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ABSTRACT

We present a super fast variational algorithm for the challeng-
ing problem of multimodal image registration. It is capable of
registering full-body CT and PET images in about a second on
a standard CPU with virtually no memory requirements.

The algorithm is founded on a Gauss-Newton optimiza-
tion scheme with specifically tailored, mathematically opti-
mized computations for objective function and derivatives. It
is fully parallelized and perfectly scalable, thus directly suit-
able for usage in many-core environments.

The accuracy of our method was tested on 21 PET-CT
scan pairs from clinical routine. The method was able to cor-
rect random distortions in the range from —10 cm to 10 cm
translation and from —15° to 15° degree rotation to subvoxel
accuracy. In addition, it exhibits excellent robustness to noise.

Index Terms— Image registration, Computed tomo-
graphy, Positron emission tomography, Computational effi-
ciency, Parallel algorithms

1. INTRODUCTION

Multimodal image registration has a long history in science
and engineering [1, 2]. The integration of complementary
information, e.g. fusion of anatomical CT or MR scans
with functional data from nuclear medicine such as PET and
SPECT, can provide more detailed insight into biological
processes and their exact location in the body. This integra-
tion is valuable in various clinical situations such as radiation
therapy planning or tissue biopsy [3], and a lot of research
has been performed on the topic [4]. Hybrid systems may
circumvent the need for registration, but there are numerous
clinical situations in which separate scans are beneficial, see
e.g. the discussion in [3]. Hence, the registration of these
modalities is of unchanged importance.

In many clinical workflows, image registration forms the
basis for joint reading of complementary image modalities. A
medical expert willing to focus on the patient images and their
interpretation needs a registration that is robust, accurate, and
fast. Unfortunately, many advanced registration methods miss
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the speed requirement by far and are thus currently no option
on contemporary hardware in the clinic.

In this work, we present a multimodal image registration
algorithm that meets the clinical requirements. It is designed
for both rigid and affine-linear registration and combines ac-
curacy, high speed and extremely low memory consumption
to a very attractive package. The main principles are directly
extensible to non-linear transformation models. From a com-
putational point of view, mainly two aspects of our algorithm
are of interest. First, the algorithm is fully parallelized with
no relevant serial parts, resulting in excellent scalability with
increasing number of computational cores. Secondly, it re-
quires only a minimal amount of memory as no intermediate
results such as image derivatives or grids are stored. Given
the ever-increasing size of images, both properties are highly
desirable now and in the future.

Our main contribution is a detailed analysis of the struc-
ture of the normalized gradient fields objective function and
its derivatives. Our results allow for a reformulation of the
objective function which drastically simplifies function value
and especially derivative computations. The approach can be
generalized to other distance measures and is directly suitable
for efficient use in many-core systems.

2. RELATED WORK

The key ingredient to successful multimodal image regis-
tration is the distance measure. As images from different
modalities offer complementary information, a straightfor-
ward comparison of intensities is bound to fail [5]. The
arguably most prevalent distance measure is mutual informa-
tion [6] which aims at maximizing the stochastical depen-
dence between the intensities in the two images. The general
formulation allows for usage in a variety of situations, yet the
resulting objective function is highly nonconvex and hence
difficult to optimize. Moreover, the estimation of the in-
tensity distributions and their derivatives is nontrivial and
computationally expensive [5]. A fast and robust alternative,
the normalized gradient fields, was proposed in [7].

As high runtimes are common to almost all registration
methods [8], the parallelization of image registration algo-
rithms has received significant research attention [9]. Most
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approaches, however, are restricted to a parallelization of se-
lected components such as the interpolator or the distance
measure computations, thereby limiting performance scala-
bility with increasing number of computational cores.

The successful use of GPUs has been reported e.g. in [10].
As powerful GPUs with sufficiently large memory resources
are rarely available in a clinical setting, the classical CPU is
currently the most important target hardware for medical ap-
plications. Our method, however, is by design directly usable
on massively parallel architectures such as GPUs.

3. METHOD

In order to provide an optimized algorithmic scheme, we first
take a closer look at the general registration framework.

3.1. Registration framework

The goal of image registration is to find a reasonable trans-
formation ¢ that maps a three dimensional template image T’
to a reference image R, so that both are similar in terms of a
distance measure D.

The images are interpreted in a continuous model as func-
tions 7 : R® — R and R : R® — R with compact support
in domains Qz C R? and Qp C R3, respectively. The trans-
formation ¢ : Qr — R? maps the reference image domain to
the template domain and thus allows comparison of reference
image R and deformed template T'(p) := T o . The dis-
tance measure D(T'(), R) depends on fixed R and the trans-
formed template T'(¢), thus D(T(p), R) =: D(p) % min in
order to find a plausible alignment of the images. Here, ¢ al-
lows for affine-linear transformations that map a single point
x=(2,9,2)" € R3withp : x — Ax+b, A € R**3 b c R
By using a specifically chosen transformation matrix A, this
transformation model can also easily be restricted to e.g. rigid
transformations, i.e. rotations and translations.

