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Abstract. We present a new mathematical model to construct mean-
like and median-like average STN (subthalamic nucleus) atlases based on
image registration and reconstruction. The average STN atlases (ASAs)
have average intensities and shapes of the STN regions. In particular,
the construction of the ASAs does not depend on selecting a particular
image as the template and is optimal to the datasets with respect to
minimizing a cost functional.
For the application in deep brain stimulation, the ASAs can be used
to accurately localize the target points of the STNs. For the validation
of the outperformace of the ASAs, we compare them with anatomical
atlases by executing the atlas to patient data registrations using clinical
datasets.
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1 Introduction

Deep brain stimulation (DBS) for treating Parkinson’s disease [Da1,PM1] has
been rapidly developed since the 80s of the last century, and this treatment has
been proved to be useful for reducing abnormal involuntary movements [PPA1].
DBS therapy involves the implantation of a brain pacemaker to subthalamic
nucleus (STN) regions. Due to the small size of the STN and its individual
variation in shape and spatial position, it is difficult to localize the target points
of the STN regions for therapy planning and validation.

To suppress the individual variation is medical atlas a good ansatz. Medical
atlas nowadays becomes an important tool in computational anatomy to study
the variability between individuals and identify abnormal anatomic structures
[GMT1,TM1]. Medical atlas can be mainly categorized into anatomical atlas
by scanning the slides and reconstructing the volumes in the stereotaxic coor-
dinates [PW1,KH1]; probabilistic atlas constructed in a Bayesian perspective
[AF1,MSG1]; average anatomical atlas, which is normally constructed based on
linear or non-linear image registration [JDJ1,BK1,GMT1].

In the research area of DBS, anatomical atlases are often used to localize
the target point of the STN, denoted by tSTN. It can be roughly determined



with respected to the midcommissural point (MCP) [SW1], namely the aver-
age of anterior commissure (AC), posterior commissure (PC) of the so-called
Talairach coordinates system [TT1]. In terms of the visible surrounding area
and landmarks [PMM1], such as red nucleus, subthalamic zone, AC and PC,
the tSTN can be marked half-automatically. The targeting process can be also
done based on non-linear atlas to patient data registration using the atlas with
manual marked tSTNs [DBC1,XBC1].

In this paper we will present a new mathematical modeling and algorithms
for constructing the medical atlas in the target STN regions, namely the average
STN atlas (ASA). The construction of the ASA is based on image registration
and reconstruction. Our algorithms do not depend on selecting a particular image
as the template and produce the atlas automatically. The ASA is optimal to the
datasets with respect to minimizing a cost functional. In particular, using the L2-
and L1-norm we are able to construct mean-like and median-like ASAs. The ASA
unifies the individual features of the STN regions and keeps well the common
structures and prominent edges of the target regions. Compared to anatomical
atlas, using the ASA is able to make the atlas to patient data registration more
robust and accurately, such that the localization of the tSTNs becomes more
accurate.

This paper is organized as follows: In Section 2 we give a mathematical mod-
eling of the ASA construction based on the L2- and L1-norm. Particularly, we
introduce efficient algorithms to solve the L2- and L1-based image registration
and reconstruction problems. In Section 3 we design an experiment for the vali-
dation of the ASAs. We compare them with anatomical atlases in terms of using
the atlas to patient data registration based on clinical datasets.

2 Construction of Average STN Atlas

Since we are only interested in the left and right STN regions, the midpoints of
these target regions could be fixated by a translation related to the MCP. After
fixating the midpoints of the left and right STN bounding boxes, we create the
boxes of size 30mm3 around them. Figure 1 shows that the bounding boxes are
large enough to contain the prominent edges of the STN regions.

