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Abstract. We present a CUDA implementation of a complete registra-
tion algorithm, which is capable of aligning two multimodal images, us-
ing affine linear transformations and normalized gradient fields. Through
the extensive use of different memory types, well handled thread man-
agement and efficient hardware interpolation we gained fast executing
code. Contrary to the common technique of reducing kernel calls, we
significantly increased performance by rearranging a single kernel into
multiple smaller ones. Our GPU implementation achieved a speedup of
up to 11 compared to parallelized CPU code. Matching two 512 × 512
pixel images is performed in 37 milliseconds, thus making state-of-the-art
multimodal image registration available in real time scenarios.
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1 Introduction

Image registration is an important task in various areas of applications including
medical image computing, see e.g. [8, 10] and the references therein. Roughly
speaking, the objective of image registration is to automatically establish cor-
respondences of structures that are measured in different poses, perspectives or
modalities, see e.g. [3, 19]. This objective is achieved by transforming one image
(the template) to another image (the reference). Determining the appropriate
class of transformations is generally a difficult task [23]. The class of affine linear
transformations, which includes rigid transformations, is important for numer-
ous applications and is used as a pre-processing step in almost all medical image
registrations [11]. Furthermore, rigid transformations are broadly established in
clinical practice as they preserve geometry and can be performed in comparably
short time.
Following [11], an optimization framework can be used to formalize the regis-
tration problem mathematically. Here, the transformation is characterized as a
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minimizer of a carefully chosen distance measure D between the reference and
transformed template. In particular in a multimodal setting, the choice of D
is non-trivial. Mutual Information (MI) [20, 2] is widely used but results in a
highly non-convex optimization problem [7]. The Normalized Gradient Fields
(NGF) distance measure proposed by Haber and Modersitzki [7] provides a fair
compromise between flexibility with respect to modalities and convexity. The
numerical computation of a solution of the registration problem, i.e. minimiz-
ing the distance measure, can be achieved by numerical optimization. As image
registration can be a time consuming task, speeding up the computation is an
ongoing effort [18]. Clinical applications like image guided surgery can greatly
benefit from accelerating registration algorithms [14].
The Graphics Processing Unit (GPU) is well suited for speeding up problems
where the same program is executed on many data elements in parallel [13]. The
growing capabilities and use of GPUs in a scientific environment is summarized
in [15]. The authors state that current GPUs are highly parallel programmable
processors that outpace their CPU counterpart and are therefore an interest-
ing choice to accelerate algorithms. Many research groups implemented different
parts of a registration algorithm on the GPU using NVIDIAs Compute Unified
Device Architecture (CUDA) [5]. For instance, in [9] a statistical parametric
mapping system was accelerated by parallelizing the computation of the rigid
transformation, bilinear interpolation and joint histogram on the GPU, achiev-
ing a 14-fold speedup compared to a single-threaded CPU version. Deformable
image registration was accelerated resulting in a 55-fold speedup compared to
single-threaded CPU code in [12]. To gain this performance, the authors point
out the importance of memory coalescing and low-level implementation. Com-
parable speedups were generated in [17] by running MI on the GPU.
In this paper, we present a CUDA implementation of an affine linear registration
algorithm using the NGF distance measure. We chose CUDA due to the fact that
it is steadily updated, well documented and easy to learn. To our knowledge,
this is the first contribution implementing the NGF distance measure on the
GPU. In contrary to many contributions [18] the entire algorithm is executed
on the GPU, thus minimizing costly data transfer and CPU-load. The imple-
mentation is based on a pixelwise independent explicit calculation rule for NGF
based registration derived by Rühaak et al. [16]. We extend this scheme by us-
ing the CUDA framework and exploit several techniques like optimized memory
handling, specialized kernel invocation and the efficient use of hardware inter-
polation. In contrast to common practice, we divided the computationally most
demanding kernel into four separate kernels. This resulted in a speed up of up
to 60% for the entire algorithm. By taking these aspects into account, we gained
fast GPU code that outperforms parallelized CPU code by far.
The paper is organized as follows. Section 2 provides a brief overview of the
registration framework, including a short summary of the used registration al-
gorithm and an approach to derive the explicit calculation rule. This is followed
by a short overview of the CUDA programming model in Section 3. Next, in
Section 4 we present the most important techniques of our CUDA implementa-



tion we used to gain our very fast code. After this, our CUDA implementation
is compared to serial and parallelized CPU code in terms of performance and
accuracy in Section 5. Finally, in Section 6 the results will be discussed.

