ X 2
V the

associated flow φvs,t is diffeomorphic, too. It is sufficient to show ‖v‖X 1
V
≤ c‖v‖X 2

V
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4. Diffeomorphisms and Flows of Velocities

with constant c ∈ R>0 that is independent of v. We use a(t) := ‖vt‖V , a(t) ≥ 0 for

all t ∈ [0, 1] and the Hölder inequality (3.1) (with p = q = 2, Ω = (0, 1), u ≡ a, v ≡ 1):

‖v‖X 1
V

= ‖a‖1 =
∫ 1

0
a(t)dt

(3.1)

≤
(∫ 1

0
1dt

)1/2 (∫ 1

0
a(t)2dt

)1/2

= ‖a‖2 = ‖v‖X 2
V
.

Hence c = 1 and every v ∈ X 2
V , i.e. v with finite ‖v‖X 2

V
, has ‖v‖X 1

V
< ∞ and

thus v ∈ X 1
V .

Remark 4.2 (Theorem 4.4 applies to v ∈ X 2
V )

As X 2
V ⊆ X 1

V , Theorem 4.4 holds for all v ∈ X 2
V and the associated flow φv0,1 is thus a

diffeomorphism.

In the following theorem it is shown that the distance dV is not changed if velocity

fields from X 2
V instead of X 1

V are used. This allows to reduce the computation of dV

to a minimization over X 2
V [Younes 2010, p. 175].

Theorem 4.7 (Distance dV as Infimum over X 2
V [Younes 2010, Theorem 8.18])

If V is admissible and ψ, ψ̃ ∈ GV , then

dV (ψ, ψ̃) = inf
v∈X 2

V

{
‖v‖X 2

V

∣∣∣ψ̃ = φv0,1 ◦ ψ
}
. (4.19)

Proof: See [Younes 2010, pp. 175–176].

Now we derive a theorem that is used by shooting approaches for LDDMM, see Sec-

tion 5.2, as it describes the conservation of momentum. According to [Miller et al. 2006]

we interpret 1
2
‖vt‖V as kinetic energy of the whole system at time t. The following

theorem states that a minimizer v∗ of the path length ‖v‖X 2
V

has a constant kinetic

energy 1
2
‖v∗

t ‖V over time.

Theorem 4.8 (Constant Kinetic Energy for Geodesic [Younes 2010, Corollary 8.19])

If V is admissible, ψ, ψ̃ ∈ GV , and

v∗ ∈ arg min
v∈X 2

V

{
‖v‖X 2

V

∣∣∣ ψ̃ = φv0,1 ◦ ψ
}
,

then ‖v∗
t ‖V = c ≥ 0 for all t ∈ [0, 1].

Proof: See [Younes 2010, pp. 175–176].

Shooting approaches rely on Theorem 4.8 because the estimated initial momentum

evolves over time according to the so-called EPDiff equation, which is the ELE of the

right-hand side of (4.19), see Section 5.2 and references therein. During the evolution

the total momentum is conserved as shown in Theorem 4.8.
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4.3 Admissible Spaces and Reproducing Kernel Hilbert Spaces

By now it is not clear, whether a minimizer of the right-hand side of (4.19) exists and

thus dV (ψ, ψ̃) <∞. This question is answered by Theorem 4.9 for the case that V is

a Hilbert space; in this case a minimizer exists. Assuming that V is a Hilbert space is

no drastical restriction as in LDDMM typically Hilbert spaces (to be more concrete:

RKHSs) are used, see, e.g., [Beg et al. 2005, Vialard et al. 2012] and Section 4.3.

Theorem 4.9 (Distance between ψ, ψ̃ ∈ GV is finite [Younes 2010, Theorem 8.20])

If V is an admissible Hilbert space and ψ, ψ̃ ∈ GV , there ∃v ∈ X 2
V :

dV (ψ, ψ̃) = ‖v‖X 2
V

(4.20)

and ψ̃ = φv0,1 ◦ ψ.

Proof: See [Younes 2010, p. 176].

In this section we derived that velocity fields featuring enough smoothness (v ∈ X 2
V ) al-

low for generating diffeomorphisms (φv0,1) that connect two diffeomorphisms ψ, ψ̃ ∈ GV .

These diffeomorphisms can describe the change from one common base shape/image

to different deformed shapes/images, and as ψ and ψ̃ can be transformed into each

other using φv0,1, the associated shapes/images can be transformed as well. A solution

to this problem always exist if vt ∈ V for all t ∈ [0, 1] and V is an admissible Hilbert

space. Additionally, the difference between ψ and ψ̃ can be quantified through the

path length
∫ 1

0 ‖vt‖dt.
One question left to answer is, how an admissible Hilbert space V can be described and

obtained in practice. In LDDMM methods, this is often done using linear operators

as will be examined in the following section.

4.3 Admissible Spaces and Reproducing Kernel

Hilbert Spaces

We derived in Section 4.2 that diffeomorphic transformations φv0,1 can be generated as

associated flow of smooth velocity fields v ∈ X 2
V . In this section we investigate how

admissible spaces V can be generated. We restrict the discourse to the method of

building V from linear differential operators A. To this end, appropriate inner products

and Hilbert spaces V (induced by A) are used, see, e.g., [Beg et al. 2005, Younes

2010, Miller et al. 2015]. Based on the necessary properties of A (cf. Assumption 4.1),

the Hilbert space V is a so-called Reproducing Kernel Hilbert Space (RKHS) [Younes

2010, pp. 185]. To keep the focus on the key ideas of LDDMM a proper definition of

RKHS is omitted. We only discuss the central concepts of RKHS used in LDDMM.

For details on RKHS the interested reader is referred to [Younes 2010, Chapter 9].
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4. Diffeomorphisms and Flows of Velocities

The kernel of the RKHS is the Green’s kernel K = A−1 [Younes 2010, pp. 187, 192].

The differential operator A defines the inner product of V as well as the induced

norm ‖ · ‖V and is designed such that when minimizing

S(v) :=
1

2
‖v‖2

X 2
V

=
1

2

∫ 1

0
‖vt‖2

V dt =
1

2

∫ 1

0
〈Avt, vt〉dt

smooth velocity fields are obtained. Therefore, we call S the regularizer within the

LDDMM registration functional, see Definition 3.16.

Now we briefly investigate how a RKHS can be built from a linear differential opera-

tor A : U → L2(Ω,Rd), where U is a space of sufficiently often differentiable functions.

The differential operator A is employed to generate smooth velocities vt by penal-

izing large L2 norms of Avt. The smoothness can be influenced by choosing the

appropriate differentiability order m ∈ N0 ∪ {∞}. As mentioned before, we consider

admissible Hilbert spaces and thus the velocities are assumed to have compact sup-

port: vt ∈ Cm
0 (Ω,Rd). The goal is to obtain the inner product of the RKHS V as the

inner product induced by the linear operator A. Therefore, the following assumptions

on A are needed to guarantee the positive definiteness and symmetry of the inner

product 〈·, ·〉V .

Assumption 4.1 (Properties of A [Younes 2010, Assumption 2])

The linear operator A : U → L2(Ω,Rd) is assumed to be strongly monotonic and

symmetric on U . This means that there exists c ∈ R>0 such that for all u, ũ ∈ U

‖u‖2
A := 〈Au, u〉 ≥ c〈u, u〉 = c‖u‖2, (4.21)

〈u, ũ〉A := 〈Au, ũ〉 = 〈u,Aũ〉. (4.22)

From (4.21) it directly follows that A has to be positive definite.

Now A is employed to define a proper inner product on V instead of on U . This is

possible as shown in [Younes 2010, Miller et al. 2015]: V is the so-called Friedrichs

extension [Zeidler 1995, pp. 273] of U with respect to ‖ · ‖A. The inner product of V

is then defined as

〈·, ·〉V : V × V → R, 〈u, ũ〉V := 〈Au, ũ〉 (4.23)

and the induced norm is

‖ · ‖V : V → R≥0, ‖u‖V :=
√
〈u, u〉V . (4.24)

As discussed before, Sobolev embedding theorems yield necessary conditions for the

definition of an admissible V based on A [Dupuis et al. 1998]. The assumption

v ∈ X 1
1 in Theorem 4.3 and v ∈ X 2

V in Remark 4.2 respectively means that for each

time t ∈ [0, 1] : vt ∈ V ⊆ C1
0(Ω,Rd) has to hold. To obtain a diffeomorphic φvs,t, it

is hence required that each vt is (at least) j = 1 times continuously differentiable.
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4.3 Admissible Spaces and Reproducing Kernel Hilbert Spaces

Furthermore, we assumed in this section that V ⊂ L2(Ω,Rd) implying that each vt ∈ V
is Lp integrable with p = 2. Using the second embedding given in Theorem 3.2, we

obtain that for

m >
d

2
+ 1 (4.25)

the embedding Wm,2
0 (Ω) →֒ C1(Ω) is compact. As this embedding holds for all

components of a function vt : Ω→ R
d, we can derive Wm,2

0 (Ω,Rd) →֒ C1(Ω,Rd), where

Wm,2
0 (Ω,Rd) := (Wm,2

0 (Ω))d →֒ C1(Ω,Rd) is the Cartesian product space. Accordingly,

if vr ∈ Wm,2
0 (Ω) for all r ∈ [0, 1] then the associated flow φvs,t is diffeomorphic.

If we now restrict the discussion to the case d = 3 (considering, e.g., lung CT

registration) as done in [Dupuis et al. 1998], we know that W 3,2
0 (Ω,Rd) is sufficient for

obtaining a diffeomorphic φvs,t. Note that also for d ∈ {1, 2} and m = 3 (4.25) holds

and hence V = W 3,2
0 (Ω,Rd) is an appropriate space for the velocity fields vt as it is

the closure of C∞
0 (Ω,Rd) with respect to the norm ‖ · ‖3,2.

After we have shown that it is possible to built an appropriate space V by deriving it

from a linear differential operator A, we define the linear differential operator that is

most often used in LDDMM methods.

Definition 4.8 (Helmholtz Operator L, see, e.g., [Holm et al. 1998])

Let V = Wm,2
0 (Ω,Rd), where m ∈ N satisfies (4.25), β ∈ N with β ≤ ⌊m

2
⌋,

and α, γ ∈ R>0. The Helmholtz-Operator L is defined as:

L : V → Wm−2β,2
0 (Ω,Rd), v 7→ Lv := (γid− α∆d)

βv. (4.26)

Here the vectorial Laplacian is defined as

∆du(x) := (∆u1(x), . . . ,∆ud(x))⊤

and ∆ :=
∑d
i=1 ∂i,i denotes the Laplacian operator.

Now we show that L fulfills Assumption 4.1 and thus V with 〈u, ũ〉V = 〈Lu, ũ〉 is an

admissible space [Younes 2010, Theorems 9.8 and 9.10].

Theorem 4.10 (Helmholtz Operator is Symmetric and Positive Definite)

The Helmholtz operator is positive definite and symmetric and thus Assumption 4.1

holds.

Proof: We only give a proof for β = 1, as for β > 1 the Helmholtz operator can

be written as β-fold application of this case. By employing multi-dimensional inte-

gration by parts two times (which is possible as Lu ∈ Wm−2β,2(Ω,Rd) ⊆ L2(Ω,Rd)

and ũ ∈ Wm,2(Ω,Rd)) with m ≥ 2, we obtain for arbitrary u, ũ ∈ V :

〈Lu, ũ〉 = 〈u, Lũ〉.
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4. Diffeomorphisms and Flows of Velocities

All boundary integrals vanish as u and ũ have compact support in Ω. Additionally,

the intermediate result for ũ = u shows the strong monotonicity:

〈u, Lu〉 =
d∑

i=1


γ
∫

Ω
(ui)2(x)︸ ︷︷ ︸

≥0

dx + α
∫

Ω

d∑

j=1

(∂ju
i)2(x)︸ ︷︷ ︸
≥0

dx


 ≥ γ〈u, u〉.

As the first integral (γ〈u, u〉) only vanishes if u ≡ 0, choosing c = γ > 0 yields (4.21).

As L2(Ω,Rd) is isomorphic to its dual space [Adams and Fournier 2003, pp. 45–47], it

is easy to derive that L is a self-adjoint operator (i.e., L = L† holds, where L† denotes

the adjoint operator):

〈L(Lu), v〉 (4.22)
= 〈Lu, Lv〉 = 〈L†(Lu), v〉. (4.27)

4.4 Diffeomorphisms in the Discrete Setting

LDDMM methods are designed to generate diffeomorphic transformations as was

discussed in this chapter for the continuous problem. As in general no analytical

solution for the LDDMM problem is available, we aim for a numerical solution and

require a discretization. However, the numerical modeling and the implementation

are decisive to achieve diffeomorphic solutions in the discrete setting, cf. [Christensen

et al. 1996]. Despite its importance this issue is hardly discussed in the literature on

LDDMM. In this section we derive an approach for achieving piecewise diffeomorphic

transformations in the discrete setting. We start with presenting a theorem that

provides sufficient conditions for diffeomorphic transformations in the continuous

setting [Ciarlet 1988, p. 225]. Afterwards, we briefly describe a discretization of the

transformations for a finite number of points. We refer to these points as grid points as

we will use a regular grid in our methods, cf. Chapter 6. Typically, interpolation is used

to obtain a continuous representation, i.e., function values at neighboring points, from

the grid points. The conditions for diffeomorphisms, which are given in Theorem 4.11,

restrict the options for admissible interpolation methods. A suitable way to fulfill

the premises of the theorem for single cells of the grid is using bilinear (d = 2) or

trilinear (d = 3) interpolation and controlling Jacobian determinants at a limited

number of points [Musse et al. 2001, Karaçalı and Davatzikos 2004]. However, when

considering multiple cells for covering Ω, we do not obtain the necessary differentiability

at the boundaries of the cells due to the bi- or trilinear interpolation [Modersitzki

2009, p. 26] and thus the transformation is a homeomorphism on Ω and piecewise

diffeomorphic within the cells. Nevertheless, the obtained transformations are invertible

and topology-preserving, which is a very important property of diffeomorphisms.
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4.4 Diffeomorphisms in the Discrete Setting

We start with extending Definition 4.2 and consider functions ϕ : U → V

where U, V ⊂ R
d are two open subsets. If ϕ ∈ C1(U, V ), ϕ is bijective and its

inverse ϕ−1 ∈ C1(V, U), then ϕ is a diffeomorphism. The following theorem states

sufficient conditions for diffeomorphisms in the continuous setting.

Theorem 4.11 (Sufficient Conditions for Injectivity and Diffeomorphisms [Ciarlet

1988, Theorem 5.5-2])

Let Ω be a bounded open connected subset of Rd such that the interior int(Ω) = Ω,

let ψ ∈ C0(Ω,Rd) be an injective mapping, and let ϕ ∈ C0(Ω,Rd) ∩ C1(Ω,Rd) be a

mapping that satisfies

det(Jϕ(x)) > 0 for all x ∈ Ω,

ϕ(x) = ψ(x) for all x ∈ ∂Ω.

Then the mapping ϕ : Ω→ ϕ(Ω) is a homeomorphism (in particular ϕ : Ω→ R
d is

injective), the mapping ϕ : Ω→ ϕ(Ω) is a diffeomorphism, and ϕ(Ω) = ψ(Ω).

Proof: See [Ciarlet 1988, pp. 225].

According to Theorem 4.11 a transformation ϕ that is injective and continuous on ∂Ω

as well as continuously differentiable with positive Jacobian in the whole domain Ω

is homeomorphic on Ω and diffeomorphic on Ω. Thus, ϕ is invertible and preserves

topology, i.e., connected sets remain connected and disconnected sets disconnected.

The premises of Theorem 4.11 can be obtained in the discrete setting by choosing a

proper interpolation and controlling that det(Jϕ) > 0 for a limited number of points.

The derivations of this section follow [Musse et al. 2001] for d = 2 and [Karaçalı and

Davatzikos 2004] for d = 3. We give the main ideas and refer to [Musse et al. 2001]

and [Karaçalı and Davatzikos 2004] for details.

In Section 6.1 we will provide more details of the discretization on nodal grids, which

is used in this thesis for velocity fields and transformations, and give a brief summary

here. We consider d-dimensional intervals Ω = ×di=1(ω
2i−1, ω2i) that can be covered

by cuboids that are referred to as grid cells, cf. [Modersitzki 2009, pp. 20]. For

the i-th (i = 1, . . . , d) spatial dimension ni ∈ N, ni ≥ 2 grid points are used. The grid

points are denoted by ϕi ∈ R
d, i = 1, . . . , n, where n =

∏d
i=1 n

i. Accordingly, we have

ñ =
∏d
i=1(ni−1) cells and each cell Ωj has 2d vertices ωj,k, j = 1, . . . , ñ, k = 1, . . . , 2d,

see Figure 4.4 for a visualization for d = 2. First, only a single cell Ωj is considered.

To apply Theorem 4.11, the interpolation has to yield an interpolant ϕj : Ωj → R
d

that is continuously differentiable within Ωj, continuous and injective at ∂Ωj and has

a positive Jacobian determinant for all points x ∈ Ωj. A transformation ψ : Ω→ R
d

with det(Jψ(x)) > 0 for all x ∈ Ω is called orientation-preserving [Ciarlet 1988,

p. 222] or topology-preserving [Karaçalı and Davatzikos 2004]. Using multilinear
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x1

x2

(ω1, ω3) (ω2, ω3)

(ω1, ω4) (ω2, ω4)

Ω5

ω5,1

ω5,3 ω5,4

ω5,2

(a) Initial grid

x1

x2

(ω1, ω3) (ω2, ω3)

(ω1, ω4) (ω2, ω4)

ϕ(Ω5)

ϕ6

ϕ10

ϕ11

ϕ7

(b) After ϕ is applied

Figure 4.4: Exemplary grids for d = 2. Vertices are plotted as blue squares. The topol-
ogy preservation is indicated by the angles (orange arcs) and edges (blue
line segments): As long as grid points are transformed such that the angles
remain positive (0 < θ < π), grid cells are convex. If edges cross in
other points than the transformed vertices (for instance ϕ6 = ϕ(ω5,1),
ϕ7 = ϕ(ω5,2), ϕ10 = ϕ(ω5,3), ϕ11 = ϕ(ω5,4) for Ω5), there are foldings. By
controlling the Jacobians of ϕ at the vertices, foldings can be detected.

interpolation we obtain ϕj that are continuously differentiable on Ωj and continuous

on ∂Ωj [Modersitzki 2009, p. 26]. It is left to show injectivity of ϕj on the boundary

and the topology preservation on Ωj. For d = 2 this can be achieved if the Jacobian

of ϕj at the vertices ωj,1, . . . ,ωj,4 remains positive [Musse et al. 2001]. We consider

the two-dimensional case first and discuss the extension to d = 3 afterwards.

Theorem 4.12 (Positivity of Jacobian on Ωj for d = 2 [Musse et al. 2001])

Let d = 2 and the quadrilateral cell Ωj ⊂ R
2 with its four vertices ωj,1, . . . ,ωj,4 ∈ ∂Ωj

be given. If ϕj : Ωj → R
2 is obtained via bilinear interpolation and

det(Jϕj
(ωj,k)) > 0 for all k ∈ {1, 2, 3, 4}

then det(Jϕj
(x)) > 0 for all x ∈ Ωj.

Proof: See [Musse et al. 2001].

The main idea in the proof of Theorem 4.12 is that the Jacobians Jϕj
are linear

with respect to the spatial coordinates if bilinear interpolation is used. Furthermore,

every x ∈ Ωj can be computed as

x =
4∑

k=1

cj,k(x)ωj,k, where cj,k(x) ∈ [0, 1] and
4∑

k=1

cj,k(x) = 1.
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4.4 Diffeomorphisms in the Discrete Setting

Accordingly, if the Jacobians are positve at all ωj,k they remain positive for x ∈ Ωj

due to the linearity of the Jacobians that is shown in [Musse et al. 2001].

Before we can apply Theorem 4.11 we need to show injectivity of ϕj on ∂Ωj. If we

had ψ ∈ C1(U,Rd), where U is an open set with Ωj ⊂ U , and det(Jψ(x)) > 0 for

all x ∈ Ωj, then ψ would be locally invertible on Ωj [Ciarlet 1988, p. 222]. This is a

consequence of the inverse function theorem [Munkres 1991, p. 69]. However, due to

the multilinear interpolation, we only have ϕj ∈ C0(Ωj,R
d)∩C1(Ωj,R

d). Nevertheless,

local injectivity at the boundary can be obtained as shown in [Musse et al. 2001].

Theorem 4.13 (Injectivity on ∂Ωj for d = 2 [Musse et al. 2001])

If the premises of Theorem 4.12 hold, ϕj : Ωj → R
2 is injective on ∂Ωj.

Proof: See [Musse et al. 2001].

The proof in [Musse et al. 2001] is based on geometric arguments: Line segments

between vertices are mapped by the bilinear interpolation to line segments and the

angles at the vertices remain positive, cf. Figure 4.4.

In summary, by using bilinear interpolation and constraining the Jacobians to be

positive at the vertices of a cell Ωj, we can apply Theorem 4.11 and obtain a home-

omorphic transformation ϕj : Ωj → R
2, i.e., a bijective function that is along with

its inverse continuous. Furthermore, ϕj is diffeomorphic on Ωj. This holds for every

cell Ωj, j = 1, . . . , ñ and in [Musse et al. 2001] it is also shown that continuity and

invertibility is achieved (when the premises of Theorem 4.12 are fulfilled) at inter-

sections of the boundaries of neighboring cells. Unfortunately, local injectivity at all

neighboring cells does not imply global injectivity as, e.g., interpenetration at ∂Ω could

occur, cf. the example given in [Ciarlet 1988, pp. 222–223]. In [Musse et al. 2001] this

problem is handled by imposing Dirichlet zero boundary conditions on the displace-

ment u : Ω→ R
d: u(x) = 0 for all x ∈ ∂Ω. Consequently, ϕ = id + u does not move

boundary points and ϕ(Ω) = Ω. Similarly, in the LDDMM approach v(t,x) = 0 for

all x ∈ ∂Ω and t ∈ [0, 1] could be enforced. We do not use these boundary conditions

for instance because the employed pre-registrations, cf. Chapter 8, do not necessarily

map Ω onto itself. The transformations obtained in our registration experiments

always were globally injective. However, this is not guaranteed and the issue should

be addressed in future work, see, e.g., [Suhr 2015, pp. 99–102] for a discussion of

injectivity in image registration. Until now we have considered the case d = 2, the

following remark summarizes the extension to d = 3.
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4. Diffeomorphisms and Flows of Velocities

Remark 4.3 (Extension to d = 3 [Karaçalı and Davatzikos 2004])

The extension of the results of this section to d = 3 is given in [Karaçalı and Davatzikos

2004]. In the three-dimensional case 64 Jacobians have to be constrained to be positive.

Then, by using trilinear interpolation, the positivity of the Jacobians on an entire cell

can be achieved. The trilinear interpolation yields (like the bilinear interpolation)

continuous interpolants. The resulting transformations are homeomorphisms on Ω

and piecewise diffeomorphic, i.e., diffeomorphic on each individual Ωj, j = 1, . . . , ñ.

Despite the advantages of the bi-/trilinear interpolation for obtaining topology-

preserving transformations the interpolants lack differentiability at the boundaries of

the cells. While higher-order interpolation like cubic spline interpolation would over-

come the limitation of non-differentiability, it might also result in transformations that

are not bijective due to overshooting (Gibb’s phenomenon) [Zhang and Martin 1997].

In our opinion the more important aspects of LDDMM for image registration are the

bijectivity and continuity and thus we focus on the computation of topology-preserving

transformations with small computational costs (another advantage of multilinear

interpolation [Modersitzki 2009, p. 26]). In Section 6.3 it is described how we achieve

topology-preserving transformations without constantly controlling the Jacobians at

the four (d = 2) or 64 (d = 3) points per cell. We would like to remark that many

LDDMM methods employ bi-/trilinear interpolation [Beg et al. 2005, Vialard et al.

2012, Mang and Ruthotto 2017] and refer to the resulting transformations as diffeo-

morphic. Similarly, we refer somewhat inaccurately to the piecewise diffeomorphic

transformations as diffeomorphisms.

Before we have addressed the issue of diffeomorphic transformations in the discrete

setting we covered in this chapter the central theoretical results regarding the continuous

LDDMM model. The main contents were the existence of diffeomorphic solutions,

admissible spaces for velocity fields and the distance on diffeomorphisms. Furthermore,

we provided a suitable differential operator L and regularizer S for the LDDMM

matching. We continue in Chapter 5 with the detailed discussion of two important

LDDMM methods [Beg et al. 2005, Vialard et al. 2012]. Additionally, based on [Hart

et al. 2009], we give the motivation to phrase LDDMM as an optimal control problem

and introduce the continuous LDDMM models used in this thesis.
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This chapter provides an overview of different approaches to image registration with

LDDMM. In particular, we investigate the two major different classes of methods, which

are called relaxation [Beg et al. 2005] and shooting [Vialard et al. 2012, Singh et al.

2013]. On the basis of these methods, which also describe practical implementations,

three different shooting and relaxation models are presented. Afterwards, differences

of the methods are explained and discussed.

The theoretical basics for LDDMM were laid in the 1990s, see, e.g., [Trouvé 1995b,

Dupuis et al. 1998, Grenander and Miller 1998, Younes 1998] and Chapter 4. The

main result is that diffeomorphic transformations can be obtained as associated flows

of suitable velocity fields v : [0, 1]× Ω→ R
d [Dupuis et al. 1998]. It was also shown

which v are admissible and how a proper regularization guarantees that admissible v

are obtained [Dupuis et al. 1998]. Additionally, it was found that the length of

the shortest path between two diffeomorphisms defines a distance in the space of

diffeomorphisms [Trouvé 1995b].

The first LDDMM implementations were designed to match LMs, see, e.g., [Joshi and

Miller 2000]. In the early 2000s diffeomorphic image alignment was achieved using

interpolation from the LM matchings, cf. for instance [Twining and Marsland 2003], but

an algorithm for intensity-based image registration in the LDDMM framework was yet

to be presented. The first LDDMM image registration algorithm was introduced [Beg

et al. 2005] although first results were also included in [Beg et al. 2002, Beg et al. 2004].

This algorithm is the prototype of the class of the so-called relaxation approaches.

The term relaxation is used, e.g., by [Hong et al. 2012a, Zhang and Fletcher 2015]

and means that an objective functional is minimized by estimating vt : Ω → R
d

for t ∈ [0, 1]. This is in contrast to shooting approaches [Miller et al. 2006, Ashburner

and Friston 2011, Vialard et al. 2012]. For shooting approaches only the initial

momentum M0 : Ω→ R
d (which can be directly computed from the initial velocity v0)

is determined during the optimization. The subsequent Mt for t ∈ (0, 1] are then

obtained according to a set of PDEs. The transformation φt used for aligning the

image can be derived from Mt or vt respectively. Shooting approaches exploit the

result that the energy, which is determined by the momentum, is constant over time

for a geodesic solution of the image matching problem (as defined in [Beg et al. 2005]),

see Theorem 4.8.
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5. Image Registration with LDDMM

Relaxation approaches are studied in Section 5.1, whereas shooting approaches are

covered in Section 5.2. In both sections the general approach of the published methods

is motivated and the corresponding optimization problems are phrased. Afterwards, the

optimality conditions for minimizers of the optimization problems are given. Finally,

a brief discussion is provided that compares properties of shooting and relaxation

approaches. In Section 5.3 we examine how different models can be transferred to

optimal control problems. For our LDDMM methods we also use optimal control

formulations. The resulting relaxation and shooting models are presented in Section 5.4.

5.1 Relaxation Approaches

The image matching problem in the relaxation formulation of [Beg et al. 2005] is to

find an admissible minimizer v∗ ∈ X 2
V of an objective function composed of the SSD

distance measure (Definition 3.14) and the regularization (Definition 3.16) that is

based on the Helmholtz operator (Definition 4.8). The transformation φ is generated

by the flow of velocities v as explained in Chapter 4.

Problem 5.1 (LDDMM Image Matching Problem of [Beg et al. 2005])

Let I0, I1 ∈ I be the images to be matched, and σ > 0. Let V be an admissible

Hilbert space with inner product induced by L†L, and L as defined in Definition 4.8.

The goal of LDDMM image matching is to find a velocity field v∗ : [0, 1]× Ω→ R
d

that is a solution to the following constrained optimization problem.

arg min
v∈X 2

V

EBeg(v, φ) (5.1)

s.t. φ0(x) = x, φ̇t(x) = vt(φt(x)) for all t ∈ [0, 1] and x ∈ Ω. (5.2)

with EBeg(v, φ) :=
1

σ2
DSSD(I0 ◦ φ−1

1 , I1) + S(v) (5.3)

=
1

2σ2

∫

Ω
(I0 ◦ φ−1

1 − I1)2dx +
1

2

∫ 1

0
〈Lvt, Lvt〉dt.

Here the abbreviations φt(·) = φ(0, t, ·) and φ−1
1 (·) = φ(1, 0, ·) are used.

Note that due to (5.2) the function φ∗ : [0, 1]2×Ω→ R
d is fully determined for given v∗.

Therefore, it is sufficient to solve the constrained minimization regarding v although

the distance measure within EBeg depends on φ.

As the constraint equation (5.2) is of such importance, we repeat the result from The-

orem 4.3 and Remark 4.2. We phrase the regularity condition on v via S(v) as already

done in [Dupuis et al. 1998].
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5.1 Relaxation Approaches

Theorem 5.1 (Associated Flow is a Diffeomorphism [Dupuis et al. 1998])

Let v ∈ X 2
V , then S(v) < ∞, and the associated flow φs,t := φvs,t obtained by

solving (5.2) is a diffeomorphism for all s, t ∈ [0, 1].

Proof: See [Dupuis et al. 1998].

Consequently, the transformation φ−1
1 = φ1,0 is diffeomorphic. In [Dupuis et al. 1998]

it was also shown that Problem 5.1 has a solution. However, in general there is no

unique solution, e.g., due to the non-convexity of the distance measure as a function

of φ−1
1 [Modersitzki 2009, p. 117]. But, it was shown in [Trouvé and Younes 2005a]

that under certain regularity assumptions on I0 (I0 ∈ W 1,2(Ω,Rk) for k ∈ N) the

solution of the ELE of Problem 5.1, which is given in (5.4), is unique.

Theorem 5.2 (Existence of Solutions of Problem 5.1 [Dupuis et al. 1998])

If V is an admissible Hilbert space, a minimizer v∗ ∈ X 2
V of Problem 5.1 exists.

Proof: See [Trouvé 1995a, Trouvé 1995b, Dupuis et al. 1998].

The first algorithms for solving Problem 5.1 numerically were formulated in the OD

framework [Beg et al. 2005]. This means that the ELE of the problem were computed

in the continuous formulation and afterwards discretized and numerically solved. The

ELE for Problem 5.1 were derived in [Beg et al. 2005].

Theorem 5.3 (ELE of Problem 5.1, adapted from [Beg et al. 2005])

The minimizer of Problem 5.1 (v∗) satisfies the following ELE

v∗
t −K

(
1

σ2
|Jφv∗

t,1
|(I0 ◦ φv∗

t,0 − I1 ◦ φv∗

t,1)∇(I0 ◦ φv
∗

t,0)
)

= 0, K := (L†L)−1 (5.4)

for all t ∈ [0, 1] and x ∈ Ω.

