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Abstract. In this paper a novel Large Deformation Diffeomorphic Met-
ric Mapping (LDDMM) scheme is presented which has significantly lower
computational and memory demands than standard LDDMM but a-
chieves the same accuracy. We exploit the smoothness of velocities and
transformations by using a coarser discretization compared to the im-
age resolution. This reduces required memory and accelerates numerical
optimization as well as solution of transport equations. Accuracy is es-
sentially unchanged as the mismatch of transformed moving and fixed
image is incorporated into the model at high resolution. Reductions in
memory consumption and runtime are demonstrated for registration of
lung CT images. State-of-the-art accuracy is shown for the challenging
DIR-Lab chronic obstructive pulmonary disease (COPD) lung CT data
sets obtaining a mean landmark distance after registration of 1.03 mm
and the best average results so far.

1 Introduction

COPD is the fourth leading cause of death and 24 million people are afflicted in
the US alone [14]. Lung registration could support assessment of COPD pheno-
types as well as disease progression [6] and improved treatment of patients and
speedups in clinical workflows are expected if registration is used for follow-up
inspection and/or motion estimation in treatment planning [12, 14]. Hence, reg-
istration of inhale/exhale and longitudinal data is critical, but also challenging
due to the presence of large non-linear deformations, which should be diffeomor-
phic [12]. LDDMM can address these difficulties [2]. However, its drawbacks are
large memory use and high computational costs: e.g. run times of up to three
hours are reported in [17] for moderately sized data of 256 × 192 × 180 voxels
using 32 CPUs and 128 GB RAM. We present a new variant of LDDMM which

– has significantly lower computational and memory demands,
– employs the well-suited distance measure Normalized Gradient Fields [11],
– and is as accurate as standard LDDMM and state-of-the-art algorithms.

Lung registration faces severe challenges. Diffeomorphic modeling of large lung
motion (for inhale/exhale in the order of 50 mm [5]) is necessary [12]. Lung



volume changes are large: a doubling of lung capacity is not unusual during
inspiration [5]. Additionally, acquisitions with limited dose deteriorate CT qual-
ity [14].
Related Work: Sakamoto et al. [17] applied LDDMM in pulmonary computer-
aided diagnosis (CAD) to analyze and detect growing or shrinking nodules in
follow-up CT scans with encouraging results, but at high computational cost.
A finite dimensional Lie algebra was introduced and integrated into a geodesic
shooting approach by Zhang and Fletcher [19] to considerably speed up compu-
tations. Their experiments on 3D brain MRI data showed no loss of accuracy.
Risser et al. [15] used appropriate kernels for LDDMM to cope with sliding mo-
tion occurring at the interface between lungs and the ribcage as this motion
is not diffeomorphic. Our focus is on the registration of inner lung structures,
hence we use lung segmentations as in [16] and thereby avoid sliding issues.
Contributions: We focus on the relaxation formulation of LDDMM [2], but
the approach could easily be generalized to shooting formulations [1, 18]. Our
scheme is based on the smoothness of transformations and velocities computed
with LDDMM allowing discretizations at lower spatial resolution and consequen-
tially substantially reduced memory requirements. The image match is computed
at the original resolution thereby maintaining accurate results. Furthermore, we
employ the Normalized Gradient Fields (NGF) image similarity measure [11]
that aligns edges, e.g. vessels. We use NGF to cope with large volume changes
influencing tissue densities and thus absorption of X-rays. The resulting gray
values of the parenchyma are quite different for inhale and exhale scans. Hence,
sum of squared differences might not be an appropriate similarity measure.
Outline: In Sec. 2 the optimization problem, including the energy with NGF
distance measure, and the memory efficient implementation of LDDMM are de-
scribed. We evaluate our method on 20 3D lung CT scan pairs in Sec. 3, compare
the results to the state of the art and show that a coarser discretization of ve-
locities and transformations is sufficient for an accurate registration. In Sec. 4
results and possible extensions are discussed.