2 Affine Linear Image Registration

In this section, we give a brief overview of the general registration framework and
the NGF distance measure. More detailed descriptions can be found in [7, 16].

2.1 Registration Framework

Image registration is the process of finding a reasonable transformation y, that
describes the spatial correspondence between two images, a reference image R
and a template image T . This is typically done by minimizing a distance measure
D [11]. The images are defined as continuous mappings T,R : Ω → R with the
domain Ω ⊂ R2 in 2D. In this paper, we consider affine linear transformations,
i.e. yw : R2 → R2, yw(x) = Ax + b, A ∈ R2×2, b ∈ R2, where the six entries
in A and b compose the parameters w to be optimized. The transformation
yw : Ω → R2 enables a comparison of the reference image R and the transformed
image T (yw) := T ◦ yw by mapping the reference image domain to the template
image domain depending on the parameters w. Rigid transformations can easily
be modeled by restricting A to rotations, which yields a total of three degrees of
freedom. Now, finding a reasonable correspondence between the images is done
by solving the optimization problem through minimizing the objective function

D(T (yw), R) =: D(w)
w→ min . (1)

2.2 Normalized Gradient Fields Distance Measure

As proposed in [7] we use a distance measure based on Normalized Gradient
Fields which is both well suited for optimization and fast computation. The
main idea is to pointwise measure the angle between two image gradients and
to align these in either parallel or antiparallel fashion. A discretized version of
the originally continuous distance measure can be written as

DNGF(w) ≈ h1h2
2

MN∑
i=1

(
1−

( 〈∇Ti(yw),∇Ri〉
‖∇Ti(yw)‖η‖∇Ri‖η

)2
)

(2)

=:
h1h2

2

MN∑
i=1

(
1− r2i

)
=: ψ(r(T (yw))), (3)

where ‖ · ‖η = 〈·, ·〉 + η2. The parameter η represents a modality dependent
parameter which allows filtering of noise. To discretize the image domain Ω we
define [0,M ], [0, N ] as the ranges of indices and h1, h2 as the stepwidth in x1-,
and x2-direction, respectively. We then define Ti(yw) as the deformed template,
interpolated on the reference image domain at point i = x1 +Mx2 using bilinear
interpolation and lexicographical ordering.



2.3 Problem Specific Derivative Computation

In order to solve the optimization problem described in (1), we use a multilevel
Gauss-Newton optimization scheme [6]. In each optimization step the computa-
tion of the function value D, gradient ∇D and the Gauss-Newton approxima-
tion [22] of the Hessian ∇2D is required. Using the cascaded formulation in (3)
Rühaak et al. [16] derived an explicit calculation rule for NGF based registra-
tion. This calculation rule allows the pointwise independent computation of D,
∇D and ∇2D. Equation (2) states that the function value can simply be par-
allelized over all pixels. The efficient parallelization of the gradient and Hessian
is done by carefully analyzing the cascaded formulation in (3). Using the chain
rule, the formulation can be differentiated as ∇D = ∂ψ

∂r
∂r
∂T

∂T
∂y

∂y
∂w , where ∂y

∂w de-
notes the derivative of the transformation y with respect to the parameters w.
The individual factors exhibit a fixed sparse matrix structure [16] which can be
exploited. Further, the entries of the matrices only depend on the parameters,
reference image and template image and can be calculated independently. Uti-
lizing both features, the multiplication of the four factors can be rewritten into
a single matrix-free closed-form formula that can be parallelized for each pixel.

2.4 Optimization Scheme

A pseudo code describing the complete registration algorithm is shown in Algo-
rithm 1. A multilevel representation of the images in different resolutions is gen-
erated. Starting on the coarsest level a Gauss-Newton optimization using Armijo
line-search [22] is performed. The optimization stops if common stopping criteria
[11] are met. The current transformation parameters are then used as a starting
guess in the next multilevel iteration until the finest level is reached. While eval-
uating the stopping rules, solving the 6× 6 Gauss-Newton system and updating
values requires a low, constant number of floating point operations, evaluating
the objective function depends linearly on the number of pixels, making it the
computationally most demanding task.

