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Abstract. We propose a variational approach for edge-preserving to-
tal variation (TV)-based regularization of Q-ball data from high angular
resolution diffusion imaging (HARDI). While total variation is among
the most popular regularizers for variational problems, its application
to orientation distribution functions (ODF), as they naturally arise in
Q-ball imaging, is not straightforward. We propose to use an extension
that specifically takes into account the metric on the underlying orien-
tation space. The key idea is to write the difference quotients in the TV
seminorm in terms of the Wasserstein statistical distance from optimal
transport. We combine this regularizer with a matching Wasserstein data
fidelity term. Using the Kantorovich-Rubinstein duality, the variational
model can be formulated as a convex optimization problem that can be
solved using a primal-dual algorithm. We demonstrate the effectiveness
of the proposed framework on real and synthetic Q-ball data.

Keywords: Variational methods, total variation, Q-ball imaging, Wasser-
stein distance

1 Introduction

Overview. In Q-ball imaging, one considers data f : Ω → P(S2) given on an
open, bounded, connected image domain Ω ⊂ IRd with values in the space of
Borel probability measures P(S2) over the two-dimensional unit sphere S2 ⊆ IR3.
For each x ∈ Ω, the value fx := f(x) is a Borel probability measure on S2. In
particular, we have fx(A) ∈ [0, 1] for each Borel subset A ⊂ S2 and fx(S2) = 1.
We consider a variational approach for restoring noisy Q-ball data,

inf
u:Ω→P(S2)

∫
Ω

δ(fx, ux) dx+R(u),

with an appropriately chosen pointwise distance δ(·, ·) (Fig. 1). This has ap-
plications in the field of medical fiber tractography of cerebral white matter
based on data that is obtained from diffusion-weighted (DW) magnetic reso-
nance imaging (MRI) or, more precisely, high angular resolution diffusion imag-
ing (HARDI) [24].

In this work, we focus on edge-preserving total variation (TV) regularization,
i. e., R(u) should encourage gradient sparsity. To this end, we adapt a specialized
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Fig. 1: Q-ball image of the corpus callosum, reconstructed from HARDI data of
the human brain [21], (a) with added white Gaussian noise and (b) our TV-based
reconstruction using a Wasserstein-1 data term. Noise is reduced substantially,
while regions with isotropic diffusion are accurately restored or preserved.

formulation of TV that takes the metric on the space S2 into account. Similarly,
for the metric δ(·, ·), we focus on the Wasserstein-1-distance from the theory of
optimal transport [25].

Motivation: Q-Ball Imaging. In medical applications, the diffusivity of water
in tissues that exhibit fibrous microstructures, such as muscle fibres or axons in
cerebral white matter, contains valuable information about the fiber architecture
in the living organism. Diffusion-weighted (DW) magnetic resonance imaging
(MRI) is well-established as a way of measuring the main diffusion directions by
consecutively applying six or more magnetic field gradients. In diffusion tensor
imaging (DTI) [2], few measurements are combined to extract the main diffusion
direction which provides sufficient information in the case of well-aligned fiber
directions. However, crossing and branching of fibers at a scale smaller than
the voxel size, also called intra-voxel orientational heterogeneity (IVOH), often
occurs in human cerebral white matter due to the relatively large (millimeter-
scale) voxel size of DW-MRI data. Therefore, DTI data is insufficient for accurate
fiber tract mapping in regions with complex fiber crossings.

High angular resolution diffusion imaging (HARDI) [23] allows for more ac-
curate restoration of IVOH by increasing the number of applied magnetic field
gradients. A widely used reconstruction scheme for HARDI data is Q-ball imag-
ing [24] where the quantity of interest is the marginal probability of diffusion
in a given direction, the orientation distribution function (ODF) [1]. However,
the high angular resolution results in a larger amount of noise. Consequently,
HARDI data is a particularly interesting target for postprocessing in terms of
denoising and regularization [6].