2 Methods

2.1 Continuous Model and LDDMM background

Let I0, I1 : IRd ⊃ Ω → IR denote the moving and fixed images with domain
Ω. LDDMM uses space- and time-dependent velocity (v : Ω × [0, 1]→ IRd) and
transformation (ϕ : Ω × [0, 1] → IRd) fields and seeks the minimizer (v∗, ϕ∗) of
the following energy subject to a transport constraint [2, 7]:

E(v, ϕ) :=
∫ 1

0
〈Lv(·, t), Lv(·, t)〉dt+ 1

σ2D(ϕ(·, 1); I0, I1)→ min,
s. t. ϕt + Jϕv = 0, ϕ(x, 0) = x for all x ∈ Ω, t ∈ [0, 1]

}
(1)

We denote the partial time derivative as ϕt(x, t) ∈ IRd and the Jacobian with
respect to the spatial coordinates as Jϕ(x, t) ∈ IRd×d. L is a suitable differen-
tial operator enforcing smoothness of v. In our method the Helmholtz operator



Lv := γv − α∆v with α, γ > 0 was used, which is a standard choice for LDDMM
registration, cf., e.g., [2, 7]. In all experiments we fixed γ = 1. D is a general dis-
tance measure and σ > 0 its weighting parameter. As motivated in Sec. 1 we
use the Normalized Gradient Fields (NGF) distance measure [11]. NGF was suc-
cessfully applied to lung CT registration [9, 16] in the following adaption of the
original formulation:

D(ϕ1; I0, I1) :=

∫
Ω

1−
(
〈∇I0(ϕ1(x)),∇I1(x)〉η
‖∇I0(ϕ1(x))‖η ‖∇I1(x)‖η

)2

dx , (2)

with ϕ1 := ϕ(·, 1), 〈u,v〉η := η2 +
∑d
i=1 uivi and ‖u‖2η := 〈u,u〉η for u, v ∈ IRd.

The parameter η > 0 is used to decide if a gradient is considered noise or
edge [11]. Throughout this paper η = 100 is used as proposed in [16].
Following the steps of [7] we add the transport equation constraint of (1) into the
objective functional employing Lagrange multipliers λ : Ω × [0, 1] → IRd. After
some straightforward calculations we obtain the necessary conditions as

L†Lv + J>ϕ λ = 0 , (3)

ϕt + Jϕv = 0, ϕ(x, 0) = x , (4)

λt + Jλv + div(v)λ = 0, λ(x, 1) = −(1/σ2)∇ϕD(ϕ1(x); I0, I1) (5)

for all x ∈ Ω, t ∈ [0, 1] and a differentiable D. Solving (4) means transporting
the transformation maps according to the velocities whereas solving (5) is the
flow of the image mismatch (given by the derivative of the distance measure)
backward in time, cf. [7]. As in [7] we apply the smoothing kernel (L†L)−1 before
updating the velocities in (3) to improve numerical optimization:

p := v + (L†L)−1(J>ϕ λ) (6)

2.2 Discretization and Algorithm

From now on we use d = 3. Velocities v and transformations ϕ were discretized
on a nodal grid in 4D (3D + t) [11]. The number of time points was set to
n4 = 11. The number of points in space varied during the multi-level optimiza-
tion but was chosen equal for all spatial directions, i.e. n1 = n2 = n3 . Defining
n̄ := n1n2n3 and using linear ordering in space yields arrays v, ϕ ∈ IR3n̄×n4 .
We use central differences and Neumann boundary conditions for the discretiza-
tion of div, L, L† and Jϕ. NGF and its derivative were implemented according
to [11]. Eqs. (4) and (5) were solved with a fourth order Runge-Kutta scheme.
Given images I0, I1 ∈ IRm1×m2×m3 with m̄ := m1m2m3 voxels, smoothed and

downsampled versions Ii0, I
i
1 ∈ IRmi

1×m
i
2×m

i
3 with mi

j = bmj · 2−F+ic were com-
puted for j = 1, 2, 3 and i = 1, . . . , F [11]. Problem (1) was then solved using a
coarse-to-fine resolution multi-level strategy with F ∈ IN levels.
Choosing ni = mi exceeds common memory limitations and results in an ex-
tremely expensive solution of (4) and (6). As v and ϕ are assumed to be smooth
functions it is usually not necessary to use a high resolution for v and ϕ. This