2.3 Problem Specific Derivative Computation

In order to solve the optimization problem described in (1), we use a multilevel
Gauss-Newton optimization scheme [6]. In each optimization step the computa-
tion of the function value D, gradient rD and the Gauss Newton approxima-
tion [22] of the Hessian r2D is required, which are the computationally most
demanding tasks. Using the cascaded formulation in (3) Rühaak et al. [16] de-
rived an explicit calculation rule for NGF based registration. This calculation
rule allows the pointwise independent computation of D, rD and r2D. Equa-
tion (2) states that the function value can simply be parallelized over all pixels.
The e�cient parallelization of the gradient and Hessian is done by carefully an-
alyzing the cascaded formulation in (3). Using the chain rule, the formulation
can be di↵erentiated as rD = @ 

@r
@r
@T

@T
@y

@y
@w , where @y

@w denotes the derivative of
the transformation y with respect to the parameters w. The individual factors
exhibit a fixed sparse matrix structure [16] which can be exploited. Further,
the entries of the matrices only depend on the parameters, reference image and
template image and can be calculated independently. Utilizing both features,
the multiplication of the four factors can be rewritten into a single matrix-free
closed-form formula that can be e↵ectively parallelized for each pixel.

2.4 Optimization Scheme

A pseudo code describing the multilevel Gauss-Newton optimization is shown in
Algorithm 1. A multilevel representation of the images in di↵erent resolutions
is generated. Starting on the coarsest level a Gauss-Newton optimization using
Armijo line-search [22] is performed. The optimization stops if common stopping
criteria [11] are met. The current transformation parameters are then used as a
starting guess in the next multilevel iteration until the finest level is reached.

Algorithm 1 Pseudo code for the multilevel Gauss-Newton optimization

1: [RGPU, TGPU, w0] [RCPU, TCPU, wCPU] . Transfer to GPU
2: get Tlevel, Rlevel 8 level . Compute multilevel representation
3: for level minLevel, level  maxLevel do . Start multilevel loop
4: T  Tlevel, R Rlevel . Set images to current level
5: w  w0 . Set initial transformation parameters
6: while stopping rules not active do . Start Gauss-Newton optimization
7: [D,rD,r2D] evalObjFctn(w, T, R) . Evaluate objective function
8: stoppingRules  stoppingRules(w) . Evaluate stopping rules
9: r2D · dw = �rD . Solve for dw

10: descent rD · dw . Compute descent direction
11: w  lineSearch(ObjFctn, w, D, descent) . Perform Armijo line-search
12: end while
13: w0  w, level level + 1 . Save parameters for next level
14: end for
15: [wCPU] [w0] . Transfer to CPU



3 General-Purpose Computing on Graphics Processing
Units using CUDA

Before the implementation is explained in detail, a short overview of the CUDA
programming model will be given, following the descriptions in [21, 13].
CUDA uses a single-program multiple-data programming model, allowing the
user to pass a program, called kernel, to the device. The kernels will execute
N times in parallel by N different CUDA threads. Threads are identified by a
d-dimensional thread index forming d-dimensional thread blocks, with d = 1, 2, 3.
Again, these blocks are grouped into a d-dimensional grid. The exact layout of
thread blocks and grids is defined by the user when calling a kernel.
CUDA threads can access data from two memory spaces: device memory and
cached memory, being off-chip and on-chip, respectively. Device memory is very
slow to access but visible to all threads. Global, constant and texture memory
resides in device memory. Global memory offers the largest space with up to
12 GB on current GPUs, but cannot be cached. In contrary, constant memory
is cached in the constant memory cache. Therefore, only cache misses result in
reads from the device memory, otherwise data will be read from the constant
cache. A read from constant memory can be broadcasted to nearby threads and
consecutive reads do not incur additional memory traffic. Shared memory re-
sides in cached memory and is visible to all threads of a block. The access is
about 100 times faster than global memory, but the space is limited to 48 kB.
Similarly to constant memory, texture memory resides in device memory and is
cached in texture cache. Only cache misses result in reading from device mem-
ory, otherwise data will be fetched from texture cache. Textures are optimized
for 2D/3D spatial read-out patterns. High performance is achieved when read-
ing from addresses that are close together in 2D. Additionally, textures offer
hardware interpolation and boundary handling. Hardware interpolation enables
nearest neighbor or linear interpolation of data and different options how to han-
dle out of range texture fetches, see [13] for more details. Fully exploiting these
thread and memory structures was mandatory in obtaining fast GPU code.

