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Patch-Based Nonlinear Image Registration for
Gigapixel Whole Slide Images

J. Lotz, J. Olesch, B. Müller, T. Polzin, P. Galuschka, J. M. Lotz, S. Heldmann, H. Laue, M.
González-Vallinas, A. Warth, B. Lahrmann, N. Grabe, O. Sedlaczek, K. Breuhahn, J. Modersitzki

Abstract—Objective: Image Registration of whole
slide histology images allows the fusion of fine-grained
information - like different immunohistochemical stains
- from neighboring tissue slides. Traditionally, pathol-
ogists fuse this information by looking subsequently
at one slide at a time. If the slides are digitized and
accurately aligned at cell-level, automatic analysis can
be used to ease the pathologist’s work. However, the
size of those images exceeds the memory capacity of
regular computers. Methods: We address the challenge
to combine a global motion model that takes the
physical cutting process of the tissue into account with
image data that is not simultaneously globally available.
Typical approaches either reduce the amount of data to
be processed or partition the data into smaller chunks
to be processed separately. Our novel method first
registers the complete images on a low resolution with
a nonlinear deformation model and later refines this
result on patches by using a second nonlinear registra-
tion on each patch. Finally the deformations computed
on all patches are combined by interpolation to form
one globally smooth nonlinear deformation. The NGF
distance measure is used to handle multi-stain images.
Results: The method is applied to ten whole slide image
pairs of human lung cancer data. The alignment of
85 corresponding structures is measured by comparing
manual segmentations from neighboring slides. Their
offset improves significantly, by at least 15 %, compared
to the low-resolution nonlinear registration. Conclu-
sion/Significance: The proposed method significantly
improves the accuracy of multi-stain registration which
allows to compare different anti-bodies at cell-level.

Keywords: computer-aided diagnosis, digital pathol-
ogy, histopathology, image registration
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I. Introduction: High resolution histological
whole slide imaging

IN cancer diagnostics and histology-related basic re-
search, much insight into molecular and cellular inter-

actions, tissue growth, and tissue organization is gained by
analyzing consecutive and differently stained histological
sections. For this procedure, a fixed tissue is transferred in
a paraffin block and cut into 2-5 µm thin slices, stained by
e.g. immunohistochemistry, and subsequently examined
by a scientist or physician using conventional or virtual
microscopy.

In order to correlate the staining intensity, staining pat-
terns, and even subcellular localization of different proteins
or antigens, co-staining is frequently required. However,
the detection of different antigens is usually difficult due to
cross-reactivity of primary and secondary antibodies used
for the staining process [1]. Adjacent serial sections can
be used to separate cross-reacting chemicals, by staining
them separately, resulting in two or more images, one for
each antibody. To recombine the information from the
separate stains, a precise, multi-modal image registration
is essential.

When dealing with histological whole slide images, an
important challenge is the size of these images. At its
maximum resolution, a whole slide image often exceeds the
size of 100,000 × 100,000 pixels. Established registration
methods cannot process data at this resolution without
being adapted for special high performance computing
hardware.

However, high power magnification and especially the
adjustment of staining information derived from different
slides are of central importance for basic research and for
medical diagnostics. For example, an integrated picture
containing morphological and partly subcellular features
(e.g., the nuclear shape) together with the expression of
specific tumor cell markers is necessary for reliable diag-
nosis of some solid tumor. Moreover, combining staining
patterns from adjacent sections may allow the mapping
of protein expression to specific cell populations in tissues
consisting of multiple cell populations.

Next to the accurate alignment of corresponding tissue
structures, the regularity and reliability of the deformation
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is crucial to the quality of a registration result. In the
process of cutting sections from a block, different artifacts
can occur [2]. Some of these deformations, such as tissue
compression, have an influence on large parts of the tissue
slide. To undo such a deformation, a model that globally
couples all parts of the tissue seems appropriate. Common
choices are diffusive [3], elastic [4] or curvature-based
deformation models [5].

The global coupling of the deformation leads to a
dilemma when facing patch-based registration methods as
the image information is not globally available at a high
resolution.

Previous work dealing with the registration of such
images focuses either on a nonlinear registration of low-
resolution images [6, 7, 8] or approaches the problem
with patch-based methods where smaller patches of the
image are registered affinely [9, 7, 10]. While being con-
siderably faster, low resolution approaches cannot take
local deformations into account. These deformations are
invisible without using the full-resolution data. Patch-
based methods that rely on a combination of affine or
rigid registrations are limited in the number of degrees
of freedom.