Contribution. We propose a non-parametric Wasserstein-total variation reg-
ularizer for Q-ball data. Our approach is based on the observation that the
regularizer in [15] amounts to a Wasserstein-based distance on the jump set. We
supply the necessary theory and formally prove this connection (Sect. 2). We
derive an efficient numerical formulation (Sect. 3) as a primal-dual saddle-point
problem involving only convex functions. Applications to synthetic and real-
world data show significant reduction of noise as well as qualitatively convincing
results (Sect. 4).

Related Models. There are approaches that apply TV regularization directly
to the HARDI signal S(q) [17][13]. These approaches are not applicable to the
ODFs of the Q-ball model which our model is aimed at. Other TV models depend
on a specific parametrization of the ODFs by spherical harmonics [4][19]. In
contrast, our proposed model does not depend on the specific parametrization
of ODFs.

In [26], Mumford-Shah and Potts functionals are defined for manifold-valued
images introducing an edge-preserving model for Q-ball data equipped with the
Fisher-Rao metric following [10], [5] and [11]. However, the Fisher-Rao metric
does not take the manifold structure of S2 into consideration and is not amenable
to biological interpretations [18].

Our work is based on [15], where the authors derive a total variation regu-
larizer for probability measures as a convex relaxation scheme regularization of
manifold-valued images. An extension of the Kantorovich-Rubinstein formula-
tion of the Wasserstein distance that our saddle-point formulation makes use of
has been applied in [16] to the simpler problem of real-valued image denoising.

Our proposed method incorporates a TV model that does not depend on the
specific parametrization of the ODFs. It is based on data fidelity and regulariza-
tion terms that take the manifold structure of S2 into account, without reducing
the ODF model to a simpler statistical interpretation. Furthermore, the model
can be efficiently implemented using state-of-the-art primal-dual methods.

2 A W1-TVW1 Functional for Q-Ball Data

A straightforward approach to denoising probability distributions is to apply
a Rudin-Osher-Fatemi (ROF) model, based on the L2 norm on L2(S2) and a
suitable extension of the total variation (TV) regularizer, to the probability
density functions:

inf
u:Ω→P(S2)

∫
Ω

∫
S2

(fx(z)− ux(z))2 dz dx+ λTV (u) (1)

However, this does not allow singular measures for ux and does not account for
the (Riemannian) manifold structure of S2: as long as the supports of ux and fx
do not intersect, the local cost in the data term does not depend on the relative
orientation of the modes (peaks) of ux and fx in S2.



The Metric Space (P(S2),W1). In order to account for the manifold struc-
ture of S2, we equip P(S2) with the Wasserstein-1-metric

W1(µ, µ′) := inf

{∫
S2×S2

dS2(x, y) dγ(x, y) : γ ∈ P(S2×S2), π1γ = µ, π2γ = µ′
}

that is well-known from the theory of optimal transport [25]. Here πiγ denotes
the i-th marginal of the measure γ that is supported on the product space S2×S2,
i.e., π1γ(A) := γ(A× S2) and π2γ(B) := γ(S2 × B). By dS2(·, ·) we refer to the
geodesic distance metric on the Riemannian manifold S2.

Data term. Using this natural distance, we consider functionals of the form

inf
u:Ω→P(S2)

W1(fx(z), zx(z)) +R(u).

If one discretizes the space of probability measures P(S2) using discrete proba-
bility measures on a set of points z1, . . . , zl ∈ S2, a naive implementation of W1

requires to discretize the transport plan γ using l2 points, which quickly be-
comes prohibitively large. Fortunately, W1 is particularly well-suited for efficient
implementation due to the Kantorovich-Rubinstein duality [12]:

W1(µ, µ′) = sup

{∫
S2

p d(µ− µ′) : p ∈ Lip1(S2)

}
, (2)

where we denote by Lip1(S2) the space of Lipschitz-continuous functions on S2

with Lipschitz-constant not larger than 1.