4 Implementation

In this section we present the most important techniques of our work to gain
high performance, including specialized kernel invocation, optimized memory
handling and the efficient use of hardware interpolation.

4.1 Kernel Invocation

As stated before in Section 2.4, the computationally most demanding task is
evaluating the objective function and computing the scalar values that compose
the function value D, the gradient ∇D and the approximation to the Hessian
∇2D. These have to be computed at least once per optimization level, see Al-
gorithm 1. Since the Gauss-Newton approximation of the Hessian is symmetric



[22], it is sufficient to compute the upper triangular part of the matrix and mir-
ror the entries to the lower triangular part. Thus, we only need to calculate 21
instead of 36 entries of the Hessian. Adding the six components of the gradient
and the function value itself, we get 28 scalar values in total. We evaluated dif-
ferent setups for the grid layout by changing the number of threads per block.
Based on the image size and the total amount of possible active threads, blocks
were allocated. Furthermore we changed the amount of scalar values that were
computed per kernel call ranging from 4, 7, 14 and 28, respectively. These num-
bers were chosen in order to get an integer amount of kernel calls. To ensure
that the workload of the kernels was high, we chose testing images of the size
2048 × 2048 pixels. Therefore, concurrent kernel calls did not improve the per-
formance and kernels were launched sequentially. Table 1 shows the execution
times for different setups, stating that the best setup consists of four different
kernels which calculate seven scalar values each and have 128 threads per block.
This may be contrary to the belief that one kernel doing all the work is the best
choice [1]. The setup we use results in quadruple overhead, yet we almost gained
a two-fold speedup. Further analysis of the impact of threads per block and the
kernel layout is a topic of future work.

Table 1. Performance overview for different kernel setups. The table shows the com-
putation time for calculating D, ∇D and ∇2D for an image of size 2048× 2048 pixels
in milliseconds. For some cases it was not possible to allocate enough shared memory,
these cases are marked ”out of memory” (o.o.m.). The bold values highlight the fastest
execution times using multiple rearranged kernels and a single kernel, respectively.

Number of Number of scalar Threads per block
kernel calls values per kernel 16 32 64 128 256 512 1024

Timings in milliseconds
7 4 102.1 56.5 35.0 30.5 30.7 32.8 36.4
4 7 72.0 40.6 25.0 18.6 20.7 23.0 43.8
2 14 53.4 31.0 22.7 24.9 27.1 47.2 o.o.m.
1 28 45.1 32.2 37.2 40.4 66.8 o.o.m. o.o.m.

4.2 Use of Different Memory Types

The use of the different memory types is crucial for writing a fast CUDA kernel.
Our first naive approach, using shared memory only to compute vector sums by
parallel reduction and store all other data in global memory, resulted in a code
that was four times slower than our OpenMP [4] implementation. A first improve-
ment was achieved by writing fixed and often read data into constant memory.
The most performance, however, we gained by binding both the template and
reference image to texture memory. This greatly enhanced the performance due
to the many reads of pixel values. The downside of using texture memory is the
limitation to single precision. Fetching data from a texture, thus returns a single
precision value impacting the overall accuracy of the algorithm. In our case, the



use of a multilevel approach and Gauss-Newton type optimization provides a
stable and robust algorithm and the loss of accuracy was generally of no concern
in finding reasonable transformation parameters.

4.3 Hardware Interpolation

Another interesting feature of texture memory is hardware interpolation. Instead
of calculating a bilinear interpolation from given pixel values, an interpolated
value is fetched from the texture cache, which greatly improves performance.
The interpolation of a pixel value at the coordinates (x1, x2) can be written as

p = (1− dx1)((1− dx2)w00 + dx2w01) + dx1((1− dx2)w10 + dx2w11), (4)

where w00 · · ·w11 are known pixel values and dxi = xi − bxic , i = 1, 2 are
remainders. The analytical derivative of (4) is defined as

∂p

∂x1
= (1− dx2)(w10 − w00) + dx2(w11 − w01),

∂p

∂x2
= (1− dx1)(w01 − w00) + dx1(w11 − w10).