After fixating the target regions, we can model formally the construction of
the ASA based on them: Suppose that there exists a database consisting of N
images T1, · · · , TN defined in domainsΩ1, · · · , ΩN⊂R3, which are the target STN
regions. Let Ti have a zero extension, i.e. Ti(x) = 0 for all x ∈ R3 \Ωi and 1 ≤
i ≤ N . Due to the small size of the STN regions (cf. Figure 1) and computational
efficiency, we assume affine registration as the underlying image registration for
the ASA reconstruction. Therefore, we search for N affine deformation fields
(yi)1≤i≤N with yi : Ωi → R3 and an ASA R defined in R3 by solving

inf
yi,R

1

N

N∑
i=1

D(Ti,R ◦ yi), (1)



(a) (b) (c) (d)

Fig. 1: (a) The axial view of the dataset with the left and right STN bound-
ing boxes marked by red and green lines. The midpoints of the left and right
bounding boxes are translated by the vectors (11.5, 0.5,−6) and (−11.5, 0.5,−6)
related to the MCP marked by a yellow cross. In (b), (c) and (d) are showed
the axial, sagittal and coronal views of the right STN bounding box in (a). The
green cross marks the tSTN of the right STN region.

where D denotes the restricted Lp distance measure with p ∈ {1, 2}

D(Ti,R ◦ yi) =
1

p

∫
R3

χΩi |Ti −R ◦ yi|
p
dx, (2)

where χΩi
denotes the indicator function of a target region Ωi, in which χΩi

equals to one, otherwise equals to zero. The motivation of using indicator func-
tions lies on that every transformed ASA R ◦ yi should match Ti in the target
region Ωi as well as possible. Using (2) it is not simple to reconstruct R, since it
couples with unknown yi. Applying the integral transformation we can decouple
them, and equivalently we have

D(Ti,R ◦ yi) =
1

p

∫
R3

χyi(Ωi)

∣∣Ti ◦ y−1i −R∣∣p |det(∇y−1i )|dx, (3)

where yi(Ωi) is the transformed Ωi by yi and χyi(Ωi) denotes the corresponding
indicator function of domain yi(Ωi).

To solve (1) we utilize the alternating method [GOS1] described in Algorithm
1. In this algorithm we give an iterative framework based on solving two subprob-
lems, namely image registration problem (4) and image reconstruction problem
(5). For generating an initial guess R0, we set a point as the midpoint of R
and translate the midpoints of (Ti)1≤i≤N to this point, then average them. With
introduced distance measure (2) and its variation (3), we face to solve L2- and
L1-based image registration and reconstruction problems. It will be detailedly
explained in the following sections.

2.1 L2-based Image Reconstruction

To compute an ASA in the sense of mean, we consider minimization problem
(5) using restricted L2-norm (3) with p = 2. Assume that (yi)1≤i≤N are fixed,



Algorithm 1

Initialize R0

for k = 0, 1, · · · · · · do

yk+1
i = argmin

yi

D(Ti,Rk ◦ yi), i = 1, · · · , N (4)

Rk+1 = argmin
R

1

N

N∑
i=1

D(Ti,R ◦ yk+1
i ) (5)

end for

and consequently we can recover R by minimizing

1

2N

N∑
i=1

∫
R3

χyi(Ωi)(x)
(
Ti ◦ y−1i (x)−R(x)

)2 ∣∣det(∇y−1i (x))
∣∣ dx. (6)

We compute the Gâteaux derivative of (6) with respect to R and derive that R
has a closed formula

R(x) =

N∑
i=1

χyi(Ωi)(x)Ti ◦ y−1i (x)
∣∣det(∇y−1i (x))

∣∣
N∑
i=1

χyi(Ωi)(x)
∣∣det(∇y−1i (x))

∣∣ . (7)

In the case of affine registration, the deformation fields are invertible, and the
Jacobi-determinants are not vanishing. If the denominator of (7) is zero at some
point x, then χyi(Ωi)(x) = 0 for i = 1, · · · , N . It means that x is not an element
of the union of (yi(Ωi))1≤i≤N , and we set R(x) to zero in this case. In the
praxis, we define and discretize R in a domain, which is large enough to include
the union of (yi(Ωi))1≤i≤N .