Regularization. We claim that if one chooses the W1 metric for the data term, the
regularizer R should also be modified accordingly. In order to motivate this, we
consider what the intended behavior of R should be on “cartoon-like” functions
u : Ω → P(S2) that only take two different values: let

u(x) =

{
u+, x ∈ U,
u−, x ∈ Ω \ U,

(3)

for some fixed set U ⊂ Ω with smooth boundary ∂U , and u+, u− ∈ P(S2).
Assuming for a moment that u+ and u− have a density, classical vector-valued
TV assigns to such u a penalty of Hd−1(∂U) · ‖u+ − u−‖2, where the (d − 1)-
dimensional Hausdorff measure Hd−1(∂U) is the length or area of the jump set.
Similarly to the data term, we propose to replace the suboptimal 2-norm by the
Wasserstein distance, i.e., we require

R(u) = Hd−1(∂U) ·W1(u+, u−) (4)

instead. We consider the following formulation for the regularizer R.



Definition 1. For a function u : Ω → P(S2), we define

TVW1
(u) := sup

{∫
Ω

〈− div p(x, ·), ux〉 dx :

p ∈ C1
c (Ω × S2; IRd), p(x, ·) ∈ Lip1(S2; IRd)

}
,

(5)

where 〈g, µ〉 :=
∫
S2 g(z) dµ(z) whenever µ is a measure on S2 and g is a real- or

vector-valued function on S2. The divergence div p(x, ·) is understood to be taken
in the variable x only, and pointwise in the second argument.

Note that the Lipschitz constraint in (5) can be efficiently implemented as a
pointwise constraint on the norm of ∇zp(x, z). The formulation is a special case
of the one proposed in [15] in the context of approximating manifold-valued
variational problems. However, the authors did not include any precise results
about correctness in the functional-analytic setting.

We now supply the proof that this functional has the desired property (4):

Proposition 1. Assume that U is compactly contained in Ω with C2-boundary
∂U . Let u+, u− ∈ P(S2) and let u : Ω → P(S2) be defined as in (3). Then

TVW1(u) = Hd−1(∂U) ·W1(u+, u−).

Proof. Let p : Ω × S2 → IRd satisfy the constraints in (5) and denote by ν the
outer unit normal of ∂U . The set Ω is bounded, u+, u− are probability measures,
and ‖div p‖C0(Ω×S2) <∞ holds due to the regularity assumptions on p, therefore
the following integrals converge absolutely. Using Fubini’s and Gauss’s theorem,
we compute∫

Ω

〈− div p(x, ·), ux〉 dx

=

∫
S2

∫
U

− div p(x, z) dx du−(z) +

∫
S2

∫
Ω\U
−div p(x, z) dx du+(z)

Gauss
=

∫
S2

∫
∂U

p(x, z) · ν(x) dHd−1(x) d(u+ − u−)(z)

=

∫
∂U

[∫
S2

p(x, z) · ν(x) d(u+ − u−)(z)

]
dHd−1(x)

≤
∫
∂U

W1(u+, u−) dHd−1(x) = Hd−1(∂U)W1(u+, u−).

For the inequality, we used that z 7→ p(x, z) is 1-Lipschitz; therefore z 7→ p(x, z) ·
ν(x) is 1-Lipschitz as well and fulfills the constraints in the dual definition of W1

in (2). Taking the supremum over p as in (5), we arrive at

TVW1
(u) ≤ Hd−1(∂U)W1(u+, u−).

For the reverse inequality, let p̃ ∈ Lip1(S2). By the assumption on ∂U , the
unit normal field ν is continuously differentiable. Since U is also compactly



contained in Ω, there is an extension ν̃ ∈ C1
c (Ω) of ν onto all of Ω. Now p(x, z) :=

p̃(z)ν̃(x) has the properties required in (5) and hence, by the same computation
as above,

TVW1(u) ≥
∫
Ω

〈− div p(x, ·), ux〉 dx

=

∫
∂U

[∫
S2

p̃(z) d(u+ − u−)(z)

]
‖ν(x)‖22 dHd−1(x)

= Hd−1(∂U)

∫
S2

p̃(z) d(u+ − u−)(z).

