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ABSTRACT

We introduce a new highly parallel and memory efficient
deformable image registration algorithm to handle chal-
lenging clinical applications. The algorithm is based on
the normalized gradient fields (NGF) distance measure and
Gauss-Newton numerical optimization. By carefully analyz-
ing the mathematical structure of the problem, a matrix-free
Hessian-vector multiplication for NGF is derived, giving a
highly integrated formulation. Embedding the new scheme
in a full, non-linear image registration algorithm enables fast
calculations on high resolutions with dramatically reduced
memory consumption. The new approach provides linear
scalability compared with a traditional sparse-matrix-based
scheme. The algorithm is evaluated on a challenging problem
from radiotherapy, where pelvis cone-beam CT and planning
CT images are registered.

Speedups up to a factor of 149.3 for a single Hessian-
vector multiplication and of 20.3 for a complete non-linear
registration are achieved.

Index Terms— image registration, computational effi-
ciency, parallel algorithms, radiation therapy

1. INTRODUCTION

In radiotherapy, efficient and fast deformable image registra-
tion is a key requirement in many areas of application, e.g. for
exact contour propagation [1] or dose reconstruction [2]. As
often different image sources are involved, multimodal reg-
istration schemes are necessary. Additionally, high accuracy
is often needed. For example in prostate cancer treatment,
strong local variations in pelvic images require high deforma-
tion resolutions and accurate numerical schemes. However, at
these resolutions especially complex multimodal registration
schemes require high amounts of memory and parallelizabil-
ity is limited.

In this work, we present a novel formulation for a matrix-
free optimization scheme using the normalized gradient fields
distance measure (NGF) [3] which is well suited for multi-
modal registration problems. The new algorithm uses a
Gauss-Newton optimization scheme that is especially suited
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for least-squares problems [4]. This scheme features a
quadratic approximation to the Hessian at every optimiza-
tion step, allowing for fast convergence and high accuracy.
By performing a careful analysis of the Hessian matrix struc-
ture, problem-adapted formulations for NGF Hessian-vector
multiplications are derived, exploiting known problem struc-
ture. These formulations allow direct computations without
intermediate storage of sparse matrices or interdependencies,
allowing for an extremely memory efficient and fully parallel
computation. Thereby, the presented approach enables the
calculation of fine deformation resolutions in radiotherapy
settings where high accuracy is crucial.

2. RELATED WORK

Many efforts have been made to obtain fast and efficient im-
age registration algorithms and the presented approaches vary
in an extreme bandwidth. A general overview is given in [5].
While some methods focus on the application of specialized
hardware like DSPs [6, 7] or GPUs (see e.g. [8,9, 10, 11, 12]),
others are using shared-memory [13] or multi-core architec-
tures [14] to decrease algorithm runtime. Methods that in-
volve algebraic analysis of the problem structure to obtain
fast and efficient mathematical schemes have been presented
in [15, 16, 17]. While image registration with gradient based
optimization schemes has been researched in [16, 17], none
of those works has extended the derived schemes to involve
Hessian matrix multiplications for deformable registration.
The increasing complexity of those computations challenges
the presented concepts, although benefits in runtime, memory
consumption and numerical convergence can be expected [4].

3. METHOD

First the general registration framework is described. After-
wards, the problem specific, parallel and efficient computa-
tion for the NGF Hessian-vector multiplication will be de-
rived in detail.

3.1. Image registration

In image registration, the goal is to find a transformation Y,
that aligns a moving template image T'(Y) to a fixed ref-
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erence image R. In the case of deformable image registra-
tion, the transformation Y is in general considered as a three
dimensional vector field. With the framework described in
[18], using a distance measure D(T'(Y"), R) and a regularizer
S(Y), the registration problem is modeled as an optimiza-
tion problem {J(Y) := D(T(Y),R) + aS(Y)} — min,
where both images are assumed to be vectorized representa-
tions of M x N x O sized three dimensional images, yielding
Y € R3MN O-

Here, D measures the distance of the deformed template
image T(Y) € RMNO and reference image R € RMNO. Ag
Y contains a vector valued deformation for each point, the
optimization problem is highly ill posed and thus needs to be
regularized, which is achieved using the regularizer S(Y") pe-
nalizing physically implausible deformations. The parameter
a > 0 is a weighting factor that balances between image dis-
tance and deformation regularity. The evaluation of T'(Y') is
realized with trilinear interpolation.

