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Abstract. Image registration is one of the most challenging problems in image processing, where
ill-posedness arises due to noisy data as well as non-uniqueness and hence the choice of regularization
is crucial. This paper presents hyperelasticity as a regularizer and introduces a new and stable
numerical implementation. On one hand, hyperelastic registration is an appropriate model for large
and highly nonlinear deformations, for which a linear elastic model needs to fail. On the other
hand, the hyperelastic regularizer yields very regular and diffeomorphic transformations. While
hyperelasticity might be considered as just an additional outstanding regularization option for some
applications, it becomes inevitable for applications involving higher order distance measures like
mass-preserving registration.

The paper gives a short introduction to image registration and hyperelasticity. The hyperelastic
image registration problem is phrased in a variational setting and an existence proof is provided.
The focus of the paper, however, is on a robust numerical scheme. A key challenge is an unbiased
discretization of hyperelasticity, which enables the numerical monitoring of variations of length,
surface and volume of infinitesimal reference elements. We resolve this issue by using a nodal based
discretization with a special tetrahedral partitioning.

The potential of the hyperelastic registration is demonstrated in a direct comparison with a linear
elastic registration on an academical example. The paper also presents a real life application from
3D Positron Emission Tomography (PET) of the human heart which requires mass-preservation and
thus hyperelastic registration is the only option.

Key words. image registration, regularization, hyperelasticity

AMS subject classifications. 92C55, 65M55, 15A23, 65K10

1. Introduction. The goal of image registration is to automatically establish
geometrical correspondences between two or more given data sets. Image registration
is an important tool for various areas of applications such as anatomy, astronomy,
biomedical imaging, forensics, robotics, or remote sensing, to name a few. In par-
ticular in medical imaging, image registration is inevitable whenever images taken at
different times, from different devices, with different modalities, or even from different
individuals need to be compared or fused; see, e.g. [35, 19, 42, 41, 17, 28, 50, 36, 20, 37]
and references therein.

Although the registration problem is easily stated it is hard to be solved. A key
difficulty is the ill-posedness of the problem [27, 48, 32, 11, 23]. For a particular
point, scalar intensities are given but a transformation vector is to be computed. A
common approach is to phrase image registration as an optimization problem involving
a distance measure reflecting similarity of images and a regularization term reflecting
reasonability of the transformation. An example is the so-called elastic registration
scheme introduced by Broit [4, 1]. In his groundbreaking dissertation, the elastic
potential based on a linear elasticity model is introduced and has served as a model
in a huge number of publications and as a synonym for nonlinear registration.

Despite its enormous success, elastic registration has some limitations. As the
scheme is based on linear elasticity, difficulties are to be expected and have been
reported for largely deformed data sets. Therefore, Christensen [6] developed a so-
called fluid registration scheme and Thirion [46] the so-called demons registration
to handle large deformation. Although success has been reported for various appli-
cations, both techniques are not based on an optimization approach and use some
non-physical heuristics such as regridding or choices of demons forces and smooth-
ing. Another limitation related to linear elasticity is that elastic registration does not

1



necessarily compute a diffeomorphic transformation. A proper parameter choice can
resolve this problem, but may also result in an almost rigid transformation. Finally,
as the elastic regularization is only of first order, the classical theory of variational
calculus does not guarantee existence of solutions for various distance measure like
normalized gradient fields (NGF) [12, 25] and mass preservation (MP) [44] or the
integration of constraints like landmark correspondences [15, 21, 39]. Second order
curvature registration has been introduced to provide appropriate regularization [15]
but its physical motivation is difficult and the curvature scheme does not guarantee
diffeomorphic transformations.

In this paper we discuss hyperelastic regularization in the context of image regis-
tration and introduce a new numerically stable implementation. The goal is to model
large nonlinear deformations with physically meaningful transformations being at least
diffeomorphic, i.e. smooth and one-to-one. In contrast to [49], we use a hyperelastic
registration approach where the determinant of the Jacobian is explicitly monitored
and the regularization energy approaches infinity for non-diffeomorphic transforma-
tions. The price to be paid is a nontrivial discretization and the regularization energy
to be non-convex with respect to the Jacobian of the transformation. However, the
energy functional can be designed to be polyconvex ; see [13, 9]. Polyconvexity is
a crucial ingredient to Ball’s theorem [2], which essentially establishes existence for
non-linear elasticity. Following [11, 26], we present an existence result and generalize
it to distance measures that may depend on the Jacobian of the transformation. We
remark that our theory does not include the case of a non-convex double well poten-
tial for surface regularization for which we obtained the best numerical results, see
discussion in Section 2 and 3.

The focus of this paper is on a stable numerical implementation of the hyper-
elastic regularization. It is well-understood, that discrete analogues of continuous
operators may not share all of their properties. A trivial example is a finite difference
approximation of a derivative using long stencils. The discrete operator annihilates
highly oscillatory functions whereas the continuous operator does not [23]. Moreover,
a function being positive on a discrete set needs not to be positive everywhere. Thus,
even if a continuous formulation of a problem guarantees properties like det∇y > 0,
a related discrete version may not. In this paper we use a geometric, voxel based
discretization approach, which is well-suited to the underlying discretization of the
medical data of our numerical evaluation of the scheme. We measure the main in-
gredients of hyperelastic regularization, i.e. the invariants such as length, surface,
volume, on the smallest unit, which is a tetrahedron and prove that this discretiza-
tion is sufficient. In our implementation all these measures are controlled during an
optimization process. Finally, we highlight the potential of our registration approach
on a 2D academic example and a clinically relevant registration problem of 3D cardiac
positron emission tomography (PET).