Using textures we obtain

p = f(x1, x2),

∂p

∂x1
= f(1, x2)− f(0, x2),

∂p

∂x2
= f(x1, 1)− f(x1, 0).

This implies that not only the function value but also the analytical derivative
can directly be computed by four calls to hardware interpolation, again increas-
ing the performance. Additionally, we can omit zero Dirichlet boundary handling
by setting the address mode to cudaAddressModeBorder.

5 Results

To test our code, we registered images ranging from 512 × 512 to 4096 × 4096
in pixel size using the algorithm described in Section 2.4. As a safeguard, a
maximum of ten iterations per optimization level was used. If these were reached
at all, it was on the coarse levels. Computations on the finest level usually just
required one correction step to satisfy the stopping criteria. The timings of our
CUDA code are compared to MatLab code based on the FAIR framework [11]
and optimized C++ code with and without OpenMP. The general quality of
the algorithm is shown in [11] and will not be discussed in this paper. The
images show two slices of a brain acquired for histological serial sectioning and
are courtesy of Oliver Schmitt, Institute of Anatomy, University of Rostock,



Germany. The reference and template image are shown in images [A] and [B] of
Figure 1. The tests were executed on a desktop PC with an Intel Core i7-2600
CPU @ 3.40 GHz and a NVIDIA GeForce 680 GTX with 2 GB GDDR5 memory
allowing a bandwidth of 192.2 Gb/sec. It has 1536 CUDA cores @ 1.008 GHz
and supports compute capability 3.0. The evaluation was done in MatLab via
mex-files. The use of MatLab impacts the overall performance, but we found
the performance loss to be negligible. The tests were run 15 times to minimize
outliers.

Fig. 1. Brain images used for testing the registration algorithm. [A] reference image
R, [B] template image T , [C] difference: |R− T |, [D] difference: |R− T (y)|

5.1 Performance

Table 2 summarizes the timing results for different image sizes for the complete
registration algorithm. It is clear from this table, that the GPU implementation
is at least six times faster than competing parallelized CPU code. Registering
two 512 × 512 pixel images is performed in 37 ms. The speedup increases with
increasing image size, showing that it is desirable to have many computations
on the GPU and to minimize the CPU-GPU-communication.

Table 2. Summary of runtimes in seconds of the complete registration for different
images. The speedup of the routines are compared to OpenMP code, showing that our
CUDA code outperforms even fast parallelized CPU code. The tests were done using
an Intel Core i7-2600 and an NVIDIA GeForce 680 GTX, see Section 5 for details.

image size in pixel method runtime (s) speedup

512× 512

FAIR 3.090 0.08
C++ 0.475 0.50

OpenMP 0.239 1.00
CUDA 0.037 6.64

1024× 1024

FAIR 5.355 0.09
C++ 1.437 0.33

OpenMP 0.481 1.00
CUDA 0.062 7.76

4096× 4096

FAIR 89.314 0.06
C++ 20.596 0.25

OpenMP 5.104 1.00
CUDA 0.464 11.00



5.2 Accuracy

Images [C] and [D] of Figure 1 show the initial difference and the final difference
after registration, respectively. The relative error of the final transformation
parameters compared to the FAIR code is in the magnitude of 1 · 10−3, but final
images of the different implementations show no difference in visual inspection.
Hence, errors made due to single precision accuracy are negligible.

6 Discussion

In this paper, we presented a fast GPU implementation of a multimodal image
registration algorithm using the NGF distance measure. We exploited the inner
structure of the underlying algorithm to enable full pixelwise parallelization.
We evaluated the code on brain images of different size on a PC with stan-
dard hardware. A speedup of 11 compared to our OpenMP implementation was
achieved for the largest images. This shows that for conventional systems with
one CPU and one GPU, implementing algorithms on the GPU has a lot perfor-
mance to offer. This can be especially interesting in medical applications, where
results are needed as fast as possible and PC clusters are not an option.
Further, we analyzed the impact of optimized memory handling, specialized ker-
nel invocation and the efficient use of hardware interpolation. By fully utilizing
these techniques high performance from GPU code was gained and parallelized
OpenMP code was outperformed. Compared to research code of the FAIR frame-
work a speedup of almost 200 was gained, showing the immense potential of high
performance computing techniques applied to research code in medical imaging.
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