Proof: See [Beg et al. 2005].

The left-hand side of (5.4) is the gradient of EBeg in V . The discretized version of (5.4)

is used for numerical optimization with a gradient descent scheme [Beg et al. 2005].

Note that

L†Lv∗
t −

1

σ2
|Jφv∗

t,1
|(I0 ◦ φv∗

t,0 − I1 ◦ φv∗

t,1)∇(I0 ◦ φv
∗

t,0) (5.5)

would be the gradient in L2(Ω,Rd) and thus could also be used for updating the

velocity fields v. However, by applying K, which is a smoothing operator, to the

left-hand side of (5.4) smooth velocity fields are obtained and the convergence rate of

the gradient descent is improved as the iterates are elements of V [Beg et al. 2005].
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5. Image Registration with LDDMM

An important concept in shape regression and LDDMM is the quantification of

distances of diffeomorphisms and shapes. For brevity, we have only covered some

results on distances dV (ψ, ψ̃) of two diffeomorphisms ψ and ψ̃ in Section 4.2. There are

many research articles about metrics on groups of diffeomorphisms and metrics between

manifolds and surfaces and the interested reader is referred to [Younes 1998, Miller and

Younes 2001, Michor and Mumford 2007, Mio et al. 2007, Younes et al. 2008, Kurtek

et al. 2012]. For image registration we are interested in the distance between images.

The publications [Trouvé 1995b, Dupuis et al. 1998, Trouvé 1998, Younes 1999, Miller

and Younes 2001] laid the foundation for the definition of a metric on the image

space I. In CA it is assumed that images are elements of a common image orbit O,

see Section 2.1. As this orbit is generated from a template image Itemp ∈ I by

diffeomorphisms ϕ ∈ GV , the support of the images in the orbit remains compact

and I ∈ O implies I ∈ I. To compute a distance between I0 ∈ O and I1 ∈ O

with I0 = Itemp ◦ ψ and I1 = Itemp ◦ ψ̃, we consider the distance dV (ψ, ψ̃) between

diffeomorphisms ψ, ψ̃ ∈ GV , see Definition 4.7. The concept of transferring metric

properties from dV to the image distance dI is simplified by setting ψ = id and

thus Itemp = I0.

Theorem 5.4 (Metric on the Image Orbit [Beg et al. 2005])

The function dI : O ×O → R≥0 with

dI(I, Ĩ) := inf
ϕ∈GV

{dV (id, ϕ) | Ĩ = I ◦ ϕ−1} (5.6)

is a metric on O.

Proof: See [Beg et al. 2005].

The choice ψ = id is reasonable due to the right-invariance of dI that is inherited (in

addition to the positiveness and symmetry) from dV , cf. (4.17). Thus, it does not

matter which image is chosen as template and all elements are equally suitable [Miller

et al. 2002].

Theorem 5.5 (Right-invariance of dV and dI [Beg et al. 2005])

The metric dV is right-invariant, i.e., for any ψ, ψ̃, ϕ ∈ GV we have

dV (ψ ◦ ϕ, ψ̃ ◦ ϕ) = dV (ψ, ψ̃). (5.7)

Consequently, dI is right-invariant, i.e., for all ϕ ∈ GV and I, Ĩ ∈ O we have

dI(I ◦ ϕ, Ĩ ◦ ϕ) = dI(I, Ĩ). (5.8)

Proof: See [Beg et al. 2005].
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I0

I1

I0 ◦ ϕ

I1 ◦ ϕ

ψ ϕ

ϕ

ψ̃ = ϕ−1 ◦ ψ ◦ ϕ

d
I (I 0

, I 1
)

d
I (I 0◦

ϕ, I 1◦
ϕ)

Figure 5.1: Visualization of the right-invariance of dI . The transformation ϕ ∈ GV

represents a rotation by 25◦. If ϕ is applied to both I0 and I1, the value
of dI does not change: dI(I0, I1) = dI(I0 ◦ ϕ, I1 ◦ ϕ). This correlates
well with the following intuition: If ψ ∈ GV is the solution to the image
matching problem with the shortest path length between I0 and I1, then
the length of the path with solution ψ̃ between I0 ◦ ϕ and I0 ◦ ϕ is not
changed. This is a direct consequence of the right-invariance of dV . Image
material: The MR images show my head and were acquired in 2009 during
an internship at the University of Greifswald.
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5. Image Registration with LDDMM

A visualization of the right-invariance of dI and dV is given in Figure 5.1. The

distance dV plays an important role for the shooting approaches introduced in the

next section. Shooting approaches exploit the fact that the kinetic energy over time is

conserved for a solution of the optimization problem given in (4.19) that establishes the

shortest path between two diffeomorphisms. This property is not directly integrated

in the model proposed in [Beg et al. 2005]. However, it is included in the algorithm by

a “constant speed reparametrization of velocity vector field” [Beg et al. 2005] every

ten iterations.

5.2 Shooting Approaches

The central idea in shooting approaches is to interpret St as kinetic energy of a

closed system (without external forces acting on it) at time t ∈ [0, 1]. In analogy

to classical mechanics this energy can also be quantified in terms of the momentum,

see Section 3.2.1. For the LDDMM approach the momentum Mt is typically defined

as Mt = Avt, t ∈ [0, 1], where A = L†L. In the mechanics analogy A can be interpreted

as the mass and vt is the velocity. It is well-known that the total momentum of a

closed system is conserved [Arnol’d 1989, p. 45], as will be discussed in the following

paragraphs.

The conservation of momentum is used to estimate an optimal initial momentum M0,

whose effect on the images to be matched is then fully determined by the geodesic

equation, i.e., Mt can be computed for all t ∈ (0, 1]. The geodesic equation is the ELE

of the minimization problem given in the right-hand side of (4.19) [Miller et al. 2002],

which defines the geodesic distance between two diffeomorphisms.

Theorem 5.6 (ELE for Geodesic Distance Problem, [Miller et al. 2002])

Let V be an admissible Hilbert space with inner product 〈u, v〉V = 〈Au, v〉 for velocity

fields u, v ∈ X 2
V . The ELE for the right-hand side of (4.19) is given as

∂

∂t
Avt + JAvt

vt + Avtdiv(vt) + J⊤
vt
Avt = 0 (5.9)

for all t ∈ [0, 1] and x ∈ Ω.

Proof: See [Miller et al. 2002].

This ELE describes the evolution of the velocity field v ∈ X 2
V that connects two

diffeomorphisms ψ ∈ GV and ψ̃ ∈ GV via the associated flow φv0,1 with the shortest

path length, cf. Theorem 4.7; i.e., the solution of the ELE characterizes a geodesic

path within GV [Miller et al. 2006]. Equation (5.9) was first derived in [Mumford

1998], and it was used within the LDDMM image matching context in [Miller et al.

2002].
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5.2 Shooting Approaches

The geodesic equation given in (5.9) is called EPDiff equation (short for Euler-Poincaré

on groups of diffeomorphisms [Younes 2010, p. 264]) and was investigated in physics as

well as in the CA context, see, e.g., [Holm et al. 1998, Mumford 1998, Marsden and Ratiu

1999, Miller et al. 2002, Marsland and McLachlan 2007, Younes et al. 2009, Mumford

and Michor 2013]. The origin of the EPDiff equation is the conservation of momentum,

which is a property of the solution v∗ of Problem 5.1 that (according to Theorem 4.8)

has a constant kinetic energy over time: ‖v∗
t ‖V = c ∈ R≥0 for all t ∈ [0, 1]. “EPDiff [...]

is the time derivative of the momentum conservation equation” [Younes 2010, p. 263]

and describes the evolution of the momentum M ; see [Younes 2010, pp. 255–267] for

the derivation.

Definition 5.1 (EPDiff Equation, adapted from [Mumford and Michor 2013])

Let v, M : [0, 1]× Ω→ R
d be velocity and associated momentum respectively, i.e.,

Mt = Avt for all vt ∈ V and t ∈ [0, 1]. The ELE given in (5.9) written in terms of Mt

Ṁt + JMt
vt +Mtdiv(vt) + J⊤

vt
Mt = 0 (5.10)

for all t ∈ [0, 1] and x ∈ Ω is called EPDiff equation.

In Definition 5.1 we used Ṁt, Mt : Ω→ R
d in analogy to φ̇t and φt defined in (4.10)

and Remark 4.1. Similar to (5.4), i.e. under certain regularity assumptions, it can

be shown that for fixed M0, (5.10) has a unique solution Mt for all t ∈ [0, 1] [Younes

2010, Theorem 11.15].

From the fact that ‖v∗
t ‖V is constant for all times t, which is the result of Theorem 4.8,

it can be derived that geodesic solutions of Problem 5.1 satisfy the conservation of

momentum [Miller et al. 2006], cf. also Section 3.2:

‖v∗
t ‖V = 〈Lv∗

t , Lv
∗
t 〉 = 〈L†Lv∗

t , v
∗
t 〉 = 〈L†Lv∗

s , v
∗
s〉 = ‖v∗

s‖V , for all s, t ∈ [0, 1], (5.11)

where L†Lv∗
t = Av∗

t is called the Eulerian momentum [Miller et al. 2015]. The conser-

vation of momentum is the basis of the shooting approaches, see, e.g., [Allassonnière

et al. 2005, Younes 2007, Ashburner and Friston 2011, Vialard et al. 2012]: The initial

momentum M0 defines the transformation φ for all t ∈ [0, 1] and in contrast to the

relaxation approach followed in [Beg et al. 2005] only M0 instead of vt for all t ∈ [0, 1]

is optimized.

As shown in [Miller et al. 2006] for shooting LDDMM approaches, the level sets of

the image to be deformed are orthogonal to the momentum, or phrased otherwise –

the image gradient is parallel to the momentum, see also [Modersitzki 2009, p. 107].

In the following model the evolution of the images is modeled directly as a time-

dependent image I : [0, 1] × Ω → R. In the models proposed in [Miller et al. 2006,
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5. Image Registration with LDDMM

Vialard et al. 2012] the parallelism of momentum and image gradient is integrated

as Mt = λt∇It (where λt : Ω→ R is the adjoint variable) for all t ∈ [0, 1]. It was

shown in [Miller et al. 2006] that when starting from the initial condition I0 = I0

the evolution of the time-dependent image along the geodesic is described by the

transport equation İt +∇It⊤vt = 0, for all x ∈ Ω and t ∈ [0, 1]. If, additionally, the

optimization is constrained such that Mt has to satisfy the EPDiff equation (5.10),

the following shooting problem formulation for diffeomorphic image matching can be

obtained.

Problem 5.2 (LDDMM Shooting Problem, adapted from [Singh et al. 2013])

Let I0, I1 ∈ I be the images to be matched, σ > 0, K = (L†L)−1 with the Helmholtz

operator L, and I : [0, 1]×Ω→ R the time-dependent image. The shooting problem is

to find an optimal initial momentum M∗
0 : Ω→ R

d that is a solution to the following

constrained optimization problem:

arg min
M0

EShoot(M0, I) (5.12)

s.t. I0 = I0, İt +∇I⊤
t vt = 0, (5.13)

vt = KMt, (5.14)

Ṁt + JMt
vt +Mtdiv(vt) + J⊤

vt
Mt = 0, (5.15)

where EShoot(M0, I) :=
1

σ2
DSSD(I1, I

1) + 〈KM0,M0〉 (5.16)

for all t ∈ [0, 1] and x ∈ Ω.

In contrast to Problem 5.1, the transformed template image is not obtained by applying

a transformation ϕ−1 but rather by solving the advection/transport equation given

in (5.13). Throughout this thesis we use the term transport equation. In two of our

LDDMM models, which are described in Section 5.4, vector-valued transformation

maps (instead of scalar images) are transported and the template image is trans-

formed with the computed transformation map. This helps to handle blurring that

is introduced by the numerical solution of the transport equation, as blurring is less

unfavorable for the smooth transformations maps than for the images that can contain

sharp edges, cf. Chapter 6.

The shooting method of [Vialard et al. 2012] is derived from a Hamiltonian formulation.

This means that it is phrased as optimal control problem, see Section 3.2.2. In the

following we present the application of the general concepts of Hamiltonian dynamics

and optimal control given in Section 3.2 to LDDMM problems.
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We start with a summary how velocities v and momentum M are related. This can

be achieved by interpreting the Lagrangian

St(v) =
1

2
〈Lvt, Lvt〉 =

1

2
〈Avt, vt〉 =

1

2

∫

Ω
(Avt)

⊤vtdx (5.17)

as the total kinetic energy of the observed system at time t [Younes et al. 2009]. Like

in Theorem 5.6 and Section 3.2.1, we focus on the running costs (St) of the image

registration objective functional and omit the discussion of the terminal cost (D).

However, in the numerical solution of the optimal control problems, the distance

measure is included as terminal cost, see Section 6.2.

Because in LDDMM the flow constraint φ̇t = vt ◦ φt has to hold for all t ∈ [0, 1], we

can write St either with the Eulerian velocity vt or using the Lagrangian (generalized)

velocities ẋ(t) := φ̇t with (generalized) positions x(t) := φt [Miller et al. 2015].

Since φt is a diffeomorphism, we can rearrange φ̇t = vt ◦ φt to φ̇t ◦ φ−1
t = vt. If we

substitute the last equation in (5.17), we obtain the following form of the Lagrangian

L(φt, φ̇t, t) :=
1

2

∫

Ω
(A(φ̇t ◦ φ−1

t ))⊤(φ̇t ◦ φ−1
t )dx. (5.18)

For the Hamiltonian dynamics, which are also used in the LDDMM context by [Glaunès

et al. 2006, Marsland and McLachlan 2007, Michor and Mumford 2007, Miller et al.

2014, Arguillère et al. 2015, Miller et al. 2015], the conjugate momentum λ = ∂L/∂φ̇
is used. The Hamiltonian is defined as (cf. Section 3.2.1)

H(φt, λt, t) = 〈λt, φ̇t(φt, λt)〉 − L(φt, φ̇t(φt, λt), t). (5.19)

Substituting φ̇t = vt ◦ φt as well as φ̇t ◦ φ−1
t = vt and (5.18) into (5.19) yields the

extended Hamiltonian [Miller et al. 2015]

Ĥ(φt, λt, vt, t) :=
∫

Ω
λ⊤
t (vt ◦ φt)dx− 1

2

∫

Ω
(Avt)

⊤vtdx. (5.20)

Using the Pontryagin maximum principle [Pontryagin et al. 1986, pp. 19], the opti-

mizer v∗ satisfying φ̇t = v∗
t ◦ φt, t ∈ [0, 1] and φ0 = id can be obtained as [Miller et al.

2015]

v∗
t := arg max

v∈X 2
V

Ĥ(φt, λt, v, t) for all t ∈ [0, 1]. (5.21)

The reduced Hamiltonian is defined using v∗ as [Miller et al. 2015]

H(φt, λt, t) := Ĥ(φt, λt, v
∗
t , t) for all t ∈ [0, 1]. (5.22)
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Like for the mechanical energy of a particle that was derived in Section 3.2.1,

we obtain L = H in the case that the potential energy (in LDDMM the

distance measure) vanishes (U ≡ 0). Furthermore, we know from Theorem 4.8

that ‖v∗
t ‖V = 2L(φ∗

t , φ̇
∗
t , t) = const for all t ∈ [0, 1]. This stationarity of the Lagrangian

kinetic energy along the geodesic solution (φ∗, φ̇∗), which is determined by the

ELE, is also given for the Hamiltonian as it does not explicitly depend on time and

thus Theorem 3.4 can be applied. The Pontryagin maximimum principle then yields

the corresponding states φ∗ and co-states λ∗ for v∗ and

H(φ∗
t , λ

∗
t , t) = H(φ∗

0, λ
∗
0, 0) = L(φ∗

0, φ̇
∗
0, 0) = L(φ∗

t , φ̇
∗
t , t) (5.23)

for all t ∈ [0, 1]. If we compare H(φ∗
0, λ

∗
0, 0) and L(φ∗

0, φ̇
∗
0, 0), we can deduce:

H(φ∗
0, λ

∗
0, 0) = L(φ∗

0, φ̇
∗
0, 0)

⇔
∫

Ω
(λ∗

0)
⊤(v∗

0 ◦ φ∗
0︸︷︷︸

=id

)− 1

2

∫

Ω
(Av∗

0)⊤v∗
0dx =

1

2

∫

Ω
(Av∗

0)⊤v∗
0dx

⇔
∫

Ω
(λ∗

0)
⊤v∗

0 =
∫

Ω
(Av∗

0)⊤v∗
0dx. (5.24)

From (5.24) and the extension for arbitrary t ∈ [0, 1] due to (5.23) we obtain the relation

between momentum and velocity used in the shooting approaches: Avt = λt =: Mt for

all t ∈ [0, 1], see, e.g., (5.10). Additionally, it can be shown that from the conservation

of momentum the EPDiff equation can be derived, see [Younes 2010, pp. 255–267],

which is the constraint of the shooting problem.

For the derivation of the optimality conditions for Problem 5.2 we follow [Singh et al.

2013] and start from the Lagrange function with Lagrange multipliers [Nocedal and

Wright 2006, pp. 310] for each equality constraint ((5.13), (5.14) and (5.15)). We refer

to the Lagrange multipliers as adjoint states or just adjoints, cf. Definition and Theo-

rem 3.6. The adjoints have the state variable, which is constrained, as superscript:

λI : [0, 1]× Ω→ R, λM : [0, 1] × Ω → R
d and λv : [0, 1] × Ω → R

d. The resulting

Lagrange function reads [Singh et al. 2013]

L
Shoot(M, I, v, λM , λI , λv) = EShoot(M0, I0) +

1∫
0
〈λvt , KMt − vt〉

+〈λMt , Ṁt + JMt
vt +Mtdiv(vt) + J⊤

vt
Mt〉

+〈λIt , İt +∇I⊤
t vt〉dt.





(5.25)

The optimality conditions can be derived from the first variation of LShoot. In addition

to (5.13), (5.14) and (5.15) the following adjoint equations have to hold for all t ∈ [0, 1]
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5.2 Shooting Approaches

and x ∈ Ω [Singh et al. 2013]:

− λ̇Mt + Jvt
λMt − JλM

t
vt + λvt = 0, λM1 = 0, (5.26)

− λ̇It − div(λIt vt) = 0, λI1 =
1

σ2
(I1 − I1), (5.27)

− J⊤
λM

t
Mt − JMt

λMt − div(λMt )Mt + λIt∇It − L†Lλvt = 0. (5.28)

Note that in contrast to equations (5.13) and (5.15), which have an initial value and

are solved forward in time, the adjoint equations have a final value and are solved

backwards in time. To obtain a minimizer of EShoot, the variation of LShoot with respect

to M0 has to vanish. This variation is given as [Singh et al. 2013]:

∂LShoot

∂M0

= KM0 − λM0 . (5.29)

Now, we present how Problem 5.2 is solved iteratively as the procedure is a FBS (cf. Al-

gorithm 1), which is also used for the problems considered in our framework and

presented in Chapter 6. The general course of action is to solve the state (or forward)

equations of the problem. At the final time (t = 1) the adjoint states are initialized

and the adjoint equations are solved backward in time. Then the state variables are

adjusted to obtain a better image match. This procedure can be interpreted as satisfy-

ing the constraints with the current estimate M0 (step 1), followed by evaluating the

objective functional and assigning the image mismatch to the adjoint variables (step 2).

Subsequently, the mismatch is traced back in time by solving the adjoint equations.

The state variables are then adjusted by using the adjoint variables. In the shooting

problem given in Problem 5.2 this procedure amounts to the following iteration:

1. For given M0, solve equations (5.13) to (5.15) forward in time.

2. Determine the final conditions for the adjoint variables λI , λM and λv and

solve (5.26) to (5.28) backwards in time.

3. Update M0 by solving KM0 = λM0 and start again from step 1.

As we now have described relaxation and shooting approaches (see Table 5.1 for a

comparison of the relevant equations), we proceed with discussing advantages and

disadvantages. To the best of our knowledge only little is known about the difference

in performance of shooting and relaxation methods and unfortunately, it is beyond

the scope of this thesis to perform a comprehensive comparison. Therefore, we also

report observations given in [Younes 2010].

The results of the shooting approach highly depend on a good starting point [Younes

2010, p. 292], i.e., the estimated initial momentum should be close to the optimal

one. This is connected to the structure of the shooting problem that has less degrees
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5.3 LDDMM as Optimal Control Problem

of freedom and is more sensitive to changes (in terms of deviations from a solution)

than relaxation methods that estimate the velocities for multiple points in time. If

the starting point is close to a solution, shooting will probably converge faster than

relaxation methods [Younes 2010, p. 292], as the number of unknowns is smaller.

On the contrary, the flexibility of the relaxation methods allows for recovering very

large and/or complex deformations, whereas the sensibility of the initial momentum

estimation to small deviations from the optimal solution is high and thus shooting

approaches may be less accurate [Younes 2010, p. 292]. On the other hand relaxation

approaches only feature geodesic solutions (solutions that satisfy EPDiff), if the

algorithm converged [Hong et al. 2012a, Vialard et al. 2012].

Shooting approaches inherently fulfill the EPDiff equation (as it is the constraint of

the optimization problem) and thus are more suitable for extrapolation of the image

evolution (i.e. computation of the deformed images for t > 1 is possible), e.g., to model

disease progression [Fishbaugh et al. 2014]. Furthermore, the EPDiff equation within

shooting approaches allows “to generate continuous evolution models” [Fishbaugh

et al. 2014], i.e., accurate interpolation on the whole time interval [0, 1] is possible.

Another advantage of shooting methods is that, due to their parameterization needing

only the initial momentum, they can be implemented using less memory [Younes

2010, p. 292]. To be more concrete: Compared to relaxation methods the memory

consumption can be reduced for shooting by a factor that is equal to the number of

time steps. However, it has to be chosen whether less memory should be consumed

and Mt has to be computed for t ∈ (0, 1] several times (this is necessary as the solution

of the adjoint equations requires Mt see [Vialard et al. 2012] and (5.26) to (5.28))

or Mt should be kept in memory to avoid multiple computations according to (5.10).

This is the trade-off that has to be considered based on the actual registration problem

and discrete time step length.

5.3 LDDMM as Optimal Control Problem

There is a close connection between image registration and the field of optimal control.

For instance, in [Borzì et al. 2003] an optimal control formulation for optical flow

estimation was derived which incorporates the optical flow constraint

İt +∇I⊤
t vt = 0, I0 = I0, for all x ∈ Ω and t ∈ [0, 1]. (5.30)

Analogously to Problem 5.2, time-dependent images I : [0, 1] × Ω → R instead of

transformed images I0 ◦ φ−1
t were integrated into the model. As mentioned in Sec-

tion 5.2, (5.30) is also called transport equation. This equation is a hyperbolic
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5. Image Registration with LDDMM

PDE [Kalnay 2003, p. 69] and its numerical solution will be discussed in Section 6.2.

The optimal control image matching problem within the LDDMM framework proposed

in [Hart et al. 2009] incorporates the transport equation and has the following form.

Problem 5.3 (Image Matching Problem using the Transport Equation for Im-

ages [Hart et al. 2009])

Let I0, I1 ∈ I be the images to be matched and σ > 0. The goal is to find v∗ ∈ X 2
V

that is a solution to the following constrained optimization problem.

arg min
v

EHart(v, I), (5.31)

s.t. I0 = I0, İt +∇I⊤
t vt = 0 for all t ∈ [0, 1], x ∈ Ω, (5.32)

where EHart(v, I) :=
2

σ2
DSSD(I1, I

1) + S(v). (5.33)

In contrast to Problem 5.2 (which is based on the paper [Singh et al. 2013]), no

shooting formulation is used, but the relaxed approach of [Beg et al. 2005] is followed.

The optimality conditions can be computed the same way as for Problem 5.2 and

read [Hart et al. 2009]:

İt +∇I⊤
t vt = 0, I0 = I0 (5.34)

λIt + div(λIt vt) = 0, λI1 =
2

σ2
(I1 − I1), (5.35)

2L†Lvt +∇I⊤
t λ

I
t = 0, (5.36)

for all t ∈ [0, 1] and x ∈ Ω. The adjoint equation (5.35) is referred to as continuity

equation and preserves the overall mass of the image mismatch, cf. [Mang and Ruthotto

2017].

In the optimal control formulation of [Hart et al. 2009] the state is I and the control

variable is v. The idea is to optimize v such that the energy EHart is minimized while

the state evolves according to the transport equation

İt = f(I, v)
(5.32)
= −∇I⊤

t vt.

The energy is composed of a terminal (endpoint) cost 1
σ2DSSD(I1, I

1) and the integration

over time of a running cost St(v). Details on solving discrete optimal control problems

and the involved PDEs like (5.32) using RK methods are given in Section 6.2.

Many authors use an optimal control formulation for their diffeomorphic matching

methods, see, e.g., [Azencott et al. 2010, Vialard et al. 2012, Tward et al. 2013, Miller

et al. 2015, Mang and Ruthotto 2017]. These papers (like most image registration

methods) can be classified into two categories: Optimize-then-Discretize (OD) or
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5.3 LDDMM as Optimal Control Problem

Discretize-then-Optimize (DO) approaches. OD means that optimality conditions of

continuous optimization problems are derived using calculus of variations. Subsequently,

these conditions are discretized and solved, e.g., using gradient descent. DO approaches

first discretize the objective function and the constraining equations and afterwards

solve the discrete optimization problem using numerical optimization methods. More

details on the OD approach for image registration problems can be found in [Modersitzki

2004] and for the DO image registration we refer to [Modersitzki 2009].

While in [Vialard et al. 2012, Tward et al. 2013, Miller et al. 2015] OD methods are

employed, in [Azencott et al. 2010, Mang and Ruthotto 2017] the DO approach is

followed. The major drawback of OD approaches is that the energy to be minimized

is discretized independently from the necessary conditions for an optimizer. Therefore,

there might be an inconsistency between the discrete energy and the discrete gradient

impeding the optimization process, whereas DO allows for obtaining “the analytical

gradient of the discretized objective function” [Modersitzki 2009, p. 166]. Due to this

reason we use DO for our methods, see Chapter 6, and briefly discuss the related DO

approaches [Azencott et al. 2010, Mang and Ruthotto 2017]. The main differences

of [Azencott et al. 2010] to our methods are that LMs instead of images are matched and

the explicit first-order RK method, i.e. forward Euler time integration, is used whereas

we employ fourth-order RK. Fourth-order RK yields a sufficiently large stability region

for the central finite difference scheme used for the transport equation, while forward

Euler would be instable, see Appendix A. We chose a central finite difference scheme

to avoid upwinding and logical switches, that are not straightforward to integrate in

our fully discrete optimal control formulation; see Chapter 9 for a discussion about

potential alternatives.

In addition to the transport equation, in [Mang and Ruthotto 2017] it is also proposed

to use the continuity equation to allow for mass-preserving registration. The considered

PDEs are solved in a Lagrangian setting, which on the one hand allows to choose

arbitrarily large time steps without losing numerical stability, but requires on the

other hand many time-consuming interpolations.

In this thesis we use extensions of the models given in Problem 5.1, Problem 5.2

and Problem 5.3 respectively. These models are presented in the next section.
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5. Image Registration with LDDMM

5.4 Proposed LDDMM Models

In this section we present the three continuous models that will be solved in a DO

approach as described in Chapter 6. In extension to the methods presented in this

chapter, a general differentiable distance measure, cf. Definition 3.13 is employed. This

enables a problem-specific registration that aligns the image data depending on the

properties of different distance measures. Details about the used distance measures

are given in Section 3.3.1.

In Section 5.4.1 the relaxation method including the transport equation for images

as constraint is presented. The model is modified by using the transport equation

for transformation maps in Section 5.4.2 and an extended shooting model is given

in Section 5.4.3.

5.4.1 Relaxation with Transport of Images

We extend the model proposed in [Hart et al. 2009] (cf. Problem 5.3) by integration

of a general differentiable distance measure D (Definition 3.13). We do not model a

transformation φ to warp the source image but directly compute the image mismatch

between the modeled image at t = 1 (I(1) = I1) and the target image I1. As the

model is image-based and follows the relaxation approach, we call it IBR.

Problem 5.4 (Image-based Relaxation Model (IBR), extended from [Hart et al.

2009])

Let I0, I1 ∈ I be the images to be matched and σ > 0. The goal is to find a velocity

field v∗ ∈ X 2
V that is a solution to the following constrained optimization problem.

arg min
v

E1(v, I), (5.37)

s.t. I0 = I0, İt +∇It⊤vt = 0 for all t ∈ [0, 1] and x ∈ Ω, (5.38)

where E1(v, I) :=
1

σ2
D(I1, I

1) + S(v). (5.39)

5.4.2 Relaxation with Transport of Maps

Although images can be matched with the model given in Section 5.4.1, often not only

the registered images but also the transformation aligning these images is wanted. For

instance, the transformation can be used to calculate the local volume changes during

respiration [Tustison et al. 2011]. Therefore, in the following model the evolution of

maps under the transport equation rather than the evolution of images is considered.

In the proposed model in this section, we directly estimate the inverse transforma-

tion φ−1
1 that is used in Problem 5.1 for transforming the template image I0. We do
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5.4 Proposed LDDMM Models

not consider the evolution equation of the forward transformation φt : Ω→ Ω given

in (5.2), but the evolution of its inverse φ−1
t : Ω→ Ω for all t ∈ [0, 1]. This evolution is

given by the following equation [Dupuis et al. 1998, Beg et al. 2005, Miller et al. 2014]:

φ−1
0 = id, φ̇−1

t + Jφ−1
t
vt = 0, for all t ∈ [0, 1] and x ∈ Ω. (5.40)

In (5.40) the evolution of the inverse transformation maps in the Eulerian framework

is given [Miller et al. 2014]. In analogy to (5.38), (5.40) can be interpreted as transport

equation, but now coordinates instead of images are transported.

As the notation for the transformations is arbitrary, we change it for convenience

from φ−1
t in (5.40), which is used in Problem 5.1 [Beg et al. 2005], to φt and obtain

φ0 = id, φ̇t + Jφt
vt = 0 for all t ∈ [0, 1] and x ∈ Ω. (5.41)

The transport equation for transformation maps (5.41) is the constraint in Problem 5.5.

Problem 5.5 (Map-based Relaxation Model (MBR))

Let I0, I1 ∈ I be the images to be matched and σ > 0. The goal is to find a velocity

field v∗ ∈ X 2
V that is a solution to the following constrained optimization problem.

arg min
v

E2(φ, v) (5.42)

s.t. φ0 = id, φ̇t + Jφt
vt = 0 for all t ∈ [0, 1] and x ∈ Ω, (5.43)

where E2(φ, v) :=
1

σ2
D(I0 ◦ φ1, I

1) + S(v). (5.44)

This model is map-based and follows the relaxation approach; therefore we use the

abbreviation MBR. The continuous models given in Problem 5.4 and Problem 5.5 are

closely related, as shown for the SSD distance measure in [Hart et al. 2009]. However,

when solving the problems numerically important differences exist. The solution of

the transport equation for all transformation map components according to (5.43)

requires the d-fold memory and computation time (if not parallelized) of the image

transport according to (5.38). Yet, when solving the transport equations numerically,

e.g., with RK methods as described in Section 6.2, the MBR approach has the following

advantage: The transformations are smooth by LDDMM design (whereas images are

often non-smooth) and the numerical solution of (5.43) suffers less from numerical

dissipation than the solution of (5.38), cf., e.g., [Beg et al. 2005, Hong et al. 2012a].
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5. Image Registration with LDDMM

5.4.3 Shooting with Maps using EPDiff

In this approach (like in the shooting approaches discussed in Section 5.2) a time-

dependent momentum M : [0, 1]× Ω→ R
d is modeled, which is constrained to be a

solution of the EPDiff equation (5.10) and thus the transformation φ is guaranteed to be

a geodesic, cf. Section 5.2. Furthermore, we also integrate conservation of momentum

and the relation vt = KMt with kernel K = (L†L)−1 into our model, where L denotes

a differential operator of sufficiently high order (depending on the spatial dimension d)

like the Helmholtz operator given in Definition 4.8. If we incorporate (5.10) and (5.11)

into Problem 5.5, we obtain our map-based shooting (MBS) problem.