2. Mathematical Model of Hyperelastic Image Registration. We briefly
introduce the hyperelastic image registration problem, see e.g. [36, 37] for more details
on a general approach. Given are two images T ,R : Ω ⊂ Rd → R, compactly
supported on Ω, where for medical applications typically d = 3. The goal is to find
a transformation y : Ω→ Rd or a deformation, such that ideally T (y(x)) ≈ R(x) for
all x ∈ Ω. This goal is achieved by minimizing a so-called distance measure D. As
this problem is ill-posed [16] an appropriate regularization S is inevitable.

A variational formulation of the image registration problem is to find a mini-

2



mizer y of

J (y) = D(T ,R; y) + S(y) for y ∈ A, (2.1)

where A denotes the set of admissible transformations. The remainder of this sec-
tion specifies and discusses options for the ingredients D, S, and A. Since concrete
parameter choices are not essential for the theoretical analysis, particular choices are
postponed to Section 5. Moreover, we restrict the presentation to d = 3 and as the
domain Ω is fixed in our setting, we set Ω = (0, 1)3 and skip the dependence on Ω in
the following formulae.

Typical choices for the distance D include squares of Lp-norms, e.g.

DSSD(T ,R; y) :=

∫
(T (y(x))−R(x))2 dx, (2.2)

mutual information [8, 47], normalized gradient fields [12, 25], or mass-preserving
measures such as

DMP(T ,R; y) :=

∫
(T (y(x)) det∇y(x)−R(x))2 dx, (2.3)

which (under suitable assumptions on T and y) ensure mass-preservation as it is
essential for accurate registration of human cardiac PET from different heart phases,
see [44] and Section 5 for an application. As the data fitting term is of minor interest in
this paper and we aim for a simplicity of presentation, we focus on (2.3), but emphasize
that our existence theory covers a wide range of relevant distance functionals including
those that depend linearly on ∇y, see Section 3 for details.

Regularization is in general based on ∇y = (∂jyi)
d
i,j=1 and a strain tensor. This

tensor is typically defined via the displacement u, with y(x) = x+u(x) and thus ∇y =
Id +∇u; see, e.g., [7]. Examples are the Cauchy strain tensor V (for ‖∇u‖ � 1) or
the Green-St.-Venant strain tensor E with

V = V (y) = (∇u+∇u>)/2 and E = E(y) = (∇u+∇u> +∇u>∇u)/2. (2.4)

Important choices for a regularizer S include

Selas(y) =

∫
ν(traceV )2 + µtrace(V 2) dx,

Scurv(y) =

d∑
i=1

∫
(∆yi)

2 dx

Squad(y) =

∫
ν(traceE)2 + µtrace(E2) dx,

with ν and µ the Lamé constants [15, 36, 7, 49].
The first regularizer is based on linear elasticity and leads to the well-known

elastic registration [4, 7]. It employs first order derivatives and the existence of opti-
mal solutions can be shown for L2 norm distance functionals using Korns inequality,
cf. [33]. However, to our best knowledge there is no existence proof for problems in-
volving distance measure like (2.3) or landmark based constraints [34, 14]. The second
regularizer is the curvature regularizer, which has been introduced to satisfy landmark
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constraints [15]. It has an infinite dimensional nullspace or challenging boundary con-
ditions that have been addressed in [30]. The last regularizer is a hyperelastic model
and quadratic in ∇y; see [49] for details. A common drawback of the above models
is that transformations with det∇y = 0 yield finite energy.

In this paper, we consider energy functionals that reflect two desired properties
for large deformations (i.e. large strain with ‖∇u‖ � 0). We aim for energies that
tend to infinity for non-diffeomorphic transformations:

S(y) −→ ∞ for det∇y → 0,
S(y) ≥ c1{‖∇y‖p + ‖ cof∇y‖q + (det∇y)r}+ c2,

(2.5)

with c1 > 0, c2 ∈ R and numbers p, q, r > 1, see, e.g., [7, §4, p138]. These con-
ditions guarantee sufficient growth of the penalty for small and large deformations,
respectively. In this paper, we suggest

Shyper(y) :=

∫
α1length(y) + α2surface(y) + α3volume(y) dx, (2.6)

where αi > 0 are some parameters and the length, surface, and volume are related to
the three invariants gradient, cofactor, and determinant of the transformation. Before
discussing our particular setting, we present precise formulae:

length(y) = φ`(∇y), φ`(X) = ‖X − Id‖2Fro,

surface(y) = φw,c(cof∇y), φw(X) = (‖X‖2Fro − 3)2,
φc(X) = max{‖X‖2Fro − 3, 0}2

volume(y) = φv(det∇y), φv(x) = ((x− 1)2/x)2,

(2.7)

with the Frobenius-norm ‖X‖Fro :=
√∑

X2
i,j , and cofactor and determinant as

cof∇y =

 ∂2y2∂3y3 − ∂3y2∂2y3 ∂3y2∂1y3 − ∂1y2∂3y3 ∂1y2∂2y3 − ∂2y2∂1y3

∂3y1∂2y3 − ∂2y1∂3y3 ∂1y1∂3y3 − ∂3y1∂1y3 ∂2y1∂1y3 − ∂1y1∂2y3

∂2y1∂3y2 − ∂3y1∂2y2 ∂3y1∂1y2 − ∂1y1∂3y2 ∂1y1∂2y2 − ∂2y1∂1y2

 ,

det∇y = ∂1y1∂2y2∂3y3 + ∂2y1∂3y2∂1y3 + ∂3y1∂1y2∂2y3

−∂1y3∂2y2∂3y1 − ∂2y3∂3y2∂1y1 − ∂3y3∂1y2∂2y1.

