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Motivation
Why do we need lung registration?

Two main lung pathologies are:

1. Lung cancer, world-wide data [5]:
• 1.825M incidences and 1.59M deaths per year (mortality rate of 87%)
• Reason for 19.4% of all cancer-related deaths

2. Chronic obstructive pulmonary disease (COPD), US-wide data [13]:
• 24M individuals affected by COPD
• COPD is fourth leading cause of death

Possible applications of lung registration in diagnosis and therapy:
• Improved accuracy of radiotherapy [12]
• Alignment of follow-up data [12]
• Classiöcation of COPD phenotypes [6]
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Challenges
Why is lung registration difficult?

• Large motion during respiration (doubling in volume is possible) [4]
• Salient structures like vessels and bronchi are small and repetitive
• Changing Hounsöeld units due to different densities, cf. ögure below
• Low-dose acquisition results in deteriorated image quality [13]
• Movement within the lungs is smooth [12], i.e. diffeomorphic motion
model is reasonable, but sliding motion occurs at, e.g., interface of lungs
and ribcage [14]

...

Expiration

..

Inspiration

..

Movie with sagittal
views of 4DCT data,
image courtesy:
Richard Castillo
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LDDMM Background

Original Large Deformation Diffeomorphic Metric Mappings (LDDMM)
model [1]: Givenmoving image I0 and öxed image I1, önd an optimal veloc-
ity öeld v̂, that determines a diffeomorphic transformation ϕ̂, which aligns
I0 and I1; v̂ : Rd × [0, 1] → Rd is the minimizer of the following problem:

v̂ = argmin
v : ϕ̇t=vt(ϕt)

(∫ 1

0

∥vt∥2V dt +
1

σ2

∥∥I0 ◦ ϕ−1
1 − I1

∥∥2

L2

)
(1)

vt(·) := v(·, t), ∥vt∥V := ∥Lvt∥L2, Lvt := (γ − α∆)vt; α, γ, σ > 0

• Suitable model for registration of masked lung CTs
• Augmentation for sliding motion possible [14]

LDDMMasoptimal controlproblemusing advection equation for evolution
of images [7]:

v̂ = argmin
v

(∫ 1

0

∥vt∥2V dt +
1

σ2
∥I(1)− I1∥2L2

)
(2)

s.t. ∂tI + (∇xI)
⊤v = 0, I(0) = I0, I : Rd × [0, 1] → R

• LDDMM is already successfully used for lung CT registration, but is com-
putationally demanding [16]

• Memory requirements and runtime might prohibit use on standard PCs,
e.g. in [16] run times of up to three hours are reported for moderately
sized data of 256×192× 180 voxels using 32 CPUs and 128 GB RAM
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Contributions

• Weexploit the inherent smoothness of v by choosing a coarser discretiza-
tion than given by image resolution

• Therefore, memory consumption and runtime are substantially reduced
• Registration accuracy is conserved by proper interpolation and compu-
tation of the distance measure and its derivative on full resolution [9]

• In particular, we use the well-suited Normalized Gradient Fields [11]:
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Proposed LDDMM scheme

• Integrate theNormalizedGradient Fields (NGF) distancemeasure [11, 15]:

D(φ; I0, I1) :=

∫
Ω

1−
⟨∇I0(φ(x)),∇I1(x)⟩2η

∥∇I0(φ(x))∥2η∥∇I1(x)∥2η
dx, (3)

⟨u, v⟩η := η2 +

d∑
i=1

uivi, ∥u∥2η := ⟨u, u⟩η, η > 0

• Adapting (2) to the transportation of maps yields the constraint

∂tφ + Jφv = 0, φ(x, 0) = x, (4)

where Jφ denotes the spatial Jacobian of φ
• Full model (φ1 := ϕ−1

1 ):

v̂ = argmin
v

(∫ 1

0

∥vt∥2V dt +
1

σ2
D(φ1; I0, I1)

)
s.t. (4) (5)

• Optimality conditions of Lagrange function [7] withλ : Rd× [0, 1] → Rd:

L†Lvt + J⊤
φ λt = 0 , (6)

∂tφ + Jφv = 0, φ(x, 0) = x, (7)

∂tλ + Jλv + div(v)λ = 0, λ(x, 1) = − 1

σ2
∇φD(φ1(x); I0, I1) (8)
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Discretization and Numerical Optimization

• Use Discretize-Optimize approach, i.e. discretize objective and minimize
it with numerical optimization [11]

• The discretized versions of (7) and (8) are solved with 4th order Runge-
Kutta

• Problem (5) is solved numerically with a multi-level scheme on F levels
• Discrete images: I0, I1 ∈ Rm1×m2×m3,
• Discretize v, φ on a nodal grid with n̄ = n1n2n3 points andn4 time steps:
v,φ ∈ R3n̄×n4, use nj ≪ mj, j = 1, 2, 3 to reduce memory consump-
tion and speed up computations

.......................................................................................................................................................................................................................