We present a novel method that first registers the
complete images on a low resolution and later refines this
result on patches by using a second nonlinear registration
on each patch. Finally the deformations computed on all
patches are combined by interpolation to form one globally
smooth nonlinear deformation. This approach combines
global deformation information on a coarse level with a
local correction.

We organize the rest of this paper as follows: Related
work dealing with the registration of histology images
will be discussed in Section II. We then demonstrate the
challenges a registration approach has to deal with when
it comes to histology images in Section III. The core of the
presented method is the nonlinear, variational registration
approach [11]. The relevant parts with respect to the
computational challenges on large images will be discussed
in Section IV. Our extension, a patch-based nonlinear
registration method, will be presented in Section IV-E.
We apply the new method to human lung cancer data, as
described in Section V, and present an evaluation of the
results in Section VI. In the end, we discuss merits and
shortcomings of the presented method.

II. Related work
Digital pathology is an active topic of research. Most

of the work in this field dealing with image registration
focuses on 3D reconstruction which usually includes mul-
tiple image registrations of consecutive histologic slides.
This paper focuses on the core of these methods, the
registration of two consecutive slides.

Starting back in the 90s, the first methods were es-
tablished to reconstruct digitized histological data to 3D
volumes mostly for a better anatomical understanding
of specific organs. Many papers formulate the goal to
reconstruct 2D histological images to 3D volumes and fuse

them to corresponding 3D volumes of another modality,
e.g. MRI or PET scans [12, 13], block-face images [14, 15,
16, 17] or both [18, 19]. For this aim every 2D histological
slide is aligned with a corresponding slide of the reference
volume. As the reference volumes are of limited image
resolution, the used resolutions of the histological slide
images are also low.

A different kind of method solves the problem without
a reference volume. For low resolution 3D reconstructions
from histological data, an affine or rigid registration of two
or more consecutive slides is satisfying [20, 21, 22, 16, 23,
24]. More complex deformation models allow a more ac-
curate alignment. Examples include piecewise or weighted
affine deformations [25, 10, 26], b-spline deformations [27,
6, 7], a moving least squares approach applied to SIFT
points [28] and elastic registration [29].

Today, advanced imaging technology results on the one
hand in much higher amounts of data and on the other
hand in a shift of reconstruction tasks. One example
is the growing interest in the reconstruction of global
or functional entities such as micro-vasculature or im-
munohistochemical markers [7]. The new challenge is to
reconstruct and fuse the data on a completely different
level: smaller structures and the comparison of different
functional markers across slides are of increasing interest,
resulting in the need of reconstructions ideally on the scale
of cell nuclei. For this task, affine or rigid solutions are
not sufficient. Non-linear deformations that occur in the
cutting process have to be corrected to achieve satisfying
results.

Even though the performance of the technology to
compute histological reconstructions has advanced signif-
icantly, the high amount of histological data cannot be
handled with the classical established methods on common
workstation computers. This even holds true for the data
needed to fulfill only a subset of the 3D reconstruction
task, the registration of two successive slides. There are
different approaches to address the challenge of the large
image dimensions.

In the following, we distinguish between global methods
that compute a solution based on extracted features or
another subset of the data on the one hand and those
methods that implement a divide and conquer approach on
the other. Global detection of cell nuclei is used by Weiss
et al. [30] to reduce the tissue data to nuclei densities that
can be stored efficiently due to the sparsity of the nuclei.
These densities are independent of a particular staining
and are used to compute a global deformation of whole
slide images.

Schwier et al. [8] reduce the image data to segmented
vessel structures to steer their two-step approach. First a
rigid, iterative best-fit matching of the segmented vessel
structures is calculated which is refined by an elastic
registration step on a low-resolution image. The resulting
deformation is then applied to the original slice data.

By matching SIFT features, Cardona et al. [28] register
images from transmission electron microscopy (TEM).
Patches captured from TEM are stitched in plane while
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they are reconstructed in 3D at the same time. Using SIFT
point correspondences as distance measure, they combine
rigid and nonlinear deformation components by a moving
least squares approach [31].