The length term based on ∇y yields a control of length (and angle) variations,
here a quadratic penalty φl for departure from the identity is chosen. The cofactor
matrix quantifies surface changes. Each column consists of a normal vector of length `
to a reference surface, where ` corresponds to the area of the transformed surface. In
our application we would like to penalize changes in area. Hence the penalty should
be zero if ` = 1 and positive otherwise. This can be achieved by using the double well
function φw. However, the double well is not convex and standard arguments do not
apply. For the theoretical part, we thus introduce the convex envelope φc of φw. Note
that the convex φc does not penalize surface shrinkage while the double well does and
is therefore practically superior. Volume changes are controlled by the determinant.
For Ogden materials, the penalty φOgden(x) = x2 − log x is chosen, which yields

SOgden(y) = Squad(y) +O(‖∇y‖3),

and justifies Squad for transformations with ‖∇u‖ � 1; see, e.g. [11, 7]. Our regu-
larizer controls all invariants but uses a volume penalty with φv(1/x) = φv(x), such
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that shrinkage and growth have the same price. Note that both, φOgden and φv
satisfy limx→0 φ(x) =∞ as desired, cf. (2.5).

The price to be paid for using this class of regularizers has already been pointed
out by Ciarlet [7, §4, p138f] – with his notation F = ∇u: “The lack of convexity of
the stored energy function with respect to the variable F is the root of a major diffi-
culty in the mathematical analysis of the associated minimization problem.” Before
presenting our numerical implementation in Section 4, we therefore prove existence
of a minimizing element for our registration energy; see Section 3.

Based on the above discussion, it is natural to seek for transformations in the
Sobolev space W 1,2(Ω,R3) where the cofactor and the determinant are sufficiently
integrable and the determinant is essentially positive. We therefore start with

A0 := {y ∈W 1,2(Ω,R3) :
cof∇y ∈ L4(Ω,R3×3), det∇y ∈ L2(Ω,R), det∇y > 0 a.e. }.

In Ball’s formulation of non-linear elasticity, boundary conditions are imposed
in order to control the norm of the transformation and to obtain existence [2, 7, 9].
However, the boundedness of feasible transformations is less critical in our application.
Reasonable displacements are bounded by diam(Ω) as for larger deformations there is
no overlap between the template and the reference image; see also discussion in [43].
Further, the domain Ω itself can be bounded by a constant M ∈ R. The straight
forward approach to consider ‖y‖∞ ≤ M + diam(Ω) would complicate the analysis
as L∞(Ω,R3) is a not reflexive space. Therefore we use the following average version
and in the next section we obtain existence of solutions in

A :=
{
y ∈ A0 :

∣∣ ∫ y(x)dx
∣∣ ≤ |Ω|(M + diam(Ω))

}
. (2.8)

3. Existence Result. The goal of this section is to provide insight to the exis-
tence theory of solutions y of problem (2.1) using standard arguments from the the-
ory of nonlinear elasticity. We prove that the presented regularization energy Shyper

guarantees the existence of diffeomorphic solutions y of problem (2.1) for practically
relevant distance measures D. Especially for the mass-preserving registration (2.3)
complications in the existence proof are related to the dependency of DMP on det∇y,
the measurability of det∇y (see also [43]), and the constraint det∇y > 0 a.e.. Par-
ticularly in the large deformation setting, these requirements yield strong demands
on the regularization, as discussed in the previous section. To our best knowledge,
existence has only been shown in special settings [44, 43].

The key observation is that DMP in (2.3) and Shyper depend in a non-convex way
on ∇y, but the dependence on cof∇y and det∇y is convex. Therefore, DMP as well
as all the above mentioned distance measures and Shyper are polyconvex functionals,
see (A1) below and [13, 9]. The existence of minimizing elements for such polyconvex
functionals is the topic of the following theorem. Our arguments require all parts to
be convex as it is obvious for the length and the volume penalties. For the surface
part we use the convex envelope φc of the practically more interesting double well φw;
see discussion in the previous section and (2.7).

Theorem 1. Given are images R, T ∈ C(R3,R), compactly supported in Ω, a
polyconvex distance measure D = D(y) = D(T ,R; y,∇y,det∇y) with D ≥ 0, Shyper
as in (2.6) with convex penalties φ`, φc, and φv, and A as in (2.8). We assume that
the registration functional J (2.1) satisfies J (Id) < ∞ for Id(x) := x on Ω. Then
there exists at least one minimizer y∗ ∈ A of the functional J .
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In order to show the existence of a minimizer y ∈ A of J , we recall Ball’s existence
theorem for nonlinear elasticity [2, 7, 9]. Using a function yBC to describe boundary
conditions, Ball proved existence of minimizing elements for functionals of type

I(y) =

∫
g(x, y,∇y)dx (3.1)

under assumptions
A1: the stored energy function g is polyconvex, i.e. there exists a function g̃ :

Ω×R3×R3×3×R3×3×]0,+∞[ such that g(x, y,A) = g̃(x, y,A, cof(A),detA)
and g̃(x, y, ·, ·, ·) is convex for every y ∈ R3 and almost every fixed x ∈ Ω,

A2: the integrand g̃ is Carathéodory, i.e.
(i) g̃(x, ·, ·, ·, ·) is continuous for almost every x ∈ Ω,
(ii) g̃(·, z,D,C, v) is measurable in x for every (z,D,C, v) ∈ R3 × R3×3 ×

R3×3×]0,+∞[.
A3: the functional satisfies a coercivity condition (see (2.5)), i.e. there exist con-

stants K ∈ R and C > 0 and exponents p ≥ 2, q ≥ p
p−1 , r > 1, such that

I(y) ≥ C (‖∇y‖pLp
+ ‖ cof∇y‖qLq

+ ‖ det∇y‖rLr
) +K. (3.2)

A4: For almost all x ∈ Ω, g̃(x, y,∇y, cof(∇y),det∇y) → ∞ as det∇y → 0. The
convergence is uniform with respect to y in any bounded subset of R3.