2.2 L1-based Image Reconstruction

Instead of the L2-norm, using the L1-norm we can compute the median-like
ASA. Since the L1-norm is non-smooth, we cannot expect to derive an explicit
solution as in the case of L2-minimization. However, we are able to develop an
efficient algorithm to solve it. Assume that (yi)1≤i≤N are fixed, and using (3)
with p = 1 we can recover R by minimizing

1

N

N∑
i=1

∫
R3

χyi(Ωi)(x)
∣∣det(∇y−1i (x))

∣∣︸ ︷︷ ︸
:=ci(x)

∣∣Ti ◦ y−1i (x)−R(x)
∣∣ dx.

Therefore, we can compute R(x) pointwise by minimizing

N∑
i=1

ci(x)
∣∣Ti ◦ y−1i (x)−R(x)

∣∣ (8)



overR(x) in a domain, which is large enough to include the union of (yi(Ωi))1≤i≤N .
In the case of ci = 0 for i = 1, · · · , N , as we argued in the previous subsection
that x is not an element of the union of (yi(Ωi))1≤i≤N , and we set R(x) = 0.
Minimizing (8) is a so-called weighted median minimization problem [Gu1]. For
simplicity we reformulate it in one dimensional case: Given N real numbers
x1, · · · , xN and N non-negative weights w1, · · · , wN , solve

min
x
f(x) = min

x

N∑
i=1

wi|xi − x|. (9)

The left and right derivatives of f are given by

f
′

−(x) =
∑
i:xi<x

wi −
∑
i:xi≥x

wi and f
′

+(x) =
∑
i:xi≤x

wi −
∑
i:xi>x

wi.

Since f is convex and piecewise linear, the necessary and sufficient conditions
for solving (9) are

f
′

−(x) ≤ 0 and f
′

+(x) ≥ 0.

The number of points N is limited, so we test the N points to check which one
actually fulfills the optimality conditions.

2.3 L2- and L1-based Image Registration

For affine image registration (4) using (2), we consider generally for given T
defined in ΩT and R defined in ΩR the following minimization problem

min
y

1

p

∫
ΩT

|T − R ◦ y|p dx. (10)

In the case of p = 2, after discretization this is a standard affine registration using
the sum of squared differences (SSD). We apply the Gauss-Newton algorithm
to obtain the solution [Mo1]. In the case of p = 1, we present this problem as
the affine registration using the sum of absolute differences (SAD). Since it is
not quadratic and non-smooth, it could not be solved in the same fashion as
the SSD. To handle such problem, we apply the non-linear primal-dual hybrid
gradient method [Va1]: We discretize T and R on their domains with n grid
points and denote them by T and R, respectively. Then, in the discrete setting
we can reformulate (10) as the saddle point problem

min
y

max
v

vt(T −R ◦ y)− δV (v),

where v ∈ Rn is the dual variable and the convex set V is given by

V = {v ∈ Rn : ‖v‖∞ ≤ 1} .

The projection function δV is equal to 0 if v ∈ V , otherwise equal to +∞. To
solve the saddle point problem, we apply the exact NL-PDHGM proposed in
[Va1].



3 Evaluation

In this section we will introduce clinical datasets and design an experiment for
validating the L2- and L1-ASA constructed by Algorithm 1. As mentioned in
Section 1, the ASAs have the application of tSTN targeting, and it involves an
affine image registration from the ASAs to patient data. For the validation of the
ASAs we will compare them with anatomical atlases, by computing the affine
registrations to a patient database. To get more robust affine registration results,
we utilize the normalized gradient field (NGF) distance measure mentioned in
[Mo1], since the NGF only relies on edge informations.

As in Figure 1 illustrated, the T2 weighted MRI images are used for the
ASA construction. In each image the AC, PC and interhemispheral point (IH)
are annotated, which build the Talairach coordinates. Additionally, the left and
right tSTNs are annotated by 3 experts. We take the mean of 3 annotations as
the tSTNs for one dataset. The total amount of T2 weighed images is 39, among
them there are 19 1.5-Tesla images, 18 3-Tesla images and 2 7-Tesla images.