The optimization problem is solved using derivative based
numerical optimization, where iteratively in each step £ a de-
scent search direction uy, is computed solving

—VQJk up = VJg, (1)

where V.J}, is the gradient and V2.Jj, is an approximated Hes-
sian of the objective function J at step k [4].

As described later on, the specific choices for distance
measure and regularizer lead to a registration approach that
is a least squares problem J = % 717, where 7 is a residual
term to be determined later on.

A well suited optimization method for a least squares
problem is the so-called Gauss-Newton optimization [4].
This scheme exploits the specific properties of this problem
type by calculating a quadratic approximation to the Hessian
V2J a di Td# =: H at each step, where dr is the Jacobian
of the residual function 7. This formulation discards the com-
putation of dense second order derivative parts of V2.J and
guarantees a symmetric positive semi-definite H yielding a
guaranteed descent direction uy, [4].

Commonly for solving (1), iterative solvers such as the
conjugate gradient (CG) method are used [4]. As the size of
H e R3MNOX3MNO cap pe quite large, even at low res-
olutions sparse-matrix-based approaches may require exten-
sive amounts of computation time and memory [18]. Fast
computation of (1) using the CG method heavily depends on
the computation of Hessian-vector multiplications Hz = Y.
Here, an efficient implementation can significantly increase
algorithm performance. This requires an integrated approach,
merging all the components described above to a single, par-
allelizable formula.

3.2. Problem specific calculation scheme

As has been described in Section 1, for D we use the NGF
distance measure. To ensure smooth and plausible deforma-

tions, regularization is performed by using the curvature regu-
larizer [19], which has been proven successful in a wide range
of different applications [20, 21, 22]. An efficient gradient
computation for the curvature regularizer has already been
derived in [16]. As the curvature regularizer can be inter-
preted as a quadratic function, this efficient gradient compu-
tation also represents a matrix-vector multiplication with the
Hessian and thus can directly be incorporated. The Hessian
multiplication of the NGF distance measure, however, is far
more complex and will be analyzed in detail in the following.

With |- ||c = v/(:,-) + €2, the NGF as defined in [17] can
be written as

7z MNO 2
Dran(r) = 5 (1_ ((VTi(Y),VRi>+TQ> >

[\]

IVTi(Y)[|- IV Rillo

where T, ¢ are parameters which allow for filtering of noise,
h € R is the product of grid spacings in each direction and
VT;, VR; € R? are approximations to the image gradients at
index ¢ using short finite differences as in [17].

Using these definitions and the reduction function ¢ :
RMNO s R, (r1,...,7un0) | = BSMVO(1 —2),
the NGF calculation can be formulated as a concatenation of
functions

Dngr: R¥MNO L R Y = p(r(T(Y))).

This formulation enables the computation of the NGF gra-

dient using the chain rule as VDyngr(Y) = %—f%g—g, with

ar MNOXMNO oT MNOX3MNO
57 € R and 3y € R .

Abbreviating g—; =: dr, using the quadratic Gauss-
Newton approximation yields

T
V2Dner(Y)~ H :=h STT/ derr%.

As described in detail in [16], dr has a sparse band di-
agonal matrix structure with up to seven diagonals. In
column dr; there are seven nonzero elements with offset
m € M from the main diagonal element. Using M :=
(-MN,—-M,—-1,0,+1,+M,+MN) these can be directly
computed from the input data using the matrix-free compu-
tations in [16]. This can now be used to derive a matrix-free
variant of the Hessian-vector multiplication. Let

N::{ml—i—mg‘mle/\/h mQEM}.