As mentioned above, we have no explicit boundary conditions in our application,
which requires minor changes of the standard proof given in [2, Thm 7.3]. Assump-
tion (A4) is essential to obtain the strict positivity of the Jacobian determinant of
minimizers of J , which was directly shown in [11].

Theorem 2. Assume that the functional I in (3.1) satisfies (A1)–(A4) and that
there exists ỹ ∈ A as in (2.8) with I(ỹ) <∞. Then there exists at least one minimizer
y∗ ∈ A of I.

Proof. Existence is obtained from lower semicontinuity and coercivity of the
functional I in A. Noticing that

y 7→
(

1

|Ω|
∣∣ ∫ y(x) dx

∣∣)2

is a continuous and convex function from L2(Ω,R3) to R+ and thus weakly lower
semicontinuous, one obtains that A is weakly closed in L2(Ω,R3). Thus, the lower
semicontinuity can be shown as in the proof of [2, Thm 7.3]. In order to obtain
coercivity in W 1,2(Ω,R3) for arbitrary y ∈ A we employ Poincaré’s inequality [13, p.
275], the triangle inequality and the fact that the mean of a transformation y ∈ A,
denoted by ȳ := 1

|Ω|
∫
y(x) dx, is bounded

‖∇y‖2L2
≥ C‖y − ȳ‖2L2

= C‖y‖2L2
− C|Ω|

(
1

|Ω|
∣∣ ∫ y(x) dx

∣∣)2

≥ C‖y‖2L2
− C|Ω| (M + diam(Ω))2.

Hence (3.2) also implies a bound on ‖y‖W 1,2 . Note that the exponents p = 2, q = 4,
r = 2 satisfy the conditions in (A3). All further steps are exactly as in the proof of
[2, Thm 7.3].

Based on Theorem 2, we are ready to prove our Theorem 1.
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Proof. (Theorem 1) We verify that J satisfies assumptions (A1)–(A4). Since
D is polyconvex by assumption and S := Shyper is polyconvex by design of φ`, φc,
and φv, also J = D + S is polyconvex. Hence there exists a function g̃ : Ω × R3 ×
R3×3 × R3×3×]0,+∞[→ R that is convex in the last three arguments and satisfies
J (y) =

∫
g̃(x, y,∇y, cof∇y,det∇y) dx.

We note that g̃(x, ·, ·, ·, ·) is continuous for almost every x ∈ Ω. Further, for every
fixed (z,D,C, v) ∈ R3×R3×3×R3×3×]0,+∞[ we see that g̃(·, z,D,C, v) is measurable
in x and hence g̃ is Carathéodory.

Since D ≥ 0 and the regularization functional S satisfies (2.7), there exist con-
stants Ck > 0 and Kk ∈ R, where k ∈ N, such that

J (y) ≥
∫
‖∇y − Id‖2Fro + φc(cof∇y) + φv(det∇y) dx

≥ C1

∫
‖∇y − Id‖2Fro + ‖ cof∇y‖4Fro + (det∇y)2 dx+K1.

Using the fact that (a− b)2 ≥ 1
2a

2 − b2 holds for a, b ∈ R we obtain assumption (A3)

≥ C1

∫
1

2
‖∇y‖2Fro − ‖Id‖2Fro + ‖ cof∇y‖4Fro + (det∇y)2 dx+K1

≥ C2

(
‖∇y‖2L2

+ ‖ cof∇y‖4L4
+ ‖ det∇y‖2L2

)
+K2.

We finally note that g̃ fulfills (A4) by design of φv and thus all assumptions of
Theorem 2 are satisfied. Thus, there exists at least one minimizer y∗ ∈ A.

4. Numerical Implementation. Our numerical implementation is based on
a discretize-then-optimize strategy, following a multi-level registration strategy as
outlined in [37]. The crucial part is a proper discretization, which is outlined in
detail below. On a coarse level discretization, a numerical minimizer is computed,
prolongated to a finer discretization, and then used as a starting guess on the finer
level. We use a generalized Gauss-Newton scheme to compute a numerical minimizer.
Moreover, we use a backtracked Armijo line search guaranteeing sufficient descent and
det∇y > 0; see [38] for details.

We now describe our discretization, the discrete objective function, its analytic
gradient, and our approximation to the Hessian. We control the change of volume
under a discrete transformation y on the smallest measurable unit namely a voxel. As
it is well-known [24], the control of volume change of a voxel is not straightforward.
To ensure a diffeomorphic transformation, we use a partitioning approach similar to
the one in [24]. The volume of a set V transformed by y is given by

vol(y(V )) =
∫
y(V )

dx =
∫
V

det∇y dx.

Note, however, that the latter equality assumes sufficient regularity of y, which is
critical in this setting. Our discretization is therefore based directly on

∫
y(V )

dx and

measures the volume spanned by the transformed vertices.
Our primary discretization is based on a nodal grid of the computational domain,

where for ease of presentation we set Ω̄ = [0, 1]3 and an equal number m of grid
points for every dimension; see [37] for details on more general discretizations. Using
multi-indices i = (i1, i2, i3), the so-called nodal grid points are given by

yi = hi, h = 1/m, ij = 0, . . . ,m, j = 1, 2, 3.
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We denote the number of grid points by N := (m+ 1)3. The cube spanned by eight
nodes yi+k, k ∈ {0, 1}3 is called a voxel V i; see Fig. 4.1. This voxel is partitioned into
tetrahedra T ij and our discrete model for the transformation is a continuous vector

field, which is linear on each T ij .