Problem 5.6 (Map-based Shooting Model (MBS))

Let I0, I1 ∈ I be the images to be matched and σ > 0. The goal is to find a

momentum field M∗ : [0, 1]× Ω→ R
d that is a solution to the following constrained

optimization problem for all t ∈ [0, 1] and x ∈ Ω.

arg min
M0

E3(M,φ, v) (5.45)

s.t. φ̇t + Jφt
vt = 0, φ0 = id, (5.46)

Ṁt + JMt
vt +Mtdiv(vt) + J⊤

vt
Mt = 0, (5.47)

vt = KMt, (5.48)

where E3(M,φ, v) :=
1

σ2
D(I0 ◦ φ1, I

1) +
1

2

1∫

0

〈Mt, KMt〉dt

(5.11)
=

1

σ2
D(I0 ◦ φ1, I

1) +
1

2
〈M0, KM0〉. (5.49)
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6 Discretize-then-Optimize Approach for

LDDMM Methods

In this chapter a Discretize-then-Optimize approach for LDDMM registration is derived.

Based on the publications [Polzin et al. 2016, Polzin et al. 2018] we provide details

about the discretization of all elements of the LDDMM problems given in Section 5.4

and show how they can be solved numerically in an optimal control framework. We

cover the discretization and numerical solution of the IBR, MBR and MBS problems.

For illustration, we repeat the IBR approach (given in Problem 5.4):

arg min
v

1

σ2
D(I1, I

1) + S(v)

s.t. I0 = I0, İt +∇I⊤
t vt = 0 for all t ∈ [0, 1] and x ∈ Ω.

In this model (as well as in MBR and MBS), the important steps needed for numerical

optimization are the discretization of I : [0, 1]× Ω→ R and v : [0, 1]× Ω→ R
d on a

grid (Section 6.1.1), interpolation on grids (Section 6.1.2), the discretization of the

distance measure D (Section 6.1.3) as well as of the regularizer S (Section 6.1.4) and

the constraints (Section 6.2).

As motivated in Section 5.3, we employ a DO scheme for the solution of our LDDMM

problems. Furthermore, we use an optimal control approach, cf. Section 3.2. Thus,

we are searching for an optimal control u that determines a state variable x (with

initial state x0) via a function f . This control should be optimal in the sense that

an energy EOC that depends on x becomes minimal. Modeling u and x as discrete

in space and continuous in time, i.e., x(t) ∈ R
p and u(t) ∈ R

q with t ∈ [0, 1]

and f : Rp × R
q → R

p, we obtain the following model (cf. Problem 3.3)

arg min
u

EOC(x(1))

s.t. ẋ(t) = f(x(t),u(t)), t ∈ [0, 1] and x(0) = x0.

After discretization, the images It and the velocity fields vt represent the state (x) and

control (u) variables respectively in the IBR approach.

From the optimal control problem, the Karush-Kuhn-Tucker (KKT) conditions [No-

cedal and Wright 2006, p. 321] could be derived to obtain an optimal u. However,
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6. Discretize-then-Optimize Approach for LDDMM Methods

as we are aiming for a DO approach, we decided to discretize in space and time and

use numerical integration with RK methods for the constraint equations. Afterwards,

following [Hager 2000], the Lagrange function is used to derive the KKT conditions of

the fully discrete optimal control problem, see Section 6.2.

We give a sketch for the overall scheme that is iterated during the numerical

optimization. This is a FBS as defined in Algorithm 1.

Outline: Numerical Optimization in the Optimal Control Formulation

1. For given state x0 at t = 0 (e.g. a discretized image for Problem 5.4) set x0 = x0

and solve the discretized constraint equation (e.g. the transport equation)

forward in time to obtain xN−1 based on the discrete velocity fields v0, . . . ,vN−1,

where N is the number of time steps.

2. From xN−1 compute the final state of the adjoint variable λN−1 (e.g. the image

mismatch for SSD distance and Problem 5.4) according to the gradient of the

discrete energy.

3. Solve the adjoint equations backwards in time (again based on v0, . . . ,vN−1) to

obtain λ0.

4. For shooting use λ0 to update the initial momentum that influences the initial

velocity field v0. For relaxation use λk for k = 0, 1, . . . , N − 1 to update all vk.

5. If not converged (in terms of discrete energy reduction) start again from step 1.

The end of this chapter is dedicated to diffeomorphic transformations in the discrete

framework. In the continuous setting it was shown that LDDMM generates diffeo-

morphic transformations in functions spaces [Dupuis et al. 1998]. However, this does

might not hold in a discrete setting as discussed in Section 4.4 and Section 6.3.

6.1 Discretization of the Energies

In this section it is described how the energies of the problems given in Section 5.4 can

be discretized. We start in Section 6.1.1 with the description of the different regular

grids, which are used for discretization of the velocities, images, transformations, etc.

To obtain values, e.g., for transformed images, interpolation is required, which is the

topic of Section 6.1.2. The discretized regularizer is given in Section 6.1.3 and the

discretization of an exemplary distance measure is explained in Section 6.1.4.
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Figure 6.1: Examples for image and velocity grids in 1D. The image grid points are cell-
centered and plotted as red circles whereas the grid points for v are nodal
and plotted as blue squares. The parameters for these grids are N = 5,
m = 7 and n = 4. The lexicographical indexing is illustrated by the
example points x13

cc and x16
nd.

6.1.1 Discretization on Grids

For the discretization of v, M, φ : [0, 1] × Ω → R
d, and I : [0, 1] × Ω → R in time

and space we use regular grids [Modersitzki 2009, p. 20]. Throughout this chapter,

we assume that Ω is an open d-dimensional real interval Ω = ×di=1(ω
2i−1, ω2i). We

choose nodal grids for the velocities v, momenta M as well as transformations φ

and cell-centered grids for the images I, see Figure 6.1 for an example for v and I,

where Ω ⊂ R. The exemplary nodal grid is depicted as blue squares, whereas the

cell-centered grid is visualized as red dots. Our choice was motivated by the following

considerations. The assumption that the images are given on cell-centered grids comes

from the interpretation of the intensities as an average of detected quantities within a

specific volume, see [Gonzalez and Woods 2002, pp. 68] for details on digital image

acquisition. The average is then associated with the cell center. This influences our

choice of the quadrature method for the numerical integration of images for computing

the discretized distance measure, cf. Section 6.1.4. We employ the midpoint rule within

this thesis, which offers a quadratically decreasing integration error for functions that

are at least C2 and thus performs sufficiently well for image registration [Modersitzki

2009, pp. 68].

One important reason for choosing nodal grids for the discretization of v and φ is that

they offer an advantage in a multi-level numerical optimization. By using a nodal
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6. Discretize-then-Optimize Approach for LDDMM Methods

discretization it is easy to obtain a coarser (called restriction) or finer representa-

tion (called prolongation) [Hackbusch 1985, pp. 21–22] within a multi-level framework,

see Section 3.3.2. A coarse nodal grid with cell width 2hiv ∈ R>0 in the i-th spatial

direction is a subset of the fine representation with cell width hiv, i = 1, . . . , d [Moder-

sitzki 2009, pp. 148]. Consequently, for restriction every second grid point is dropped

and for prolongation an interpolation yields the new grid points that lie between points

that were also given on the coarse grid. Another advantage is that v and φ can always

be interpolated to obtain values at the same location as the cell-centered image grid

points, see Figure 6.1. Note that for this interpolation no boundary handling is needed

as the cell-centered grid lies in the interior of Ω and the nodal grid includes ∂Ω.

For the discretization of the regularizer numerical integration is needed. As the

regularizer depends on the velocity fields, which are discretized on nodal grids, we

decided to use the trapezoidal rule. The trapezoidal rule features quadratically

decreasing integration errors [Zarowski 2004, pp. 375] and can be computed efficiently,

as no interpolations are needed.

In addition to numerical integration also numerical differentiation is needed, e.g., for

the discretization of the transport equation (5.30) that is f in our optimal control

formulation, see Section 6.2 for details. We use central finite differences to approximate

the derivatives within this thesis due to their quadratic error decrease for functions

that are at least C3 [Zarowski 2004, p. 402]. For computing the spatial derivatives

at the boundaries we incorporate the following boundary conditions. According

to Definition 3.12 images considered in this thesis have compact support in the

domain Ω. Therefore it is reasonable to use Dirichlet boundary conditions for the

images, which also allow for fast and simple computations. The known theoretical

results on the existence of diffeomorphisms assume that vt for t ∈ [0, 1] vanishes at

the boundary of Ω and thus also Dirichlet boundary conditions would be required,

cf. Section 4.2. However, most LDDMM papers implicitly assume periodic boundaries

for v or M respectively by computing the action of K = (L†L)−1 using Fast Fourier

Transforms (FFT), for instance to solve (5.14), cf., e.g., [Trouvé 1998, Beg et al.

2005, Durrleman et al. 2013, Zhang and Fletcher 2015].

To the best of our knowledge an appropriate handling of the boundary conditions

remains an open question and is beyond the scope of this thesis. We decided to employ

homogenous Neumann boundary conditions to obtain a constant continuation of the

smooth velocities at the boundary, e.g., when computing the discretized regularizer

value. But, in particular for the MBS approach, which requires the frequent numerical

solution of vt = KMt, we experienced considerably increased run times for d = 3 when

using the conjugate gradient method for solving the arising linear systems. To obtain

an efficient implementation we decided (like the state-of-the-art LDDMM methods) to
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6.1 Discretization of the Energies

solve vt = KMt with the FFT and thus also assumed periodic boundary conditions.

The FFT is very appealing because of the existence of efficient algorithms [Cooley and

Tukey 1965]. A brief discussion about FFT and alternatives for solving the arising

equation systems can be found on page 124.

We start with the description of the discretization for one-dimensional space and time.

We assume that the discrete template and reference images consist of m ∈ N cells

with associated intensity values located at equidistant cell centers. The union of the

cells is the closure Ω̄ = [ω1, ω2] ⊂ R of the domain Ω. If the sizes or domains of the

discrete images do not coincide, zero-padding and interpolation are used to obtain

images with the same domain and resolution, cf. [Mang and Ruthotto 2017]. For the

nodal grids n ∈ N, n ≥ 2 points are used. Details on both types of grids are given,

e.g., in [Modersitzki 2009, pp. 125].

Note that the number of cells for images and velocities do not have to be equal, cf. Fig-

ure 6.1. In fact, it is the key idea of our approach to speed up computations and

to reduce memory requirements by discretizing velocity and transformation fields

on a lower resolution than the images, i.e., n < m, see Section 6.1.2 for details. As

a consequence of choosing n < m, we have different spatial step sizes h1
v := ω2−ω1

n−1

and h1
I := ω2−ω1

m
.

In contrast to the spatial component, time discretization of v, M, φ and I is done

with identical step size ht := 1
N−1

, where N is the number of nodal grid points for the

time component. We choose a nodal discretization to include the time points t = 0

and t = 1 for which the template and reference image are given respectively. Using

lexicographical ordering for the grid points [Modersitzki 2009, pp. 23–24], we obtain

indices kI = i + (j − 1)m, i = 1, . . . ,m, j = 1, . . . , N for the image grid points

and kv = i+ (j − 1)n, i = 1, . . . , n, j = 1, . . . , N for the velocity grid points. The

resulting nodal grid is

xnd :=




x0
nd
...

xN−1
nd


 ∈ R

nN and xcc :=




x0
cc
...

xN−1
cc


 ∈ R

mN

is the cell-centered grid. For the j-th time point x
j
nd and xjcc denote the nodal and

cell-centered grid respectively (j = 0, 1, . . . , N − 1). Our discretized velocity field is

then given after some reordering as v := v(xnd) ∈ R
n×N . Accordingly, the discretized

intermediate images for the IBR model are I := I(xcc) ∈ R
m×N .

We introduce the notation T := I0(x0
cc) ∈ R

m for the discretized source image I0

and R := I1(x0
cc) ∈ R

m for the discretized target image I1 for the following reason:

During the numerical solution of (5.38) we employ RK methods and need additional
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6. Discretize-then-Optimize Approach for LDDMM Methods

indices for intermediate time steps (i.e., Ik is the discrete image at time tk = kht ∈ [0, 1]

and k = 0, . . . , N − 1), thus using T and R reduces notational overhead and prohibits

potential confusion.

6.1.2 Interpolation

Interpolation is required in the MBR, MBS and IBR approaches to obtain the trans-

formed template images as well as the discretized transformation maps and velocity

fields on cell-centered grids. In this section it is described why interpolation is necessary

and how it is performed within this thesis.

The change of the template image T ∈ R
m over time within the IBR model is

modeled by a discretized transport equation involving I ∈ R
m×N given on a cell-

centered grid with I0 = T as well as v ∈ R
dn×N given on a nodal grid. To obtain

velocities at the positions of the cell-centered grid, interpolation is needed. Therefor

we employ a linear grid interpolation (bi-/trilinear for 2D/3D data), which can be

efficiently computed. The appropriate weights are components of the interpolation

matrix P ∈ R
m×n [Rühaak 2017, pp. 75]. Note that this matrix does not have to be

stored: König and Rühaak describe how an efficient matrix-free implementation for

the computation of the product with the sparse matrices P and P⊤ respectively can

be obtained [König and Rühaak 2014, Rühaak 2017].

For d > 1 the interpolation is applied componentwise. This can be described by the

block matrix

P̄ =




P

. . .

P


 ∈ R

dm×dn.

The product P̄v ∈ R
dm×N represents the discrete velocities at the cell-centered grid

points of I. After computing this product, the discretized transport equation can be

solved on the cell-centered grid, see Section 6.2.3.

While for the transport equation the matrix P̄ is used, P̄⊤ is required for the inverse

grid interpolation within the solution of the adjoint equations in the optimal control

problems discussed in Section 6.2. In particular, the transposed matrix P̄⊤ is used to

interpolate the derivative of the distance measure to the nodal grid for updating the

velocities.

For the MBR and MBS approaches we are interested in the transformed template

image T̃ := T ◦ (P̄φN−1), where both ◦ and P denote interpolations. The matrix P

is the same as for the IBR approach. As the grid points of P̄φN−1 in general do not

coincide with the grid points x0
cc, an interpolation is needed to obtain the intensities

at P̄φN−1 from T. To achieve a good approximation for the numerical quadrature
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6.1 Discretization of the Energies

during the computation of the distance measure a smooth interpolation should be

chosen, i.e., one that generates functions that are at least C2, cf. Section 6.1.4.

Typical choices for interpolation methods in the image registration application are

nearest neighbor, linear, cubic and higher-order B-spline interpolation [Zitová and

Flusser 2003]. We refrain from using the simplistic nearest neighbor interpolation as it

is not continuous and might introduce artifacts. Instead, we chose linear interpolation

as it is a reasonable compromise that provides a certain image smoothness (however,

it is only C0 at the control points), but is computationally lightweight. Due to

the local non-differentiability the approximation quality of the quadrature might

be decreased and the numerical derivatives, which also involve derivatives of the

images, are negatively affected. Although the additional smoothness provided, e.g.,

by a higher-order spline interpolation might speed up the derivative-based numerical

optimization [Modersitzki 2009, p. 26], we opted for the linear interpolation because it

suffices the minimum-maximum principle as it is a convex combination of scalar values.

Furthermore, we did not experience substantial deteriorations due to the (bi-/tri-)linear

interpolation compared to a cubic B-spline interpolation in our experiments. Therefore,

we decided to employ the faster (multi-)linear interpolation.

Efficiency is also crucial for frequent changes between nodal and cell-centered grids

using P̄. As motivated in Section 6.1.1, we use n < m to address the problem of large

memory consumption that is a drawback of many LDDMM methods, cf. Chapter 1.

Reducing the number of grid points for the discretization of the velocities, momenta and

transformations, is a trade-off between additional computational costs for interpolation

between the grids and decreased required memory. Therefore, the interpolations

using P̄ should be fast and not impede the overall optimization. However, the

additional computational work for the grid interpolation is outweighed by far due to

the faster numerical optimization that originates in the reduced problem size.

Our choice n < m for the different discretizations is motivated by the assumption

that the velocity fields can be represented well on a coarse grid as it is the case for

band-limited functions. This idea was also employed in [Zhang and Fletcher 2015]

for the development of an efficient LDDMM algorithm, which is based on a finite

dimensional Lie algebra and computations in the frequency domain. In contrast, our

approach directly integrates a sparser spatial representation for v than for I and

relies on the observation that the velocities and transformations obtained by LDDMM

methods can be described well with a rather coarse discretization [Polzin et al. 2016].

The illustrative example in Figure 6.2b shows the principle of a small discretization

error for a band-limited v.

On the contrary, images cannot be represented well on a coarse grid as they may

contain strong gradients and discontinuities. If nevertheless a coarse representation
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(b) Velocities on nodal grids

Figure 6.2: Exemplary visualization of different numbers of grid points for images
in (a) and velocities in (b). The domain was chosen as Ω = (0, 1). Note
that the images are discretized on cell-centered grids and that these grids
are not sub- or supersets of each other, when using 2h1

I (blue points ·
with m = 12) instead of h1

I (red plus signs + with m = 24). Representing
the image on the fine grid (in red) by the image on the coarse grid (in blue)
results in a strong smoothing and a change in qualitative impression. In (b)
a smooth function v(x) = 3

2
sin(2

3
πx) is plotted in black and discretized

at n = 13 red or n = 4 blue nodal grid points. Although the number of grid
points is small, the approximation of v even with the linear interpolation
between the blue points is reasonably good. It is also visible that the blue
points (spacing is 4h1

v) are a subset of the red points (spacing is h1
v) for

the nodal discretization.

would be chosen substantial errors would occur, see the one-dimensional example

in Figure 6.2a. Therefore we do not reduce m (unless in the coarser levels of a

multi-level scheme, cf. Chapter 7), but use the complete given image information.

6.1.3 Discretization of the Regularizer

For the computation of the discrete regularization energy numerical derivation and

integration is necessary. First, the discretized Helmholtz operator L (L = (γid−α∆)β

is the continuous operator) that is based on second-order numerical derivatives, is

applied to the discrete velocity fields v. Second, the integral is approximated using

numerical quadrature. In particular we use a trapezoidal rule [Zarowski 2004, pp. 371]

as done in [Mang and Biros 2016b]. This choice is motivated by the fact that we

model v on a nodal grid and the trapezoidal rule is very efficient (simple averaging, no

interpolation at other points needed) and still offers a sufficient accuracy (if the function

to be integrated is at least C2, the total integration error decreases quadratically

as h1
v → 0 [Zarowski 2004, p. 376]).
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6.1 Discretization of the Energies

For the discretization of S we start with the 1D case for simplicity. Afterwards the

extension to d = 3 is presented. As motivated in Section 6.1.1, we assume Neumann

boundary conditions for the velocities v and Dirichlet boundary conditions for the

images. The discretized regularizer has the form

S(v) :=
h̄vht

2
v⊤L̄⊤WL̄v, (6.1)

where h̄v is the volume of one grid cell and v has (like throughout this thesis) the

appropriate shape. This means that we usually do not distinguish between v being a

matrix with dn×N elements or a vector with dnN components. In the following we

describe how to compute L̄ and W. We use a standard approach for discretization

of the Helmholtz-Operator (depending on β ∈ N, α, γ > 0) L = (γid − α∆)β

with Neumann boundary conditions, see, e.g., [Strikwerda 2004]. The second-order

derivatives within the Laplacian ∆ are approximated with central finite differences.

For v ∈ R
n×N the discrete operator is L ∈ R

n×n:

L := (γEn − α∆h1
v)β, (6.2)

where En ∈ R
n×n is the identity matrix and

∆
h1

v :=
1

(h1
v)

2




−1 1

1 −2 1
. . . . . . . . .

1 −2 1

1 −1




(6.3)

is a discrete Laplacian operator.

As motivated before, we employ a trapezoidal quadrature for integration in space

and time. The different weights for inner and outer grid points are assigned by

multiplication with the diagonal matrix W ∈ R
nN×nN . Kronecker products are used

for a compact notation and to compute L̄ ∈ R
nN×nN , which enables regularization for

all time steps at once.

W := WN ⊗Wn,

Wp := diag(1
2
, 1, . . . , 1, 1

2
) ∈ R

p×p,

L̄ := EN ⊗ L.





(6.4)

If we use (6.4) within the trapezoidal rule, the result for the discretized regularizer

function value given in (6.1) is obtained.
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6. Discretize-then-Optimize Approach for LDDMM Methods

Now, the discretization of S for d = 3 is presented. The number of image voxels per

dimension is denoted by mi, i = 1, . . . , 3 and the number of nodal grid points by ni.

We define the total number of voxels and grid points as:

m :=
3∏

i=1

mi, n :=
3∏

i=1

ni. (6.5)

Using lexicographic ordering, the discrete images (given on a cell-centered grid)

are thus T, R ∈ R
m and the velocities (modeled on a nodal grid) are discretized

as v ∈ R
3n×N . In the following equation we summarize the structure of v by vec-

tors vik ∈ R
n, i = 1, 2, 3, k = 0, 1, . . . , N − 1:

v :=




v1
0 v1

1 . . . v1
N−1

v2
0 v2

1 . . . v2
N−1

v3
0 v3

1 . . . v3
N−1


 ∈ R

3n×N .

In the k-th column of v the discrete velocity field for time tk = kht ∈ [0, 1] is given.

The order within each column is that first all x1-components of the velocities (v1
k),

then all x2-components (v2
k) and finally all x3-components (v3

k) are stored.

The spatial cell widths in 3D are denoted by h1
I = ω2−ω1

m1 , h2
I = ω4−ω3

m2 , h3
I = ω6−ω5

m3

for the images and h1
v = ω2−ω1

n1−1
, h2

v = ω4−ω3

n2−1
, h3

v = ω6−ω5

n3−1
for the velocities and

transformations. For the computation of the regularizer we need the volume of one

cell that can be computed as

h̄v := h1
vh

2
vh

3
v. (6.6)

The construction for the discrete Laplacian is achieved using Kronecker products, cf.,

e.g., [Modersitzki 2009, pp. 122]:

∆ = En3 ⊗ En2 ⊗∆
h1

v + En3 ⊗∆h2
v ⊗ En1 + ∆

h3
v ⊗ En2 ⊗ En1 , (6.7)

where ∆
hi

v is the finite difference matrix given in (6.3), which is used to compute the

second derivative in the i-th dimension of one component of the velocities v. Hence,

we can write the multi-dimensional regularization matrix as extension of (6.2):

L = (γEn − α∆)β ∈ R
n×n. (6.8)

In addition to the role of L for the computation of S, we need to discretize L†Lvt = Mt

and solve it numerically in the MBS approach (Problem 5.6) to obtain velocity fields

from the momenta. In the discrete setting this relates to vk = (L⊤L)−1Mk for

all k = 0, 1, . . . , N − 1.
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6.1 Discretization of the Energies

We start with the proof that (L⊤L)−1 exists. The adjoint or conjugate transpose of

a real-valued matrix like L is the transposed matrix L⊤ [Meyer 2000, p. 84]. Thus,

we discretize L†L as L⊤L. Both L and L⊤L are invertible as shown in the following

theorem.

Theorem 6.1 (L is Invertible, L⊤L is Symmetric Positive Definite)

Let α, γ ∈ R>0 and β, n ∈ N. For the matrix L = (γEn − α∆)β it holds that:

1. L is invertible.

2. L⊤L is symmetric positive definite.

Proof:

1. It can be shown, e.g., using the Gershgorin circle theorem, that −α∆ is positive

semi-definite. As γ > 0 and β ∈ N, it is clear that L = (γEn − α∆)β is invertible.

2. Follows directly from 1.

To obtain a consistent discretization in the MBR and MBS model we define K as the

inverse matrix of L⊤L.

K := (L⊤L)−1 ∈ R
n×n. (6.9)

From Theorem 6.1 it directly follows that K is symmetric positive definite. Therefore

linear systems of the type Kx = b have a unique solution [Meyer 2000, p. 116] and

can be solved, e.g., with the conjugate gradient method [Nocedal and Wright 2006,

pp. 101–132]. However, to reduce computational costs, we use an FFT-based approach,

see Section 6.2.5 for a discussion.

For computing S(v) the matrix L has to be applied to all vik ∈ R
n with k = 0, . . . , N−1

and i = 1, 2, 3. Using Kronecker products the corresponding matrix L̄ is given as:

L̄ := EN ⊗ E3︸ ︷︷ ︸
=E3N

⊗L ∈ R
3nN×3nN . (6.10)

Again, using Kronecker products the three-dimensional extension of (6.4) reads

W := WN ⊗ E3 ⊗Wn3 ⊗Wn2 ⊗Wn1 ∈ R
3nN×3nN . (6.11)

The discrete regularization energy is then given as (6.1). As W is a diagonal matrix

with positive components, it is also positive definite. Consequently, L̄⊤WL̄ is positive

definite, cf. Theorem 6.1. Thus S(v) > 0 for all v ∈ R
dnN \ {0} and S(v) = 0 if and

only if v = 0. This resembles the property of the continuous energy S: S(v) ≥ 0

and S(v) = 0 if and only if v ≡ 0.
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6.1.4 Discretization of the Distance Measures

For simplicity we restrain the description to the one-dimensional case. Furthermore,

we consider only the discretization of NGF, see Definition 3.15, which is our preferred

distance measure for lung CT images. NGF incorporates the noise parameter η > 0

and the energy is given for two images A, B ∈ I as

DNGF(A,B) = ψNGF(rNGF(A,B)) =
∫

Ω
1− 〈∇A(x),∇B(x)〉2η
‖∇A(x)‖2

η‖∇B(x)‖2
η

dx,

where for u, v ∈ R
d : 〈u,v〉η = η2 +

∑d
i=1 u

ivi and ‖u‖2
η = 〈u,u〉η.

Because NGF involves gradients of the images, we start with the computation of

the numerical gradients. Following [Modersitzki 2009, p. 109], we use central finite

differences and homogenous Neumann boundary conditions for the discrete gradient

operator

G =
1

2h1
I




−1 1

−1 0 1
. . . . . . . . .

−1 0 1

−1 1




∈ R
m×m. (6.12)

Consider two discrete one-dimensional images A = (ai)mi=1 and B = (bi)mi=1. We

approximate ∇A(xi), where xi is the center of the i-th pixel of A, as (GA)i ∈ R. To

obtain a convenient notation (that also can be extended for d > 1), we define the

vectors that include the noise parameter as second component

giA := ((GA)i, η)⊤, giB := ((GB)i, η)⊤ ∈ R
2.

The i-th component of the discretized residual r ∈ R
m is computed as the (normalized)

inner product of the numerical gradients (with attached η):

ri :=
(giA)⊤giB
‖giA‖‖giB‖

, i = 1, . . . ,m. (6.13)

The discrete residual thus is a mapping r : Rm×R
m → R

m with r(A,B) = r = (ri)mi=1.

We use a midpoint quadrature to approximate the distance measure value, as it yields

quadratic convergence to the integral for functions that are at least twice continuously

differentiable and thus performs sufficiently well for image registration [Modersitzki

2009, pp. 68]. Furthermore, the midpoint quadrature has low computational costs:

Because we use the same cell-centered grid for the images, the numerical derivatives,

and for the quadrature, no additional interpolation is needed. Hence, given r, only m+1
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multiplications and m additions are needed for computing the value of the discrete

distance measure DNGF : Rm × R
m → R≥0 [Modersitzki 2009, p. 72]:

DNGF(A,B) = h1
I

m∑

i=1

1− riri = h1
I(m− r⊤r) =: ψ(r), (6.14)

where ψ : Rm → R≥0 and r = r(A,B) according to (6.13). Following [Modersitzki

2009, pp. 109], we introduce the notation

ri = ri1r
i
2, with ri1 := (giA)⊤giB and ri2 :=

1

‖giA‖‖giB‖
, i = 1, . . . ,m.

Then the residual vector can be written using the Hadamard product as [Modersitzki

2009, p. 110]

r = r1 ⊙ r2 = diag(r1)r2.

This allows for a compact notation for the numerical derivative with respect to A:

dr1

dA
= diag(GB)G ∈ R

m×m,

dr2

dA
= −diag

((
‖giB‖−3‖giA‖−1

)m
i=1

)
diag(GB)G ∈ R

m×m,

dr

dA
= diag(r2)

dr1

dA
+ diag(r1)

dr2

dA
∈ R

m×m.

According to the chain rule we need for the computation of the derivative of DNGF

dψ

dr
= −2h1

Ir ∈ R
m.

The gradient of DNGF with respect to A is then given as

∇AD
NGF(A,B) =

(
dr

dA

)⊤
dψ

dr
∈ R

m. (6.15)

For details on the discretization of NGF for d > 1 or derivations for other distance

measures like SSD, we refer to [Modersitzki 2009, Chapter 7].
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6.2 Solving Time-Discrete Optimal Control

Problems

In this section we derive the complete discrete optimal control problems that correspond

to their continuous counterparts given in Section 5.4.1, Section 5.4.2 and Section 5.4.3

and show how they can be solved numerically in a unified approach. Therefore, we start

with the optimal control problem with spatially discretized state, co-state and control

variables that was presented in Section 3.2. For this problem an FBS algorithm for the

numerical solution of the problem was given, but details about the time discretization

and solution of the arising PDEs were postponed to this section.

We present in Section 6.2.1 how the evolution of the state variable can be solved

numerically using RK methods. In particular, we chose explicit fourth-order RK

methods as they offer a good compromise between computational workload and

accuracy; see Section 9.2 for a discussion of potential alternatives. Then we are able

to derive a fully discrete optimization problem. In Section 6.2.2, the methodology for

solving discrete optimal control problems using the method of Lagrange multipliers is

derived in analogy to the Hamiltonian dynamics, cf. Section 3.2. For the solution of the

adjoint equations the appropriate RK methods are derived and necessary optimality

conditions are obtained. Afterwards, the optimality conditions are elaborated for the

three different models in Section 6.2.3, Section 6.2.4 and Section 6.2.5.

6.2.1 Runge-Kutta Methods

As a first step for motivating the numerical solution of PDEs we consider the one-

dimensional transport equation ((5.13) for d = 1), which is part of the IBR model.

I0 = I0, İ +
∂I

∂x
v = 0 for all t ∈ [0, 1] and x ∈ Ω. (6.16)

We approximate ∂
∂x

with central finite differences (to allow for a global discretization

without upwinding, cf. Section 9.2), where homogenous Dirichlet boundary conditions

are assumed for the images. These boundary conditions are chosen to simplify

computations. The matrix used for computing the discrete derivative of the images is

DI
1 =

1

2h1
I




1 1

−1 0 1
. . . . . . . . .