Taking the supremum over all p̃ ∈ Lip1(S2) and using the characterization (2)
of W1 shows the desired reverse inequality and concludes the proof. ut

Complete W1−TVW1 Model. Given a noisy reference image f : Ω → P(S2),
we propose to solve the variational minimization problem

inf
u:Ω→P(S2)

∫
Ω

W1(fx, ux) dx+ λTVW1
(u) (6)

using the definitions of W1(·, ·) and TVW1
(u) in (2) and (5). As argued above,

this naturally penalizes jumps in u by the Wasserstein distance of the left and
right limit, correctly taking the metric structure of S2 into account both in the
data term as well as in the regularizer.

We remark that the requirement (4) does not define the regularizer uniquely.
However, as shown above, setting R = TVW1

satisfies the requirement, has a
compact representation and can be efficiently implemented using (2).

3 Numerical Scheme

We closely follow the discretization scheme in [15] in order to formulate the prob-
lem in a saddle-point form that is amenable to standard primal-dual algorithms.

Discretization. We assume a d-dimensional image domain Ω that is discretized
using n points x1, . . . , xn ∈ Ω. Differentiation in Ω is done on a staggered grid
with Neumann boundary conditions such that the dual operator to the differen-
tial operator D is the negative divergence with vanishing boundary values.

The model is not only valid for the manifold S2, therefore we state the set-
ting in full generality: We assume that the image takes values in the space of
probability measures on an s-dimensional manifold M that is discretized using
l points z1, . . . , zl ∈ M. If u, v ∈ IRn,l are the discretizations of functions on
Ω ×M, i. e. uik ≈ u(xi, zk), we define an L2-inner product by

〈u, v〉b :=
∑
i,k

bku
i
kv
i
k



using the weights vector b ∈ IRl to account for the volume element at each
zk ∈M. Gradients of functions onM are defined on a staggered grid of m points
y1, . . . , ym ∈ M, such that each yj has r neighboring points Nj ⊂ {1, . . . , l},
#Nj = r, among the zk so that the gradient g ∈ IRm,s of a function p ∈ IRl (i. e.
pk ≈ p(zk)) on the manifold M is encoded by

Ajgj = BjP jp, for each j ∈ {1, . . . ,m}.

The matrices P j ∈ {0, 1}r,l, Aj ∈ IRs,s and Bj ∈ IRs,r tie gj to the gradient of
p on the manifold M; for details we refer the reader to [15].

Discretized W1 − TVW1 Model. Based on the above discretization, we can
formulate saddle point forms for (6) and (1) that allow to apply a primal-dual
first-order method such as [3]. In the following, the input or reference image is
given by f ∈ IRl,n and the dimensions of the primal and dual variables are

u ∈ IRl,n, p ∈ IRl,d,n, g ∈ IRn,m,s,d, p0 ∈ IRl,n, g0 ∈ IRn,m,s.

Note that, for min{d, s} ≤ 2 (in particular for M = S2), explicit formulas
for the orthogonal projections on the spectral norm balls are available. These
projections appear in the proximal steps due to the spectral norm constraints
on g (denoted by ‖ · ‖σ).

Saddle-Point Form with Wasserstein Data Term. Using a W1 data term, the
problem’s saddle point form reads

min
u

max
p,g

W1(u, f) + 〈Du, p〉b

s.t. ui ≥ 0, 〈ui, b〉 = 1, Ajgijt = BjP jpit, ‖gij‖σ ≤ λ ∀i, j, t

or, again applying the Kantorovich-Rubinstein duality (2) to the data term,

min
u

max
p,g,p0,g0

〈u− f, p0〉b + 〈Du, p〉b

s.t. ui ≥ 0, 〈ui, b〉 = 1 ∀i,
Ajgijt = BjP jpit, ‖gij‖σ ≤ λ ∀i, j, t,
Ajgij0 = BjP jpi0, ‖g

ij
0 ‖2 ≤ 1 ∀i, j.