E1 E2

E3
E4

E6

E7
E8

E9

E10

E14

E15

Fig. 4.1. Partitioning of a deformed voxel from a nodal grid E1, ..., E8 with face average points
E9, ..., E14 and center E15

Theorem 3. Let V be a voxel and {Tj , j ∈ J} be a tetrahedral partition of V
with vol(Tj) > 0 for all j ∈ J . Moreover let y : Ω̄ → R3 be a vector field such that
y
∣∣
Tj

is linear. It holds

det∇y
∣∣
V
> 0 a.e. ⇐⇒ ∀ j ∈ J : vol(y(Tj)) > 0. (4.1)

Proof. Since {Tj , j ∈ J} is a partition of V , it holds det∇y
∣∣
V
> 0 a.e. ⇐⇒

∀ j ∈ J : det∇y
∣∣
Tj

> 0. Moreover, y
∣∣
Tj

is linear and thus det∇y
∣∣
Tj

= cj is a

constant. The volume of a deformed tetrahedron is

vol(y(Tj)) =

∫
y(Tj)

dx =

∫
Tj

cj dx = cjvol(Tj),

covering the cases cj > 0, cj = 0, and cj < 0. Thus, det∇y
∣∣
Tj
> 0 ⇐⇒ vol(y(Tj)) >

0 which together with {Tj , j ∈ J} being a partitioning yields the assertion.
Theorem 3 ensures regularity of various partitions including the ones used in [24]

(six tetrahedra), [22] (five tetrahedra), and a new tetrahedral model (24 tetrahedra)
as suggested by Heldmann [29]. The latter one is used in this paper.

We illustrate Heldmann’s [29] tetrahedral model for an arbitrary but specific
voxel V i and in the following skip the dependence on i for ease of presentation;
see Fig. 4.1. The nodal points or vertices are denoted by E1, . . . , E8. Heldmann’s
suggestion is to introduce seven auxiliary points. The first six are face average points
and the fifteenth is the center of V . For example, E9 := (E1 + E2 + E3 + E4)/4,

E14 := (E3 + E4 + E7 + E8)/4, and E15 :=
∑8
k=1Ek/8. Using these additional
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points, we get a symmetric representation of each of the six faces of the voxel into a
total of 24 triangles; for example, F(1,2,9) := ∆(E1, E2, E9), F(2,3,9) := ∆(E2, E3, E9),
F(3,4,9) := ∆(E3, E4, E9), and F(4,2,9) := ∆(E4, E2, E9) are the faces of the four
triangles spanning the front face of the voxel shown in Fig. 4.1. The tetrahedron
T(1,2,9) is then obtained by connecting triangle F(1,2,9) with the voxel’s center E15.

The advantage of this partition, which is much finer than the ones used in the
constrained optimization approaches [22] and [24], lies in its symmetry. Thereby a
bias related to particular discretization as it has been observed when using only five
or six tetrahedra [3] is avoided. Another advantage is its smoothness. Though the
transformation model is only piecewise linear, additional smoothness is introduced
via the coupling through the face center points. A disadvantage is its computational
costs.

Based on this discretization of y, we outline the discretization of J (2.1). For the
discretization of DMP we follow [37] and use our discretization of det∇y. Note that
det∇y appears in DMP and S and its computation can be reused. The regularizer is
decomposed into three parts related to length, surface, and volume:

Sh(y) = h3S`(y) + h3
m3∑
i=1

24∑
j=1

(Sis,j + Siv,j),

where the factor h3 results from integration. For the discretized length term we use

S`(y) = ‖∇hy −∇hId‖2 = ‖∇hu‖2 = uT (∇h)T∇hu, dS`(y) = (∇h)T∇hu,

as the length term is essentially a squared norm of the discrete, relative gradient,
see [37] for details.

Our discretizations of the surface and volume terms are discussed exemplarily
for the grayish tetrahedron T(1,2,9) in Fig. 4.1. The computation for the other 23
tetrahedra is along the same lines. Note that only the 24 triangles belonging to the
surface of the voxel are measured. To measure the area of the triangle F(1,2,9), we
extract the positions of the vertices Pk y := y(Ek), k ∈ {1, 2, 9}, compute a difference
vector, and measure the area as a cross-product of these differences. Note that the
reference area of a triangle of a face of a uniform voxel is h2/4. Thus, with the vectors
(dji )i=1,2,3, the variation of the surface is

Sis,1(y) = Sis,(1,2,9)(y) = φs(A(P(1,2,9) y)),

P(1,2,9) y = [d1, d2] = [P1 y − P9 y, P2 y − P9 y],

A(P(1,2,9) y) = 4‖d1 × d2‖2/h4,

where the penalty φs for the surface is either the double well or the convex model,

φw(A) = (A− 1)2/2, φc(A) = max{A− 1, 0}2/2.

The derivative is computed using the chain rule:

dSis,1(y) = dφs dA P(1,2,9), dφw = A− 1, dφc = max{A− 1, 0}.

dA =
2

h2
(d1

2d
2
3 − d1

3d
2
2, d

1
3d

2
1 − d1

1d
2
3, d

1
1d

2
2 − d1

2d
2
1)

·
(

0 d2
3 −d2

2 0 −d1
3 d1

2
−d2

3 0 d2
1 d1

3 0 −d1
1

d2
2 −d2

1 0 −d1
2 d1

1 0

)
.
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The computation of the variation of volume is along the same lines. A projector
P(1,2,9,15) extracts the vertices of the tetrahedron and its volume is computed using
the rule of Sarrus:

Siv,1(y) = Siv,(1,2,9,15)(y) = φv(V (P(1,2,9,15) y)),

P(1,2,9,15) y = [v1, v2, v3] = [P1 y − P15 y, P2 y − P15 y, P9 y − P15 y],

V (P(1,2,9,15) y) = 4 det([v1, v2, v3])/h3,

φv(v) = (v − 1)4/v2

with derivative

dSiv,1(y) = dφv dV P(1,2,9,15),
dφv = 2(v + 1)((v − 1)/v)3,

dV = 1
h3

[
v2

2v
3
3 − v2

3v
3
2 , v3

1v
2
3 − v3

3v
2
1 , v2

1v
3
2 − v2

2v
3
1 ,

v3
2v

1
3 − v3

3v
1
2 , v1

1v
3
3 − v1

3v
3
1 , v3

1v
1
2 − v3

2v
1
1 ,

v1
2v

2
3 − v1

3v
2
2 , v2

1v
1
3 − v2

3v
1
1 , v1

1v
2
2 − v1

2v
2
1

]
.