Instead of reducing the amount of data and possibly
losing important detail information, local methods divide
the image into smaller parts and process these parts
independently. One advantage of such an approach is that
well established registration methods can be used. One
big interest in these methods is the way the individually
computed results are combined into one final deformation.

The idea of transforming selected image regions affinely
is followed in [25]. Arsigny et al. compute a global, poly-
affine registration by combining multiple affine transfor-
mations while maintaining smoothness at the tile borders.
However, because of the simultaneous computation of mul-
tiple regions, the method is not meant to work with large
images. Using non-rectangular patches, Pitiot et al. [10]
propose a registration framework, where automatically
segmented partitions of the images are generated based on
tissue structure such as the gyri of the brain. The regions
are transformed independently by an affine registration. A
global transformation is then found by interpolating the
transformation between the registered partitions.

Closest to our new method is the work of Song et al.
[9] on three dimensional tissue reconstruction of histo-
logical sections that are differently stained. The authors
propose a tile based approach previously published by
Roberts et al. [7] that first computes a rough globally
rigid transformation which is then refined by calculating
rigid transformations on smaller patches of the image with
higher resolution. Multi-modal registration between differ-
ently stained sections is achieved by an automated content
classification. A global nonlinear deformation is computed
by interpolating between rigidly transformed points on
individual patches using b-spline transformations.

In the sectioning process, physical forces are exerted and
propagated globally through the tissue. Compared to the
above mentioned approaches we use a physically motivated
nonlinear transformation model (such as diffusive, elastic
or curvature registration) on the entire domain of the
whole slide image. In previous experiments [32], we used a
zooming strategy to compute a high resolution registration
of a successively decreasing image area. We extend this
strategy by switching completely to nonlinear registrations
and by performing multiple registrations on overlapping
image regions. The resulting deformation vector fields are
finally combined to produce one large, smooth nonlinear
deformation.

III. Computational challenges in digital
pathology

The challenges in the registration of large images be-
come apparent in the following example. To compute the
transformation y∗ that aligns two images R and T we
consider a registration framework that implements the
variational scheme [11] such as described in the pseudo-
code below:

y0 = affine_pre_registration(R, T )
J(R, T, y) = distance(R, T (y))

+ regularizer(y)

loop until stoppingCriteriaMet:
compute J(R, T, yi), ∇J(R, T, yi)
yi+1 = compute_update(J,∇J, yi)
i = i + 1

end
y∗ = yi

The details will be covered in Section IV.
The loop is usually embedded in a multi-level or coarse-

to-fine approach in order to convexify the registration
problem and to prevent the registration from converging
to a local minimum. In order to exploit the complete
image information, gray values at every pixel are accessed
multiple times during the optimization to compute the
image gradient and the distance measure. As loading this
data from the disk is slow, the images, the image gradient
and the transformation are usually kept in the computer’s
main memory.

The sizes of image and image gradient provide a lower
bound to the main memory required by the registration
algorithm. Typical whole slide images in digital pathol-
ogy are scanned with a magnification referred to as 40x
(typically 0.228 µm × 0.228 µm per pixel) and have
dimensions of 100000 × 100000 = 1010 pixels or even more.
If converted to grayscale images and stored in double
precision (64 bit / pixel = 8 byte / pixel), one such image
requires 8 · 1010 byte = 76294 MB = 74.51 GB of main
memory. Even at the slightly lower magnification of 20x
(0.455 µm × 0.455 µm per pixel), which seems sufficient
for registration purposes, one image still sums up to 18.63
GB. Considering both images and the derivative of the
template image, the total memory requirement for the
registration is at least 75 GB. Often, the deformation
information can be stored on a lower resolution, therefore
we neglect it in this calculation. Further, we do not include
any other variables such as intermediate deformed images
or other temporary computation results.

With the intended use on a regular desktop workstation
or laptop computer in mind, these requirements excess the
available resources of rarely more than 32 GB of main
memory.

This problem has been addressed by processing the
image in patches as noted in Section II. We extend this
idea and propose a novel method where a physically moti-
vated, nonlinear registration is computed first globally and
then corrected locally on each patch. After all patches are
registered, the resulting deformation fields are combined
into one smooth deformation.

IV. Methods: Nonlinear Image registration
The main methodological contribution of this paper is

in the patch-based nonlinear registration. This registration
is preceded by an initial alignment that will be discussed
first. Fig. 1 shows an overview of the different components
of the proposed automatic registration scheme.
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Fig. 1. Registration scheme for two histology whole slide images. We
focus on patch-based registration and fusion of the deformation.