−1 0 1

−1 −1




∈ R
m×m. (6.17)
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The matrix DI
1 is identical to G given in (6.12) except for the first and last row

that are changed due to the different boundary conditions. For tk = kht ∈ [0, 1],

k = 0, . . . , N − 1 we approximate the spatial derivative for all image grid points xkcc as

∂I

∂x
(tk,xkcc) ≈ DI

1Ik, (6.18)

where Ik is the (k + 1)-th column of I, i.e. the image at time tk. If It ∈ C2(Ω) the

approximation error decreases quadratically for h1
I → 0 [Morton and Mayers 2005,

pp. 13].

The transport equation (6.16) is an initial value problem of the form given in (3.20)

and hence can be considered as part of an optimal control problem like Problem 3.2.

For solving (6.16) numerically, we use an explicit fourth-order RK method as a

compromise between the accurate solution of the PDEs and fast computation. As

analyzed in Appendix A this fourth-order RK method provides a solid stability region

that allows for sufficiently large time steps. A discussion of alternatives for the explicit

fourth-order RK method is provided in Section 9.2.

RK methods have been investigated in the context of optimal control for example

in [Hager 1976, Hager 2000]. The following derivations for obtaining the numerical

solution scheme for the discrete optimal control problem are based on [Hager 2000]. We

restrict our discussion to (one-step) RK methods with s ∈ N stages here, see [Hairer

et al. 1993, pp. 132] for details. In particular, we will use a RK method with s = 4

stages. Given the initial state x0 = x(t0) := x0 ∈ R
p with tk := k

N−1
= kht and the

control uik ∈ R
q, k = 0, 1, . . . , N − 1, i = 1, . . . , s the evolution of the state over

time (xk, k = 1, . . . , N − 1) according to f : [0, 1]× R
p × R

q → R
p is computed with

RK methods. The RK methods with s stages are introduced in the following definition.

Definition 6.1 (One-step RK Methods with s Stages, adapted from [Hairer et al.

1993, p. 134])

Let s ∈ N be the number of stages of the method and A ∈ R
s×s as well as b ∈ R

s

and c ∈ R
s. A one-step RK method for the numerical solution of

ẋt = f(t,x,u), x0 = x0

with given initial state x0 ∈ R
p and f : [0, 1]× R

p × R
q → R

p is written as

yik = xk + ht
s∑

j=1

ai,jf(tk + cjht,y
j
k,u

j
k), i = 1, . . . , s, (6.19)

xk+1 = xk + ht
s∑

i=1

bif(tk + ciht,y
i
k,u

i
k), k = 0, . . . , N − 2. (6.20)
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Table 6.1: Butcher tableaus [Butcher 2016, pp. 392] for the explicit fourth-order RK
methods used in this thesis. The components of Ā, which is needed for the
numerical integration of the adjoint equations, were computed according
to āi,j = bjaj,i

bi
, i, j = 1, . . . , s [Hager 2000].

Butcher tableau RK 4th order Adjoint Butcher tableau Adjoint RK 4th order

A

b⊤

0 0 0 0
1
2

0 0 0
0 1

2
0 0

0 0 1 0
1
6

1
3

1
3

1
6

Ā

b⊤

0 1 0 0
0 0 1

2
0

0 0 0 1
2

0 0 0 0
1
6

1
3

1
3

1
6

In Definition 6.1 xk+1 ≈ x(tk+1) is the approximated state, yik ≈ x(tk + ciht) are

intermediate discrete states, and uik := u(tk + ciht) are the given discrete control

variables. We sketch the concept of RK methods (see also [Hairer et al. 1993, pp. 132]

for a motivation and historical excursion): For fixed k and given u
j
k, j = 1, . . . , s

intermediate states y
j
k are obtained by numerical integration over time of the right-

hand side function f . This is achieved by evaluating f at s stages. Each y
j
k is then

determined by a weighted sum of f (evaluated at intermediate states), where the

matrix A contains the weights and the intermediate time steps are given by c. If y
j
k

was computed for all intermediate steps j = 1, . . . , s, the next state xk+1 can be

obtained as a weighted sum (the weights are components of b) of the right-hand side f

values.

The matrix A ∈ R
s×s and the vectors c, b ∈ R

s depend on the chosen RK method.

If c1 = 0 and A is lower triangular then the RK method is explicit otherwise it is

implicit [Butcher 2016, pp. 98]. In Table 6.1 A and b are given in the so-called

Butcher tableau (also referred to as Runge-Kutta tableau) [Butcher 2016, pp. 98] for

the explicit fourth-order RK method used in this dissertation, which is the classical

RK method [Kutta 1901]. Additionally, the RK method for the numerical solution of

the adjoint equations is given in Table 6.1. This method is also explicit because the

adjoint equations are solved “backward” in time, cf. the derivation in Section 6.2.2.

All PDEs that are considered in this thesis as constraints for the LDDMM registration

are autonomous and can be written in the form of (3.20). Hence, f : Rp × R
q → R

p

does not have an explicit dependence on the time. Therefore, we can omit the time

dependence and simplify (6.19) and (6.20) to:

yik = xk + ht
s∑

j=1

ai,jf(yjk,u
j
k), i = 1, . . . , s, (6.21)

xk+1 = xk + ht
s∑

i=1

bif(yik,u
i
k), k = 0, . . . , N − 2. (6.22)
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In (6.21) and (6.22) c is missing and for this reason we omitted it in Table 6.1 although

it usually is part of the Butcher tableau [Butcher 2016, pp. 98].

It is important to control the step size ht (i.e., find an upper bound for ht) to obtain a

stable solution for the explicit RK methods, see also the discussion in Section 9.2. For

details on the stability of RK methods for solving the transport equation and how to

choose ht see Appendix A.

We will now summarize how Problem 3.3 (including the performance index EOC and the

state equation ẋ = f(x,u)) is approximated for a finite number of time steps tk, k ∈ N

by solving the system dynamics numerically with RK methods. Recall that the optimal

control performance index in Problem 3.2 is composed of a terminal cost CF and a

running cost CR, which both are differentiable. In the context of LDDMM image

registration CF represents the distance measure D and CR is the regularizer S. The

discretization of D and S was described in Section 6.1.3 and Section 6.1.4 respectively.

Furthermore, we have seen in the derivation (Remark 3.1) of the Mayer form of the

problem given in Problem 3.3 that the running cost can be integrated into the state

variable x such that the energy only depends on CF . Therefore we assume that a

differentiable performance index EOC : Rp → R≥0 is given (that represents the energy

of the LDDMM models) and discuss in the following sections how the state and adjoint

equations of Problem 3.3 can be solved numerically. We use the notation EOC instead

of EOC to emphasize that we are dealing with the discretized performance index.

Problem 6.1 (Discrete Optimal Control Problem using Runge-Kutta Methods)

Let p, q ∈ N and x0 ∈ R
p be the given initial state. Let N ∈ N be the number of

points in time tk ∈ [0, 1] with tk := kht, k = 0, 1, . . . N − 1 and ht := 1
N−1

. We use

RK methods with s ∈ N stages (and associated A ∈ R
s×s, b ∈ R

s) and define arrays

X := (xk)
N−1
k=0 ∈ R

p×N , Y := (yik)
N−1,s
k=0,i=1 ∈ R

p×N×s, U := (uik)
N−1,s
k=0,i=1 ∈ R

q×N×s

that contain all discrete states, intermediate states and control variables at

times tk, k = 0, . . . , N − 1. The evolution of the discrete states is determined

by f : Rp × R
q → R

p. The time-discretized optimal control problem is to find control

variables U∗ ∈ R
q×N×s such that a state sequence (X∗ ∈ R

p×N ,Y∗ ∈ R
p×N×s) is

obtained, whose terminal state x∗
N−1 is minimizer of EOC : Rp → R≥0: Find

arg min
U

EOC(xN−1) (6.23)

s.t. yik = xk + ht
s∑

j=1

ai,jf(yjk,u
j
k), i = 1, . . . , s, (6.24)

xk+1 = xk + ht
s∑

i=1

bif(yik,u
i
k), k = 0, . . . , N − 2, x0 = x0. (6.25)

In the next section the necessary equations for a minimizer are derived using the

method of Lagrange multipliers yielding the consistent adjoint system for Problem 6.1.
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6.2.2 Runge-Kutta Methods for the Adjoint System

We derive a DO scheme for the solution of the LDDMM problems given in Section 5.4

that solves the discretized forward and adjoint equations consistently. Therefore, when

using RK integrations for time-dependent constraints we also need to compute the

adjoint model for the chosen RK integrator. In particular, we show, following [Hager

2000], how the adjoint equations of Problem 6.1 can be obtained in analogy to the

Hamiltonian dynamics.

Given the discretized energy E(xN−1) (for brevity we omit the superscript OC) as

well as the constraints (6.24) and (6.25) of Problem 6.1, we employ the method of

Lagrange multipliers [Bertsekas 1982, p. 2]. This means that the constraints are

multiplied with Lagrange multipliers λk ∈ R
p for k = 0, . . . , N − 1 as well as ξik ∈ R

p

for k = 0, . . . , N − 2 and i = 1, . . . , s and added to E(xN−1). This yields the Lagrange

function [Bertsekas 1982, p. 2] L : RpN × R
pNs × R

qNs × R
pN × R

p(N−1)s → R. We

collect the Lagrange multipliers in

Λ := (λk)
N−1
k=0 ∈ R

p×N and Ξ := (ξij)
N−2,s
j=0,i=1.

The Lagrange function is then given as

L(X,Y,U,Λ,Ξ) := E(xN−1) + λ⊤
0 (x0 − x0)

+
N−2∑
k=0

[
λ⊤
k+1

(
xk+1 − xk − ht

s∑
i=1

bif(yik,u
i
k)
)

+
s∑
i=1

(ξik)
⊤
(
yik − xk − ht

s∑
j=1

ai,jf(yjk,u
j
k)
)]
.





(6.26)

To obtain first-order necessary conditions for the optimizer, the KKT conditions [No-

cedal and Wright 2006, p. 321], we compute the partial derivatives of (6.26) with

respect to xk, y
j
k and u

j
k for all k = 0, . . . , N − 1 and j = 1, . . . , s.

∇xk
L =





λk − λk+1 −
s∑
i=1
ξik, k = 0, . . . , N − 2,

∇E + λN−1, k = N − 1,
(6.27)

∇
y

j
k
L = −htbj

(
∇xf(yjk,u

j
k)
)⊤
λk+1 + ξjk − ht

s∑

i=1

ai,j
(
∇xf(yjk,u

j
k)
)⊤
ξik, (6.28)

∇
u

j
k
L = ∇

u
j
k
E − htbj

(
∇uf(yjk,u

j
k)
)⊤
λk+1 − ht

s∑

i=1

ai,j
(
∇uf(yjk,u

j
k)
)⊤
ξik. (6.29)

With ∇xf and ∇uf we denote the derivative of f with respect to the first and second

argument respectively. Note that ∇
u

j
k
E cannot be dropped in (6.29) as the states xk

depend on the controls u
j
k and we use the Mayer form of the optimal control problem,
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6.2 Solving Time-Discrete Optimal Control Problems

which implies that the regularizer is integrated in E(xN−1), cf. Remark 3.1. The KKT

conditions for a critical point require that (6.27), (6.28) and (6.29) vanish [Nocedal

and Wright 2006, p. 321]. By setting the equations equal to zero, we obtain through a

rearrangement

λN−1 = −∇E, (6.30)

λk = λk+1 +
s∑

i=1

ξik, k = 0, . . . , N − 2, (6.31)

ξ
j
k = ht

(
∇xf(yjk,u

j
k)
)⊤
(
bjλk+1 +

s∑

i=1

ai,jξ
i
k

)
, (6.32)

∇
u

j
k
L = ∇

u
j
k
E − ht

(
∇uf(yjk,u

j
k)
)⊤
(
bjλk+1 +

s∑

i=1

ai,jξ
i
k

)
. (6.33)

Furthermore, we use the substitution [Hager 2000]

χ
j
k = λk+1 +

s∑

i=1

ai,j
bj
ξik (6.34)

and (6.32) reduces to

ξ
j
k = htbj

(
∇xf(yjk,u

j
k)
)⊤
χ
j
k. (6.35)

By multiplying both sides of (6.35) with aj,i

bi
and summing over j, we obtain

ht
s∑

j=1

aj,ibj
bi

(
∇xf(yjk,u

j
k)
)⊤
χ
j
k =

s∑

j=1

aj,i
bi
ξ
j
k

(6.34)
= χik − λk+1. (6.36)

Finally, summing (6.35) over j, yields

ht
s∑

j=1

bj
(
∇xf(yjk,u

j
k)
)⊤
χ
j
k =

s∑

j=1

ξ
j
k

(6.31)
= λk − λk+1. (6.37)

By substituting (6.37) into (6.31), and (6.34) into (6.33) and by exchanging (6.32)

with (6.36), we obtain the adjoint system and the gradient with respect to u
j
k

as [Hager 2000]

λN−1 = −∇E(xN−1), (6.38)

λk = λk+1 + ht
s∑

i=1

bi
(
∇xf(yik,u

i
k)
)⊤
χik, (6.39)

χik = λk+1 + ht
s∑

j=1

aj,ibj
bi

(
∇xf(yjk,u

j
k)
)⊤
χ
j
k, (6.40)

∇
u

j
k
L = ∇

u
j
k
E − htbj

(
∇uf(yjk,u

j
k)
)⊤
χ
j
k. (6.41)
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As detailed in Section 6.2.5, the evolution of the state variables for the shooting

approach is completely determined by the initial momentum M0. Furthermore, the

control variables uk = vk can be obtained from the state variables xk = Mk by solving

a linear system. Finally, as shown in Theorem 4.8 for a geodesic solution the kinetic

energy is constant. We use this fact in the energy of the MBS method given in (5.49)

and transfer it to the discretized energy, see Section 6.2.5 for details. For ease of

representation, we do not use a different notation, although the discrete energy E and

thus the Lagrange function L has changed. We want to estimate an optimal M0 and

accordingly do not have a given initial value x0. Therefore the term λ0(x0 − x0) is

not needed in (6.26) and λ0 is not defined.

For numerical optimization the derivatives of L with respect to x0 = M0 are required.

As E and thus L depend on M0, the derivative of L with respect to x0 also involves

the derivative of E. Consequently (6.27) becomes:

∇xk
L =





∇x0E − λ1 −
s∑
i=1
ξi0, k = 0,

λk − λk+1 −
s∑
i=1
ξik, k = 1, . . . , N − 2,

∇xN−1
E + λN−1, k = N − 1

(6.42)

By substituting (6.37) in the first equation of (6.42) it can be shown that the partial

derivative of L with respect to the initial condition x0 is

∇x0L = ∇x0E − λ1 − ht
s∑

i=1

bi(∇xf(yi0,u
i
0))

⊤χi0.

According to (6.39) the latter part is the negative of the adjoint variable λ evaluated

for k = 0, cf. [Singh et al. 2013] for the derivation in the continuous setting:

∇x0L = ∇x0E − λ0. (6.43)

Note that the Lagrange multipliers λk are only defined for k = 1, . . . , N − 1 and that

the notation λ0 is used for convenience.

The adjoint equations given in (6.39) and (6.40) represent themselves a RK method

with b unchanged and matrix Ā ∈ R
s×s with āi,j = bjaj,i

bi
. In particular, this implies

that an explicit (implicit) RK method yields an explicit (implicit) RK method for the

adjoint system (with reversed time). The RK for the adjoint system for the methods

considered in this thesis are shown in the last row of Table 6.1. Obviously, when

applied in reverse time direction, they are identical to the RK methods given in the

first row of Table 6.1.
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6.2 Solving Time-Discrete Optimal Control Problems

Algorithm 2 Relaxation Forward-Backward Sweep with Runge-Kutta Methods

Input: Initial state x0 ∈ R
p; time step size ht > 0; A ∈ R

s×s and b ∈ R
s of the

considered RK method
Output: Optimal arrays U ∈ R

q×N×s, X ∈ R
p×N and Λ ∈ R

p×N

1: U← 0 ⊲ Initialize the controls U

2: x0 ← x0 ⊲ Satisfy initial condition
3: while not converged with respect to U do ⊲ Loop for numerical optimization
4: for k = 0, 1, . . . , N − 1 do ⊲ Solve state equations forward in time
5: for i = 1, 2, . . . , s do

6: yik ← xk + ht
∑s
j=1 ai,jf(yjk,u

j
k) ⊲ (6.24)

7: end for

8: xk+1 ← xk + ht
∑s
i=1 bif(yik,u

i
k) ⊲ (6.25)

9: end for

10: λN−1 ← −∇CF(xN−1) ⊲ Compute terminal condition of co-states, (6.38)
11: for k = N − 2, N − 3, . . . , 0 do ⊲ Solve adjoint equations backward in time
12: for i = 1, 2, . . . , s do

13: χik ← λk+1 + ht
∑s
j=1

aj,ibj

bi

(
∇xf(yjk,u

j
k)
)⊤
χ
j
k ⊲ (6.40)

14: end for

15: λk ← λk+1 + ht
∑s
i=1 bi (∇xf(yik,u

i
k))

⊤
χik ⊲ (6.39)

16: end for

17: Compute the update s from (6.41) using numerical optimization
18: U← U + s

19: end while

We adapt the FBS method given in Algorithm 1 by including the RK equations for the

numerical solution of the differential equations. For the relaxation approaches IBR and

MBR the entire procedure is summarized in Algorithm 2. Details about convergence

criteria of the while-Loop and the update s in line 17 are given in Chapter 7. For the

shooting method MBS the algorithm has to be slightly modified to account for the

missing control variables. As mentioned before, the control variables can be directly

computed from the current estimate of the state. The modified algorithm is given

in Algorithm 3. The computation of the current control (the velocity) from the current

state (the momentum) is given in line 4 of Algorithm 3. How uk = vk can be computed

from xk = Mk is described in Section 6.2.5.

For solving the RK integration of the state equations (6.24), (6.25) and the adjoint equa-

tions (6.38) to (6.41) for our LDDMM image registration problems given in Section 5.4,

the right-hand side function f and its partial derivatives are required. Foremost, we

consider f that are transport equations. The transport equations are solved in both

relaxation approaches – IBR and MBR – and the shooting approach MBS.

The IBR approach has the drawback that inaccuracies obtained by the numerical

solution of the transport equation result in considerable image artifacts. Figure 6.3
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Algorithm 3 Shooting Forward-Backward Sweep with Runge-Kutta Methods

Input: Time step size ht > 0; A ∈ R
s×s and b ∈ R

s of the considered RK method

Output: Optimal arrays X ∈ R
p×N and Λ ∈ R

p×N

1: x0 ← 0 ⊲ No initial condition given
2: while not converged with respect to x0 do ⊲ Loop for numerical optimization
3: for k = 0, 1, . . . , N − 1 do ⊲ Solve state equations forward in time
4: Compute uk from xk
5: for i = 1, 2, . . . , s do

6: yik ← xk + ht
∑s
j=1 ai,jf(yjk,uk) ⊲ (6.24)

7: end for

8: xk+1 ← xk + ht
∑s
i=1 bif(yik,u

i
k) ⊲ (6.25)

9: end for

10: λN−1 ← −∇CF(xN−1) ⊲ Compute terminal condition of co-states, (6.38)
11: for k = N − 2, N − 3, . . . , 0 do ⊲ Solve adjoint equations backward in time
12: for i = 1, 2, . . . , s do

13: χik ← λk+1 + ht
∑s
j=1

aj,ibj

bi

(
∇xf(yjk,u

j
k)
)⊤
χ
j
k ⊲ (6.40)

14: end for

15: λk ← λk+1 + ht
∑s
i=1 bi (∇xf(yik,u

i
k))

⊤
χik ⊲ (6.39)

16: end for

17: Compute the update s using (6.43) and numerical optimization methods
18: x0 ← x0 + s

19: end while

shows a 2D example for an image registration result obtained with the IBR method

that illustrates the problem. At first glance the overall result looks good, but “wiggling”

artifacts and blurring can be observed in Figure 6.3c and Figure 6.3e. These deteriora-

tions are introduced by the numerical solution of the transport equation (5.38) with a

finite-difference scheme like fourth-order RK. The artifacts are the result of numerical

dispersion (“wiggling”, also called phase error) and dissipation (blurring, also called

amplitude error), see, e.g., [LeVeque 2002, pp. 101] for details. Note that these errors

are particularly apparent near sharp edges.

As the MBR method has the advantage that considerably less image artifacts occur

during numerical solution of the transport equation (because the transformations are

smooth), see also Section 8.3, we will use the transport equations for maps for the

shooting approach and neglect the transport of image intensities. For the MBS method

additionally the solution of the discretized EPDiff equation is required. Furthermore,

the shooting solutions eliminate the dependency on the control variables, which are

the velocities v, as they can be computed from the state variables M.

In the following sections the specific equations for the discrete solutions of the IBR,

MBR, and MBS models following (6.24), (6.25) and (6.38) to (6.41) are computed.
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(a) Template image (b) Reference image (c) Transformed template image

(d) Initial difference (e) Difference after registration (f) Discrete velocity field v

Figure 6.3: Exemplary registration of 2D images (Ω = (0, 1)2) with the IBR approach.
The parameters were m = (41, 41), n = (5, 5), N = 10, α = 0.1,
β = 1, γ = 1, σ = 0.1 and the distance measure was NGF with η = 1.
The transformed template image shown in (c) is similar to the reference
image (b). However, a close look at (c) or the difference image in (e)
reveals artifacts. These artifacts are caused by inaccuracies that occur
during the numerical solution of the transport equation for images given
in (5.38). In (f) the velocity fields over time are shown. Note that the
change over time is moderate.

In each section we start with the derivations for d = 1 and afterwards extend the

description to d = 3.

6.2.3 Application to the IBR Model

Now we derive how the discretized IBR model can be solved with the general framework

given in Section 6.2.1 and Section 6.2.2.

The states we are interested in are the discrete images X = I ∈ R
m×N , where the

initial state is the template image I0 = T, and the control sequence that influences

the image transport is the velocity matrix U = v ∈ R
n×N . Accordingly, the number

of state variables is the number of pixel/voxel (m = p) and the number of con-

trol variables is the number of velocity grid points (n = q). Note that originally
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U ∈ R
q×N×s and thus choosing U = v (i.e. reducing the number of unknowns by

(s − 1)qN) is an approximation of the whole U for s ≥ 2. This approximation is

motivated by the following considerations. In the lung CT registration problems

we are tackling within this thesis, the memory consumption cannot be neglected

(if the algorithms should be executable on a standard desktop PC) and we propose

to reduce the number of stored control variables uik by assuming that the velocity

fields within the k-th RK step (k = 0, . . . , N − 2) are piecewise constant over time:

uik ≈ u1
k =: uk = vk, i = 2, . . . , s. This assumption is based on observations for differ-

ent registration examples. We found in several experiments that ‖vk − vk+1‖/‖vk‖ for

all k = 0, . . . , N − 2 was small, i.e., the velocities v changed only marginally over time.

This can be seen for instance in the example given in Figure 6.3. Here, a 2D registration

of a translated blob is computed with the IBR approach. In particular, in Figure 6.3f

the velocity fields for tk and k = 0, 1, . . . , 9 are shown. Within a particular row the

first or second spatial component of the discrete velocity field at the same location

over time is shown. The variance in each row is moderate and the relative difference

1

N − 1

N−2∑

k=0

‖vk − vk+1‖
‖vk‖

≈ 0.067

is reasonably small even for the low number of simulated time steps N = 10. This

indicates a smooth variation of the velocity fields over time (as to be expected for

LDDMM) and demonstrates that our approximation has no large influence. However,

the assumption uik ≈ u1
k = vk for all k = 0, . . . , N − 1 and i = 2, . . . , s is a restriction

that also has consequences for the adjoint equations (as will be discussed in the next

paragraph) and in future work the effects of this restriction should be investigated.

In the extreme case of velocity fields that are constant over time (i.e., vk = vj

for all k, j ∈ {0, 1, . . . , N − 1}) we would obtain a stationary velocity field method,

cf. Section 2.2.1 and the memory consumption would be reduced even further. However,

as we try to recover large and highly nonlinear deformations it is reasonable to model

non-stationary velocity fields [Mang and Ruthotto 2017]. Thus we use the non-

stationary models given in Problem 5.4, Problem 5.5 and Problem 5.6, but assume that

the velocity fields are piecewise constant within the individual RK steps and may vary

for different time steps tk, tl with k, l = 0, . . . N − 1 and k 6= l. By this trade-off the

memory requirement for storing the control variables in U is reduced by a factor s, but

the results (again assessed empirically when evaluating E and LM-based evaluation

criteria, cf. Chapter 8) are changed only marginally. The memory requirements are

alleviated even more by the fact that the update in (6.41) has to be computed just for

one instead of s controls for each time tk. Additionally, the χik are then only needed

in the update for λk in (6.39) and do not have to be stored for later computations to
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update the controls using (6.41) because of the following reasons: For the considered

explicit RK methods we have χ1
k = λk and the update ∇ui

k
L for i > 1 is not needed

due to our approximation.

As motivated in Section 6.1.1, we choose n < m, where n is the number of velocity grid

points and m the number of image grid points, and thereby use another approximation

that effectively reduces the required memory and the computation time. The effects

on the memory consumption were studied in [Polzin et al. 2016] and its supplementary

material. We found that a reduction of discretization points up to a factor of four per

spatial dimension, i.e., n = m
64

for d = 3, had no negative influence on the accuracy

of the lung registration results (in terms of expert LM distances), but decreased the

memory consumption by about 95 %.

We use the interpolation matrix P to change from the v given on a nodal grid to the

resolution of I that is given on a cell-centered grid, see Section 6.1.2. The right-hand

side function that is used in the RK methods follows then from (6.16) to (6.18):

f1(Ik,vk) := −diag(DI
1Ik)Pvk = −(DI

1Ik)⊙ (Pvk), (6.44)

where ⊙ denotes the Hadamard product. The derivatives needed for solving the adjoint

equations are:

∇Ik
f1(Ik,vk) = −diag(Pvk)D

I
1, (6.45)

∇vk
f1(Ik,vk) = −diag(DI

1Ik)P. (6.46)

The concrete discretized energy (6.23) for our problem is given as:

E1(I,v) :=
1

σ2
D(IN−1,R) + S(v), (6.47)

where R denotes the discrete reference image. From (6.1) it is easy to compute

∇vE1(I,v) = ∇S(v) = h̄vhtL̄WL̄v. (6.48)

For the update of vk, k = 0, . . . , N − 1 in the numerical optimization the compo-

nents kn+ 1, . . . , (k + 1)n of ∇vE1(I,v) are used.

To compute the final state λN−1 ∈ R
m the derivative of the discrete distance measure

is needed:

λN−1 = − 1

σ2
∇IN−1

D(IN−1,R). (6.49)

To evaluate f1 and solve the adjoint equations for d = 3, we used finite differences to

numerically compute the first derivative. This is described as matrix-vector product

119



6. Discretize-then-Optimize Approach for LDDMM Methods

with matrices that can be built as follows. In three dimensions (m = (m1,m2,m3)) the

derivative operators can be approximated as Kronecker products of one-dimensional

finite difference matrices, see, e.g., [Modersitzki 2009, p. 109]:

D̄I
1 := Em3 ⊗ Em2 ⊗DI

1, (6.50)

D̄I
2 := Em3 ⊗DI

2 ⊗ Em1 , (6.51)

D̄I
3 := DI

3 ⊗ Em2 ⊗ Em1 . (6.52)

The state X still corresponds to the images I = (Ik)
N−1
k=0 ∈ R

m×N . Each column

describes a different point in time and the images are arranged as long vectors (analog

to v). The control variables are the discretized velocities v ∈ R
3n×N . We want to

transport the images at the highest possible resolution and interpolate the velocities

at the image grid by multiplication with P ∈ R
m×n, cf. Section 6.1.2. With the

notation ṽik := Pvik, i = 1, 2, 3, k = 0, . . . , N − 1 the discretized transport equation

becomes

f1(Ik,vk) = −
3∑

i=1

diag(D̄I
i Ik)ṽ

i
k. (6.53)

The corresponding derivatives are:

∇Ik
f1(Ik,vk) = −

3∑

i=1

diag(ṽik)D̄
I
i , (6.54)

∇vk
f1(Ik,vk) = −diag((D̄I

1 + D̄I
2 + D̄I

3)Ik)P. (6.55)

For the adjoint system we need the final state of λ ∈ R
m×N that is unchanged compared

to the one-dimensional equation given in (6.49). As our objective function is the same

as for the one-dimensional case given in (6.47), the derivative of the energy with

respect to the control variables v is equal to (6.48).

6.2.4 Application to the MBR Model

In contrast to the IBR model, in the MBR model the transport equation is used to

generate the (inverse) transformation φ instead of the transformed template image.

This requires the computation of spatial derivatives of φ on Ω∪ ∂Ω. Consequently, for

approximating the derivatives with central finite differences, boundary conditions on φ

are inevitable. As motivated in Section 6.1.1, an elaborate analysis on the influence

of boundary conditions is beyond the scope of this thesis. To allow for a continuous

transition at the boundary, we assume that φ is subject to homogeneous Neumann
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boundary conditions and define in analogy to (6.17)

Dv
i :=

1

2hiv




0 0

−1 0 1
. . . . . . . . .

−1 0 1

0 0




∈ R
ni×ni

. (6.56)

The matrix Dv
i is used for the finite-difference approximation of the first derivative

along the i-th dimension, i = 1, . . . , d. In comparison with (6.17) only the scaling is

changed due to the different step size and the first and last rows changed due to the

Neumann boundary conditions.

We start with the case d = 1. The discrete transformation maps φ := φ(xnd) ∈ R
n×N

are discretized exactly like the velocities. As before, φk is the (k + 1)-th column

of φ and k ∈ {0, 1, . . . , N − 1}. The initial transformation φ0 is either the nodal

grid (φ0 = x0
nd) or if a (diffeomorphic) pre-registration ϕpre ∈ R

dn is avail-

able φ0 = ϕpre. To include the full information provided by the images we

interpolate φN−1 as described in Section 6.1.2 and use the interpolated trans-

formation PφN−1 to obtain the transformed template image T̃ = T ◦ (PφN−1).

Following Section 6.1.3 and Section 6.1.4 the discretized objective function of (5.42)

has the following form:

E2(φ,v) =
1

σ2
D(T̃,R) + S(v). (6.57)

Prolongating φN−1 with P also has an impact on the size of the adjoint vari-

able λ ∈ R
m×N and the final state is

λN−1 = − 1

σ2
∇PφN−1

D(T̃,R) = − 1

σ2
∇AD(T̃,R)∇hT̃. (6.58)

For the second equation the chain rule was applied yielding the product of the discrete

gradient ∇hT̃ ∈ R
m and ∇AD, which denotes the derivative with respect to the first

argument of D.