We stress that we compute the analytic first derivatives of the regularizer but for the
generalized Gauss-Newton scheme, we approximate the Hessians by

d2Sis,1(y) = P>(1,2,9) dA d2φs dA P(1,2,9),

d2Siv,1(y) = P>(1,2,9,15) dV d2φv dV P(1,2,9,15).

The relatively fine partitioning of the voxels into 24 tetrahedra is computationally
costly and a naive implementation may result in relatively high demands in terms of
memory, even when using a sparse matrix format. This makes a matrix-based im-
plementation prohibitive for practically relevant problem sizes although the matrices
provide insight into the structure of the operators. Our implementation therefore
provides a matrix-based version used for analysis, but also a matrix-free version that
enables parallel processing of the voxels. This matrix-free implementation is fairly
efficient in terms of memory requirements and runtime. In terms of memory require-
ments, the linear elastic and hyperelastic schemes are equivalent. In our numerical
experiments we use this efficient implementation. Note that our discretization cou-
ples all nodal vertices via the face averages and the voxel center. Hence, the Hessian
is relatively full and its inverse has smoothing properties; see Fig. 4.2 for a typical
non-zero pattern of the Hessian.

The linear systems in the Gauss-Newton steps are solved using a preconditioned
conjugate gradient scheme [31] with diagonal preconditioning, which takes advan-
tage of our matrix-free implementation. Using this matrix-free representation and
thus avoiding setup times for the matrix-representations gives further speedups as
we expect and observe a small number of Gauss-Newton iterations on the finest dis-
cretization level.

5. Results. We present results for two applications that demonstrate the poten-
tial of the proposed hyperelastic regularization scheme. Our first example is academic
and highlights the two main outstanding features of hyperelastic registration: its ca-
pability of handling large deformations and the guarantee for diffeomorphic transfor-
mations. For the ease of visualization, we use a 2D setting. The second, clinically
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Fig. 5.1. Comparison of linear and hyperelastic registrations for 2D academic 128×128 images
as in [6]. Parameters used: α = 1.000, µ = 1, and λ = 0 (elastic), α1 = 100, α2 = 0, and α3 = 20
(hyperelastic); det∇yelastic(x) ∈ [−1.2, 19.4], det∇yhyper(x) ∈ [0.4, 5.5].

relevant problem is related to a 3D registration problem from cardiac Positron Emis-
sion Tomography (PET); image courtesy by Fabian Gigengack from the European
Institute for Molecular Imaging, Münster, Germany [18].

The first experiment is a direct comparison of a linear elastic scheme [37] and
the novel hyperelastic registration. Motivated by [6], we aim to register a disc to a
C shaped form such that large variations in the deformation field are to be expected.
A 128× 128 resolution of the images and the L2-norm based distance measure DSSD

have been used. Figure 5.1 shows the template and reference image, a visualization of
the transformation added to the template image, the deformed template images and
a map of det∇y for the linear elastic and hyperelastic registration, respectively.

The linear elastic approach (using the regularization α = 1.000, and the Navier-
Lamé constants µ = 1 and λ = 0) has been driven beyonds its limits: det∇y(x) ∈
[−1.2, 19.4] and thus y is not diffeomorphic. For smaller values of α, the scheme
generates heavily distorted transformations and for larger values of α the scheme
yields unsatisfying transformed templates; see also [6, 36].
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higher order regularization. Since di↵eomorphic but also large deformations are to be
expected for the cardiac phases, hyperelastic registration is a method of choice.

In this experiment, we focus on a computationally most challenging registration
subproblem, namely the registration of the extreme cardiac phases. The images are
provided with an isotropic spatial resolution of 3.375 mm resulting in 76 ⇥ 76 ⇥ 44
voxels.

We investigate the dependence of the registration results on the regularization
parameters ↵1, ↵2 and ↵3 as well as �w and �c. To this end, we set ↵1 to 50 and
vary the parameters for surface and volume 31 equally spaced on a logarithmical
scale between 10�1 and 104. The double well function �w is used for penalizing
changes of surface area. The 961 registration problems are solved using two levels of a
quarter and a half of the data resolution. Fig. 5.2 visualizes the value of the objective
function J (y↵) as well as the minimal and maximal volumetric change, respectively,
where y↵ denotes our numerical solutions. As expected, we observe a larger reduction
of the objective function for smaller weights on the regularization functionals. As all
transformations y↵ are di↵eomorphic (range of volumetric changes is [0.02, 1.73] across
all experiments) we could thus pick ↵2 = ↵3 = 10�1. However, already a moderate
regularization of surface and volume changes reduces the range of the determinant
considerably, which motivates us to pick ↵2 = ↵3 = 10 in the following.