Algorithm 1: 3D multi-level LDDMM

Data: Ii0, I
i
1 ∈ IRmi

1×m
i
2×m

i
3 , i = 1, . . . , F ; α, γ, σ > 0, n ∈ IN4

Optional Data: ψ ∈ IR3n̄

Result: v,ϕ ∈ IR3n̄×n4

Initialize v ← 0 ∈ IR3n̄×n4 , ϕ:,1 ∈ IR3n̄ as regular nodal grid on Ω or ϕ:,1 ← ψ
for i ∈ {1, 2, ..., F} do

if i > 1 then
// Interpolate solution of level i− 1 to level i
v ←Prolongate(v,n); ϕ:,1 ←Prolongate(ϕ:,1,n)

while stopping criteria not satisfied do
for j ∈ {1, 2, . . . , n4 − 1} do

Compute ϕ:,j+1 from ϕ:,j and v:,j according to (4)
λ:,n4 ← −(1/σ2)∇ϕD(Pϕ:,n4 ; Ii0, I

i
1)

for k ∈ {n4 − 1, n4 − 2, . . . , 1} do
Compute λ:,k from λ:,k+1 and Pv:,k using (5). Save only P>λ.

p← v + (L>α,γLα,γ)−1
(
J>ϕ P

Tλ
)

v ← v − βHp // β is computed by line search, H by L-BFGS

nl ← 2nl − 1, l = 1, 2, 3
return v,ϕ

motivates our choice of ni < mi. Nevertheless, we use image information at the
highest resolution. Hence v and ϕ have to be prolongated to image resolution
to solve (5). This can be done gradually, i.e. for only one time point at once and
reduces memory consumption substantially. Following [9], we use a prolongation
matrix P ∈ IR3m̄×3n̄ that linearly interpolates v and ϕ on the cell-centered grid
points of the images. P is sparse but large and does not need to be kept in
memory [9]. We use matrix notation, but implemented a matrix-free operator.
After (5) is solved, the adjoint λ ∈ IR3m̄×n4 has to be brought back to grid
resolution by computation of P>λ which is then used to solve (3). A memory
efficient way to do this is storing P>λ instead of λ and doing computations
gradually again. The numerical solution of Eq. (3) to (6) is performed in the
multi-level registration described in Alg. 1. It is useful to start Alg. 1 with the
result of a pre-registration ψ ∈ IR3n̄. Given a (preferably diffeomorphic) ψ only
the initial condition of (4) has to be adapted: ϕ(·, 0) = ψ(·).
The discretized objective function was optimized with a L-BFGS approach [13]
saving the last M = 5 iterate vectors for approximation of the inverse Hessian.
The maximum number of iterations was set to kmax = 50. Additional stopping
criteria proposed in [11] were used to terminate the while loop in Alg. 1. During
the optimization an Armijo line search with parameters βk = 0.5k−1, kLS

max = 30
and c1 = 10−6 was used to guarantee a decrease of the objective function.

3 Experiments and Results

The proposed method was applied to the DIR-Lab 4DCT [4] (see Sec. 3.1) and
COPD [5] (see Sec. 3.2) data sets, as they are a well-known benchmark for



lung CT registration. In total 20 inhale/exhale scan pairs are available that
include 300 expert annotated landmarks each. The scans were masked with a
lung segmentation obtained using [10]. For all experiments a PC with 3.4 GHz
Intel i7-2600 quad-core CPU was used. We implemented Alg. 1 with Matlab and
employed C++ code for computations of D, L and P .

3.1 Experiments for varying n

Since we assume smooth velocities and transformations, we investigated the in-
fluence of a coarse grid on registration accuracy. The 4DCT data sets were
affinely pre-registered to obtain ψ and Alg. 1 was used with α = 200, σ = 0.01
and F = 4 for all registrations. Initially we set n̄ = 53, n̄ = 93 and n̄ = 173

respectively. The final number of grid points in space for the registration on full
image resolution was 333, 653 and 1293 accordingly. We compared the perfor-
mance for different n parameters using the mean distance of expert annotated
landmarks, runtime and memory consumption. See Tab. 1 for results. One-sided
paired t-tests with significance level 0.05 were used to identify improvements in
mean landmark error compared to the 653 method. Registrations were repeated
without the finest image pyramid level to see if a reduction in image data influ-
ences accuracy. Again paired t-tests were used to compare to the methods with
the same number of grid points that were registered with all levels.
Using 1293 grid points does not provide the best results, which could be explained
by the fact that the optimization is prone to local minima because more degrees
of freedom are given. This is visible for case 7, where 1293 is the fastest method
but yields the worst results. Using 653 grid points results in significantly better
accuracy compared to both 333 and 1293 although improvements with respect
to 333 are small. For memory consumption and runtime 333 is clearly the best
choice while 1293 requires most resources. However, memory requirements do
not grow with factor 8 as there is an overhead for saving images and computing
λ, therefore 653 offers the best compromise. Omitting the last image pyramid
level results in a mean memory consumption of 0.80, 1.98 and 10.91 GB for 333,
653 and 1293 grid points respectively. Using the full image data is beneficial for
the registration accuracy which is also confirmed by the significance tests.