The discrete right-hand side function f2 for the transport of the transformation maps

is almost identical to (6.44), only the boundary conditions of the discrete derivatives

are changed and no matrix P is needed, because φ and v are discretized on xnd:

f2(φk,vk) = −diag(Dv
1φk)vk = −(Dv

1φk)⊙ vk = −diag(vk)D
v
1φk. (6.59)

The derivatives of (6.59) are:

∇φk
f2(φk,vk) = −diag(vk)D

v
1, (6.60)

∇vk
f2(φk,vk) = −diag(Dv

1φk). (6.61)
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As the regularizer in (6.57) is the same as in (6.47), the partial derivative with respect

to the control variable v is equal to (6.48). However, the distance measure depends on

the interpolated image T̃ and it is possible that φN−1 has a lower resolution than T.

The high resolution of the image mismatch (this is essentially the role of the adjoint λ)

should be retained during the solution of the adjoint equations to allow for an accurate

update of the control variables within the numerical optimization and thus for a better

optimization result.

The matrix P ∈ R
m×n is used to connect the different grids and thus equations (6.60)

and (6.61) to (6.58) by interpolation. The evolution of λ backwards in time is then

determined by (6.45) instead of (6.60). Also, before using λ to compute the update

for the control v in (6.61), a grid change from cell-centered to nodal discretization has

to be performed by computing P⊤λ. By doing computations stepwise the memory

requirements can be reduced: Only λk and λk−1 are stored on the high image resolution

during the k-th RK iteration step, k ∈ {1, . . . , N − 1}. For all other times the shorter

vectors P⊤λj are kept, where j ∈ {0, 1, . . . , N − 1} with k − 1 6= j 6= k.

Now we consider the case d = 3. In analogy to (6.50) to (6.52), the matrices used for

describing three-dimensional numerical derivatives of the maps φ are computed using

Kronecker products:

D̄v
1 := En3 ⊗ En2 ⊗Dv

1, D̄v
2 := En3 ⊗Dv

2 ⊗ En1 , D̄v
3 := Dv

3 ⊗ En2 ⊗ En1 .

All coordinates (φ1,φ2,φ3) are transported individually, i.e., we have as many transport

equations as there are spatial dimensions. The discrete transformation maps are ordered

as

φ :=




φ1
0 φ1

1 . . . φ1
N−1

φ2
0 φ2

1 . . . φ2
N−1

φ3
0 φ3

1 . . . φ3
N−1


 ∈ R

3n×N .

As φ and v have the same discretization, the transport equations do not require P:

f2(φk,vk) :=




f 1
2 (φk,vk)

f 2
2 (φk,vk)

f 3
2 (φk,vk)


 := −




∑3
i=1 diag(D̄v

iφ
1
k)v

i
k∑3

i=1 diag(D̄v
iφ

2
k)v

i
k∑3

i=1 diag(D̄v
iφ

3
k)v

i
k


 . (6.62)

The gradients of f2 with respect to the state variable φ for the individual components

of (6.62) can be expressed by the Kronecker delta as the transport in the different

spatial directions is decoupled:

∇φl
k
f j2 (φk,vk) = −δj,l

3∑

i=1

diag(vik)D̄
v
i , j, l = 1, 2, 3. (6.63)

122



6.2 Solving Time-Discrete Optimal Control Problems

The derivatives of f j2 with respect to the control variable vlk are

∇vl
k
f j2 (φk,vk) = −diag(D̄v

lφ
j
k). (6.64)

To complete our adjoint system, we also need the final state of the adjoint vari-

ables λN−1. The final state is similar to the one-dimensional case given in (6.58), but

each transformation component is treated individually:

λN−1 = − 1

σ2
diag(∇hT̃)




∇AD(T̃,R)

∇AD(T̃,R)

∇AD(T̃,R)


 . (6.65)

The discrete gradient of the image T̃ ∈ R
m is denoted by ∇hT̃ ∈ R

3m, where the

first m components are the partial derivatives in x1-direction, then the x2- and finally

the x3-direction follow. Still the high resolution of the image mismatch should be

retained during the solution of the adjoint equations and thus we prolongate φ to

image resolution using P̄. To reduce the needed memory, the adjoint is only stored

for the necessary amount of times at high resolution. As the regularizer S of the

energy E2 is the same as for the three-dimensional IBR method, the derivative with

respect to the velocities is also the same, cf. (6.48):

∇vE2(φ,v) = h̄vhtL̄WL̄v. (6.66)

6.2.5 Application to the MBS Model

For convenience, we repeat the constraints of the MBS model:

φ̇t + J⊤
φt
vt = 0, φ0 = id (6.67)

Ṁt + JMt
vt +Mtdiv(vt) + J⊤

vt
Mt = 0, (6.68)

vt = KMt, K = (L†L)−1, for all t ∈ [0, 1] and x ∈ Ω. (6.69)

As described in Section 6.2.4, the discretization of (6.67) yields (6.59). The description

also comprised the numerical solution using RK methods. Equation (6.68) is the

EPDiff equation, cf. Definition 5.1. In 1D, it simplifies to

Ṁt + (∂xMt)vt + 2Mt(∂xvt) = 0, t ∈ [0, 1]. (6.70)

Because the momentum M : [0, 1]× Ω→ R
d and velocity v : [0, 1]× Ω→ R

d fields are

related via (6.69), M is discretized on the same grid (xnd) as v: M := M(xnd) ∈ R
n×N
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and the matrix Dv
1 is used for numerical derivation of the velocities as well as of the

momentum.

For the discretization of (6.69) the discretization of K is essential. In (6.9), we

defined the discretized kernel K that depends on the Helmholtz operator given in (6.8).

Using A = L⊤L ∈ R
n×n and K = A−1 ∈ R

n×n, the change from velocity vk to

momentum Mk and from Mk to vk, k = 0, . . . , N − 1 is possible:

Mk = Avk, vk = KMk, k = 0, . . . , N − 1. (6.71)

Motivated by the computational efficiency of the FFT [Cooley and Tukey 1965],

see Section 6.1.1, we solve vk = KMk in the Fourier domain. The FFT, denoted by F ,

is employed to obtain the Fourier transformed momentum fields M̂k = F(Mk) ∈ C
n.

Then vk can be computed directly as

vk = F−1(M̂k ⊘ Â), (6.72)

where ⊘ denotes the pointwise division of two arrays and Â ∈ R
n can be determined

beforehand, see [Beg et al. 2005]. The computational cost of solving vk = KMk for

fixed k is thus governed by the inverse FFT: O(n log n) [Cooley and Tukey 1965],

where n is the number of grid points.

In most LDDMM methods, the solution of vt = KMt is also computed in Fourier space,

see, e.g., [Beg et al. 2005, Zhang and Fletcher 2015]. However, when using Fourier

space methods the inherent assumption is that the signals to be transformed are

periodic [Gonzalez and Woods 2002, pp. 242], which might be an invalid assumption

for vt and Mt. Therefore, the actual K differs from (6.9) due to boundary conditions.

To keep things simple we refrain from using another notation and use K although in

the FFT-based approach periodic boundary conditions are assumed.

An alternative to the FFT method for solving (6.71) is the conjugate gradient (CG)

method [Nocedal and Wright 2006, pp. 101–132]. It requires that the matrix K is

positive definite [Nocedal and Wright 2006, p. 101]. We showed in Section 6.1.3

that this is the case if Neumann boundary conditions are assumed. As we used L⊤L

for computing S, where for L Neumann boundary conditions were employed, it

would be consistent to solve vk = KMk using CG. We found in several 1D and 2D

experiments (not included in this thesis) that solving vk = KMk with the CG method

was reasonably fast and accurate. However, the large systems that arise in 3D (although

the matrices are sparse and hence computing the matrix-vector product does not

require O(n2) operations) increase the run time considerably when using the CG

method instead of the Fourier methods. We therefore consistently used the Fourier

124



6.2 Solving Time-Discrete Optimal Control Problems

methods for d = 1, 2, 3 after empirically verifying (in experiments that are not

included in this dissertation) that for our applications only minor differences between

the solutions (acquired with CG and FFT respectively) exist.

A proper analysis of the influence (regarding different choices of boundary conditions)

of computing vk = KMk in Fourier space instead of solving the linear system should

be the subject of future work, but was beyond the scope of the thesis. Another issue

that could be addressed in future work is to employ a suitable pre-conditioner, see for

instance [Mang and Ruthotto 2017] in the LDDMM context. Preconditioning improves

the convergence rate of the (P)CG method and hence the number of iterations and

the computational work for solving vk = KMk are reduced [Nocedal and Wright 2006,

pp. 118]. Alternatively, full multigrid methods (see, e.g., [Morton and Mayers 2005,

pp. 252–258] for an introduction) allow for an O(n) bound for the computational

work [Hackbusch 1985, p. 104], [Trottenberg et al. 2001, p. 59] and could be used in

future work.

However, both PCG and multigrid methods are iterative solvers for linear systems,

while the FFT solution can be computed explicitly. This has the advantage that if

for given v̂k the momentum M̂k is obtained with the FFT method, it can be assured

that the approach using the inverse FFT determines the original v̂k for given M̂k.

In contrast, PCG and multigrid are typically stopped if a residual drops below a

user-determined threshold, and thus this inverse consistency property might not be

given.

For the computation of S(v) the products v⊤
k Avk = v⊤

k Mk = (KMk)⊤Mk = M⊤
k KMk

are weighted and summed up for k = 0, . . . , N − 1. This sum can be simplified as

the momentum is conserved in the shooting approaches and hence the regularizer can

be written such that it only depends on the initial momentum M0, cf. Section 5.2

and (5.49):

E3(M0,φN−1) :=
1

σ2
D(T̃,R) +

h1
v

2
M⊤

0 KM0. (6.73)

The transformations φ are updated by the following right-hand side function that is

obtained by substituting vk = KMk in (6.59):

f 1
3 (φk,Mk) = −diag(Dv

1φk)KMk. (6.74)

The second discrete right-hand side that is used in the RK method is the discrete

version of (6.70) where again vk = KMk is used:

f 2
3 (Mk) = −diag(Dv

1Mk)KMk − 2diag(Dv
1KMk)Mk. (6.75)

We need the derivatives of the right-hand side functions for solving (6.38) to (6.41). In

contrast to IBR and MBR we have two state variables φ and M and accordingly two
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adjoint variables λ1 ∈ R
n×N and λ2 ∈ R

n×N with intermediate stages χ1,i ∈ R
n×N

and χ2,i ∈ R
n×N , i = 1, . . . , s, respectively. We will now summarize the derivatives

of the right-hand side function f3 = (f 1
3 , f

2
3 )⊤ with respect to the state variables φk

and Mk and omit the function arguments for convenience:

∇φk
f 1

3 = −diag(KMk)D
v
1, (6.76)

∇Mk
f 1

3 = −diag(Dv
1φk)K, (6.77)

∇φk
f 2

3 = 0, (6.78)

∇Mk
f 2

3 =−2diag(Dv
1KMk)−diag(KMk)D

v
1−2diag(Mk)D

v
1K−diag(Dv

1Mk)K.(6.79)

Contrary to the two models given before, we do not need to update the control u = v

as it is directly available by (6.72) and therefore we do not have to compute ∇uf .

Substituting (6.76) to (6.79) into the adjoint system (6.39) and (6.40) yields:

λ1
k = λ1

k+1 + ht
s∑

i=1

bi(∇φk
f 1

3 )⊤χ
1,i
k , (6.80)

χ
1,i
k = λ1

k+1 + ht
s∑

j=1

bjaj,i
bi

(∇φk
f 1

3 )⊤χ
1,j
k , (6.81)

λ2
k = λ2

k+1 + ht
s∑

i=1

bi


∇Mk

f 1
3

∇Mk
f 2

3




⊤
χ

1,i
k

χ
2,i
k


 , (6.82)

χ
2,i
k = λ2

k+1 + ht
s∑

j=1

bjaj,i
bi


∇Mk

f 1
3

∇Mk
f 2

3




⊤
χ

1,j
k

χ
2,j
k


 . (6.83)

The final states of the adjoints λ1 and λ2 are given by the partial derivatives with

respect to the final states φN−1 and MN−1 respectively:

λ1
N−1 = −∇PφN−1

E3(M,φ) = − 1

σ2
∇AD(T̃,R)∇hT̃, (6.84)

λ2
N−1 = −∇MN−1

E3(M,φ) = 0. (6.85)

The update of the initial momentum M0 that is the initial value influencing the whole

model via equations (6.67) to (6.69) is given by adapting (6.43):

∇M0L = ∇M0E3(M0,φN−1)− λ2
0 = h1

vKM0 − λ2
0. (6.86)

Now we proceed with the extension to d = 3. Like in the one-dimensional case

the idea is to replace the map-based equations of the MBR, which decouple spatial

transformations from the objects to be transported, by directly solving the EPDiff

equation (6.68) with the constraint (6.69) to optimize the discrete energy

E3(M0,φN−1) :=
1

σ2
D(T̃,R) +

h̄v

2

3∑

i=1

(Mi
0)

⊤KMi
0. (6.87)
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To compute the transformed template image we still need the transformation φ and

thus employ (6.62) to compute its evolution. The resulting discrete right-hand side

function has six components:

f j3 (φk,Mk) = −
3∑

i=1

diag(D̄v
iφ

j
k)KMi

k, (6.88)

f j+3
3 (Mk)=−

3∑

i=1

(
diag(D̄v

iM
j
k)KMi

k+diag(D̄v
jKMi

k)M
i
k+diag(Mj

k)D̄
i
vKMi

k

)
. (6.89)

for j = 1, 2, 3, where we used vik = KMi
k, i = 1, 2, 3 and k = 0, . . . , N − 1. A useful

relation when computing the derivatives of the right-hand side function is

∇Ml
k
v
j
k = δj,lK =





0 , l 6= j,

K , l = j.

The derivatives of f3 are thus

∇φl
k
f j3 = −δj,l

3∑

i=1

diag(KMi
k)D̄

v
i , (6.90)

∇Ml
k
f j3 = −diag(D̄v

lφ
j
k)K, (6.91)

∇φl
k
f j+3

3 = 0, (6.92)

∇Ml
k
f j+3

3 = −
(
diag(D̄v

l M
j
k) + diag(Ml

k)D̄
v
j + diag(Mj

k)D̄
v
l

)
K

− diag(D̄v
jKMl

k)− δj,l
3∑
i=1

(
diag(D̄v

iKMi
k) + diag(KMi

k)D̄
v
i

)
,





(6.93)

for j, l = 1, 2, 3.

As we have six state variables φ1
k, φ

2
k, φ

3
k and M1

k, M2
k, M3

k that are updated

using RK methods with the right-hand sides f 1
3 , . . . , f

6
3 there are also six adjoint

variables λ1
k, . . . ,λ

6
k with intermediate variables χ1,i

k , . . . ,χ
6,i
k for i = 1, . . . , s and

k = 0, . . . , N − 1. The derivatives of f3, given in (6.90) to (6.93), are used in the

adjoint RK system (6.39) to (6.41) for updating the adjoint variables. The only thing

left for a complete description are the final states of the adjoints λ1
N−1, . . . ,λ

6
N−1.

They are given by the partial derivatives of E3 with respect to the final states φN−1

and MN−1 respectively. The first three equations are the same as in (6.65), but we

repeat them for completeness. The adjoint variables λ4
N−1,λ

5
N−1,λ

6
N−1 vanish as the

energy depends on the initial momentum and not on the final one:




λ1
N−1

λ2
N−1

λ3
N−1


 = − 1

σ2
diag(∇hT̃)




∇AD(T̃,R)

∇AD(T̃,R)

∇AD(T̃,R)


 , (6.94)

λ
j
N−1 = 0, j = 4, 5, 6. (6.95)
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The update of the initial momentum M0 that is the initial value influencing the whole

model via equations (6.88) and (6.89) is given by adapting (6.43):

∇M0L = ∇M0E3(M0,φN−1)− (λ4
0,λ

5
0,λ

6
0)

⊤ =




h̄vKM1
0 − λ4

0

h̄vKM2
0 − λ5

0

h̄vKM3
0 − λ6

0


 . (6.96)

This is the end of the description of the IBR, MBR and MBS methods in the discrete

setting. In the following paragraphs we will compare the methods. A discussion of

the different properties of the shooting and relaxation approaches is given on page 87.

Here, we give more details about the advantages and disadvantages of the methods

regarding discretization and numerical optimization.

The number of unknowns for the relaxation approaches IBR and MBR is dNn (as

an optimal v∗ ∈ R
dn×N has to be determined) and for the shooting method MBS

the number of unknowns is only dn (M∗
0 ∈ R

dn). Thus the numerical optimization

seems to be more challenging for relaxation. However, the result of the transport and

EPDiff equations, see (6.88) and (6.89) for the right-hand side functions, at tN−1 = 1

is sensitive to changes of M0. Therefore, small errors might amplify and the nu-

merical optimization might be impeded by additional line searches during numerical

optimization. These line searches are themselves computationally expensive as the

necessary conditions (i.e. constraints and adjoint equations) have to be satisfied, which

requires in our setting numerical integration with RK. Accordingly, we observed in

our experiments (see Chapter 8) that the MBS approach has the tendency to require

considerably more run time than the IBR and MBR approaches.

The relaxation approaches offer more flexibility as a small deviation from v∗
k might

be compensated by vl for l > k. Hence, they are less sensitive to variations than

the MBS method. But this is also the reason, why a geodesic solution (or a discrete

approximation of a geodesic solution) is only obtained at convergence of relaxation

methods [Hong et al. 2012a, Vialard et al. 2012]. Therefore, if geodesic solutions, e.g.,

for inter- or extrapolation in time are needed for a regression, the MBS solution should

be preferred. Our experiments confirm that the MBS approach yields qualitatively

smoother results than the relaxation approaches. However, by reparametrization of

the velocity fields it can be achieved that relaxation methods also yield solutions with

a constant (over time) kinetic energy as it is inherently given for shooting approaches.

This reparametrization can either be performed as a single post-processing step or

within the algorithm for numerical optimization [Beg et al. 2005].

The main difference between the two relaxation approaches is that for the MBR

approach d times as much RK steps are necessary as the transport equation has to be
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6.3 Diffeomorphic Transformations

solved for each spatial component. On the other hand, as we typically use m≫ n also

the following has to be considered: For IBR the transport equation is solved numeri-

cally for vectors Ik ∈ R
m and for MBR the vectors to be transported are φk ∈ R

dn.

Additional costs for IBR are generated as Pvk has to be computed to obtain the veloc-

ity field at image resolution while for the MBR approach we retain the velocity grid

resolution for transportation of φk. However, for the computation of the transformed

image T ◦ (PφN−1) and the solution of the adjoint equations, we also use the grid

resolution for the MBR approach and thus the computational costs increase compared

to the IBR method. Moreover, the memory consumption is increased, but this can be

handled by storing the adjoint variables only for one time step at high resolution.

In the experiments of Chapter 8 the differences between MBR and IBR in run time

and memory consumption were rather small. Much more important is the presence of

image artifacts for the IBR method, see Figure 6.3, while such artifacts are absent in

the MBR results.

We conclude that for achieving short run times the MBR method should be used, which

also features highly accurate results. It should also be preferred to the IBR scheme,

because it does not introduce image artifacts. If the smoothness of the transformation

is the key criterion for the application or an extrapolation of the results to t > 1

or t < 0 is required then MBS is the method of choice.

6.3 Diffeomorphic Transformations

In the continuous setting LDDMM methods generate diffeomorphic transformations

as was comprehensibly discussed in Chapter 4 and Chapter 5. However, we have seen

in Section 4.4 that the discretization and in particular the interpolation is crucial for

obtaining diffeomorphic solutions. By using bi-/trilinear interpolation and controlling

Jacobians at a limited number of points per cell the solution is homeomorphic [Musse

et al. 2001, Karaçalı and Davatzikos 2004].

Monitoring of the Jacobians, as done, e.g., in [Christensen et al. 1996, Mang and

Ruthotto 2017], can be used to preserve the regularity of the transformations by

restarting the algorithm with the interpolated template image as new template im-

age (so-called regridding) [Christensen et al. 1996] or by adapting the regularizer

weights or number of time steps [Mang and Ruthotto 2017]. However, controlling

the Jacobian determinants increases the computational costs during the numerical

optimization. We refrain from using the computationally expensive monitoring and

instead determine a minimizer v∗ or M∗ of the IBR, MBR and MBS problems respec-

tively. When the numerical optimization is finished a diffeomorphic transformation
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6. Discretize-then-Optimize Approach for LDDMM Methods

is obtained by a single post-processing step that is presented in this section and is

related to the regridding approach.

Our first step towards a diffeomorphic transformation is the computation of φN−1

with a stable RK scheme. As we are employing explicit numerical solvers (fourth-order

RK methods) for the PDEs in an Eulerian framework, the number of time steps N is

important for achieving stability as discussed in Appendix A. Nevertheless, although

we use an appropriate N such that the RK method for solving the PDEs is stable, the

accuracy to which the PDE is solved might be insufficient to preserve the diffeomorphic

property of the transformations.

During the search for plausible parameters for the lung CT registration we found that

the estimated transformation φN−1 featured negative Jacobians in some grid cells for

extreme parameter choices (i.e. σ, α or γ in the order of less than 10−2) and thus was

not diffeomorphic. Nevertheless, in all experiments the individual steps (if starting

from identity) conserved the diffeomorphic property and the negative Jacobians were

a result of the accumulated error during the iterated RK integration of the transport

equation for all tk = kht, k = 0, . . . , N − 2.

We therefore decided to employ the following strategy to obtain a diffeomorphic

transformation ϕ ∈ R
dn that is similar to the estimated transformation φN−1. We

consider ϕ and φN−1 to be similar if the mean distance per grid point is small compared

to the minimal grid width:

distgrids(ϕ,φN−1) :=
1
n

∑n
i=1 ‖(ϕ)i − (φN−1)i‖2

mini=1,...,d hiv
≪ 1, (6.97)

where (ϕ)i ∈ R
d and (φN−1)i ∈ R

d respectively denote the grid points, i = 1, . . . , n.

In analogy to (4.6) we compute small deformations by solving the transport equation

starting from the identity transformation given on the nodal grid x0
nd ∈ R

dn and

employ only a single vk ∈ R
dn. The result is the intermediate transformation ϕk.

Repeating this for all k = 0, . . . , N − 2 we obtain N − 1 intermediate transformations

that are used to obtain the total transformation ϕ. In the unlikely event that an

intermediate ϕk is not diffeomorphic a backtracking strategy could be employed to

scale vk appropriately and thus obtain a diffeomorphic solution. In our experiments it

was not necessary to use this fallback strategy.

The total transformation ϕ is then computed as the concatenation of the individual

steps ϕk, k = 0, . . . , N − 2 and a pre-registration ϕpre ∈ R
dn:

ϕ := ϕN−2 ◦ϕN−3 ◦ · · · ◦ϕ0 ◦ϕpre. (6.98)
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Here, the composition ◦ involves interpolations, see Section 6.1.2. If all transfor-

mations ϕpre, ϕk for k = 0, . . . , N − 2 are diffeomorphic, then ϕ is diffeomorphic,

see [Chefd’hotel et al. 2002] and [Younes 2010, pp. 164–165] for the proof in the

continuous setting. As shown in Section 4.4, in the discrete setting (piecewise)

diffeomorphic transformations can be obtained by using bi-/trilinear interpolations for

the concatenation ◦ and constraining the Jacobian determinants to be positive at a

limited number of points per cell [Musse et al. 2001, Karaçalı and Davatzikos 2004].

Therefore, we used bi-/trilinear interpolation and controlled the Jacobian of all cells

of ϕk for k = 0, . . . , N − 2 as well as for ϕpre using an implementation [Heldmann

2017] that is based on [Karaçalı and Davatzikos 2004] and was also used and described

in [Rühaak et al. 2017].

If we would compute ϕ according to (6.98) in every iteration of the numerical opti-

mization, it would dramatically increase the computational costs and run time due to

the repeated interpolations. Furthermore, as discussed in Section 9.2, it is difficult

to integrate the interpolations into our approach. In particular, they would interfere

with the consistency of the RK methods used for solving the system dynamics given

in (6.24), (6.25) and the adjoint equations (6.38) to (6.41).

Hence, we employ the following strategy that offers a trade-off between speed and

accuracy. For the numerical optimization process the methods presented in Section 6.2

are used and after termination of the optimization the final transformation ϕ is

computed only once according to (6.98) to achieve a transformation that is guaran-

teed to be diffeomorphic. In the experiments conducted in Chapter 8 we found that

distgrids(ϕ,φN−1) ≤ 0.0127 for all registrations and thus the transformations φN−1

and ϕ show only minor differences.

In this chapter we have described the numerics for the three proposed LDDMM

models IBR (Problem 5.4), MBR (Problem 5.5) and MBS (Problem 5.6) and how

diffeomorphic solutions in a discrete settings can be achieved. Based on this knowledge,

the implementation and numerical optimization are described in Chapter 7.
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7 Implementation and Numerical

Optimization

In this chapter we describe the implementation of Algorithm 2 for the IBR (Sec-

tion 6.2.3) and MBR (Section 6.2.4) as well as Algorithm 3 for the MBS (Section 6.2.5)

method. In particular, we provide details of the numerical optimization that is used

in the algorithms.

All computations were performed with MATLAB Release 2015b [MATLAB 2015] with

the additional FAIR toolbox (public version from 2012), see [Modersitzki 2009] for the

documentation and [Modersitzki et al. 2018] for the latest software. Time-consuming

functions (e.g., solving the adjoint system (6.39) and (6.40)) and functions that are

called frequently (e.g., for computing numerical derivatives) were implemented in

C++ and integrated via MEX files into MATLAB.

Note that in Chapter 6 a description using matrix-matrix or matrix-vector products

is presented for the computation of Lv and Pv. However, for the numerical imple-

mentation we are only interested in the result of these products and do not explicitly

build the large matrices L and P. A matrix-free implementation is possible, as the

employed matrices are sparse, have a simple block structure and the non-zero elements

can be computed explicitly. As motivated in Section 6.2.5 we use the efficient FFT

to compute the solution of L⊤Lvk = Mk for given Mk, k ∈ {0, 1, . . . , N − 1}. This

procedure also does not require to build L, cf. [Beg et al. 2005].

The discrete optimization problems were solved in a multi-level framework [Moder-

sitzki 2009, p. 68] to reduce the risk of obtaining a local minimum and speed up the

optimization, cf. Section 3.3.2. For the interpolation of the images at the transformed

points φN−1 (or ϕ if the step described in Section 6.3 is used) and for the generation

of the multi-level pyramid we used the multilinear interpolation of the FAIR tool-

box, which is implemented in linearInterMex.m. The reasons for using multilinear

interpolation are given in Section 6.1.2.

We denote the number of levels for the multi-level pyramid by F ∈ N. The given

images R, T ∈ R
m1×···×md

are restricted (averaged and downsampled with the FAIR

method getMultiLevel.m) from level j to j − 1 by the factor 1
2

per dimension, i.e.,

mi
F := mi, mi

j−1 =
⌊

1

2
mi
j

⌋
, i = 1, . . . , d, j = 2, . . . , F. (7.1)
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Accordingly, the number of grid points for v, φ and M varied across the levels. At

the coarsest level j = 1 the number of points is chosen by the user as n = (n1, . . . , nd)

and the number of cells is doubled (after the iteration stopped on the current level):

ni1 := ni, nij+1 = 2nij − 1, i = 1, . . . , d, j = 1, . . . , F − 1. (7.2)

Numerical optimization was performed using the limited memory Quasi-Newton

algorithm L-BFGS [Nocedal and Wright 2006, pp. 176]. Following [Polzin et al.

2016], we used the last kL−BFGS = 5 iterate vectors which is a good trade-off between

approximation of the inverse Hessian H and keeping memory requirements reasonable.

Given the gradient of the Lagrange function with respect to the control variables for

the relaxation approaches (see (6.41)) or with respect to the initial momentum for the

shooting approach (see (6.43)), we define

g :=





(
(∇u0L)⊤, (∇u1L)⊤, . . . , (∇uN−1

L)⊤
)⊤ ∈ R

nN , if IBR or MBR is used,

∇x0L ∈ R
n, if MBS is used.

Then the search direction is computed as

ŝ :=




− g

‖g‖∞
, at iteration k = 1,

−Hg, at iteration k = 2, 3, . . . , kmax.
(7.3)

In each iteration H, the symmetric positive approximation of the inverse Hessian, is

updated according to the BFGS formula [Nocedal and Wright 2006, p. 140] and the

initial Hessian is the identity matrix.

Using Armijo line search [Nocedal and Wright 2006, pp. 33] a decrease of the objective

functions (6.47), (6.57) and (6.87) was achieved for the IBR, MBR and MBS models

respectively. This line search is particularly useful as it requires only the gradient

at the current iterate, but does not use gradients at the potential next iterates. For

the evaluation of the current objective function value the forward equations (system

dynamics) have to be solved. Computing the gradient in Algorithm 2 and Algorithm 3

additionally requires the solution of the adjoint equations and thus increases the run

time. The parameters of the line search were fixed to a maximum number of line

searches kmax
LS = 30, scaling factor ρ = 1

2
and minimum reduction value c = 10−6. If we

denote the result of the line search as kLS ∈ N0 then the update of the control variables,

which is used in line 18 of Algorithm 2 and Algorithm 3 respectively, becomes

s = ρkLS ŝ. (7.4)

134



The optimization on the individual levels was terminated if the Gill-Murray-Wright

stopping criteria [Gill et al. 1981, p. 306] were met. The maximum number of

iterations was set to kmax
iter = 50. Following [Modersitzki 2009, pp. 78], the tolerances

were τF = 10−3 for the objective function, τx = 10−2 ≈ √τF for the norm of the

difference of subsequent iterates and τg = 10−2 ≈ 3
√
τF for the norm of the gradient.

Although in the continuous setting with SSD distance measure the solution of the

ELE (5.4) is unique [Trouvé and Younes 2005a] (provided that I0 ∈ W 1,2(Ω,R)), there

is (to the best of our knowledge) no result regarding the existence of unique solutions

for other distance measures. Furthermore, the uniqueness of the solution might be

lost due to the discretization. It is thus possible that our discretized problems like

image registration problems for most applications are non-convex [Modersitzki 2009,

p. 117]. Hence, we can only expect to compute local minimizers using the L-BFGS

method [Nocedal and Wright 2006, pp. 13–14, 153–160]. Therefore, we are interested

in a good pre-registration to obtain a starting point for numerical optimization that

is close to a global minimizer. However, a pre-registration can also lead to non-

diffeomorphic solutions as well as transformations that are not describing the shortest

paths regarding the distance dV (given in Definition 4.7). Nevertheless, we employ a

pre-registration because otherwise we experienced a substantial deterioration of the

registration accuracy in the experiments that were conducted during the search for an

optimal configuration of the algorithms.

In many registration algorithms a parametric pre-registration (for instance rigid or

affine) is employed to describe, e.g., different positioning in the MRI scanner for follow-

up images of the human brain [Freeborough et al. 1996]. However, the movement of

the lungs during respiration is highly nonlinear and while affine transformations can

cope with the average scaling, they face severe difficulties as the volume change might

differ locally, e.g., due to diseases like COPD [Lynch and Al-Qaisi 2013]. We therefore

adopt a method with more degrees of freedom for the pre-registration of lung CT scans.

The method presented in [Heinrich et al. 2015] performs very well in determining a

large number of corresponding keypoints (KPs) in two lung CT scans. The authors

propose a TPS registration [Modersitzki 2009, pp. 61] to obtain a transformation for

the entire domain based on the KPs. Due to its high accuracy we use the proposed

method for the pre-registration of the lung CT scans. However, the TPS registration

might result in a non-diffeomorphic transformation, see, e.g., [Camion and Younes

2001] and our methods cannot “repair” this non-diffeomorphic solutions to become

diffeomorphic, cf. Section 6.3. Indeed, we obtained non-diffeomorphic solutions when

computing the TPS based on all KPs generated with the method [Heinrich et al. 2015].