A. Pre-alignment

To initialize the registration, the slices are pre-aligned
by the following steps:

1. normalize the image intensities
2. identify the foreground of the image by variance

filtering and thresholding
3. align the image by their principal axes [33]
4. refine the alignment by an affine image registration

of the masks computed in 2.) using the SSD distance
measure [11].

A similar strategy has recently been used by [6] and
others. The result of the pre-alignment is used as an initial
guess to start the actual registration.

B. Nonlinear Image Registration

The core of the patch-wise registration is the image
registration method described in [11]. We understand
image registration as the computation of a deformation
y : R2 → R2 that maps from a reference coordinate
frame, defined on a reference image R onto the coordinate
frame of the template image T . Using an efficient, matrix-
free implementation [34] of the variational approach, the
functional

J [y] = D[T,R, y] + S[y] −→
y

min

is optimized with respect to a deformation y. D and S
represent a distance measure and a regularizer.

To cope with the multimodality of differently stained
image sections, we choose the Normalized Gradient Field

(NGF) [35] distance measure

D[T,R, y] = NGF[T,R, y] =∫
Ω

1−
(

∇T (y(x))T∇R(x)

||∇T (y(x))||ε ||∇R(x)||ε

)2

dx.

where ||x||2ε = ||x||22 + ε2 to assess image similarity.
By aligning normalized image gradients, NGF not only
allows the registration of differently stained images but
also copes nicely with different staining intensities in same-
stain (monomodal) registration.

The histological cutting process exerts forces to the
tissue block that we want to model physically. As a trade-
off between accurate modeling and computation speed, we
choose a diffusive regularizer [3]

S[y] =
α

2

∫
Ω

⟨∇y(x),∇y(x)⟩ dx

which can be interpreted as a special case of the linear
elasticity [4].

C. Efficiently discretizing the deformation

We represent the deformation on the reference image’s
domain by a deformed grid y ∈ Rm×n×2 of size m × n
where

y = x + u

is a combination of a regular, cell-centered grid x =
h · [0.5, 1.5, ...,m − h/2] × h · [0.5, 1.5, ..., n − h/2] with
spacing h and a displacement u relative to the grid. By
using regularization, we can assume that the deformation
is smooth in the sense that local variations are small.
For this reason, its resolution can be much lower than
the number of pixels in the image without loosing much
information. Intermediate positions are interpolated. We
chose the deformation resolution m × n to be one to two
orders of magnitude lower (in each dimension) than the
number of pixels in the image. The low amount of data
needed to store the deformation significantly lowers the
memory requirements and runtime of the registration and
makes it possible to handle the global deformation for the
whole slide image. This is reflected in the implementation
as shown in the following paragraphs.

The image T is a representation of the underlying
image data which is obtained by linear interpolation. The
reference image R is defined on its regular pixel grid
X ∈ RM×N×2 of size M ×N(> m× n).

In this context, the expression
∑

x̂∈X in (1) is meant
as the sum over all grid points x̂ ∈ R2 of the grid X and
can be thought of as a for-loop. Furthermore, in a discrete
setting, ∇̄ is meant as a finite difference operator.
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The objective function with respect to the discretized
deformation can then be written as

min
u

J [T,R,y] = D[T,R, Py] + S[u],where

u = y − x,
D[T,R, Py] = NGF[T,R, Py]

= h2 ·
∑
x̂∈X

1−
(

∇̄T (Py[x̂])T ∇̄R(x̂)

||∇̄T (Py[x̂])||ε ||∇̄R(x̂)||ε

)2

(1)

S[u] = α

2

∑
û∈u

⟨∇̄û, ∇̄û⟩

and P is the prolongation operator which interpolates
the low resolution deformation onto the image grid X. The
square brackets in the expression y[x] denote the bilinear
interpolation of y based on the four neighboring pixels of
x on the grid of y.

D. Optimization
The optimization of the objective function is embedded

in a multi-level, coarse-to-fine approach that avoids local
minima by starting the registration with a smoothed im-
age. The image’s resolution is then subsequently increased
to account for details in the images. This method has been
described multiple times, see e.g. [11] for more details.

As optimizer, an L-BFGS [36] implementation is used
that is initialized with the analytic Hessian of the regular-
izer.