This set can be described as follows. Considering the i-th
column of dr, abbreviating dr; =: v;, the matrix product
drTdr consists of scalar products (v;,v;) of all combina-
tions of i,k = 1,..., MNO. As can be seen in Figure 1
and is described in [16], v; and vy exhibit the same shifted



<
m
=
=
=
+
<.

—2MN (MN) (—MN)
~MN—-M (M,MN) (=MN,—M)
~MN -1 (1,MN) (—=1,—MN)
—MN (0, MN) (=MN,0)
~MN+1 (=1,MN) (-=MN,1)
~MN+M (~M,MN) (—MN,M)
—2M (M) (—M)

~M -1 (1, M) (=M, —1)
-M (OaM) (7Ma O)
~M+1 (=1, M) (=M, 1)

-2 (1) (-1)

-1 (0,1) (—1,0)

<
<

Table 1. First column: offsets j, where (v;, v;1;) # 0; sec-
ond column: offsets of nonzero elements of v; contributing
to (v;, v;i4;); third column: offsets of nonzero elements of
v;4; contributing to (v;,v;4;). Because of symmetry, the
table shows only the first 13 indices, remaining indices are
equivalent with negative sign.

pattern of nonzero elements due to the band matrix structure
of dr with seven nonzero diagonals. Calculating the scalar
product (v;, v;4;), especially those offset indices j are of in-
terest, where (v;,v;4,) # 0. Choosing different indices j
results in a shift of the nonzero pattern by j elements. While
naive computation gives 7 - 7 = 49 possible indices j where
(vi,vi45) # 0, closer examination considering N\ yields only
25 elements, which are shown in the first column in Table 1
(because of symmetry only 13 rows are shown). Let ); be the
vector of offsets j of nonzero elements of v; contributing to
(v4, Vit ), shown in the second column in Table 1. Then, we
define v;” := v;(i + ;) as the vector of elements at indices
© + 7; (shown in Table 1, third column), with element wise
addition. A single element of dr " dr can now be written as

M oM Af G
(drTdr),,, . = twi vig;) if GN : )
LT 0 otherwise.

This means that every nonzero element in (2) is composed of
a scalar product of only two short vectors with one, two or (for
7 = 0) seven elements. This new formulation tremendously
decreases memory consumption and computational costs.
Additionally, (2) implies that a single row of dr " dr contains
at most 25 nonzero elements, and their column indices are
exactly known. Instead of naively calculating M NO scalar
products with M NO summands each for a single row of
dr T dr, only 25 scalar products with at most seven summands
each need to be considered.

Extending this formulation to include the left and right
side multiplications of g—;, we obtain a block matrix struc-
ture, where dr ' dr is weighted with combinations of all three
directional derivatives in g—}T,, see Figure 1.
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Fig. 1. Schematic view of Hessian-vector multiplication

Hz=h (%Tdr—rd’r%) x.

To compute the final Hessian-vector multiplication Hx =
Yy, using (2), in each step three elements of the result y can be
fully computed from the input data. Defining

o oT; oT;
Hl,k(lv]) = (aY > (derr)i,i‘i‘j (aYJ ) ’

with [, k € {1,2,3} and x1, X9, x5 are the spacial directions,
gives

Yo-nmnori =h Y > Hin(i,)) -1 mnotiss-
JEN k=1,2,3

Note that for each ¢, the three values for [ = 1,2,3 can be
computed in one thread and M N O threads can do these result
computations in parallel without conflicts.

4. EVALUATION

The proposed method was evaluated with two different
scopes. First, the Hessian-vector multiplication itself was
evaluated on random images of different size. Here, scal-
ability was validated by performing the same calculations
single-threaded as well as multi-threaded on a 12-core dual
CPU Intel Xeon E5645 workstation. Additionally, time and
memory consumption were compared against a standard
sparse-matrix-based approach.