The equality constraints can be included into the objective function by intro-
ducing suitable Lagrange multipliers.

Saddle Point Form with Quadratic Data Term. For comparison, we also imple-
mented the quadratic model (1) using TV = TVW1 . The quadratic data term
can be implemented using the saddle point form

min
u

max
p,g

〈u− f, u− f〉b + 〈Du, p〉b

s.t. ui ≥ 0, 〈ui, b〉 = 1, Ajgijt = BjP jpit, ‖gij‖σ ≤ λ ∀i, j, t.
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Fig. 2: (a) is a 1D image of synthetic unimodal ODFs where the main diffusion
direction’s angle varies linearly from left to right. This image is strongly regu-
larized (large λ) using (b) an L2 data term (λ = 2) and (c) a W1 data term
(λ = 10). The L2 data term prefers a blurred mixture of diffusion directions
whereas W1 concentrates the mass close to the median diffusion direction.

4 Experimental Results

We implemented our method in Python 3.5 using NumPy 1.11, PyCUDA 2016.1.2
and CUDA 7.5. The examples were computed on an Intel Xeon X5670 2.93GHz
with 24 GB of memory and an NVIDIA GeForce GTX 480 graphics card with 1,5
GB of dedicated video memory. For each step in the primal-dual algorithm, a set
of kernels was launched on the GPU, while the primal-dual gap was computed
on the CPU.

Synthetic 1D Images. The synthetic images were generated using the Multi-
Tensor Simulation framework dipy.sims.voxel included in the Dipy project [9].
The choice of generation parameters as well as the addition of complex Gaussian
noise follow the description in [7].

Unimodals. A first impression of the different behavior of the W1 data term
compared to a standard L2 data term is given in Fig. 2, where very high reg-
ularization parameters λ force the model to produce constant images. The lin-
early changing unimodal orientation distribution is blurred by the L2 data term,
whereas the W1 data term tends to concentrate the mass close to the median
diffusion direction. Here, the ODF is called unimodal if there is one main diffu-
sion direction even though, due to the symmetric structure of diffusion ODFs,
an unimodal ODF has two modes (on opposite sites of the sphere).

A similar experiment (Fig. 3) demonstrates that the behavior of the W1

model is preferable if the main diffusion directions of the unimodal ODFs under-
lie random distortion (noise). The ground truth consists of 12 identical unimodal
ODFs, while the main diffusion directions have been randomly distorted in the
input image following a Gaussian distribution on the angle with 20◦ standard
deviation.

The regularization parameter λ was chosen so that the W1 distance to the
ground truth is minimized. Both models reduce the distortion significantly:
While the distances of the noisy image to the ground truth are 1.368 with respect
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Fig. 3: Synthetic 1D Q-ball image of unimodal ODFs. (a) ground truth with
constant modes and (b) noisy image with distorted diffusion directions. The
noisy image was denoised using (c) a quadratic data term (λ = 0.85) and (d) the
Wasserstein-1 data term (λ = 2.5). The directional noise causes blurring in the
L2 case, whereas the W1 data term keeps the mass concentrated: The entropy
of the original data is 2.267 compared to 2.336 (L2) and 2.279 (W1).

to W1, the distances of the regularized images are 0.727 (W1 model) and 0.621
(L2 model).

However, using the W1 models results in improved tightness (lower entropy)
of the ODFs, which is particularly promising in the context of fiber tractography,
where a precise localization of the main diffusion directions is necessary for
accurately tracing fine structures.