An affine pre-registration is used to compute a rough
alignment of the two images that is used as an initial guess
for the deformation y.

E. Patch based image registration
As described in Section III, it is not practical to use

the above framework to compute a registration of two
whole slide images due to the large amount of data. In
contrast to earlier patch-based linear registration methods,
our method computes the registration in two steps which
are both nonlinear and which allows a free choice of the
deformation model.

By computing a first nonlinear registration on low-
resolution data, global, large-scale deformations occurring
in the tissue are corrected. The result of this nonlinear
registration is then used as initial guess for a patch-wise
registration scheme.

1) Patchwise elastic registration: After computing the
registration on the low-resolution data, the image is parti-
tioned into patches. The patches are allowed to overlap.
A high-resolution correction of the first deformation is
computed independently on each patch by means of a
second nonlinear registration. At this high resolution,
smaller structures are visible and drive the registration
process such that local deformations of the tissue slides
are compensated. Each local registration returns a vector
field with the computed transformation.

The algorithm is described formally in the following
pseudo-code. The global domain Ω of the reference im-
age is defined as a rectangular region Ω = [ω11, ω12] ×

[ω21, ω22] ⊂ R2 in the world coordinate system of the ref-
erence object slide. The image deformation in this domain
is represented by a discrete deformation field y which is
defined as an array of dimensions m×n and is coupled to
a world matrix W . Multiplication of W with homogeneous
pixel coordinates transforms these coordinates into the
world coordinate system of Ω. Each patch is defined on
a domain Ωj,k ⊂ Ω and a deformation yj,k is computed:

compute Ωj,k, Wj,k for all patches in Ω
for j = 1:Mpatches:

for k = 1:Npatches:
yj,k = minimize J(R, T,y)|Ωj,k

end
end

This results in the computation of Mpatches · Npatches
deformations.

2) Fusion of deformations yj,k: In order to obtain a
global smooth deformation yΩ(x) on the original image
domain Ω, bilinear interpolation is used. We first consider
the one-dimensional problem of fusing the patches in one
column. The following step will be repeated for all columns
k, k = 1, ..., Npatches.

If the coordinate x in the global deformation yΩ is
only covered by one patch, say patch (j, k), the value
at this point can be obtained from the deformation yj,k
by interpolation. Note that the square brackets in the
expression y[x] again denote bilinear interpolation.

yΩ(x) = y(j,k)[W
−1
j,k WΩx]

if WΩx ∈ Ωj,k

If a point in y is covered by two patches, we interpolate
linearly and obtain yΩ(x) by

yΩ(x) = d(x) · y(j,k)[W
−1
j,k WΩx]

+ (1− d(x)) · y(j+1,k)[W
−1
j+1,kWΩx]

if WΩx ∈ Ωj,k ∩ Ωj+1,k

where d(x) = (x(1) − ω11
j+1,k)/(ω

12
j,k − ω11

j+1,k) is the
relative distance of x to the border of patch j+1, k. Note
that ω12

j,k−ω11
j+1,k > 0 because the patches are overlapping.

The global smoothness of the fused deformation, is
assured by comparing the two-norm of the differences
of the deformation vectors in the overlapping region
||y(j,k)[W−1

j,k WΩx]− y(j+1,k)[W
−1
j+1,kWΩx]||22. In the course

of the experiments, the difference between neighboring
patches was always lower than 5 %.

All patches are aligned in rows and columns such that
we can first apply the above method to fuse each column
of patches and then use the same method again on the
resulting row.

The core registration component is implemented in a
C++ library with focus on efficiency and shared-memory
parallelization [34]. The preprocessing and the patch-
based registration are assembled in the image processing
framework MeVisLab. The algorithm used to fuse the
deformation was implemented in the Julia programming
language and will be made publicly available.
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V. Application to human lung cancer data
As a proof of principle, we applied the patch-based non-

linear registration method to a clinically relevant question:
human lung cancer. Non-small cell lung cancer (NSCLC)
with its two subtypes adenocarcinoma and squamous cell
carcinoma (SCC) is the most common cause of cancer-
related death worldwide [37]. Morphological features such
as the nuclear morphology as well as the expression of
marker gene panel (e.g. cytokeratins) are informative for
the characterization of tumor cell dedifferentiation. We
therefore decided to use a primary SCC isolated from a
human lung cancer patient1. See the appendix for detailed
information about the staining process.