3.1 Experiments

We use 8 1.5-Tesla and 9 3-Tesla images to construct the L2- and L1-ASA (see
Figure 2) by introduced algorithms. After construction we get the point clusters
of the ACs, PCs, IHs and tSTNs for the left and right STN regions. Then, we
compute the median of every cluster as the AC, PC, IH and tSTN of the ASA.
As showed in Figure 2 we stitch the left and right ASAs together based on the
Talairach coordinates of the left side .

(a) (b)

Fig. 2: The left and right L2-ASA and L1-ASA in the bounding boxes are merged
together. The red cluster points are the transformed tSTNs from the datasets.
(a) The L2-ASA. (b) The L1-ASA.

We apply 17 datasets used for the ASA construction as the anatomical atlases
again, and consequently we regard the rest 20 1.5-Tesla and 3-Tesla images as the
patient database. For each ASA and anatomical atlas, we pre-align it to every



image in the patient database based on a rigid transformation using their AC-
PC vectors and MCP-IH vectors. After the pre-alignment we compute the affine
registration from the ASA or anatomical atlas to every image in the patient
database for the left and right STN regions, respectively. Totally, we have 40
registrations for each ASA and anatomical atlas. It is also interesting to compare
the ASAs with high quality 7-Tesla images, so we regard two 7-Tesla images as
the anatomical atlases and register them to the patient database in the same
way. After computing the ASA or anatomical atlas to patient data registrations,
we compute the tSTN distances between the transformed ASA or anatomical
atlas and every image in the patient database.

3.2 Results

We summarize the validation results with the introduced experiment. In Table
1 we list the results of the ASAs and anatomical atlases to patient data regis-
trations. For anatomical atlases we list the results of the worst and best cases
of 1.5-Tesla, 3-Tesla and 7-Tesla. We denote them XT W and XT B, where XT
denotes the strength of magnetic field. The worst case and the best case of
anatomical atlases are so classified that among the anatomical atlases with same
strength of magnetic fields, the one gives the worst or best median results of
tSTN distances. In Figure 3 we visualize the tSTN distances of the ASAs and
anatomical atlases in a boxplot.

L2-ASA L1-ASA 1.5T W 1.5T B 3T W 3T B 7T W 7T B

median 0.91 0.82 1.89 0.98 1.95 1.24 1.45 1.17

mean 1.02 0.88 2.01 1.13 2.29 1.25 1.61 1.17

std 0.47 0.34 0.83 0.53 1.18 0.54 0.78 0.47

Table 1: Statistical evaluation of the ASA to patient data registrations and
anatomical atlases to patient data registrations in mm.

Observing the tables and plots, we can identify that the ASAs and anatomical
atlases give reasonable results, since the pre-alignment based on the AC, PC and
IH produces a reliable initial transformation. Among them the ASAs give best
and most stable results comparing to anatomical atlases. It is obvious to see that
in Figure 3 the ASAs, especially the L1-ASA produces fewer outliers than the
others, no outliers larger than 1.5mm.

Comparing the L2- and L1-ASA, the L1-ASA produces more reliable results
with smaller variations. To explain this phenomenon, we observe the ASAs vi-
sualized in Figure 2 and determine that the L1-ASA gives more local structures
due to the median property of the L1-norm. Such local structures make the
registrations based on the NGF more robust.

Totally, we can conclude that the L2-, and especially the L1-ASA is suitable
for accurate tSTN targeting due to the small tSTN distances.
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Fig. 3: The corresponding boxplot of Table 1.

4 Conclusion

We introduced a new mathematical modeling for the construction of the ASAs
based on the L2- and L1-norm. The alternating algorithm involves of solving the
L2- and L1-based image registration and reconstruction problems. We designed
an experiment to compare the ASAs with anatomical atlases with the application
of tSTN targeting using clinical datasets. Based on the experiment results, we
can conclude that the ASAs work more accurately in the tSTN targeting than
anatomical atlases due to the small tSTN distance.
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