3.2 Comparison to State-of-the-Art Algorithms

In the following experiments we used a thin-plate spline (TPS) pre-registration
with keypoints [8] to provide a very accurate initial estimate on the COPD data
sets [5]. We ensured that ψ is diffeomorphic by removal of keypoints whose set of
six nearest neighbors changes after TPS computation by more than one point,
which indicates a violation of topology preservation. This procedure reduced
the number of keypoints to approximately one quarter of the original number.
Parameters were fixed to σ = 0.1, α = 85 and F = 5. Motivated by the results
of Sec. 3.1 we used n = (65, 65, 65, 11) on the finest level. Resulting mean and
standard deviations of landmark distances and p-values of one-sided paired t-
tests are given in Tab. 2. The filtering of the keypoints results in a diffeomorphic



Table 1. Mean landmark distance per DIR-Lab 4DCT data set, necessary memory and
runtime. Rounding to the next regular grid voxel was performed prior to computing
the distance. Best values are printed bold. Significant differences to 653 are indicated
by ∗ and to the respective method with full image information by +.

Mean (mm) Mean, omitted last Memory (GB) Runtime (h:min)
image level (mm)

Case 333 653 1293 333 653 1293 333 653 1293 333 653 1293

4DCT1 0.81 0.86 0.96 1.24 1.16 1.18 0.97 2.15 11.36 0:17 0:36 0:49
4DCT2 0.80 0.79 0.92 1.04 0.87 1.68 1.12 2.30 11.52 0:20 0:32 0:53
4DCT3 0.96 0.96 1.23 1.25 1.20 2.29 1.05 2.23 11.45 0:15 0:29 0:50
4DCT4 1.37 1.23 1.45 1.59 1.44 2.70 1.01 2.19 10.45 0:10 0:25 0:41
4DCT5 1.29 1.20 1.57 1.55 1.53 2.70 1.07 2.25 10.50 0:11 0:29 0:43
4DCT6 1.05 1.03 1.04 1.41 1.20 1.18 4.50 5.67 13.93 0:56 0:55 3:43
4DCT7 1.06 0.98 1.42 1.40 1.37 1.99 4.77 5.94 14.20 1:15 1:13 0:42
4DCT8 1.23 1.13 1.41 1.38 1.32 2.15 4.50 5.67 13.93 1:01 0:55 0:54
4DCT9 1.11 1.06 1.37 1.39 1.25 1.25 4.50 5.67 13.93 0:37 0:55 1:08
4DCT10 1.00 0.98 1.19 1.25 1.23 1.21 4.23 5.40 13.66 0:57 1:05 0:44

Avg. 1.07∗ 1.02 1.26∗ 1.35+ 1.26+ 1.83+ 2.77 3.95 12.49 0:36 0:45 1:07

Initial TPS pre-registration Proposed method

Fig. 1. Overlay of a coronal slice of the fixed (blue) and (transformed) moving image
(orange) of data set 10 of the DIR-Lab COPD data [5]. Aligned structures are displayed
in gray or white due to addition of RGB values. Yellow circles highlight improvements.

pre-registration with worse mean landmark distances as visible by comparing
the columns MRF and Prereg. respectively.
We compared the proposed method to the MILO [3] and MRF [8] algorithms,
which are the two best ranked methods for registration of DIR-Lab COPD data
sets. Results of the NLR [16] algorithm are reported because it also uses the
NGF distance measure. The proposed registration achieves in most cases the
best result and performed significantly better than the pre-registration, MILO [3]
and NLR [16]. Mostly it is also better than MRF, which may have singularities
while our method is diffeomorphic. The registrations took on average 46 minutes
and used at most 5.9 GB of RAM. Fig. 1 shows an exemplary central coronal
slice of data set 10 without registration, after TPS pre-registration and after
the proposed LDDMM registration. The TPS pre-registration captures the large
motion and aligns most of the vessels. The subsequent LDDMM registration



Table 2. Mean and standard deviation of the distances of the 300 expert annotated
landmarks per DIR-Lab COPD data set. All values are given in mm. Rounding to
the next regular grid voxel was performed prior to computing the distances. Results
for state-of-the-art methods are the reported ones from [3, 8, 16]. The p-values were
computed performing paired t-tests with the hypothesis that the respective method is
better than the proposed one. Best values are printed bold.