The algorithm was run on 10 independent slide pairs
with stains CD31 - H&E (2 pairs), H&E - Factor VIII,
Factor VIII - KL1, KL1 - CD31, CD146 - KL1 (4 pairs),
CD146 - AFOG (13 different slides in total, see Table I).
The patch size can be chosen depending on the memory
capacity of the computer at hand. We found a patch size
of 4096 × 4096 pixels to work well on a laptop computer
equipped with 16 GB of RAM and an Intel i7 processor.
Patches were overlapping by 20 % on each border. The
number of patches per image depend on the image’s size
at the desired magnification level. To trade-of visible detail
and computation time, we choose a magnification of 20x
(0.455 µm × 0.455 µm per pixel) for all images. This
results in a number of patches between 3 × 7 = 21 and 13
× 17 = 221 patches per image. See Table I for an overview
of the data used for the evaluation.

The NGF distance measure was parametrized with ε =
10000, the regularization parameter was set to α = 0.1.

VI. Validation
The evaluation of the accuracy of a registration in

general is a difficult task and it is even more difficult
if no ground truth or gold standard is available. In ap-
plication to histology data, such as for example in 3D
reconstruction, an exact match of corresponding structures
is usually not even desired, as it would annihilate the
structural differences present in two neighboring slides and
thus destroy the three-dimensional structure. In the case
of virtual double staining, three-dimensional structure is
not of primary interest, still, an objective ground truth
is not available. In [24], this problem is addressed by
comparing automatically detected nuclei-landmarks. How-
ever, detection of such nuclei correspondences is difficult
in multi-stain data. Accepting a possible bias in favor of an
intensity-based registration, we chose to manually segment
larger structures that are identifiable in both slides.

The accuracy of the registration is evaluated by comput-
ing the differences of manual segmentations of correspond-
ing structures after registration. A similar evaluation has

1Tissue samples were provided by the tissue bank of the National
Center of Tumor Diseases (NCT, Heidelberg, Germany) in accor-
dance with the regulations of the tissue bank and the approval of the
Ethics Committee of the Medical Faculty of Heidelberg University.
The experiments were ethically approved by the “Ethikkommission
der Medizinischen Fakultät der Universität Heidelberg” with the
approval number S-249/2010 and 207/2005.

TABLE I
Overview of the image data used for evaluation. The

algorithm has been evaluated on ten slide pairs and six
different stains. All slides were registered with the spatial

resolution of 0.455 µm × 0.455 µm per pixel. A plus (+)
denotes that the image resolution is given after

downsampling to 0.455 µm by a factor of 2 in each dimension.

dataset ID stainings image dimensions # patches

L0-1 CD31 - H&E R: 55680 × 46592 + 63
T: 59520 × 45568

L0-2 H&E - F. VIII R: 59520 × 45568 198
T: 55552 × 46720 +

L0-3 F. VIII - KL1 R: 55552 × 46720 + 221
T: 57536 × 44672 +

L0-4 KL1 - CD31 R: 57536 × 44672 + 206
T: 55552 × 51982 +

L0-5 CD31 - H&E R: 55552 × 51982 + 209
T: 56580 × 46592

L1-1 CD146 - KL1 R: 35712 × 29344 + 28
T: 31744 × 24960 +

L1-2 KL1 - CD146 R: 31744 × 24960 + 21
T: 35712 × 31744 +

L1-3 CD146 - KL1 R: 35712 × 31744 + 35
T: 23558 × 17280 +

L1-4 KL1 - CD146 R: 23558 × 17280 + 28
T: 23808 × 17280 +

K1-1 CD146 - AFOG R: 43648 × 43136 + 49
T: 41664 × 40192 +

inter-observer error registration error

Fig. 2. LEFT: Two independent annotations of the same structure
with representative inaccuracies, dmax = 11.4 µm, davg = 1.8 µm.
RIGHT: Registration result, template image with transformed con-
tour from reference image, dmax = 10.1 µm, davg = 2.5 µm. The
black bar has a length of 200 µm.

been used in [9]. In each slide pair, 5-12 structures were
segmented manually without knowledge of the registration
result. Each segmentation is represented by approximately
200-400 points.