To accomplish a diffeomorphic pre-registration, we therefore employed a heuristical

post-processing [Polzin et al. 2016] that focuses on the topology preservation by
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assuming that neighboring KPs in one scan are also neighbors in the other scan. Our

strategy is as follows: We first employed a TPS registration with the full set of KPs.

Then we compared the neighborhood of each KP before and after the transformation.

If the set of the six nearest neighbors was changed by more than one KP after the

transformation, the correspondence for the respective KP was considered unreliable and

the KP pair was removed from the list. This procedure achieved that no foldings were

produced by the TPS registration for the considered datasets. However, it also reduced

the number of KPs to about 25 % and increased the distance of expert LMs after

the TPS registration, which indicates a reduced registration accuracy, cf. Chapter 8.

Another trade-off for the excellent pre-registration accuracy of the TPS method is

that the resulting transformation is not minimal with respect to the LDDMM metric

and it is thus not geodesic.
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8 Experiments and Results

To assess the quality and performance of our registration approaches IBR, MBR and

MBS we register two types of medical images: two-dimensional hand radiographs and

three-dimensional lung CT scans. While the experiments for the hand radiographs are

primarily designed to allow for a qualitative comparison of the three approaches, the

focus in the lung CT scan experiments is on a quantitative comparison of our methods

and other state-of-the-art methods. Before we present the data in Section 8.2, we

introduce in Section 8.1 the criteria that are used for the evaluation of the registrations.

The results for the hand X-rays are given in Section 8.3 and for the lung CT scans

in Section 8.4. The evaluation demonstrates that our methods are highly accurate,

generate smooth and topology-preserving transformations and require substantially

less memory and run time than related LDDMM approaches.

8.1 Evaluation Criteria

Evaluation of deformable registration results is challenging as in general no ground

truth solution is available [Zitová and Flusser 2003, Sotiras et al. 2013]. Image

registration aims to estimate a vector-valued transformation ϕ for each x ∈ Ω from

the scalar image intensities I0(x) and I1(x). Therefore, even if the images seem to

be well-aligned in the difference image I0 ◦ ϕ− I1, the underlying transformation ϕ

might be implausible, see Section 8.1.2.

Advancing on the state of the art of registration evaluation is beyond the scope of this

thesis. Therefore, we restrict our evaluation to standard approaches [Murphy et al.

2011b]:

1. Compute statistics of distances between point pairs (LMs) that are provided, e.g.,

by medical experts or dedicated algorithms.

2. Visualize the registration result and compare distance measure values.

3. Compute the volume overlap and surface distances of image regions belonging to

the same category/label, e.g., lung fissures.

4. Assess the local volume change and transformation regularity by computing

det(∇ϕ).

5. Determine computational costs and memory requirements.
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(a) Axial with LMs (b) Axial with KPs (c) Coronal with LMs (d) Coronal with KPs

Figure 8.1: Axial and coronal views of dataset COPD02 [Castillo et al. 2013]. Expert
LMs and automatically detected KPs (generated with the method proposed
in [Heinrich et al. 2015]) are plotted as yellow crosses in (a) and (b)
respectively. Crosses are shown for points that are located in a subvolume
with five axial slices, which is centered at the shown slice. LMs and KPs
within a subvolume with 21 slices are shown in the coronal views (c)
and (d).

Note that each of the criteria on its own is not sufficient to decide whether the

registration was successful. For instance, the LM distance criterion evaluates the

registration at a limited number of locations and does not directly take the registration

of the remaining points into account. Similarly, a proper alignment of certain image

regions is useful if these regions are of particular interest for the user. However,

it does not necessarily demonstrate that other regions are well-aligned or that the

estimated transformation is realistic. Furthermore, the visual impression and the

distance measure value can be convincing, but the underlying transformation might be

implausible [Rohlfing 2012]. The plausibility of the transformation can, among other

criteria, be characterized by det(∇ϕ): Negative values indicate foldings of the grid

that have to be avoided if invertible transformations are required. Additionally, a very

large Jacobian determinant or a determinant that is positive but close to zero mean

that the transformation locally describes a strong expansion or shrinkage respectively.

This can (depending on the application) also be an indicator for a bad registration

result. More details about the respective evaluation criteria are given in the following

sections.

8.1.1 Landmark Distances

For this evaluation criterion we consider corresponding point pairs in the two images to

be registered. The evaluation of distances between such point pairs after registration

is a natural approach as the aim of image registration is to find correspondences in

the images and align them accordingly. Therefore, the distance of annotated point

pairs is one of four criteria in the comprehensive evaluation study on pulmonary image
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registration methods [Murphy et al. 2011b] called EMPIRE10 (Evaluation of Methods

for Pulmonary Image Registration 2010 [EMPIRE10 website 2018]).

We refer to the point correspondences as LMs. Correspondences used as evaluation

basis should be reliable and well-distributed throughout the entire image or region

of interest as the assumption that ϕ does align surrounding points well when the

LMs are matched might be limited to a small neighborhood [Fitzpatrick et al. 1998].

In [Fitzpatrick et al. 1998] the locality of the error estimate was investigated for rigid

motion assumptions. In particular, from the alignment of fiducial markers the effect

on the matching of surrounding points was considered. Fitzpatrick and co-authors

found that the error increases approximately quadratically with larger distance from

the fiducial markers.

On the downside to the wish for a large abundance of LMs is the necessary work of

generating these LMs. In particular for 3D images the manual detection is tedious and

error-prone [Hartkens et al. 2002, Werner et al. 2013]. To overcome the limitations of

manual detection, algorithms for the automatic detection of LMs were proposed, see,

e.g., [Likar and Pernus 1999, Rohr 2001] for diverse medical applications and [Murphy

et al. 2011a, Werner et al. 2013, Heinrich et al. 2015] for lung CT images. A pre-

registration based on LMs can also serve as suitable starting point for the registration

itself or as support for the intensity-based registration as done, e.g., in [Johnson

and Christensen 2002, Fischer and Modersitzki 2003a, Hellier and Barillot 2003,

Papademetris et al. 2004]. If the automatically detected points are used within the

registration, we refer to them as KPs, cf. [Rühaak et al. 2017].

For a qualitative impression about LMs and KPs on dataset COPD02 [Castillo et al.

2013] see Figure 8.1. The LMs were annotated in the given inhale scans by medical

experts [Castillo et al. 2013] at distinctive points like vessel bifurcations. Distinctive

points are good candidates for the problem of finding corresponding positions in other

scans [Likar and Pernus 1999], e.g. the exhale scan, because they stand out from their

neighborhood (in both images) and thus can be accurately annotated. One measure for

distinctiveness are strong intensity variances (edges) within local neighborhoods. Thus,

for lung CT scans in particular vessel bifurcations are typical points that are selected

by human experts [Castillo et al. 2009]. This strategy is mimicked by algorithms for KP

detection, see, e.g., [Likar and Pernus 1999, Rohr 2001, Murphy et al. 2011a, Werner

et al. 2013, Heinrich et al. 2015]. An exemplary KP detection result for the method

proposed in [Heinrich et al. 2015] is shown in Figure 8.1b and Figure 8.1d. Through

the automatic detection a substantial increase in feature point number is achieved

compared to the manual annotations given in Figure 8.1a and Figure 8.1c.

For the LM-based evaluation we assume that ℓ ∈ N LM pairs are available. We

denote the i-th LM in the reference image by ri ∈ Ω and the i-th LM in the template
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image by ti ∈ Ω for i = 1, . . . , ℓ. The goal of the registration is to align ri to ti, i.e.,

estimate ϕ such that r̂i := ϕ(ri) ≈ ti, cf. [Modersitzki 2009, p. 57].

As the manual annotations could only be placed at voxel centers, cf. the description

of the annotation in [Castillo et al. 2009], most of the published results on the DIR-

Lab data were subject to a rounding operation that moves each of the transformed

LMs to the nearest voxel center prior to computing the Euclidean distance. In

particular, for the best methods participating in the challenge this rounding procedure

was performed for the evaluation, cf. [DIR-Lab results website 2018]. We refer to

the rounding procedure as snap-to-voxel. As we compare against the best methods,

see Section 8.4.1, we also use the rounding to allow for a fair competition. The k-th

component (k = 1, 2, . . . , d) of the i-th snap-to-voxel reference LM (i = 1, 2, . . . , ℓ) is

computed as follows:

r̃ki :=

[
round

(
r̂ki − ω2k−1

hkI
+

1

2

)
− 1

2

]
hkI + ω2k−1, (8.1)

where round(y) := ⌊y + 0.5⌋ denotes rounding to the next integer with round half up.

We use the Euclidean distance between the (registered) LMs for the evaluation

θiLM := θLM(r̃i, ti) := ‖r̃i − ti‖2 =

√√√√
d∑

k=1

(r̃ki − tki )2. (8.2)

The Euclidean distance was chosen because it is used in the majority of papers (and also

on [DIR-Lab results website 2018]) and hence makes the results directly comparable

to the state of the art. A more sophisticated evaluation would take into account

that the accuracy of the localization of LMs depends on local variations in the

images and the noise [Rohr 2001, pp. 77]. In homogeneous regions it is difficult to

exactly locate corresponding LMs. As motivated before, this is also considered in the

detection of LMs and KPs. Therefore, the same idea of using the structure tensor,

which is the outer product of local image gradients, could be integrated into the

evaluation by using its inverse as an approximation to the (locally varying) covariance

matrix Σ(x) ∈ R
d×d, x ∈ Ω that describes the localization uncertainty, see [Rohr 2001,

pp. 77] for details. The resulting distance is known as Mahalanobis distance [Gonzalez

and Woods 2002, p. 785]

θMahalanobis(r̃i, ti) :=
√

(r̃i − ti)⊤Σ(ti)(r̃i − ti).

Despite the valuable inclusion of localization uncertainty by the Mahalanobis distance

we prefer the Euclidean distance for the sake of a direct comparison to results of other
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authors. As discussed before, we compute θiLM for a large number of LMs denoted

by ℓ (usually ℓ = 300). To evaluate the methods and to make the trend in the LM

distance results easier to understand, we use the mean µLM ∈ R≥0 and standard

deviation σLM ∈ R≥0 [Bonamente 2017, pp. 21].

8.1.2 Visual Inspection and Distance Measures

The goal of image registration is to spatially align images [Goshtasby 2012, p. 1], thus

it is meaningful to compare images before and after registration. Visual assessment

of registered images provides a fast and qualitative criterion for image registration

success. In this thesis registration results are visualized as difference images or overlays

of the registered images in different colors (blue and orange) whose RGB values add

up to multiples of (1, 1, 1) and thus are displayed as gray or white. Exemplary images

of the initial mismatch (this could also be interpreted as a poor registration result) for

a lung CT dataset are shown in conjunction with the presentation of the considered

image data in Section 8.2: in Figure 8.2d as difference image and in Figure 8.2c as

color overlay.

To allow for a quantitative comparison, we also report values of the distance mea-

sures SSD (Definition 3.14), NGF (Definition 3.15) and Normalized Cross Correla-

tion (DNCC) [Modersitzki 2009, pp. 97–99]. There are two caveats when comparing

distance measure values of different registration approaches. First, if the distance

measure value is low, the computed transformation might still be implausible for

the registration problem to be solved, e.g., due to missing regularity [Rohlfing 2012].

Second, the evaluation is biased if the same distance measure was used for optimization

of the objective and for evaluation. This bias might also be given if a different distance

measure is used for optimization and evaluation as the minima of the different distance

measures might be correlated [Modersitzki 2009, pp. 97].

However, although both visual inspection and comparison of distance measure values

do not necessarily imply a good registration, they can be used to find poor registration

results, i.e., a transformed template image that is not well-aligned to the reference

image.
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8.1.3 Segmentation-based Evaluation

For lung CT data the usage of the major lung fissures for the evaluation of registration

accuracy is another criterion proposed in the EMPIRE10 study [Murphy et al. 2011b].

The fissures are thin structures that are located between the lung lobes [Tustison et al.

2011] and thus require a sub-voxel (i.e. in the order of 1 mm) accurate registration

method to obtain a good alignment.

For the evaluation we compute the distances θiFiss for all transformed points in the

reference image that are labeled as fissure to their respective nearest voxel in the

template image that is labeled as fissure. Let TFiss ∈ {0, 1}m be the discrete fissure

segmentation of the template and RFiss ∈ {0, 1}m the discrete fissure segmentation

of the reference image. Following our paper [Rühaak et al. 2017], the distances θFiss
i

are obtained simultaneously for all voxel ki with Rki

Fiss = 1 by computing a distance

transformation of TFiss with the method proposed in [Felzenszwalb and Huttenlocher

2004]. We refer to the result of the distance transformation as Θ ∈ R
m. In each

voxel of Θ the Euclidean distance to the next fissure voxel center of TFiss is stored.

Particularly, if T kFiss = 1 for the voxel k then Θk = 0. After the computation of Θ the

transformed distance map Θ̂ := Θ ◦ϕ is generated using trilinear interpolation and

the distance θiFiss is obtained as θiFiss = Θ̂ki .

More specifically, we consider two fissure segmentation images per dataset for the

evaluation: TlFiss as well as RlFiss are segmentations of the left major oblique fissures

and TrFiss as well as RrFiss are segmentations of the right major oblique fissures. In

addition to the distance of the fissures we also employ the following volume overlap

measure to give a relative matching index of the segmentations.

Definition 8.1 (Dice Coefficient, adapted from [Dice 1945])

Let B, C ∈ {0, 1}m be binary segmentations with B 6= 0 6= C and J = {1, 2, . . . ,m}.
The Dice coefficient is defined as

DC(B,C) :=
2|{k ∈ J | Bk = 1 ∧ Ck = 1}|

|{k ∈ J | Bk = 1}|+ |{k ∈ J | Ck = 1}| ∈ [0, 1]. (8.3)

In (8.3) | · | denotes the cardinality of finite sets.

The evaluation methods of this section can be used to assess the quality of the registra-

tion using arbitrary segmentations and thus also regarding whole lung segmentations

or lung boundaries [Murphy et al. 2011b]. We additionally evaluate the registration

using segmentations of lung CT images into right lung TrLung, RrLung ∈ {0, 1}m and

left lung TlLung, RlLung ∈ {0, 1}m.
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8.1.4 Volume Change

The contribution of the evaluation of the (local) volume change induced by the trans-

formation is twofold. First, in the registration scenarios of this thesis a transformation

having cells with zero or negative volume is considered implausible as it implies foldings

of the grid and that the transformation is locally not invertible. Such foldings in the

transformation field should not exist for respiratory lung motion and therefore the

number of singularities was used as evaluation criterion in [Murphy et al. 2011b] and

is used in our evaluation as well.

The second contribution of computing the local volume change is that it allows to gain

a better insight into the data, registration plausibility and helps to answer specific

medical questions, e.g., about lung ventilation [Reinhardt et al. 2008]. For instance,

for the staging of COPD the local volume change (computed either via Jacobian

determinants or changes in HU [Kabus et al. 2008]) is important, see Chapter 1. To

obtain the local volume change induced by ϕ, the Jacobian determinants within each

grid cell, denoted by Ji, i = 1, 2, . . . ,
∏d
k=1(nk − 1), were computed with the geometry

method of the FAIR toolbox [Modersitzki et al. 2018].

There are several statistics on the Jacobian determinants that we are interested in.

If mini Ji > 0 no foldings occurred (cf. Section 4.4 and Section 6.3) and the computed

transformation is locally invertible in each cell [Ciarlet 1988, p. 222]. Furthermore, the

standard deviation σJ is a measure for the smoothness of the transformation [Heinrich

et al. 2013]. For instance, a rigid transformation ψ : Ω → R
d, which describes a

global rotation and translation, has a constant Jacobian determinant det(∇ψ(x)) = 1

for each x ∈ Ω and thus is considered smooth (σJ = 0). If Ji < 1 a volume

contraction is predicted by the transformation, if Ji = 1 the volume is preserved

and if Ji > 1 a volume expansion occurs, see, e.g., [Vik et al. 2008]. We expect that

volume contraction and expansion should not exceed a certain threshold. In different

registration algorithms symmetric penalties of the Jacobians are employed to achieve

plausible transformations [Cachier and Rey 2000, Rohlfing et al. 2003, Rühaak et al.

2011]. For instance, the absolute value of the (binary) logarithm and a threshold ε > 0

can be used for this purpose [Rohlfing et al. 2003]:

| log2(Ji)| < ε for all i and Ji > 0.

With this penalty changes in volume by factors 2±δ (where 0 < δ < ε) can be easily

interpreted for contraction and expansion. To the best of our knowledge no bounds

for ε were reported for the volume change of lungs. This is also due to the fact that the

compliance of the lungs varies from individual to individual due to, e.g., pulmonary

diseases [Tustison et al. 2011]. For the change from full-expiration to full-inspiration
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an average volume expansion over the entire lung by a factor of two is nothing special,

see Table 8.6. The local volume change differs from the average and thus ε ≥ 1 is

reasonable. However, a-priori we cannot determine an upper bound for ε, but the

observed ε per dataset allow for relating the different transformations regarding volume

change. Therefore, in addition to Jmin := mini Ji and Jmax := maxi Ji, we also evaluate

εJ := max{| log2(Jmin)|, | log2(Jmax)|}.

The mean estimated volume change (mean Jacobian determinant) µJ of the lung

volume should be equal to the volume change that can be computed by dividing the

template lung volume by the reference lung volume

VR :=
|TLung|
|RLung|

≈ µJ . (8.4)

If the template lung image was acquired during exhalation and the reference image

was acquired during inspiration, µJ < 1 is to be expected.

8.1.5 Computational Costs and Memory Requirements

LDDMM methods are typically time- and memory-consuming [Hernandez et al. 2009].

Therefore, we proposed methods to reduce the memory requirements as well as

the run time: As discussed in Section 6.1.1, the grids for v and φ can be chosen

coarser than the image grids (the number of grid points was about one quarter of

the image grid points per dimension in our experiments) without losing too much

information as v and φ are smooth by LDDMM design. This also reduces the

necessary computational costs for solving the optimal control problems considered

in Chapter 6 (including the numerical optimization of the objective function and the

solution of the forward and adjoint equations with RK). The even more important

contribution is the reduction of the necessary memory that can be achieved by reducing

the number of grid points n. Furthermore, the numbers of time steps N , of image grid

points m, and memorized vectors of the L-BFGS kL−BFGS method has a large influence

on the memory consumption. The effect of choosing n, N , m (if necessary finer levels

of the multi-level pyramid could be omitted), and kL−BFGS is given in [Polzin et al.

2016] and its supplementary material. Depending on the available RAM these variables

could be tuned according to the worst case estimate to allow for a computation. We

will report on run times (in minutes) and memory usage (in GB) and compare the

results to other LDDMM implementations and state-of-the-art lung CT registration

algorithms.
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(a) Inhale scan I
1 (b) Exhale scan I

0 (c) Overlay of I
0 (blue)

and I
1 (orange)

(d) |I0 − I
1|

Figure 8.2: Coronal views of dataset COPD04 [Castillo et al. 2013]. Note the large
volume change from inhale (a) to exhale (b). The overlay in (c) shows
gray or white in aligned regions due to the addition of RGB values. In the
difference image (d) a good alignment results in dark regions.

8.2 Medical Data

We evaluate our algorithms on 2D as well as 3D medical images. For the test on

2D data we use the hand radiographs that were already shown in Figure 1.1 and are

provided in the FAIR MATLAB toolbox [Modersitzki et al. 2018]. The given images

consist of 128×128 pixels and have some artifacts in the surroundings of the hands.

The hands mainly differ in rotation and scaling, i.e., the template image hand has

longer fingers, but a smaller palm.

For registration experiments on lung CT we used the publicly available DIR-Lab

datasets [DIR-Lab data website 2018]. The database consists of ten 4DCT [Castillo

et al. 2009, Castillo et al. 2010a] and ten inspiratory-expiratory breath-hold CT scan

pairs [Castillo et al. 2013]. We refer to the breath-hold CT scan pairs as COPD01

to COPD10 scans because they are taken from the COPDgene study [Regan et al.

2011]. Thus, some of the scans featured severe pathologies, see the intensity differences

within the parenchyma of the left lung (visualized on the right as usual for medical

images) in Figure 8.2b. Additionally, large volume changes (up to 106 % increase from

exhale to inhale volume [Castillo et al. 2013]) occur, which is visualized in Figure 8.2c

by the overlay of exhale image in blue and inhale image in orange. Furthermore,

due to the reduced X-ray dose (50 mAs) used for the expiratory scans [Regan et al.

2011], the signal-to-noise ratio is worse (by factor 2 [Buzug 2008, p. 468]) than for

the inspiratory scans, which were acquired with 200 mAs. The number of voxels

per axial slice is 512×512 for all COPD datasets and the number of slices is on

average 120. The corresponding axial resolution varies from 0.586 mm×0.586 mm

to 0.742 mm×0.742 mm and is thus much finer than the resolution in superior-inferior

direction, which is 2.5 mm for all datasets [Castillo et al. 2013].
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(a) Inhale scan I
1 (b) Exhale scan I
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Figure 8.3: Coronal views of dataset 4DCT08 [Castillo et al. 2010a]. Note the medium
volume change from inhale (a) to exhale (b). The overlay in (c) shows
gray or white in aligned regions due to the addition of RGB values. In the
difference image (d) a good alignment results in dark regions.

The 4DCT datasets were acquired during normal resting breathing [Castillo et al.

2009, Castillo et al. 2010a]. We selected the phases of maximal inhale as fixed image

and exhale as template image. The resolution in superior-inferior direction is 2.5 mm

for all datasets and the axial resolution is 0.97 mm×0.97 mm for datasets 4DCT06 to

4DCT10. The resulting number of voxels per axial slice is 512×512 and the number

of slices was on average 128 [Castillo et al. 2010a]. Datasets 4DCT01 to 4DCT05

have 256×256 voxels per axial slice and an average number of 103 slices. The axial

resolution varies from 0.97 mm×0.97 mm to 1.16 mm×1.16 mm [Castillo et al. 2009].

Coronal views of the dataset 4DCT08, which is the 4DCT dataset with the largest

lung motion [Castillo et al. 2010a], are shown in Figure 8.3. In comparison with the

dataset COPD04 depicted in Figure 8.2 the smaller volume change is apparent.

Additionally to each of the lung CT scans (both COPD and 4DCT) 300 LMs are

provided. Due to the public availability of the data research teams can use the LMs

for the evaluation of the registration accuracy and to compare their results to those

of other groups; see [DIR-Lab results website 2018] for the list of participants. The

locations of these LMs within the lung volume was visualized in Figure 8.1. A second

visualization considering LMs in a larger subvolume is depicted in Figure 8.4a.

As we were interested in the respiratory motion (and not in the registration of non-lung

regions), we used lung segmentations for masking of the CT scans. These segmen-

tations were generated with the automatic method proposed in [Lassen et al. 2011]

that is integrated into the Fraunhofer MEVIS internal version of the software MeViS-

Lab [MeViSLab website 2018]. As of January 23, 2018 this segmentation method is the

third-best ranked algorithm in the LOLA11 (LObe and Lung Analysis 2011 [LOLA11

website 2018]) challenge on lung and lung lobe segmentation. An exemplary segmenta-

tion result can be seen in Figure 8.4a as blue contour. Segmentations were applied for

setting the background (i.e. everything outside the lungs) of the CT scans to a constant
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(a) Axial slice with lung
(blue) and fissure (red)
segmentations

(b) Axial slice with expert
LMs as yellow crosses

(c) Coronal slice with expert
LMs as yellow crosses

Figure 8.4: Axial and coronal views of the inhale scan of dataset COPD02 [Castillo
et al. 2013]. In (a) the contour of the lung segmentation is given in blue
and the fissure segmentations are added in red. In (b) and (c) the expert
LMs are visualized as yellow crosses. To show the distribution over the
lung LMs in (b) are plotted within a range of 21 slices centered around
the shown slice. Analog to (b) LMs are plotted within a range of 71 slices
in (c).

value see, e.g., Figure 8.2 and Figure 8.3. This is a common way to avoid coping

with the explicit modeling of sliding motion (which would require a discontinuous

transformation) occurring at the interface of ribcage and lungs during respiration,

see [Schmidt-Richberg 2014, pp. 65] and references therein.

To reduce the computational work we cropped the reference image (i.e. the inspiration

scan) such that the lungs and in each spatial dimension (to both sides) about 5 mm

background are included. This relates to a margin of two voxels in superior-inferior

direction and about five voxels in anterior-posterior and lateral directions respectively.

For the template image (expiration scan) the same bounding box is used.

As motivated in Section 8.1.3, we employ fissure segmentations for evaluation. The

automatic segmentation of fissures is challenging, e.g., due to the low contrast to

surrounding tissue [Schmidt-Richberg 2014, p. 59]. The difficulties are aggravated

by poor image quality (noise and/or low spatial resolution) or anatomical anomalies

and diseases [Schmidt-Richberg 2014, p. 58]. As the image resolution for the 4DCT

scans is worse (thus making the segmentation more difficult) than for the COPD scans

and we were primarily interested in the registration of the more challenging COPD

datasets within the evaluation of [Rühaak et al. 2017], we decided to generate fissure

segmentations for the COPD data [Castillo et al. 2013]. The segmentations of the

major (oblique) fissures are available at [Heinrich 2017] and were annotated by Mattias

Heinrich during the preparation of [Rühaak et al. 2017]. An example segmentation of

the fissures is shown in the axial view in Figure 8.4a as red lines in the lungs.
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Figure 8.5: Results for the hand example. First row: Fixed image I1 and transformed
moving images. Second row: Moving image I0 and Jacobians of the defor-
mation grids. Third row: Absolute differences of fixed and (transformed)
moving image. The parameters α = 10, β = 1, γ = 5, σ = 1, F = 3 and
m1

1 = m2
1 = 32, n1

1 = n2
1 = 9, N = 10 were used for IBR, MBR and MBS.

8.3 Hand Radiographs

The hand dataset is an example for mono-modal registration. Therefore, we chose the

SSD distance measure for our experiments. Furthermore, we assume that bones can

only be deformed by a large energy and thus we used a rather strong regularization

by choosing the parameters α = 10, β = 1 and γ = 5. Actually, if both images were

acquired from the same patient, the bones should not be deformed at all and the usage

of local rigidity constraints would be appropriate, cf., e.g., [König et al. 2016]. As we
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used strong regularization we did not expect singularities and decided to omit the

post-processing step described in Section 6.3.

When comparing the template I0 in Figure 8.5f and the reference image I1 in Figure 8.5a

the major differences can be described with a global rotation and scaling. Hence, we

employ an affine pre-registration as starting point for the subsequent registration with

IBR, MBR and MBS. While the pre-registration helps to achieve a good registration

result in terms of image similarity, it also interferes with the LDDMM inherent concept

of geodesic paths, see Chapter 9 for a discussion.

For each method a multi-level optimization with F = 3 levels was employed. The

distance measure weight was set to σ = 1 and the number of grid points for the

velocities and transformation maps was chosen to be about a quarter of image grid

points per spatial dimension, thus m1
1 = m2

1 = 32 and n1
1 = n2

1 = 9. The number of

time discretization points was fixed to N = 10.

The results for the hands dataset are given in Figure 8.5: In the second column

of Figure 8.5 we see that the affine pre-registration strongly increases the similarity

of I0 and I1. In particular, all fingers are roughly aligned and therefore the deformable

registrations have a suitable starting point and are not prone to local minima that

could be obtained by aligning fingers that do not correspond to each other. The

increase in similarity can also be confirmed by the reduction in SSD to about 20 % of

the initial value.

All LDDMM methods further increase the similarity and reduce the SSD to about 20 %

to 25 % of the value achieved by the pre-registration. The best result is obtained with

MBR (see fourth column), closely followed by IBR (third column) and MBS (fifth

column). Qualitatively, the MBS result has a ring finger that is too thin and a little

finger that is too thick. The rest of the hand seems well aligned with the reference

image. The MBR and IBR results can hardly be distinguished from I1.

Additionally, in the difference images given in the last row of the figure, MBR and

IBR are almost identical. But, if we take a close look at the first row, we see some

differences. In the IBR image (Figure 8.5m) the tip of the little finger has a small cut.

Furthermore, in the areas of the palm that lie between the fingers some additional

noise-like artifacts can be seen for the IBR image. This phenomenon was also present

in Figure 6.3 and we found that the reason is the numerical solution of the transport

equation that introduces artifacts in particular near sharp edges. These artifacts are

not apparent in I0 as well as in the results of MBR (Figure 8.5d) and MBS (Figure 8.5e).

For MBS and MBR the transport equation is not used to advect the images (which can

contain sharp edges) but the comparably smooth transformation fields. Therefore, the

effects of dispersion and dissipation are alleviated, see, e.g., [LeVeque 2002, pp. 101].

Due to this effect and because IBR and MBR perform similarly well in the SSD result
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as well as the computational costs (IBR needed 4 s and MBR 8 s), we disregard the

IBR method for the lung CT datasets that are registered in the following section. The

lung CT data contains sharp edges at the vessels and lung boundaries and thus the

IBR approach is not well-suited.

In the second row of Figure 8.5 the transformed grids and the Jacobians of the

transformations are shown. First of all, we see that no foldings occurred (i.e., no

negative Jacobians exist) and thus we computed topology-preserving transformations,

cf. Section 4.4. Notably, the local transformations are quite different for the three

methods. MBS and MBR have some similarities, but MBS shows locally smaller

variations and thus seems to be smoother. On the contrary, the better alignment of

MBR and IBR is achieved with deformations that act more locally. Quantitatively, the

volume change for all approaches seems reasonable: Driven by the strong regularization

none of the deformation grid cells is compressed to less than 25 % of its initial volume

and the maximal expansion is bounded by the factor 2.25 as can be seen in Figure 8.5h,

Figure 8.5i and Figure 8.5j.

In summary the three proposed methods achieved good results. MBR and IBR

performed similar in data fit and transformation smoothness, but IBR featured some

image artifacts. MBS was not as good as MBR and IBR in image alignment, but

estimated the smoothest transformation.

8.4 Lung CT

For the registration of the lung CT datasets we used the MBR and MBS approaches

with the same parameters. These were empirically determined in a comprehensive

parameter search as α = 10, γ = 1 and σ = 0.05. Furthermore, we used β = 2

as this is necessary to obtain admissible velocity fields, cf. Section 4.3. Due to

prior experiments on lung CT that achieved top-ranking results on the DIR-Lab and

EMPIRE10 benchmarks, see, e.g., [Polzin et al. 2016, Rühaak et al. 2017], we also

employed the NGF distance measure with an edge parameter η = 50. We used F = 3

for the multi-level optimization. The optimization was initialized with a TPS pre-

registration that is based on automatically detected KPs obtained with the algorithm

of [Heinrich et al. 2015]. To avoid non-diffeomorphic solutions we used the approach

described in Section 6.3. On average this procedure changed the position of each

individual grid point by 0.025 mm, which is small compared to the minimal (over all

datasets) grid spacing of 3.31 mm×4.93 mm×3.05 mm at the finest level.