Minimization of the objective function is achieved using
numerical optimization. The used Gauss-Newton approach
requires the computation of the gradient V.D and an approxi-
mation of the Hessian V2D. It features fast convergence and
can be implemented in a computationally efficient way [5].

3.2. Normalized gradient fields distance measure

In multimodal imaging, the most prominent features that per-
sist over different modalities are image edges. As proposed
in [7, 5] we use a distance measure based on normalized im-
age gradient fields (NGF) which is both well suited for opti-
mization and fast computation. The main idea is to measure
the angle between two image gradients and to align these in
either a parallel or antiparallel fashion. Our approach is em-
bedded in a numerical optimization scheme which relies on

minimizing a discretized version of the objective functional
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i.e. measuring the sine between the gradients of the trans-
formed template image T'(¢) and the reference image R,
where the inner product (-, ), » := (-,-) + oT and || - ||« =
(-,)«,«. The values p, 7 > 0 represent modality dependent
parameters which allow filtering of noise.
Let [0, M], [0, N], [0, P] denote the ranges of indices in
x-, y- and z-direction for a discretization of 2z. We then
define T;(p) as the deformed template, interpolated on the
reference image domain at point t = x + My + M Nz using
trilinear interpolation. Applying the midpoint quadrature rule
and finite differences we obtain a discretized distance mea-
sure. Defining hoasn, htar, haq as the stepwidth in 2-, y-,
z-direction, respectively, as well as h:=hiynhinhar,the
discretization of the distance measure can be written as
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where g is the approximation to the image gradient of two im-
ages I, J at point ¢. It is defined with forward/backward finite
differences g, (I;), g— (I;) respectively and (g(1;), g:(J;)) :==
3 ({94 (L), 9+ (Ji)) + (9- (L), 9—(Ji))), with the corre-
sponding induced norm ||g(Z;)]|-

3.3. Problem specific derivative computation

The function value evaluation of D can be straightforwardly
implemented by parallelizing over all voxels. For using the
Gauss-Newton optimization scheme, the computation of the
gradient and Hessian approximation is needed. To be able to
fully parallelize those as well, we need to analyze their mathe-
matical composition to derive a specialized version. The cas-
caded formulation in (1) can be differentiated by the product
rule as dyp = %—fdr = g—’f%g—g. With the set of indices
M={-MN,-M,—1,0,1, M, M N} we can first define
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and then the /th component of the derivative g—; at point ¢ as
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so that the (k + 3j)th component of dr can be written as
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Fig. 1: PET reference and CT template image before (a) and
after (b) registration. The CT image is displayed in red.

with X; ;3. nvp = 1. Here the term 5
the derivative of the interpolant of the deformed template im-
age at point (¢ — [) with respect to coordinates X; ;4 ;. ;s p-
Using the previous notation and 3% = —hr T, the gradient of
the distance measure then finally results in

denotes
-
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To restrict ¢ to e.g. rigid transformations, another partial
derivative of the transformation would enter the term dr. This
can easily be done and thus will be neglected here. As men-
tioned above, the Hessian can then be approximated as

MNP
V’D(p)=h Y dr;-dr], 3)
=1

so that the derivatives (2) and (3) can be formulated in a
matrix-free way in terms of their basic components 7" and
R. This eliminates inter-point dependencies in intermediate
results and enables full pointwise parallelization.

Our approach is embedded in a multi-level scheme where
the objective function is first discretized and optimized on a
smooth, coarse level and then successively on finer discretiza-
tions [5]. Note that computations are only performed up to a
finest level of 1283 voxels, because finer resolutions did not
improve registration accuracy of our method in repeated ex-
periments. To ensure a plausible alignment of sub-volumes
(e.g. lung CT and full body PET), prior to registration we
perform a principle component axis alignment of the images
[11] and a z-direction grid-search to identify an initial align-
ment with the lowest value of D.
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Fig. 2: Performance using an increasing number of CPU
cores in multiples of one-core computation speed

3.4. Implementation Highlights

Our method is implemented in C++ and parallelized using
standard OpenMP reduction techniques. The code was opti-
mized using conventional profiling tools and serial optimiza-
tion strategies. At the cost of seemingly higher computational
work our formulation avoids slow memory write accesses and
enables direct benefits from increased computational power,
without memory bandwidth being a bottleneck. This ensures
linear scalability with increased CPU core count and increases
computational performance also on single-core systems com-
pared to a sparse-matrix based computation that uses more
memory accesses but less computations.