For each two segmentations, represented by point sets
A = {a1, ..., aN} and B = {b1, ..., bM}, the maximum dmax
and mean offset davg between the corresponding structures
was computed with

dmax = max
{

max
a∈A

min
b∈B

∥a− b∥2 , max
b∈B

min
a∈A

∥b− a∥2

}
and

davg = max
{

avg
a∈A

min
b∈B

∥a− b∥2 , avg
b∈B

min
a∈A

∥b− a∥2

}
.

The maximum distance is known as the discrete Haus-
dorff distance [38] and has been previously used to evaluate
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histology registrations [9]. The mean distance between the
annotations is less sensitive towards outliers in the manual
annotations and is therefore included in the validation.

To estimate the inter-observer error while drawing the
segmentations, 12 annotations of one slide have been
drawn twice. The measured values for maximum and
mean distance between the segmentations is avg(dmax) =
15.1±11.9 µm and avg(davg) = 2.3±0.7 µm which serves
as an approximation of the lowest measurable registration
error. Fig. 2 shows one of these segmentations (left) and
also a pair of segmentations after registration (right).

Distances were computed after PCA-pre-alignment, af-
ter low-resolution nonlinear registration and after the
patch-based registration. The results for each slide pair
are reported in Table II. The results show that the non-
linear pre-registration is an efficient method to obtain a
relatively accurate result if processing time is the priority.
However, after the additional correction using the patch-
based method, the distances between the structures are
lower in all cases. The overall reduction is 15 % for the
Hausdorff distance and 36 % for the mean segmentation
distance. The final registration error is in the order of
magnitude of the accuracy of the manual segmentations.

A one-sided, paired t-test was computed with the null-
hypothesis that the new method is not better than the
coarse-level registration. The hypothesis was rejected,
both improvements are statistically significant (p<0.025).
As two metrics were used to compare the registration
accuracy, the significance level was adjusted using the
Bonferroni correction.

The additional quality becomes also apparent if the
results are evaluated visually. One example is shown in
Fig. 3, where the alignment of the structures using the
patch-based method is almost at cell-level accuracy while
a significantly larger registration error is visible in the
low-resolution registration. See the attached movie for an
illustration of the virtual double staining process based on
the registration result.

Comparing the registration accuracy to other methods
such as [9, 7, 10] is difficult due to the lack of a common
benchmark and freely available data. This remains true,
even in the cases where a comparable error measure has
been used. While the registration error shown above seems
to be lower than in the results reported by [9], tissue
properties such as slice thickness and tissue deformations
have a big influence on the quality of the registration
and a fair comparison is not possible. To facilitate future
comparisons, the data and the segmentations used for the
evaluation in this paper have been made available2.

The present implementation is meant as a proof of
concept and has not been optimized for performance. Nat-
urally, the large amount of data in the whole slide images
increases the computation time. The average runtime of
the algorithm is 49 s for the nonlinear pre-registration (ex-
clusive of pre-alignment) and between 22 min (24 patches)
and 288 min (206 patches) for the patch-based correction.

2http://s.fhg.de/histo-registration-data

Fig. 3. Comparison of low-resolution (LEFT) and patch-based
(RIGHT) registration results on tissue stained with H&E and CD31.
Smoother structure correspondence is seen in the results generated
with the new method.

TABLE II
Maximum segmentation offset (discrete Hausdorff distance,

top) and Mean segmentation offset (bottom) after
PCA-based pre-alignment, after low-resolution nonlinear

registration and after patch-based registration on 10
evaluated slide pairs.

Maximum segmentation offset dmax
(discrete Hausdorff distance)

dataset ID pre low patch
(# segmentations) aligned resolution based

L0-1 (5) 126.4 µm 21.1 µm 15.9 µm
L0-2 (6) 178.5 µm 20.8 µm 12.6 µm
L0-3 (6) 126.4 µm 18.6 µm 11.0 µm
L0-4 (6) 186.1 µm 21.0 µm 13.0 µm
L0-5 (6) 543.8 µm 22.8 µm 12.7 µm
L1-1 (12) 44.7 µm 18.7 µm 16.4 µm
L1-2 (11) 42.2 µm 18.6 µm 18.0 µm
L1-3 (11) 64.3 µm 19.9 µm 19.1 µm
L1-4 (10) 94.4 µm 35.2 µm 33.6 µm
K1-1 (12) 39.0 µm 26.8 µm 26.4 µm
average (85) 122 µm 22.7 µm 19.3 µm