To achieve a stable solution of the transport equation, we determined the neces-

sary number of time points using Lemma A.2. For computing ht and N according
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to Lemma A.2, we need an estimation for the maximal displacement in each spatial

direction, which is referred to as ai, i = 1, 2, 3. Therefore, we considered the maximal

Euclidean distance of the unregistered expert LM pairs, which is equal to 66.50 mm.

The pre-registration already reduces the maximal displacement to 17.52 mm and

thus (allowing for some tolerance) we used a1 = a2 = a3 = 30 mm as an upper

bound for the displacement within the whole lung. The resulting number of time

discretization points varied for the different datasets: N ∈ {8, 9, 10}. Instead of expert

LMs we could also have used KPs for an estimation of the maximal displacement.

The resolution of the DIR-Lab data in superior-inferior direction is worse than in

anterior-posterior and left-right direction, see Section 8.2. To achieve an almost

isotropic discretization for φ, v and M the grid spacing in superior-inferior direc-

tion (denoted by h3
v) was not chosen much larger than the image grid spacing (h3

I).

In the parameter search (not included in this thesis) we found that the initial grid

sizes of n1
1 = 13, n2

1 = 13 and n3
1 = 17 worked well. The number of grid points was

then n1
3 = 49, n2

3 = 49 and n3
3 = 65 on the finest level. Hence, the average ratio of the

components of m (after cropping) and n over all datasets was

m1

n1
≈ 7.1,

m2

n2
≈ 5.3,

m3

n3
≈ 1.6,

m1m2m3

n1n2n3
=
m

n
≈ 60.2.

In Section 8.4.1 we compare the MBR and MBS approach against other state-of-the-art

lung registration algorithms. Afterwards, we perform a more detailed evaluation of

the MBR and MBS method in Section 8.4.2.

8.4.1 Comparison to State-of-the-Art Registration Methods

In this section we evaluate the proposed MBR and MBS approaches for the registration

of lung CT data and compare the results to the ones of other methods that are

either published, are available as open source software or were developed with a non-

LDDMM approach by our group. In particular, the open source software “Advanced

Normalization Tools (ANTs)” [Avants et al. 2008, ANTs website 2018] was used.

Besides the free availability the choice for using ANTs was motivated by the fact that

an algorithm [Song et al. 2010] employing the symmetric diffeomorphic registration

method gSyN (greedy Symmetric Normalization, included in ANTs) ranked first in the

EMPIRE10 study right from its beginning in September 2010 [Murphy et al. 2011b].

This method was marginally outperformed by our submission in September 2016 that

was published in [Rühaak et al. 2017]. We closely followed the instructions given

in [Song et al. 2010] for the preparation of the data, the affine pre-registration (using
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Mutual Information as distance for registering lung masks) and the deformable gSyN

registration (employing Cross Correlation as distance measure).

For the LM distances taken from the literature we report results for all methods

that participated in the DIR-Lab COPD benchmark and are listed at [DIR-Lab

results website 2018]. In the following enumeration we summarize the considered

state-of-the-art approaches:

1. NLR (affine pre-registration and deformable registration with NGF, curvature

regularization, boundary alignment, volume change control) [Rühaak et al. 2013],

2. LMP (TPS pre-registration with automatically detected KPs and deformable

registration with NGF, curvature regularization, boundary alignment, volume

change control, KP distance log-barrier function) [Polzin et al. 2013b],

3. MILO (B-spline registration with block-matching using SSD and l1 regularization

of the perturbations from the estimated displacement field) [Castillo et al. 2014],

4. SGM3D (3D scan-line optimization using a census cost function in a coarse-to-fine

approach) [Hermann 2014],

5. MRF (TPS registration of several thousand automatically detected KPs that are

obtained using Markov Random Fields with the self-similarity context descriptor

and a parts-based model regularization) [Heinrich et al. 2015],

6. isoPTV (Deformable registration with Local Cross Correlation distance measure

and isotropic Total Variation regularization) [Vishnevskiy et al. 2017],

7. DIS-CO (Nonlinear pre-registration of the masks with SSD, and afterwards of the

masked scans with NGF, curvature regularization, boundary alignment, volume

change control and least squares KP penalty; KPs were generated with NGF

distance but otherwise as proposed for MRF) [Rühaak et al. 2017].

The methods NLR [Rühaak et al. 2013], LMP [Polzin et al. 2013b], SGM3D [Hermann

2014], and isoPTV [Vishnevskiy et al. 2017] were also tested on all DIR-Lab 4DCT

datasets [Castillo et al. 2009, Castillo et al. 2010a] and will be considered for the

evaluation on these datasets. The LM distance results are given in Table 8.1. For the

DIR-Lab 4DCT datasets all approaches achieve similar results regarding the average

LM distance that is slightly worse than the inter-observer variance [Castillo et al.

2009, Castillo et al. 2010a]. The pre-registration with the reduced number of KPs

is marginally inferior to all other approaches. This demonstrates that the proposed

LDDMM methods MBR and MBS actually improve the pre-registration result.

For the more challenging DIR-Lab COPD datasets the differences in the LM results

are clearer. Here, the more recently published algorithms DIS-CO, isoPTV, MBR and

MBS achieve an average LM distance of at most 1 mm whereas the results of the older

approaches are worse than 1 mm. In particular, the DIS-CO method [Rühaak et al.
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8. Experiments and Results

Table 8.2: P-values of the one-sided paired t-tests using the mean LM distances.
Significant results for a significance level of 0.05 are printed bold.

4DCT COPD
MBR MBS MBR MBS

Initial 2.2 · 10−5 2.3 · 10−5 4.5 · 10−7 4.4 · 10−7

MILO - - 1.6 · 10−4 7.5 · 10−4

MRF - - 1.8 · 10−5 1.3 · 10−5

SGM3D 4.5 · 10−1 8.4 · 10−1 5.5 · 10−3 6.3 · 10−3

LMP 3.0 · 10−1 7.7 · 10−1 4.5 · 10−5 3.3 · 10−5

NLR 1.1 · 10−1 5.0 · 10−1 4.5 · 10−2 6.1 · 10−2

DIS-CO - - 1.0 1.0
isoPTV 4.0 · 10−1 6.4 · 10−1 5.0 · 10−1 6.6 · 10−1

gSyN 4.5 · 10−3 4.8 · 10−2 9.4 · 10−3 2.0 · 10−2

Pre-Reg. 1.4 · 10−3 3.5 · 10−3 2.6 · 10−6 7.5 · 10−6

MBR - 9.8 · 10−1 - 9.9 · 10−1

MBS 2.1 · 10−2 - 8.5 · 10−3 -
Observer 9.5 · 10−1 9.8 · 10−1 9.5 · 10−1 9.8 · 10−1

2017] achieves an accuracy in the order of the inter-observer variance [Castillo et al.

2013]. This highlights the usefulness of the combination of KPs obtained with discrete

optimization and the variational image registration. Our proposed approach MBR

ranks second (shared with isoPTV) and MBS is slightly inferior with an average error

of 1 mm.

We applied one-sided paired t-tests [McDonald 2014, pp. 181–186] for the ten mean

LM distances that were achieved by each method on the DIR-Lab 4DCT and COPD

datasets respectively. The resulting p-values are given in Table 8.2. If the p-values are

less than the significance level 0.05, we consider the mean LM distance of the competing

method to be significantly larger than for the MBR or MBS method respectively. The

results confirm our interpretation that MBR and MBS are superior to all methods

on the COPD datasets except for isoPTV and DIS-CO as well as the inter-observer

variance. Furthermore, it is visible that MBR outperforms MBS regarding the LM

distances. On the 4DCT datasets MBR and MBS are only significantly better than

gSyN and the pre-registration.

The cumulative distribution of the LM distances is shown in Figure 8.6. As the

individual distance of each LM pair is needed, we could only employ a subset of the

previously considered methods for this evaluation criterion: gSyN, NLR, DIS-CO, MBS

and MBR as well as the pre-registration. All 3000 expert LM pairs of the ten DIR-Lab

COPD datasets (300 per dataset) are sorted by their distance after registration and

the ratio of LMs with smaller distances than the abscissa value is plotted. Note that
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Figure 8.6: Cumulative distribution of LM distances after registration for the DIR-
Lab COPD datasets [Castillo et al. 2013]. Colored dashed lines illustrate
the 90 % quantile of the LM distances of the methods.
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Figure 8.7: Cumulative distribution of fissure distances after registration for the DIR-
Lab COPD datasets [Castillo et al. 2013]. Colored dashed lines illustrate
the 90 % quantile of the fissure distances of the methods.

the distance was computed without the rounding procedure described in (8.1). The

DIS-CO method has the best distribution and achieves a 90 % quantile of 1.61 mm.
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8. Experiments and Results

MBR and MBS follow with 1.79 mm and 1.82 mm respectively. The distribution for

LM distances smaller than 1 mm is very similar for NLR, gSyN, MBR and MBS.

However, for larger values MBR and MBS tend faster to a ratio of 1, which is also

demonstrated by the 90 % quantiles.

For the same set of competing methods we computed the fissure distances after

registration and plotted them in Figure 8.7. Regarding the fissure distances MBR (90 %

quantile is 2.67 mm) and MBS (90 % quantile is 2.65 mm) are almost as good as

DIS-CO (90 % quantile is 2.62 mm). Also the KP-based pre-registration achieves a

good result with a 90 % quantile of 3.02 mm. Both methods, which do not use the

automatically detected KPs, achieve considerably worse results of 3.73 mm (gSyN)

and 3.77 mm (NLR). This confirms that the KPs, which are preferentially located at

salient points like the fissures, improve the registration result.

8.4.2 Detailed Evaluation of MBR and MBS for Lung CT

In addition to the evaluation based on LM and fissure distances provided in the

previous section, we now give a more detailed comparison of the MBR and MBS

method. The reduction of the distance measures with MBR and MBS is quite similar

as can be seen in Table 8.3. However, MBR’s results are superior to the ones of MBS

for each of the considered distance measures NGF, SSD, and NCC. Furthermore, we

see that the pre-registration achieves a large improvement compared to the initial

values, but both MBR and MBS further reduce the distance measure value by a

substantial amount. In addition to distance measure results the optimized energy

values of the MBR and MBS approach are given in Table 8.3. For the 4DCT cases

there are essentially no differences when comparing the optimized energies. In five out

of ten COPD cases MBR achieved a smaller energy value than MBS. However, the

difference is small (the maximal difference is 3.6 %) and because the distance measure

summand (the NGF value multiplied with 1
σ2 = 400) for MBR is better than for

MBS, the regularizer function value of MBS (that can be computed as the difference

of energy and data fit) is lower in each case. On average, the regularizer value is

reduced by 33.4 % for MBS compared to MBR. Hence, on the one hand the MBR

approach yields more accurate results than MBS. On the other hand MBS achieves

smoother velocity fields and transformations than MBR. These results resemble the

ones obtained for the hand example. From the similar energy values we can deduce

that no substantial differences regarding the termination of the numerical optimization

exist. Although the number of degrees of freedom of MBR is the N -fold of MBS,

the stopping criteria did not make a difference and no premature stopping could be

observed for any method.
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8.4 Lung CT

Table 8.3: Distance measure and objective function values for the proposed methods.
To obtain the correct values a factor has to be multiplied: For the total
energy 108, for NGF 105, for SSD 1010 and for NCC 10−2.

4DCT case Avg. 01 02 03 04 05 06 07 08 09 10

Energy MBR 3.4 1.8 3.3 2.8 2.7 2.7 4.6 4.4 5.9 2.4 3.7
Energy MBS 3.5 1.8 3.3 2.8 2.7 2.7 4.6 4.4 5.9 2.4 3.8

NGF Initial 20.8 12.0 24.0 22.2 17.9 16.4 21.8 24.7 35.4 13.2 20.5
NGF Pre-Reg. 7.2 3.8 7.0 6.1 6.0 6.1 9.2 9.4 11.2 5.0 7.9
NGF MBR 4.9 2.6 4.8 4.1 3.9 3.8 7.0 6.3 7.9 3.6 5.3
NGF MBS 5.0 2.7 4.8 4.2 3.9 3.8 7.2 6.5 8.0 3.7 5.5

SSD Initial 8.7 3.9 8.6 8.7 8.8 5.6 12.9 10.9 13.3 6.0 8.2
SSD Pre-Reg. 2.7 1.3 2.7 2.5 2.7 2.1 4.4 3.6 3.3 2.0 2.8
SSD MBR 1.8 0.9 1.8 1.6 1.7 1.3 3.2 2.3 2.2 1.4 1.7
SSD MBS 1.8 0.9 1.8 1.6 1.7 1.3 3.3 2.3 2.2 1.4 1.7

NCC Initial 44.2 30.0 34.5 39.9 38.8 41.4 49.0 50.6 67.1 37.9 52.6
NCC Pre-Reg. 14.5 10.1 11.3 12.4 11.8 16.9 14.8 16.7 19.4 12.7 19.2
NCC MBR 9.7 7.4 7.7 8.1 7.7 10.5 10.7 10.9 13.2 9.0 12.3
NCC MBS 9.9 7.6 7.7 8.2 7.7 10.9 10.9 11.1 13.3 9.2 12.6

COPD case Avg. 01 02 03 04 05 06 07 08 09 10

Energy MBR 7.3 7.9 9.0 7.4 6.7 7.5 5.1 5.9 6.9 6.3 10.7
Energy MBS 7.4 7.9 9.0 7.4 7.0 7.8 5.2 5.9 7.0 6.3 10.9

NGF Initial 33.0 38.9 31.6 37.1 27.5 31.5 28.3 28.8 30.9 29.0 46.1
NGF Pre-Reg. 15.4 16.3 19.5 15.0 14.7 14.9 11.3 12.5 14.6 12.3 22.7
NGF MBR 10.1 10.1 14.7 10.2 9.4 9.8 6.6 8.1 9.3 8.8 14.2
NGF MBS 10.5 10.6 14.8 10.3 10.1 10.6 7.0 8.3 9.8 9.0 14.8

SSD Initial 74.7 121.2 45.9 39.9 86.9 99.1 80.8 42.6 76.8 43.8 109.9
SSD Pre-Reg. 15.3 25.4 15.2 8.5 16.9 17.9 16.8 6.5 16.2 6.1 23.8
SSD MBR 7.5 9.9 7.6 4.0 9.0 10.5 9.1 2.9 8.6 3.2 9.8
SSD MBS 7.8 10.9 7.7 4.0 9.4 11.0 9.5 2.9 9.0 3.3 10.4

NCC Initial 43.7 45.6 35.2 24.8 59.5 55.2 53.5 37.4 47.9 34.2 43.2
NCC Pre-Reg. 7.7 9.2 10.8 5.0 9.5 7.4 8.9 5.2 8.2 4.2 8.7
NCC MBR 2.7 3.2 4.4 2.0 3.1 2.6 3.4 1.7 2.8 1.6 2.5
NCC MBS 2.9 3.6 4.4 2.0 3.4 2.9 3.6 1.7 3.0 1.7 2.7

A qualitative impression of the registration result is available by the coronal overlay

and difference images given in Figure 8.8 for COPD04 and in Figure 8.9 for 4DCT08.

Both datasets are registered well as is visible by the proper alignment of the lung

boundaries and the vessels. Again, the pre-registration is a very good starting point

for the subsequent LDDMM registration with MBS and MBR.
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Figure 8.8: Registration results for COPD04 [Castillo et al. 2013]. First row: Fixed
image I1 and transformed moving images. Second row: Moving image I0

and Jacobians of the deformation grids overlaid on the fixed scan. Third
row: Overlays of fixed (orange) and (transformed) moving images (blue).

The Dice coefficients of the (registered) fissure segmentations are given in Table 8.4 and

confirm the results provided in Figure 8.7. The initial overlap is strongly increased by

the pre-registration and is even further improved by MBR and MBS. Dice coefficient

results of MBR and MBS are essentially on par. However, for some cases like COPD02

the results still seem poor. This might also be due to the thinness of the fissure and

the bad inferior-superior voxel size of 2.5 mm, which makes it difficult to accurately

create the fissure segmentations and to register the images.

The overlap evaluation for the lungs given in Table 8.5 shows almost perfect results.

However, the task is much easier than for the small fissures as can be seen by the
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Figure 8.9: Registration results for 4DCT08 [Castillo et al. 2010a]. First row: Fixed
image I1 and transformed moving images. Second row: Moving image I0

and Jacobians of the deformation grids overlaid on the fixed scan. Third
row: Overlays of fixed (orange) and (transformed) moving images (blue).

initial overlap values that are never worse than 0.62. As the lungs have a much

bigger volume than the fissures the probability of a correct alignment of voxels from

template and reference image that are classified as “lung” is much higher [Rohlfing

2012]. The pre-registration aligns on average 96 % of the left lung voxels to left lung

voxels and 97 % of the right lung voxels to right lung voxels. MBR and MBS both

increase these numbers to 99 % for both lungs. The column labeled “Initial” is a good

estimate for the average lung volume change that also plays a role in the evaluation of

the Jacobian determinant of the transformations given in Table 8.6.

To be more precise: We expect the volume ratio VR defined in (8.4) to be the

mean of the Jacobians within the lungs µJ . When looking at the respective columns
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Table 8.4: Dice coefficients of the left and right fissure segmentations before and after
registration with the pre-registration, MBR, and MBS method.

DC(TlFiss ◦ϕ,RlFiss) DC(TrFiss ◦ϕ,RrFiss)
Case Initial Pre-Reg. MBR MBS Initial Pre-Reg. MBR MBS
COPD01 0.05 0.42 0.53 0.52 0.00 0.58 0.63 0.63
COPD02 0.08 0.19 0.26 0.26 0.00 0.27 0.30 0.30
COPD03 0.25 0.51 0.57 0.58 0.17 0.54 0.56 0.56
COPD04 0.07 0.34 0.57 0.56 0.04 0.29 0.36 0.36
COPD05 0.05 0.51 0.55 0.55 0.05 0.45 0.49 0.49
COPD06 0.01 0.56 0.60 0.61 0.02 0.45 0.47 0.47
COPD07 0.10 0.61 0.65 0.64 0.01 0.48 0.50 0.50
COPD08 0.09 0.53 0.57 0.57 0.06 0.45 0.49 0.49
COPD09 0.01 0.59 0.61 0.61 0.08 0.46 0.45 0.45
COPD10 0.00 0.37 0.44 0.44 0.04 0.49 0.55 0.55
Average 0.07 0.46 0.54 0.53 0.05 0.45 0.48 0.48

Table 8.5: Dice coefficients of the left and right lung segmentations before and after
registration with the pre-registration, MBR, and MBS method.

DC(TlLung ◦ϕ,RlLung) DC(TrLung ◦ϕ,RrLung)
Case Initial Pre-R. MBR MBS Initial Pre-R. MBR MBS
4DCT01 0.95 0.98 0.99 0.99 0.96 0.99 0.99 0.99
4DCT02 0.95 0.98 0.99 0.99 0.95 0.99 0.99 0.99
4DCT03 0.94 0.98 0.99 0.99 0.93 0.98 0.99 0.99
4DCT04 0.91 0.97 0.99 0.99 0.92 0.98 0.99 0.99
4DCT05 0.94 0.98 0.99 0.99 0.93 0.98 0.99 0.99
4DCT06 0.87 0.97 0.98 0.98 0.86 0.97 0.99 0.98
4DCT07 0.89 0.97 0.99 0.99 0.90 0.97 0.99 0.99
4DCT08 0.90 0.98 0.99 0.99 0.89 0.98 0.99 0.99
4DCT09 0.91 0.97 0.98 0.98 0.91 0.98 0.98 0.98
4DCT10 0.90 0.97 0.99 0.99 0.91 0.97 0.99 0.99
Average 4DCT 0.92 0.98 0.99 0.99 0.92 0.98 0.99 0.99
COPD01 0.73 0.95 0.98 0.98 0.73 0.94 0.98 0.97
COPD02 0.80 0.94 0.98 0.98 0.85 0.95 0.98 0.98
COPD03 0.87 0.96 0.98 0.98 0.88 0.97 0.99 0.99
COPD04 0.58 0.94 0.98 0.98 0.65 0.96 0.99 0.98
COPD05 0.62 0.95 0.98 0.98 0.66 0.96 0.99 0.99
COPD06 0.68 0.95 0.98 0.98 0.67 0.96 0.99 0.98
COPD07 0.81 0.97 0.99 0.99 0.81 0.97 0.99 0.99
COPD08 0.72 0.95 0.98 0.98 0.72 0.96 0.99 0.99
COPD09 0.85 0.97 0.99 0.99 0.80 0.97 0.99 0.99
COPD10 0.75 0.95 0.98 0.98 0.74 0.96 0.98 0.98
Average COPD 0.74 0.95 0.98 0.98 0.75 0.96 0.99 0.98
Average Total 0.83 0.96 0.99 0.99 0.83 0.97 0.99 0.99
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Table 8.6: Statistics of the Jacobians for the MBR and MBS method. Additionally,
the volume ratio (VR) of the lung segmentations is given.

MBR MBS
Case VR Jmin µJ ± σJ Jmax εJ Jmin µJ ± σJ Jmax εJ
4DCT01 0.91 0.48 0.92±0.10 1.55 1.06 0.50 0.92±0.10 1.64 1.00
4DCT02 0.92 0.46 0.92±0.09 1.55 1.12 0.42 0.92±0.11 2.88 1.53
4DCT03 0.90 0.47 0.90±0.10 1.56 1.09 0.52 0.90±0.11 1.74 0.94
4DCT04 0.86 0.46 0.86±0.15 1.78 1.12 0.41 0.86±0.16 1.98 1.29
4DCT05 0.91 0.46 0.92±0.13 1.64 1.12 0.47 0.92±0.14 1.85 1.09
4DCT06 0.77 0.42 0.77±0.09 1.44 1.25 0.44 0.77±0.09 1.56 1.18
4DCT07 0.82 0.43 0.79±0.09 1.44 1.22 0.44 0.79±0.09 1.54 1.18
4DCT08 0.83 0.34 0.80±0.09 1.52 1.56 0.34 0.80±0.10 1.62 1.56
4DCT09 0.86 0.46 0.87±0.10 1.58 1.12 0.42 0.87±0.10 1.68 1.25
4DCT10 0.86 0.32 0.87±0.13 2.07 1.64 0.32 0.87±0.14 2.59 1.64
COPD01 0.62 0.10 0.65±0.14 2.84 3.32 0.17 0.65±0.14 3.95 2.56
COPD02 0.73 0.15 0.75±0.24 2.43 2.74 0.17 0.75±0.25 2.76 2.56
COPD03 0.80 0.30 0.80±0.13 1.65 1.74 0.29 0.80±0.14 2.28 1.79
COPD04 0.49 0.18 0.50±0.12 1.95 2.47 0.16 0.50±0.12 3.31 2.64
COPD05 0.49 0.15 0.49±0.11 2.30 2.74 0.15 0.49±0.11 2.58 2.74
COPD06 0.62 0.18 0.64±0.16 2.58 2.47 0.06 0.64±0.16 3.82 4.06
COPD07 0.75 0.39 0.75±0.11 1.92 1.36 0.38 0.75±0.12 2.35 1.40
COPD08 0.58 0.21 0.59±0.13 1.81 2.25 0.23 0.59±0.13 2.01 2.12
COPD09 0.73 0.32 0.74±0.12 2.22 1.64 0.32 0.74±0.13 3.19 1.67
COPD10 0.61 0.13 0.61±0.12 1.98 2.94 0.11 0.61±0.13 4.35 3.18

in Table 8.6, we see that the maximum of |VR − µJ | ≤ 0.03 and that in most cases

it is only 0.01. Therefore, the overall lung alignment is good and it is demonstrated

that the µJ describes the overall volume change well. The values for εJ are in the

range [1.06, 3.32] for MBR and [0.94, 4.06] for MBS. In all datasets the values for

MBR and MBS are similar. Altogether the maximal local volume change seems

reasonable. As the minima of all Jacobians are strictly positive, we can deduce that

no foldings occurred. Furthermore, small values of σJ indicate smooth transformations

that we expected within the lungs. This smoothness can also be seen in the second

rows of Figure 8.8 and Figure 8.9 respectively, where the Jacobian determinants of

the estimated transformations are depicted. Additionally, no extreme, implausible

volume changes are visible and the colors indicate that on average a volume reduction

is achieved as is to be expected when using the inhale image as reference and exhale

image as template image.

Our last evaluation criterion are the run times and the maximal memory consumption

given in Table 8.7. For the 4DCT datasets we see only marginal differences in run

time and memory consumption. On average, MBS needs 1.1 minutes more than
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Table 8.7: Run times and maximal memory consumption of the MBR and MBS method.
Run times are given in minutes and memory consumption in GB.

4DCT case Avg. 01 02 03 04 05 06 07 08 09 10

Run time MBR 15.9 17.6 12.3 11.5 12.0 12.7 14.5 22.5 14.4 27.7 13.5
Run time MBS 17.0 17.1 18.9 16.6 15.8 12.2 16.5 18.4 21.4 15.9 16.9
Memory MBR 1.2 1.1 1.2 1.2 1.1 1.2 1.3 1.4 1.4 1.1 1.3
Memory MBS 1.4 1.0 1.4 1.3 1.2 1.3 1.7 1.8 1.9 1.1 1.5

COPD case Avg. 01 02 03 04 05 06 07 08 09 10

Run time MBR 21.6 17.3 20.9 26.3 21.4 20.8 18.8 22.1 22.0 24.0 22.1
Run time MBS 31.8 35.9 35.7 44.5 25.7 29.9 24.4 42.7 27.9 31.5 20.0
Memory MBR 2.1 2.2 2.1 2.2 2.1 2.2 1.9 2.0 2.1 2.0 2.0
Memory MBS 3.8 4.2 3.7 4.1 3.9 4.2 3.2 3.5 3.8 3.6 3.7

MBR and it requires 0.2 GB more memory. The maximally used memory was 1.9 GB

for dataset 4DCT08. For the COPD datasets the remaining number of voxels after

cropping was larger than for the 4DCT datasets and thus the required memory

increased: The maximum is 4.2 GB for MBS and 2.2 GB for MBR. Both values still

can be handled by standard desktop computers, but the additional memory required

by MBS is substantial. Similarly, the average run times increase to 21.6 minutes for

MBR and 31.8 minutes for MBS.

By evaluating the average number of iterations for the multi-level optimization we

could identify a reason for the increased run times of MBS compared to MBR. On

the coarsest level the average number of iterations over all 20 datasets was 10.7 for

MBR and 11.6 for MBS. The difference increases on the next level: MBR needs on

average 17.4 and MBS 26.2 iterations. On the finest level there is a large discrepancy

between MBR (23.5 iterations) and MBS (35.4 iterations).

We see that the trend for more degrees of freedom is that the difference in number of

iterations increases. As already discussed in the comparison of shooting and relaxation

approaches that is given on page 87, shooting methods are sensitive to variations in

the initial momenta and are less flexible than relaxation approaches. Accordingly,

more iterations are required for the numerical optimization. This effect is enhanced

when the optimization problem has more degrees of freedom.

MBR and MBS require considerably less run time than the LDDMM lung CT regis-

trations in [Sakamoto et al. 2014]. Although Sakamoto et al. used a computer cluster

with 32 CPUs and 128 GB of RAM the registrations took up to three hours. The

LDDMM method proposed in [Mang and Ruthotto 2017] needed on a computer cluster

with 40 CPUs and 256 GB of RAM at least 43 minutes on 3D brain MRI data with less

voxels and smaller deformations than our lung CT data. These numbers indicate that
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our adaptions regarding the discretization of transformations, velocities and images

improve the run time effectively. Furthermore, with this discretization the necessary

RAM is drastically decreased. Using the number of grid points given at the beginning

of Section 8.4, the required memory is reduced to approximately 5 % [Polzin et al.

2016] and still highly accurate results are obtained as demonstrated in Section 8.4.1.

Although we achieved a reduction in run time compared to other LDDMM methods,

state-of-the-art methods for lung CT registration achieve better average run times of,

e.g., two minutes [Rühaak et al. 2013], three minutes [Vishnevskiy et al. 2017] and

five minutes [Rühaak et al. 2017]. Highly optimized methods require on average 21 sec-

onds for an image registration using the full image resolution [König and Rühaak

2014]. All of these methods have in common that they do not introduce an artificial

time component as done in our LDDMM approaches and thus have a reduced number

of required computations. However, our main goal was the reduction of necessary

memory and the reduction in run time played a minor role, but still was substantial.
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9 Discussion and Conclusion

We summarize the contributions and results of the dissertation in Section 9.1. After-

wards, open points and questions are discussed in Section 9.2 and future work that

might address these issues is identified. In Section 9.3 the final conclusion is presented.

9.1 Summary

We have presented a Discretize-then-Optimize approach for LDDMM image registration

that offers a flexible choice of the distance measure to allow for an adaption of the

method to the data to be registered. Based on optimal control formulations of the

relaxation and shooting variants of LDDMM we derived a fully discrete scheme for

multi-level constrained optimization for image registration. A particular focus was

on the efficient and consistent solution of the incorporated transport and continuity

equations. These PDEs, which are the system and adjoint equations of the discrete

optimal control problems, are solved with explicit fourth-order RK methods. The

employed RK methods have small computational costs, but allow for reasonable

time steps and offer a sufficient order of accuracy, cf. Appendix A. The adjoint

equations were derived from the discrete system equations by computing the KKT

conditions of the constrained optimization problem. By using the analytical derivatives

of the discrete distance measure and regularizer in combination with this approach

a consistent optimization of the discrete objective functional was developed. This is

advantageous compared to Optimize-then-Discretize approaches that might employ

inconsistent energies and gradients, which could deteriorate the numerical optimization

as search directions are erroneously modified [Gunzburger 2003, p. 59].

The general scheme was used to derive three registration algorithms: IBR, MBR

and MBS. In the relaxation methods IBR and MBR the velocity fields are estimated

for several points in time. While for IBR the transport equation is solved directly

for the given images, the MBR method relies on the transport equation to compute

the evolution of the transformation maps over time. The same model for generating

the transformations is used for MBS. However, in the MBS method only an initial

momentum field (momentum fields and velocity fields can be converted into each

other) is estimated. The evolution of the momenta is then determined by solving
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the (discretized) EPDiff equation. The EPDiff equation is the ELE of the problem

for finding a diffeomorphic transformation with shortest path length that aligns, e.g.,

images, cf. Theorem 4.7. This procedure is referred to as geodesic shooting [Miller

et al. 2006].

To develop efficient methods we exploited the fact that the velocity fields and thus the

associated transformation fields obtained with LDDMM are smooth in the sense that

they can be represented at a coarse resolution without suffering from large numerical

errors. We therefore decided to discretize the transformations and velocity fields (or

momenta fields, respectively) at a coarser resolution than the images to be registered.

This saved time during the solution of the PDEs and resulted in a reduction in required

memory by up to 95 %. Furthermore, the number of degrees of freedoms is reduced

and thus the numerical optimization is accelerated. Nevertheless, the accuracy of the

registration is essentially not changed [Polzin et al. 2016].

The relaxation approaches IBR and MBR are more flexible because the velocity fields

can be adapted at multiple points in time. Therefore, the alignment of the images

is better for the relaxation approaches than for the shooting method MBS. However,

as the velocity fields obtained with the relaxation approaches are not constrained to

satisfy the ELE they may lack some smoothness compared to the ones estimated by

MBS. In particular, they do not necessarily describe a geodesic transformation [Vialard

et al. 2012], whereas shooting methods like MBS guarantee geodesic solutions. Hence,

shooting methods are better suited for inter- and extrapolation of the transformations

describing, e.g., anatomical changes [Fishbaugh et al. 2014].