Mean ± Standard Deviation
Case Initial MILO [3] MRF [8] NLR [16] Prereg. proposed

COPD1 26.34±11.43 0.93±0.92 1.00±0.93 1.33±1.55 1.15±1.00 0.90±0.93
COPD2 21.79± 6.47 1.77±1.92 1.62±1.78 2.34±2.88 2.18±2.10 1.56±1.67
COPD3 12.64± 6.39 0.99±0.91 1.00±1.06 1.12±1.07 1.19±1.03 1.03±0.99
COPD4 29.58±12.95 1.14±1.04 1.08±1.05 1.54±1.61 1.32±1.12 0.94±0.98
COPD5 30.08±13.36 1.02±1.23 0.96±1.13 1.39±1.38 1.18±1.21 0.85±0.90
COPD6 28.46± 9.17 0.99±1.08 1.01±1.25 2.08±3.01 1.27±1.45 0.94±1.12
COPD7 21.60± 7.74 1.03±1.08 1.05±1.07 1.10±1.28 1.32±1.45 0.94±1.25
COPD8 26.46±13.24 1.31±1.76 1.08±1.24 1.57±2.08 1.47±1.94 1.12±1.56
COPD9 14.86± 9.82 0.86±1.06 0.79±0.80 0.99±1.29 1.02±1.10 0.88±0.98
COPD10 21.81±10.51 1.23±1.27 1.18±1.31 1.42±1.44 1.51±1.39 1.17±1.28
Average 23.36±10.11 1.13±1.23 1.08±1.16 1.49±1.76 1.36±1.38 1.03±1.16
p-value 4.8 · 10−7 5.5 · 10−3 0.054 9.5 · 10−4 1.5 · 10−5 -

improves the alignment of lung boundaries and nearby vessels as well as small
vessels as highlighted by the yellow circles.

4 Discussion

In this paper a memory efficient LDDMM scheme was introduced that employs
the well-suited NGF distance measure for the registration of pulmonary CT
data. Although the method was tested only for lung CT images it is applicable
for other anatomical sites or modalities. We accomplish at least a 25-fold re-
duction of memory requirements (cf. supplementary material) compared to full
resolution LDDMM and obtain diffeomorphic mappings without impairment of
registration quality. The proposed method achieves the currently lowest average
landmark error (1.03 mm) and advances the state of the art on challenging lung
CT data [5]. A trustworthy registration is vital for clinical applications such as
COPD classification or CAD of lung nodule evolution [6, 14]. A possible exten-
sion of our method would be a lung mask similarity term as described in [16]
to improve the lung boundary alignment. Another option is the integration of
sliding motion into the model as in [15]. We also plan to submit results to the
EMPIRE10 challenge [12] for additional evaluation of our method.
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16. Rühaak, J., Heldmann, S., Kipshagen, T., Fischer, B.: Highly accurate fast lung
CT registration. In: SPIE 2013, Medical Imaging. pp. 86690Y–1–9 (2013)

17. Sakamoto, R., Mori, S., Miller, M.I., Okada, T., Togashi, K.: Detection of time-
varying structures by Large Deformation Diffeomorphic Metric Mapping to aid
reading of high-resolution CT images of the lung. PLoS ONE 9(1), 1–11 (2014)

18. Vialard, F.X., Risser, L., Rueckert, D., Cotter, C.J.: Diffeomorphic 3D image reg-
istration via geodesic shooting using an efficient adjoint calculation. IJCV 97(2),
229–241 (2012)

19. Zhang, M., Fletcher, P.T.: Finite-dimensional Lie Algebras for Fast Diffeomorphic
Image Registration. In: Ourselin, S., Alexander, D.C., Westin, C.F., Cardoso, M.J.
(eds.) IPMI 2015. LNCS, vol. 9123, pp. 249–260. Springer (2015)