Visualization of image (red, small dots) and velocity grid (blue, large dots)

• Use trilinear interpolation matrix P ∈ R3m̄×3n̄, m̄ := m1m2m3, to pro-
longate from coarse grid to image grid and P⊤ for reverse conversion

• P is not stored [9] and only used for notational convenience
• Apply smoothing kernel (L⊤L)−1 to (6):

p = v + (L⊤L)−1
(
J⊤
φλ

)
(9)

• Employ (9) as gradient for numerical optimization with limited memory
BFGS and Armijo line search; use CG to solve the linear equation system
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Material: DIR-Lab Lung CT data

• Registration of the publicly available DIR-Lab 4DCT [2] and COPD
datasets [4], lung segmentations obtained with method [10]

• 20 inhale/exhale scan pairs and 300 landmarks per scan, that were anno-
tated by medical experts

• Number of voxels in axial plane ranges from 256×256 to 512×512
• Slice thickness of 2.5mm results in ca. 120 slices per case
• Distances of landmarks after registration are used for accuracy evaluation
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Experiment 1: Inøuence of Velocity Grid Size

Inøuence of the velocity grid resolution on registration accuracy, memory
consumption and runtime was investigated. We compared n̄ = 333, 653,
1293 and registered inhale and exhale scans of 4DCT datasets. Used affine
pre-registration and α = 200, γ = 1, η = 100, σ = 0.01, F = 4.
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Average landmark distance in mm

• Average landmark distances: 333: 1.07mm, 653: 1.02mm, 1293: 1.26mm
• Accuracy of 333 and 1293 grid points is signiöcantly worse than for 653

• Memory requirements and runtime are moderate for 653
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Experiment 2: Comparison to State-of-the-Art

Weemployed a keypoint-based [8] thin-plate spline pre-registration and re-
moved keypoints that produced singularities in the deformation öeld. Pa-
rameters were öxed to α = 85, γ = 1, η = 100, σ = 0.1 and F = 5.
Motivated by the örst experiment, we used n̄ =653 on the önest level.

Mean landmark distance in mm
Case Initial MILO [3] MRF [8] NLR [15] Pre-Reg. proposed
COPD1 26.34 0.93 1.00 1.33 1.15 0.90
COPD2 21.79 1.77 1.62 2.34 2.18 1.55
COPD3 12.64 0.99 1.00 1.12 1.19 1.03
COPD4 29.58 1.14 1.08 1.54 1.32 0.94
COPD5 30.08 1.02 0.96 1.39 1.18 0.85
COPD6 28.46 0.99 1.01 2.08 1.27 0.94
COPD7 21.60 1.03 1.05 1.10 1.32 0.94
COPD8 26.46 1.31 1.08 1.57 1.47 1.12
COPD9 14.86 0.86 0.79 0.99 1.02 0.88
COPD10 21.81 1.23 1.18 1.42 1.51 1.17
Average 23.36 1.13 1.08 1.49 1.36 1.03
p-value 4.8·10−7 5.5·10−3 0.054 9.5·10−4 1.5·10−5 -

• The proposed method achieved the lowest average landmark errors
published on the DIR-Lab COPD dataset

• Registrations tookon average46minutes andused atmost 5.9GBof RAM
• A qualitative result is given in the following coronal overlays of öxed im-
age (orange) and transformed moving image (blue)
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Pre-Registration
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Proposed method

Aligned structures appear gray or white due to addition of RGB values.
Yellow circles highlight improvements.
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Summary and Conclusion

• Presented memory efficient LDDMM scheme that exploits smoothness
of velocity and transformation öelds

• Discretization of the velocity and transformation öelds with about one
fourth of the image resolution reduces memory requirements substan-
tially and speeds up computations whilst maintaining diffeomorphic so-
lutions and highly accurate image alignment

• Integrated NGF distance, that is well-suited for lung CT registration
• Applied the method to 20 publicly available lung CT datasets and
achieved results that outperform state-of-the-art methods
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