Figure 5.3 visualizes the final registration result for cardiac gated images of a
systolic (reference) and a diastolic gate (template). The figure shows volumetric
visualizations of the reference, template, and transformed template image as well
as minimal intensity projections of the determinant detry. The mass-preserving
hyperelastic registration (with the parameters ↵1 = 50, ↵2 = 10 and ↵3 = 10 and the
double well surface function �s,dw) provides a di↵eomorphic solution with detry(x) 2
[0.3, 2.1] and produces a transformed template almost identical to the reference. In this
example, we use three levels in our multi-level strategy where the finest discretization
equals the size of the original data. On the respective levels, 5, 3, and 2 iterations
were performed and the total runtime was about 35 seconds on a Linux PC with a
four core Intel Xeon X5670 @3,40 GHz using Matlab 2011a.

Finally, we compared the above results obtained using �s,dw with the transforma-
tion computed using the convex surface penalty �s,c, for which we showed existence.
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quarter and a half of the data resolution. Fig. 5.2 visualizes the value of the objective
function J (y↵) as well as the minimal and maximal volumetric change, respectively,
where y↵ denotes our numerical solutions. As expected, we observe a larger reduction
of the objective function for smaller weights on the regularization functionals. As all
transformations y↵ are di↵eomorphic (range of volumetric changes is [0.02, 1.73] across
all experiments) we could thus pick ↵2 = ↵3 = 10�1. However, already a moderate
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considerably, which motivates us to pick ↵2 = ↵3 = 10 in the following.
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Fig. 5.2. Parameter dependence of the the hyperelastic regularizer for the 3D cardiac PET
registration problem. For α1 = 10 fixed we vary the parameters α2, α3 for surface and volume
regularization logarithmically between 10−3 and 104. For the solutions yα we show the reduction of
the objective function (left) and the minimal (center) and maximal (right) volumetric change.

The novel hyperelastic registration (with hand tuned parameter α1 = 100, α2 = 0,
and α3 = 20) generates a diffeomorphic transformation with det∇y(x) ∈ [0.4, 5.5],
which also yields a reasonably transformed template. Controlling the volumes of four
triangles per pixel for the 2D case, we introduced an additional computational load
and the runtime is approximately six times the time of our implementation of the
elastic registration [37].

Our second application is related to the reconstruction of 3D PET images of a
human heart. As the emphasis of this paper is on the numerical implementation of
mass-preserving hyperelastic registration, we outline the underlying gating procedure
only briefly. For a detailed discussion of this application as well as a clinical validation
we refer to [18].

In PET reconstruction, a relatively long acquisition time of up to twenty minutes
results in severe degradation of image quality due to respiratory and cardiac motion.
So-called gating techniques are used to compensate for these motion artifacts [5]. In
short, measurements are grouped into a number of gates, which relate to particular
phases in the respiratory and cardiac cycle. For each gate, a reconstruction is com-
puted which shows less motion blur but is also based on fewer counts and consequently
of degraded quality. To take full advantage of all measurements the reconstructions
are to be fused and image registration becomes inevitable to align the reconstructions
of the different gates. For this application, it is important to acknowledge the fact
that image intensities represent densities. Thus, the total number of events per tis-
sue unit is a constant and a mass-preserving distance measure (2.3) is appropriate;
see [44] for details. As outlined in Section 2, the registration functional thus requires
higher order regularization. Since diffeomorphic but also large deformations are to be
expected for the cardiac phases, hyperelastic registration is a method of choice.

In this experiment, we focus on a computationally most challenging registration
subproblem, namely the registration of the extreme cardiac phases. The images are
provided with an isotropic spatial resolution of 3.375 mm resulting in 76 × 76 × 44
voxels.

We investigate the dependence of the registration results on the regularization
parameters α1, α2 and α3 as well as φw and φc; see (2.6) and (2.7). To this end, we
set α1 to 50 and vary the parameters for surface and volume 31 equally spaced on a
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logarithmical scale between 10−1 and 104. The double well function φw is used for
penalizing changes of surface area. The 961 registration problems are solved using two
levels of a quarter and a half of the data resolution. Figure 5.2 visualizes the value of
the objective function J (yα) as a function of the regularization parameters α, where
yα denotes our numerical solutions. The figure also shows the minimal and maximal
volumetric change. As expected, we observe a larger reduction of the objective func-
tion for smaller weights on the regularization functionals but still all transformations
yα are diffeomorphic: det(∇yα) ∈ [0.02, 1.73] for all experiments. This motivates the
choice α2 = α3 = 10−1. However, already a moderate regularization of surface and
volume changes reduces the range of the determinant considerably, which leads us to
pick slightly larger parameters. In our experiments, we used α2 = α3 = 10. Note that
the landscapes are very smooth.

Figure 5.3 visualizes the final registration results for cardiac gated images of a
systolic (reference) and a diastolic gate (template). The figure shows renderings of
the heart wall in the the reference, template, and transformed template images as
well as a minimal intensity projections of the determinant det∇y. For our mass-
preserving hyperelastic registration we used the parameters α1 = 50, α2 = 10 and
α3 = 10 and the double well surface function φw. In this example, we use three
levels in our multi-level strategy where the finest discretization equals the size of the
original data. On the respective levels, 5, 3, and 2 iterations were performed and the
total runtime was about 35 seconds on a Linux PC with a four core Intel Xeon X5670
@3,40 GHz using Matlab 2011a. Our scheme provides a diffeomorphic solution with
det∇y(x) ∈ [0.3, 2.1] and produces a transformed template that is visually identical
to the reference.

Our last experiment compares the surface potentials φw and φc, see (2.7). Note
that we proved existence of minimizing elements only for the convex surface penalty
φc. Our experiment shows that both surface potentials lead to very similar results
in terms of distance and transformation. The distance reduction is 0.023% for φc
versus 0.029% for φw. The mean and maximum Euclidean distance between the
transformations are 0.38 mm and 2.68 mm in a representative rectangular region of
interest around the heart. However, the differences of the models are observable in
the volumetric changes. As to be expected, using the double-well penalty φw yields a
smaller range of [0.3, 2.1] versus [0.3, 2.4] for φc. Therefore, we prefer the double well
based model.