Bimodals and Edge Preservation. The next example (Fig. 4) is inspired by [26],
where a similar 1D image is used for demonstration of edge preservation proper-
ties. Six voxels of the ground truth are chosen to be bimodal ODFs with the two
main diffusion directions separated by 55◦. The remaining six voxels are almost
uniform ODFs (unimodal ODFs with almost uniform distribution of eigenvalues
corresponding to the main diffusion directions). As both models use the pro-
posed TVW1

regularizer, the edge is preserved and a piecewise constant image is
produced in both cases.

However, just as classical ROF models tend to reduce jump sizes across edges,
and lose contrast, the result produced using the L2 model exhibits bimodal ODFs
on both sides of the jump and the tightness of the original bimodals gets lost.

Real-World Example – Human Brain HARDI Data. In order to demon-
strate the applicability of our method to real-world problems, we applied it
to a 2D slice from the human brain HARDI data set from [21] that contains
part of the corpus callosum. To fit the HARDI data to the Q-ball ODF model,
we used a spherical harmonic reconstruction model from [1] as implemented in
Dipy’s CsaOdfModel. We added Gaussian noise following the process in [7]. For
a 2D slice of 30x30 voxels, run times are appx. 28 minutes for the Wasserstein
data term and 16 minutes for the quadratic data term. That’s after the relative
primal-dual gap is brought down to values in the order of 10−6 (deviation from
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Fig. 4: Synthetic 1D Q-ball image of bimodal and almost uniform ODFs:
The (a) original data was denoised (b)–(f) using an L2 data term (left)
and a W1 data term (right) for increasing values of λ (on the left-
hand side λ = 0.05, 0.55, 1.05, 1.55, 2.05 and on the right-hand side λ =
0.05, 1.35, 2.65, 3.95, 5.25). Both models preserve the edge. However, as is known
from classical ROF models, the L2 data term produces a gradual transition –
i. e., contrast loss – towards the constant image, while the W1 data term exhibits
a sudden phase transition.

global minimum less than 0.001 %). The regularization parameter λ was manu-
ally chosen based on visual inspection. However, optimization of λ with respect
to the distance from the ground truth leads to similar results.

Fig. 1 shows that the W1 model succeeds at reducing the overall noise level.
A comparison between the results produced by the L2 and the W1 model is
shown in Fig. 5. While both models successfully reduce the noise, an overall
blurring effect is more evident in the L2 case – in line with our observations on
the synthetic images discussed above.

5 Conclusion

We proposed a combined W1–TVW1 variational model for restoring Q-ball data
with values on the unit sphere S2, which properly takes the metric on S2 into
account, both in the data term as well as in the regularizer.

We demonstrated that our proposed model exhibits classical properties of
TV regularization schemes, including preservation of edges and formation of
piecewise constant regions. In connection with an L2 data term, basic properties
of ROF models, such as a loss of contrast, can be replicated. The proposed
combined W1–TVW1 model is more robust, respects the metric on the original
range S2 and better preserves unimodal distributions.

The model does not require symmetry of Q-ball data on the sphere, and
therefore could be easily adapted to novel asymmetric ODF approaches [8, 20].
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Fig. 5: Q-ball image of the corpus callosum, reconstructed from HARDI data
of the human brain [21], with added white Gaussian noise and our TV-based
reconstruction using (a) a quadratic data term (λ = 0.11) and (b) a Wasserstein-
1 data term (λ = 0.9). The noise is reduced perceivably in both cases, but the
quadratic data term tends to blur the diffusion direction (loss of contrast).

Moreover, the approach is easily extendable to images with values in the proba-
bility space over a different manifold, or even a metric space, as they appear for
example in statistical models of computer vision [22].

Despite a relatively efficient implementation using standard primal-dual al-
gorithms, numerical performance is still limited by the high dimensionality of
the problem even for small images. Developing specialized numerical methods, as
well as a quantitative evaluation as a preprocessing step for fiber tractography,
is subject to further work.
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