Mean segmentation offset davg

dataset ID pre low patch
(# segmentations) aligned resolution based

L0-1 (5) 47.1 µm 8.7 µm 3.4 µm
L0-2 (6) 118.4 µm 9.1 µm 4.9 µm
L0-3 (6) 47.1 µm 6.3 µm 3.6 µm
L0-4 (6) 129.4 µm 7.8 µm 3.5 µm
L0-5 (6) 455.8 µm 10.7 µm 3.4 µm
L1-1 (12) 15.4 µm 4.9 µm 3.6 µm
L1-2 (11) 19.1 µm 4.1 µm 3.5 µm
L1-3 (11) 26.0 µm 5.2 µm 3.6 µm
L1-4 (10) 49.3 µm 4.8 µm 3.5 µm
K1-1 (12) 14.6 µm 5.8 µm 5.8 µm
average (85) 79.0 µm 6.1 µm 3.9 µm

The fusion of the deformation of 206 patches is computed
in less than 30 s.

VII. Conclusion
In registration of histology data, image size is an im-

portant issue as one slide can have an amount of data
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surpassing the equivalent of 30 CT images. When deal-
ing with nonlinear registration, a global deformation is
modeled and the deformation in one point of the image
domain has a global influence on the image. This leads
to the dilemma where a global deformation needs to be
computed but the data cannot be handled globally at the
necessary resolution.

We propose a two-stage solution to this problem. First
a low-resolution global nonlinear registration is computed
that accounts for the low-frequency, global deformation
of the tissue. This registration is later corrected for the
high-frequency, local parts of the deformation which are
invisible at low resolution representations of the images.
We chose a simple approach computing the registration
independently for each patch. This approach already re-
sults in a significant improvement compared to the low-
resolution registration. One downside is the significantly
longer runtime which is unavoidable due to the larger
amount of data that is processed. However, the method
has the potential to be easily parallelization on multiple
machines as no communication between the processes that
align the patches is necessary. An interesting extension of
the method is in the use of the information from those
patches that are already computed when computing the
high-resolution patches. This however, poses new ques-
tions on the order in which patches should be computed
and is postponed to future work.

Attached multimedia file
As a proof of concept, the attached movie3 demonstrates

the virtual double staining using the proposed patch-based
registration method. The initially shown AFOG stain is
registered to a slide stained with CD146. Stained epithelial
structures are highlighted in orange and transfered to the
AFOG stain where the two stains can now be analyzed
simultaneously.
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Appendix
Histology Staining Protocol
In brief, after fixation of a tissue slice (about 7 cm ×

5 cm × 0.5 cm) in 4 % buffered formalin over night, the
tissue was cut in smaller pieces (about 1 cm × 1 cm),

3The movie is also available here: http://s.fhg.de/rg-dbl-stn

transferred in paraffin, and systematically cut in 1-2 µm
thick sections using a conventional microtome. After-
wards, five consecutive sections were stained using hema-
toxylin/eosin (H&E) and acid fuchsin orange G (AFOG)
standard protocols. In addition, the following antibodies
were used for epitope-specific stains: anti-CD31/PECAM1
(clone MEC13.3, BD Biosciences, Heidelberg, Germany),
anti-CD146/MCAM (polyclonal, Atlas Antibodies, Stock-
holm, Sweden), Factor VIII light chain antibody (clone
H-100, Santa Cruz Biotechnology, Heidelberg, Germany,
and an anti-pan cytokeratin antibody (clone KL1, Ab-
cam, Cambridge, UK). Staining was performed using the
Dako Autostainer (Hamburg, Germany) and the following
protocol: tissue slides were air-dried in an incubator at
42° C over night and deparaffinized in xylene (2 × 10
min). After rehydration in graded ethanol, the slides were
pretreated in 0.01 M sodium citrate (pH 6.0) in a pressure
cooker for 10 min. Afterwards, primary antibodies in
PBS/Tween were added for 30 min at room temperature
and slides were washed with PBS/Tween for 5 min before
the secondary antibody was applied for 20 min (1:1.000 in
PBS/Tween). The samples were then incubated with 1 %
hydrogen peroxide diluted in PBS/Tween (5 min). After
signal detection using amino-ethyl-carbazol (AEC, 2 × 7
min) nuclei were stained using haematoxylin.
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