There are also differences between IBR and MBR. These differences are caused by the

numerical solution of the transport equations and the characteristics of the objects to be

transported. We show in Appendix A that stability for solving the transport equations

with explicit fourth-order RK can be achieved by using an a-priori computable number

of time steps. Nevertheless, numerical dissipation and dispersion can be observed and

their effects are more severe for the transport of the images that contain stronger

gradients than the transformation maps. Thus the IBR results can contain image

distortions that can be alleviated by using the MBR approach, which requires only

a marginally increased computational workload (because the transport equation has

to be solved for the transformation maps for all d spatial directions and for t = 1 an

additional interpolation is required).

Although LDDMM guarantees diffeomorphic solutions in the continuous setting, special

care has to be taken to achieve discrete diffeomorphic transformations. While our

algorithms, like (for the same reason) most LDDMM methods [Beg et al. 2005, Vialard

et al. 2012, Mang and Ruthotto 2017], cannot guarantee diffeomorphic transformations

in the discrete setting (as described in the Section 4.4), we implemented an efficient
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method to obtain transformations that are topology-preserving, see Section 6.3. In

particular, the transformations are piecewise diffeomorphic on the grid cells and

bijective and continuous on Ω. We decided to favor the latter two aspects of regular

transformations because they are useful (among other application scenarios) in the

case of lung registration. For pulmonary registration a key requirement is that

the volume of grid cells does not vanish or become negative as this would imply

unrealistic foldings of the lung tissue. Furthermore, we assumed that connected

regions within the lung should not become disconnected. Therefore, we employed the

following scheme. The first step is the accurate solution of the transport equation.

However, to avoid large computational costs we propose explicit fourth-order RK

methods as a compromise between accuracy and efficiency. Due to the accumulated

integration error transformations with negative Jacobian determinant values might

be generated. To solve such issues we employed a post-processing step to obtain

topology-preserving transformations. The idea is to concatenate transformations that

are well-behaved and feature only small deformations. These transformations are

individually obtained by solving the transport equation for one time-step with the

estimated velocity fields. With this procedure we achieved that no foldings of the

grid occurred (i.e., the Jacobian determinants were strictly positive on the entire

image domain). For the concatenation in the discrete setting we used bi- or trilinear

interpolation, which is known to provide only functions with C0 regularity at grid cell

boundaries [Modersitzki 2009, p. 26] instead of Ck regularity with k ∈ N as would

be required for a diffeomorphic solution. On the other hand, the bi-/trilinear in

combination with the regular transformations obtained from the small deformations

yields topology-preserving transformations featuring positive Jacobian determinants

on the entire domain [Musse et al. 2001, Karaçalı and Davatzikos 2004].

The registration algorithms were tested on medical 2D and 3D data, see Chapter 8.

Results for hand radiographs highlight the individual advantages and disadvantages

of the proposed approaches. For the registration of the challenging DIR-Lab COPD

lung CT datasets [Castillo et al. 2013], which comprise pathologic cases and large

deformations, MBR achieved the second-best (shared with isoPTV [Vishnevskiy et al.

2017]) of all published results with an average expert LM distance of 0.96 mm. The

MBS method directly follows and ranks fourth with an average LM distance of 1.00 mm.

Furthermore, our proposed approach for reducing the memory consumption and run

time showed remarkable results. The registrations with MBR took on average 21.6

minutes and required 2.1 GB of RAM, whereas MBS used 3.8 GB and 31.8 minutes.

As mentioned before, 95 % less memory is needed in comparison to the discretization

of velocities, transformations and momenta at full resolution. The improvement in run

time is confirmed by other (non-stationary) LDDMM methods that took between 43
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and 127 minutes for the registration of brain MRI [Mang and Ruthotto 2017] or even 60

to 180 minutes for the registration of lung CT images [Sakamoto et al. 2014]. Both

approaches were applied to images with less voxels than the ones of the DIR-Lab

COPD database. Moreover, the reported run times were required despite the heavy

parallelization with 40 CPUs and 256 GB of RAM in [Mang and Ruthotto 2017] and 24

CPUs and 128 GB of RAM in [Sakamoto et al. 2014]. Note that the algorithms were not

applied to the same datasets and thus (although the number of voxels was smaller and

inspiration-expiration lung CT registration requires large deformations) the difficulty

for an accurate registration might differ. Nevertheless, the potential of our proposed

coarser discretization is obvious. MBR and MBS also achieved good results regarding

the alignment of lung fissures and boundaries. Furthermore, the estimated volume

changes were plausible and the computed transformations were topology-preserving (in

particular no foldings occurred). Thus, the proposed post-processing was effective.

9.2 Discussion and Future Work

We start with discussing our choices for solving the PDEs, which are the system

dynamics and adjoint equations within the optimal control formulation. The main PDE

considered in the LDDMM problems proposed in Section 5.4 is the transport equation.

One issue for solving the transport equation for image registration is, that a-priori the

direction of the transport (i.e. the sign of the velocity in the respective spatial direction)

at each grid point is unknown. This has an influence on the discretization of the spatial

derivatives with finite differences for explicit Eulerian schemes like the one used in this

thesis. Depending on the transport direction either forward or backward differences are

needed to retain stability for, e.g., a forward Euler discretization [Morton and Mayers

2005, pp. 93]. Switching between these discretizations is known as upwind scheme or

upwinding [Morton and Mayers 2005, pp. 93]. Such switches are hard to include in our

consistent (regarding forward and backward time integration), fully discrete models

and therefore we use central differences to compute spatial derivatives, which can

handle movements in all directions. However, this requires higher-order methods for

time-integration as the Euler forward scheme is known to be unstable for the solution of

the transport equation using a discretization with central differences [Strikwerda 2004,

p. 51]. Therefore, we used the well-known explicit fourth-order RK scheme that offers a

stability region that can provide reasonably large time step sizes, cf. Appendix A, and

can be computed easily and quickly. Another way to cope with the instability would

be a Lax-Friedrichs method [LeVeque 2002, pp. 71], which introduces diffusion between

spatially neighboring points to obtain stability. Unfortunately, this also results in
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additional smoothing of the solution [LeVeque 2002, pp. 71], which is unwanted for the

transport of images. Due to this reason, we did not use the Lax-Friedrichs method.

LDDMM registrations use semi-Lagrangian methods [Beg et al. 2005], Lagrangian

methods [Mang and Ruthotto 2017] or upwinding [Hart et al. 2009] for the solution of

the transport equation. These methods are not easily integrable in our DO approach

because they include frequent interpolations and logical switches for the computation

of the upwind direction respectively. These switches either introduce non-differentiable

terms, or require careful handling of the interpolation operators. An advantage of

Lagrangian and semi-Lagrangian schemes is that they are absolutely stable for the

transport equation [Kalnay 2003, p. 9], this means that there is no maximal admissible

time step size. However, these methods require (multiple) interpolations and tracking of

the positions of particles/points, which increases the computational costs. For instance,

in [Mang et al. 2016] it was reported that about 60 % of the overall time for the

registration is needed for interpolations. This might be the reason why even the heavily

parallelized method [Mang and Ruthotto 2017] needs between 24 and 127 minutes

(depending on the chosen regularization) for the registration of two 128×150×128 brain

MRI images using 40 CPUs running at 2.6 GHz each with a total memory of 256 GB.

Furthermore, multiple interpolations might introduce strong dissipation [Mang and

Ruthotto 2017], i.e. blurring of images. The stability of Eulerian approaches depends

on the chosen method: Explicit Eulerian approaches have a maximal admissible time

step size, which is proportional to the spatial grid size, i.e., the more precision in

space is needed, the smaller the time step can be. This result is known as CFL

condition [LeVeque 2002, pp. 68] (named after Courant, Friedrichs, Lewy [Courant

et al. 1928]). In Appendix A we perform a stability analysis of the explicit fourth-order

RK scheme, which is used in this thesis, for solving the transport equation. We show

that with a gross estimation of the maximal displacement it is possible to determine

admissible step sizes that are reasonably large and yield stability for the numerical

solution of the transport equation.

Each iteration of an explicit Eulerian approach is faster than its implicit pendant, which

requires solving equation systems [Hairer et al. 2006, p. 3], but offers better suited

stability regions [LeVeque 2002, p. 390]. For instance, the implicit backward Euler

method features unconditional stability for solving the transport equation with central

finite differences as the imaginary axis is included in its stability region [Hairer and

Wanner 1996, p. 42], cf. Figure A.1. Nevertheless, for the large problems considered

for lung CT registration, we are interested in fast PDE solvers and chose the explicit

fourth-order RK scheme instead of (semi-)Lagrangian or implicit Eulerian methods.

Another point that should be addressed in future work is the regularity of the trans-

formations in the discrete setting. As discussed before, the bi-/trilinear interpolation
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used in the post-processing step described in Section 6.3 does not offer the neces-

sary smoothness to obtain transformations that are C1 within the entire domain.

But, with this step homeomorphic (also referred to as topology-preserving), piece-

wise diffeomorphic transformations are obtained. While higher-order interpolation

methods like cubic spline interpolation would provide continuously differentiable trans-

formations, they might also yield non-invertible solutions due to overshooting (Gibbs’

phenomenon) [Zhang and Martin 1997] and thus non-diffeomorphic transformations can

be obtained. A potential remedy might be geodesic interpolating splines [Camion and

Younes 2001, Twining and Marsland 2003] that can also be used for the feature-based

pre-registration as discussed below.

Instead of employing a post-processing to achieve folding-free transformations one could

also use more sophisticated methods which guarantee that no foldings can occur. There

are different approaches that prevent foldings of the transformation grid. First of all,

the Jacobian could be directly included in the optimization problem and constrained to

be positive [Rohlfing et al. 2003, Rühaak et al. 2011] or within a plausible range [Haber

and Modersitzki 2007a] for the respective registration application. Alternatively, we

could monitor the Jacobian determinants, cf. for instance [Christensen et al. 1996], and

adapt (if necessary) the number of time steps N or the regularization parameters α

and γ as proposed, e.g., in [Mang and Ruthotto 2017]. Each of these approaches might

be very useful but also increases the run time and thus we opted in this work for

the post-processing that has to be computed only once at the end of the numerical

optimization.

Future work could help to achieve further reductions in run time. One possibility is to

exploit the computational power of GPUs [Ha et al. 2009], GPU clusters [Singh et al.

2010] or CPU clusters [Mang et al. 2016]. Our strategy for a coarser discretization

would work well in combination with GPUs because it reduces the required memory and

thus the amount of data that has to be send to or received from the GPU as all variables

can be stored entirely in the GPU’s RAM. Thus a potential bottleneck can be avoided.

It is well known, that GPUs are well-suited for deep learning approaches [LeCun et al.

2015]. Deep learning was also successfully used to predict the momenta directly from

the images for LDDMM shooting [Yang et al. 2016, Yang et al. 2017]. The prediction

required about 10 s on a single GPU and could serve as an excellent pre-registration

for the fine tuning by, e.g., our proposed methods. This would simultaneously reduce

the run time and might reduce the probability to get stuck in local minima for local

optimization methods.

Second-order numerical optimization methods would reduce the number of required

iterations of the numerical optimization and probably reduce the overall run time.

Gauss-Newton optimization has been successfully applied for LDDMM registration
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in, e.g., [Ashburner and Friston 2011, Hernandez 2014, Mang and Ruthotto 2017]

and is well-suited as the Hessian for the discrete Helmholtz operator L has a sparse

regular structure that can be exploited for solving the arising equation systems [Mang

and Ruthotto 2017]. In particular, the Hessian of S given as L⊤L can be written

as Kronecker product of Toeplitz-plus-Hankel matrices (cf. Section 6.1.3) and thus a

discrete cosine transformation (DCT) can be employed to solve the arising equation

systems [Hansen et al. 2006, pp. 44]. Therefore, the spectral pre-conditioning using the

DCT for the PCG methods outperformed all other tested pre-conditioners in [Mang

and Ruthotto 2017]. The DCT could not only be used to approximate the Hessian

matrix of the objective function E efficiently, but also to compute vk from Mk in the

shooting approach. This would impose Neumann boundary conditions on vk instead

of periodic boundary conditions when using the FFT [Hansen et al. 2006, pp. 33].

A different way to reduce the run time was proposed in [Zhang and Fletcher 2015].

Like in our algorithms the fact that the velocity fields can be represented without large

errors at a coarse level is exploited. However, the authors use the band-limitation

in the Fourier domain to reduce both the run time and memory consumption. This

works very well and (similar to our methods) does not reduce registration accuracy

much. A potential drawback of the method proposed in [Zhang and Fletcher 2015]

is that due to the FFT approach the velocity fields are intrinsically assumed to be

periodic, which is unrealistic for certain applications like lung CT registration.

Another idea is to adapt the grids to the deformations present in the images by

using, e.g., an Octree discretization [Haber et al. 2007]. This could further reduce

the necessary amount of RAM as well as computation time and gain registration

accuracy in regions where locally the deformations are strongly varying. However, an

Octree discretization makes the implementation process more difficult compared to a

discretization with constant grid sizes.

One potential remedy for reducing memory consumption in LDDMM shooting methods

is the concept of checkpointing, that is also used in automatic differentiation [Griewank

1992] and to solve PDE-constrained inverse problems [Akcelik et al. 2002, Ngodock

2005]. The idea is to avoid keeping the momenta fields entirely in memory as the EPDiff

equation completely determines their evolution and thus everything can be computed

from the initial momentum. Instead of keeping only the initial value a compromise

can be used: values for several points in time are stored and intermediate ones are

computed. However, this always is a trade-off between additional computational work

and reduced memory consumption. This problem is aggravated as the states and

intermediate states are also required for the solution of the adjoint equations and thus

would have to be recomputed more often.

In our experiments with lung CT data we observed, that KPs work well for a (TPS)

pre-registration, see also [Heinrich et al. 2015]. However, we applied a heuristic,
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cf. Chapter 7, to obtain pre-registrations without foldings. Although this heuristic

accomplished topology-preserving transformations in our evaluation test cases, this

cannot be guaranteed in general and more sophisticated methods should be employed in

future work. Feature-based diffeomorphic matching can be achieved by inexact [Joshi

and Miller 2000, Camion and Younes 2001] and exact KP-matching with geodesic

interpolating splines [Twining and Marsland 2003, Marsland and Twining 2004].

These approaches incorporate the LDDMM concept of obtaining transformations from

associated flows of smooth velocity fields. As the smoothness of the velocity fields is

obtained via the LDDMM regularizer S, these four methods could serve as a suitable,

i.e., diffeomorphic and optimized with respect to the LDDMM metric, pre-registration

for LDDMM methods. Alternatively, the KPs could be used within an additional term

of the objective functional, for instance as a least squares penalty, cf., e.g., [Rühaak

et al. 2017]. In addition to a least squares approach, e.g., a log-barrier function could be

employed to guarantee that the matched LMs can be moved only up to a user-defined

limit [Polzin et al. 2013b], but for the initialization again a suitable pre-registration is

required.

As discussed in Section 1.3, sliding motion at the interface between ribcage and lungs

occurs during respiration. This motion is discontinuous and thus cannot be described

by a diffeomorphism or homeomorphism on the entire image domain. To handle sliding

motion, a Total Variation regularization of the transformation was employed, e.g., in

the isoPTV algorithm [Vishnevskiy et al. 2017]. While this regularization has the

advantage that sliding motion does not have to be modeled explicitly, discontinuous

deformations can also occur ubiquitously in the lungs, which is not realistic. Many

other image registration methods have been proposed to cope with the sliding motion,

see [Schmidt-Richberg 2014, Chapter 6] and references therein. In particular, in [Risser

et al. 2013] a method within the LDDMM framework is introduced that allows for

piecewise diffeomorphic mappings that are discontinuous at the interface between user-

defined regions. The key concept is to use filters that describe the sliding boundaries

to modify the smoothing kernel. This idea could also be applied in our algorithms.

However, as we were mainly interested in the motion within the lungs, we did not use

this adaption although it is a promising and useful extension.

Even though we have presented a comprehensive evaluation of the performance of

the MBR and MBS method in Chapter 8 the number of considered datasets was

limited to 20. To assess the performance of our algorithms for pulmonary image

registration we could participate in the EMPIRE10 study [Murphy et al. 2011b]. This

benchmark evaluates registrations on 30 datasets using criteria that are similar to

the ones in our experiments: Lung boundary, fissure and LM alignment as well as

deformation field regularity. As of January 23, 2018, 42 algorithms took part in the
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EMPIRE10 competition [EMPIRE10 website 2018]. Another interesting comparison

would involve other diffeomorphic registration approaches (in addition to gSyN, MBS

and MBR) like hyperelastic registration [Burger et al. 2013] or stationary velocity

field methods [Arsigny et al. 2006]. Regarding the latter class of methods it should be

investigated whether the flexibility gained by the additional temporal component of

LDDMM makes a difference.

As discussed in Section 1.3 lung ventilation estimation from inspiration-expiration

lung image pairs is a promising application field that requires the registration of the

scans. However, it is hard to assess the performance of registration algorithms for this

application because usually there is no ground truth data available. Furthermore, it was

found, e.g., in [Castillo et al. 2017] that small changes in the estimated transformation

may result in large relative changes of the computed ventilation image. Therefore, the

authors propose to constrain the Jacobian determinant values similar to [Haber and

Modersitzki 2007a]. In contrast to the constrained optimization used in [Haber and

Modersitzki 2007a], in [Castillo et al. 2017] a post-processing step is proposed that can

be applied to any given transformation to achieve a transformation sufficing the wanted

constraints on the Jacobian. This could be a first step towards reproducible ventilation

images (from different registration algorithms) and should be further analyzed.

9.3 Conclusion

With the LDDMM registration methods that were proposed in this work we obtained

highly accurate transformations for challenging lung CT datasets in a reasonable

computation time on a standard desktop computer. This was achieved by deriving a

fully-discrete optimal control formulation of relaxation and shooting LDDMM models.

The discrete optimal control problem also includes a consistent solution of the arising

PDEs on the state and adjoint variables with RK schemes. Furthermore, the derived

models allow for a flexible choice of an appropriate differentiable distance measure.

In particular, we used the NGF distance measure to obtain a good alignment of

image edges. The constrained optimization problems are solved with a Discretize-

then-Optimize approach that allows to reduce the number of discretization points and

thereby dramatically reduces the required RAM (up to 95 % reduction) and run time.

This essentially does not deteriorate the registration accuracy as is demonstrated by

the second and fourth rank in the DIR-Lab COPD benchmark for the MBR and MBS

method respectively. All proposed methods yield invertible transformations without

foldings and plausible volume changes. While the main application in this thesis was

lung CT registration, our methods are not limited to this type of data and can be

easily adapted for the respective application scenario and other types of data.
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A Stability of Runge-Kutta Methods for

the Transport Equation

For finite difference schemes (like the proposed RK methods) consistency and stability

are equivalent to convergence, which is known as the Lax-Richtmyer equivalence

theorem [Lax and Richtmyer 1956] and [Strikwerda 2004, pp. 32–33]. Therefore, we

investigate the consistency and stability of explicit RK methods applied to initial value

problems of the following type

ẋ(t) = f(x(t),u(t)), t ∈ [0, 1] and x(0) = x0. (A.1)

This is the constraint of the considered time-continuous optimal control prob-

lems, cf. Problem 3.3, with right-hand side function f : Rp × R
q → R

p, state

variable x : [0, 1]→ R
p and control variable u : [0, 1]→ R

q. The transport equations

for images (5.38) and transformation maps (5.43) that are constraints of the proposed

LDDMM optimal control problems given in Problem 5.4, Problem 5.5 and Problem 5.6

are of the type given in (A.1).

Now a brief discussion of consistency is provided and afterwards details about stability

are given. We assume (like throughout Chapter 6) that x and u are discretized at N

equidistant times tk = kht, k = 0, . . . , N − 1 with time step size ht = 1
N−1

. The

approximate solution xk ≈ x(tk) is obtained using a finite difference scheme (e.g. a

RK scheme). Let the iteration between two times tk and tk+1 be given by

xk+1 = Q(ht,xk,uk), where Q : R>0 × R
p × R

q → R
p (A.2)

can be obtained from (6.21) and (6.22).

Following [LeVeque 2002, pp. 139], we obtain consistency if the local truncation error

of the RK scheme vanishes for ht → 0. The local truncation error ek

ht
is defined using

the one step error [LeVeque 2002, p. 142]

ek := ‖x(tk)− x̂k‖, with x̂k = Q(ht,x(tk−1),u(tk−1)) and k = 1, . . . , N − 1. (A.3)

From the literature we know that for a RK method of order m ∈ N and a right-

hand side function f that is m-times continuously differentiable, ek is bounded and
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proportional to hm+1
t [Hairer et al. 1993, p. 157]. We write

ek ∼ hm+1
t , k = 1, . . . , N − 1. (A.4)

Actually, this is the definition of the order of a RK method “for sufficiently smooth

problems” [Hairer et al. 1993, p. 134]. Thus, for RK 4 (see Table 6.1), which is a

method with order m = 4 [Hairer et al. 1993, p. 138], we have ek ∼ h5
t . Furthermore,

it can be shown that the global error (the accumulated error over all N − 1 time steps)

is proportional to hmt [Hairer et al. 1993, p. 160]. Because

lim
ht→0

ek
ht

= 0

for RK 4, consistency can be deduced, cf. [LeVeque 2002, pp. 139].

To obtain convergence via the Lax-Richtmyer equivalence it is left to show stability.

First, we specify the stability regions for explicit RK methods. Afterwards, we analyze

the stability of RK methods applied to the transport equation. Upper bounds for

the time step ht for the stable solution of the discrete transport equation are then

determined based on the eigenvalues of the matrices that are used for numerical

derivation. The following considerations are based on [Hairer and Wanner 1996, Iserles

2009].

The stability of an explicit RK method is tested by applying the RK method to the

scalar model equation (also called Dahlquist test equation [Hairer and Wanner 1996,

p. 16]) for x ∈ C1([0, 1],C) with λ ∈ C and x(0) = x0 = 1 given as

ẋ(t) = λx(t) for all t ∈ [0, 1]. (A.5)

In [Hairer and Wanner 1996, p. 16]) it is shown by repeated substitution of the

intermediate steps of the RK method that the iteration can be written as:

xk+1 = R(htλ)xk, k ∈ N0, (A.6)

where

R : C→ C, R(z) = 1 +
s∑

j=1

zj

j!
(A.7)

is called the stability function [Hairer and Wanner 1996, pp. 16–17] of the RK method

of order s ∈ N. R(z) represents the gain for a particular z = htλ and using induction

we obtain

xk+1 = R(z)xk = · · · = R(z)k+1x0 = R(z)k+1. (A.8)

Hence stability is achieved for z ∈ C if |R(z)| ≤ 1 [Hairer and Wanner 1996, p. 16].
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Figure A.1: Stability regions of the Forward Euler [Hairer and Wanner 1996, p. 17],
Backward Euler [Hairer and Wanner 1996, pp. 40–42] and RK 4 [Hairer
and Wanner 1996, p. 17] methods marked in gray. As we are using
central differences for the discretization of the spatial derivative within
the transport equation, stability on the imaginary axis is of particular
interest.

As will be shown in the following paragraphs, it is of particular interest for us that

stability on intervals of the imaginary axis is guaranteed, i.e., |R(ıy)| ≤ 1 with y ∈ R

and ı denoting the imaginary unit. This is a result of the employed central difference

discretization for spatial derivatives, because the resulting matrix used for numerical

derivation has only eigenvalues on the imaginary axis. Figure A.1 shows the stability

regions of the Euler forward and backward scheme as well as of the RK fourth-order

method [Hairer and Wanner 1996, p. 17, pp. 40–42]. It is visible that for small |ıy|
the RK fourth-order method is stable whereas the Euler forward method is always

unstable. The backward Euler method is unconditionally stable along the imaginary

axis, but as motivated in Section 9.2 we refrain from using implicit RK methods

because each iteration is computationally more expensive than the iteration of the

explicit method.

Testing stability of RK methods for the Dahlquist test equation is useful as “we can

extrapolate from scalar linear equations to linear ODE systems” [Iserles 2009, p. 57]

of the type

ẋ = Ax, x ∈ R
n, A ∈ R

n×n.

In the considered transport equations we have A = −diag(v)Dv
1 (cf. (6.59)) for d = 1

and A = −∑3
i=1 diag(vik)D

v
i (cf. (6.62)) for d = 3. If an eigendecomposition of A with

a full set of eigenvectors is possible, stability is tested by evaluating R for the eigen-
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values λk, k = 1, . . . , n: if |R(λk)| ≤ 1 for all k then stability is achieved [Iserles 2009,

p. 57]. In general, a Jordan factorization can be applied instead of the eigendecom-

position and the procedure can be extended to inhomogeneous systems ẋ = Ax + b

with b ∈ R
n [Iserles 2009, p. 57].

We proceed with analyzing stability for the discrete transport equations used in this

thesis for d = 1. Hence, we compute the eigenvalues of the matrix −diag(vk)Dv
1 that is

multiplied with φk in (6.59). The matrix for central finite differences computation Dv
1

is given in (6.56). Let us first assume that the velocity vector v ∈ R
n is constant:

v1 = v2 = · · · = vn. The eigenvalues of −diag(v)Dv
1 can then be computed as −λkv1,

where λk are the eigenvalues of Dv
1 given in the following lemma.

Lemma A.1 (Eigenvalues of Dv
1)

The spectrum of Dv
1 is

Λ =

{
ı

h1
v

cos

(
kπ

n− 1

) ∣∣∣ k = 1, 2, . . . , n− 2

}
∪ {0}.

Proof: The eigenvalues of Dv
1 are computed by solving χDv

1
(λk) = 0:

χDv
1
(λ) = det(Dv

1 − λEn) = λ2 det




1

2h1
v




−2h1
vλ 1

−1 −2h1
vλ 1

. . . . . . . . .

−1 −2h1
vλ 1

−1 −2h1
vλ




︸ ︷︷ ︸
=:AT∈R(n−2)×(n−2)




.

Thus we have the eigenvalues λn−1 = λn = 0 and continue with computing λk

for k = 1, . . . , n− 2. The matrix BT := AT + λEn−2 is a tridiagonal Toeplitz matrix

with entries a = 0, b = 1
2h1

v
and c = −1

2h1
v
. Using the formula for eigenvalues of tridiagonal

Toeplitz matrices from [Noschese et al. 2013] we obtain:

λk = a+ 2
√
bc cos

(
kπ

n− 1

)
= 2

√
− 1

4(h1
v)

2
cos

(
kπ

n− 1

)
=

ı

h1
v

cos

(
kπ

n− 1

)
,

for k = 1, . . . , n− 2.

According to Lemma A.1 all eigenvalues are purely imaginary or 0 and we search for

a time step ht such that htλk lies within the stability region of the employed RK 4

method for all k = 1, . . . , n, see Figure A.1c. To obtain an ht that results in a stable

RK scheme it is sufficient to determine the eigenvalue with the largest modulus such

178



A. Stability of Runge-Kutta Methods for the Transport Equation

that |R(htλk)| ≤ 1 for all k = 1, . . . , n [Iserles 2009, p. 57]. Hence, we are looking for

the spectral radius of Dv
1. The upper bound for the spectral radius ρ(Dv

1) can easily

be obtained by the fact that | cos( kπ
n−1

)| ≤ 1:

ρ(Dv
1) ≤ 1

h1
v

. (A.9)

Actually, we are interested in ρ(diag(v)Dv
1), which is maximal if each component of v

is set to its biggest absolute value: ṽk = ‖v‖∞ =: a1, k = 1, . . . , n. Then it holds:

ρ(diag(v)Dv
1) ≤ ρ(diag(ṽ)Dv

1) = ρ(a1D
v
1) ≤ a1

h1
v

. (A.10)

The RK fourth-order scheme is stable for all z = ıy with y ∈ [−2
√

2, 2
√

2], cf.

Figure A.1c. Due to (A.8) and (A.10) we should choose ht such that:

ht
a1

h1
v

≤ 2
√

2
a1>0⇔ ht ≤

2
√

2h1
v

a1

. (A.11)

Note that a1 = 0⇔ v = 0 and thus no transport would occur, which is not relevant

for the image registration application.

In the three-dimensional discrete transport equation (6.62), A = −∑3
i=1 diag(vik)D

v
i

is multiplied with the transformation maps. The following lemma extends (A.11)

to d = 3 such that a time step for a stable solution of the transport equation can be

computed.

Lemma A.2 (Time Step for Stability of Runge-Kutta 4 for the Transport Equation)

Let d = 3 and ai := maxk∈{0,1,...,N−1} ‖vik‖∞, i = 1, 2, 3. The RK fourth-order scheme

applied to the discrete transport equation (6.62) is stable, if ht > 0 is chosen such that

ht ≤ 2
√

2

(
3∑

i=1

ai
hiv

)−1

. (A.12)

Proof: We exploit the following property of the Kronecker product [Zhang et al. 2013]:

(
n⊗

i=1

Ai

)(
n⊗

i=1

Bi

)
=

n⊗

i=1

(AiBi). (A.13)

for matrices A1, . . . ,An,B1, . . . ,Bn of appropriate sizes. Let wi
1,w

j
2,w

k
3 denote the

eigenvectors for Dv
1,D

v
2,D

v
3 with the eigenvalues λi1, λ

j
2, λ

k
3, respectively. Using (A.13)

an upper bound for the spectral radius of the right-hand side matrix of (6.62) can be
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obtained:

(
3∑

i=1

aiD̄
v
i

)
(wk

3 ⊗w
j
2 ⊗wi

1)

= (a1En3 ⊗ En2 ⊗Dv
1 + a2En3 ⊗Dv

2 ⊗ En1 + a3D
v
3 ⊗ En2 ⊗ En1)(wk

3 ⊗w
j
2 ⊗wi

1)

= a1w
k
3 ⊗w

j
2 ⊗ (λi1w

i
1) + a2w

k
3 ⊗ (λj2w

j
2)⊗wi

1 + a3(λ
k
3wk

3)⊗w
j
2 ⊗wi

1

= (a1λ
i
1 + a2λ

j
2 + a3λ

k
3)(wk

3 ⊗w
j
2 ⊗wi

1)

From (A.9) we can deduce that maxi |λi1| ≤ 1
h1

v
, maxj |λj2| ≤ 1

h2
v
, maxk |λk3| ≤ 1

h3
v

and

hence the spectral radius of the right-hand side matrix has the following upper bound:

ρ

(
3∑

i=1

diag(vki )D̄
v
i

)
≤ a1

h1
v

+
a2

h2
v

+
a3

h3
v

The extension of (A.11) yields that the RK scheme is stable, if

ht ≤ 2
√

2

(
3∑

i=1

ai
hiv

)−1

is chosen, where ai > 0 denotes the maximal velocity in the i-th spatial direction for

all k ∈ {0, 1, . . . , N − 1}.

In summary, we have demonstrated that the explicit fourth-order RK scheme is stable

and consistent when applied to the transport equations considered in this thesis. Using

the Lax-Richtmyer equivalence theorem [Lax and Richtmyer 1956] we thus can deduce

convergence of the RK iteration.
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