4. EVALUATION

The evaluation of registration methods is difficult. In general,
the correspondence function ¢ is unknown, and it is hence a
priori unclear how to compare two or more registration ap-
proaches. Common surrogates include the use of landmarks,
segmentation masks, and deformation vector field analysis for
non-linear algorithms [8]. All these criteria, however, can
only express necessary conditions to the desired solution.

For this reason, we decided to perform an initial evalua-
tion study on data with known ground truth deformation. We
chose a set of 21 PET-CT scans from various hospitals and
scanners stemming directly from clinical routine (image cour-
tesy MiE GmbH, Seth), ranging from image sizes 128 x 128 x
144 (PET) to 512 x 512 x 844 (CT) voxels. As these data ori-
gins from hybrid PET-CT systems, we assume that the PET
and CT scans are inherently registered. For all registrations,
the PET is chosen as fixed and the CT as moving image.

Subsequently, we applied randomly selected artificial de-
formations in the range from —10 cm to 10 cm translation and
from —15° to 15° degree rotation to the CT scan, deformed it
accordingly and selected the original PET scan together with
the deformed CT as input to our registration algorithm. An
example is shown in figure 1.

In a second study, we added Gaussian noise of differ-
ent standard deviation to both scans and repeated our experi-
ments. All computations were performed on a 3.4 GHz Intel
17-2600 quad-core on Ubuntu Linux.



Case Avg. distance Avg. runtime Voxelsize (mm?)
1 1.53mm 1.55s 5.31x5.31x2.50
2 2.02mm 1.87s 5.31x5.31x2.30
3 2.12mm 1.59s 5.31x5.31x2.30
4 3.25mm 1.50s 4.00x4.00x4.00
) 2.14mm 1.43s 5.31x5.31x2.50
6 1.62mm 1.58s 5.31x5.31x2.30
7 2.58mm 1.54s 5.31x5.31x2.30
8 1.85mm 1.74s 5.31x5.31x2.30
9 1.56mm 1.64s 5.31x5.31x2.50

10 1.56mm 1.60s 5.31x5.31x2.30
11 2.13mm 1.80s 5.31x5.31x2.30
12 1.50mm 1.45s 5.31x5.31%2.50
13 1.86mm 1.38s 5.31x5.31x2.50
14 1.45mm 1.75s 5.31x5.31x2.50
15 1.62mm 1.80s 5.31x5.31x2.30
16 1.98mm 1.56s 5.31x5.31x2.30
17 1.52mm 1.62s 5.31x5.31%2.50
18 2.78mm 1.41s 5.31x5.31x2.50
19 1.89mm 1.75s 5.31x5.31x2.30
20 4.50mm 2.78s 5.31x5.31x7.00
21 3.18mm 2.31s 9.31x5.31x7.00

Table 1: Evaluation results for ten random deformations each
on 21 clinical PET-CT datasets. The voxelsize corresponds to
the reference image (PET).

o 0 200 400 600 800 1000
Error (mm) 2.12 270 2.89 3.08 320 3.25

Table 2: Average registration error for increasing noise levels.

In order to assess the computational efficiency of our
method in more detail, we additionally performed registra-
tions on a dual CPU twelve-core workstation. The scalability
of our method was analyzed by varying the number of active
cores from 1 to 12.

5. RESULTS

The results of the artificial deformations experiment are
shown in table 1. The average registration error was reduced
from 133.72mm to 2.12mm which is below the PET image
resolution. An average runtime of 1.69s was measured.

The registration accuracy for various noise levels is shown
in table 2. Adding Gaussian noise with o = 1000 led to
an error of 3.25mm instead of 2.12mm. The results of the
scalability measurements are shown in figure 2.

5.1. Discussion

We have presented a highly efficient multimodal image reg-
istration algorithm based on normalized gradient fields. The
method is fully parallelized and exhibits a minimal memory

footprint. It is founded on well-known mathematical and nu-
merical principles.

Our method was evaluated with randomly chosen artificial
deformations on 21 PET-CT datasets from clinical routine. It
achieved very accurate results with computation times of just
about 1.7 seconds on average on a standard PC. Moreover, it
exhibits excellent robustness to noise — even at a very high
noise level, the algorithm still achieved subvoxel accuracy.
Hence, we believe that our method has the realistic potential
to be routinely used in the clinic.

We will extend our scheme to variational approaches for
nonlinear image registration in the future. Using the same
reformulation techniques as presented here, comparably fast
algorithms also for non-linear approaches come within reach.
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