6. Summary. A novel hyperelastic registration technique has been proposed.
The motivation is to provide a method that can deal with large transformation but
at the same time provides sufficiently smooth and in particular diffeomorphic trans-
formations. The new scheme is especially attractive for problems, where the distance
measure can be phrased as a polyconvex function with respect to the transformation
y and the Jacobian ∇y. Examples of distance measures that involve ∇y are related
to densities and count processes and play an important role in Diffusion Tensor Imag-
ing [40], Positron Emission Imaging [45, 18] and Single Photon Emission Computer
Tomography [45].

A key feature of our hyperelastic models is that they result into infinite energy
for non-diffeomorphic transformations. While this is a desirable property from an
application point of view, it leads to a mathematically more challenging non-convex
energy. We address this issue by using a polyconvex setting and by explicit control of
length, surface, and volume. Using Ball’s theorem, we proved existence of a minimiz-
ing element for the hyperelastic based registration energy J with the convex surface
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Fig. 5.3. Results for mass-preserving hyperelastic registration of 3D cardiac PET: reference
(top left), template (top right), transformed and modulated template T (y) ·det∇y (bottom left), and
minimum intensity projection (MIP) of the determinant of the Jacobian (bottom right); note that
we show the minimal value of the determinant; since det∇y(x) ∈ [0.3, 2.1], the transformation is
guaranteed to be diffeomorphic.

penalty φc. This regularization is thus sufficient, but we do not know to what extend
it can be weakened. In particular, we do not have proof for the proposed double-well
surface penalty φw, which is more appropriate from a modelling perspective and yields
superior results in our examples.

However, the emphasis of this paper is on a numerical implementation of the
hyperelastic registration scheme, where a proper measurement of the regularization
energy is crucial. Acknowledging the given data structure, we use a nodal discretiza-
tion with a tetrahedral partitioning of each voxel. The three invariants length, area,
and volume are then measured using geometric primitives on each tetrahedron. We
showed that such a discretization is sufficient to measure the regularization energy
in the discrete setting. Moreover, we use a new partitioning as suggested by Held-
mann [29]. This partition is based on 24 tetrahedra and avoids a bias with respect to
a discretization direction as it has been observed for simpler (5 or 6 tetrahedra based)
partitions and results in a smoother representation of the discrete transformation.

Our hyperelastic registration produces plausible and visually pleasing registration
results. Most importantly, the transformation is guaranteed to be diffeomorphic and
sufficiently smooth. This is supported not only by our theory but also controlled by
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a precise numerical measurement. The downside is a non-neglectable computational
load, even when using sparse matrix computations. Note that the hyperelastic scheme
has the same complexity as the linear elastic scheme. The hyperelastic scheme re-
quires more computations per voxel. Therefore, we also implemented a parallelized
and matrix-free scheme. For this matrix-free code, memory consumption is kept at
roughly the same level as for the linear elastic schemes and reasonable runtimes are
obtained. Future work will address further improvements of the algorithm and its
implementation.

Finally we presented two applications, demonstrating the potential of the hyper-
elastic registration. The first one is an example from Christensen [6], which has been
designed to uncover the limitations of a linear elastic model for image registration.
As to be expected, the hyperelastic scheme gives a reasonable result while a linear
elastic scheme does not. The second example is a 3D mass-preserving PET registra-
tion. As our distance measure depends nonlinearly on ∇y, higher order regularization
becomes mandatory. To our best knowledge, hyperelastic registration is presently the
only approach for this type of problems. As it turns out, our scheme yields amazingly
good results. Related work addresses the clinical evaluation of the relevance of our
mass-preserving hyperelastic registration results [18].

We used the FAIR software as a computational framework. Moreover, the im-
plementation of our new hyperelastic regularizer has been integrated to FAIR’s new
version which is available from SIAM website http://www.siam.org/books/fa06/.
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Motion correction in dual gated cardiac PET using mass-preserving image registration,
IEEE Transactions on Medical Imaging, 31(3),pp. 698–712 (2012).

[19] C. Glasbey, A review of image warping methods, Journal of Applied Statistics, 25 (1998),
pp. 155–171.

[20] A. Ardeshir Goshtasby, 2-D and 3-D Image Registration, Wiley Press, New York, 2005.
[21] E. Haber, S. Heldmann, and J. Modersitzki, A scale-space approach to landmark con-

strained image registration, in Proceedings of the Second International Conference on Scale
Space Methods and Variational Methods in Computer Vision (SSVM), Springer LNCS,
2009, pp. 1–12.

[22] E. Haber, R. Horesh, and J. Modersitzki, Numerical methods for constrained image regis-
tration, Numerical Linear Algebra with Applications, 17 (2010), pp. 343–359.

[23] E. Haber and J. Modersitzki, Numerical methods for volume preserving image registration,
Inverse Problems, Institute of Physics Publishing, 20 (2004), pp. 1621–1638.

[24] , Image registration with a guaranteed displacement regularity, IJCV, 1 (2006). DOI:
10.1007/s11263-006-8984-4.

[25] , Intensity gradient based registration and fusion of multi-modal images, in Medical Image
Computing and Computer-Assisted Intervention – MICCAI 2006, C Barillot, DR Haynor,
and P Hellier, eds., vol. 3216, Springer LNCS, 2006, pp. 591–598.

[26] C. Le Guyader and L. A. Vese, A combined segmentation and registration framework
with a nonlinear elasticity smoother, Computer Vision and Image Understanding, 115(12),
pp. 1689-1709 (2011).
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