Second, the whole registration algorithm was considered.
Here, a challenging registration of two pelvis datasets from
radiotherapy was computed. An intra-session cone-beam CT
was registered to a planning CT image, see Figure 2. As
generally motion in pelvis data is strongly locally varying
and many different structures have to be taken into account,
high deformation resolution is required. To be able to com-
pare the new scheme to the matrix-based approach, the im-
ages were down sampled to 128 x 128 x 81 voxels image
resolution and a multi-level scheme with 64 x 64 x 40 and
32 x 32 x 20 image resolution [18]. Deformation resolutions
were discretized on a nodal grid, see [16] for details, with
resolutions of 65 x 65 x 41 and 33 x 33 x 21.



(a) CT

(b) CBCT

(c) Diff. before registration (d) Diff. after registration

Fig. 2. Registration of three-dimensional CT and cone-beam CT images, a single axial slice is shown. Figures (a) and (b) show
the original images; (c) and (d) show the absolute difference before and after registration, respectively.

resolution ¢ tmf Mmb Mt
93 0.05 0.03 2.77 0.02
173 032 0.02 2336 0.10
253 1.13 0.03 80.09 0.32
333 2.75 0.05 191.34 0.73
413 5.00 0.08 37543 1.40
493 8.92 0.09 65072 2.39
573 14.09 0.12 1035.56 3.78
653 2090 0.14 154827 5.62
733 28.66 0.21 2207.22 17.98
813 39.82 0.28 3030.74 10.92

Table 2. Performance measurements of Hessian-vector mul-
tiplication for different deformation resolutions. Times ¢ are
given in seconds for the matrix-free (mf) and matrix-based
(mb) approach, while memory consumption m is given in
megabytes. For the matrix-based approach these values in-
clude the calculation of the matrix entries as well as the mul-
tiplication itself. For the matrix-free scheme, as described,
these steps are combined.

5. RESULTS

Evaluation of the new Hessian-vector multiplication gave
an average runtime of 9.83s running single-threaded versus
0.81s running on 12 cores (averaged over 10 executions) with
a deformation resolution of 1293. This implies a speedup
factor of 12.14 and thus perfect linear scalability. The results
of the evaluation of the Hessian-vector multiplication itself
are shown in Figure 3 and Table 2. Only resolutions up to
812 could be compared, since the matrix-based approach ex-
ceeded 32GB of RAM available on the workstation. While
the runtime of both algorithms still exhibits the same com-
plexity class, the matrix-free approach has a vastly shorter
runtime. Also, as can be seen in Table 2, the new approach
exhibits a significantly lower memory consumption.

Results of the CT to cone-beam CT registration are shown
in Figure 2. While the matrix-based approach took 2771.85s
to complete, the matrix-free scheme finished in 136.37s, re-
sulting in a speedup of the whole registration algorithm of
20.3.
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Fig. 3. Runtime of Hessian-vector multiplication depending
on the resolution of the computed deformation

6. DISCUSSION

The results have shown that by simplification of calculations
through algebraic elimination of intermediate steps using
knowledge of the problem structure, computational costs
dramatically decreased both in terms of runtime and mem-
ory consumption. The practice of on-the-fly calculations of
needed intermediate values provides full parallelizability and
results in full linear scalability for the presented Hessian-
vector multiplication. While the matrix-based approach only
worked for comparably small deformation resolutions before
exceeding available memory, the matrix-free approach can
handle resolutions well above, ultimately only limited by
runtime, not memory consumption.

The presented approach extends existing methods to
schemes with higher complexity and shows that even with
a large number of intermediate results, when using meth-
ods that involve matrices of known structure, exploiting this
structure yields great benefits. The new scheme enables the
calculation of new deformation resolutions that were not pos-
sible before due to time and especially memory constraints.
By this, the new method enables the computation of fast and
accurate results in radiotherapy problems.
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