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Lübeck, Germany

Abstract.

Diffusion weighted magnetic resonance imaging is a key investigation technique in

modern neuroscience. In clinical settings, diffusion weighted imaging (DWI) and its

extension to diffusion tensor imaging (DTI) is usually performed applying the technique

of echo-planar imaging (EPI). EPI is the commonly available ultrafast acquisition

technique for single-shot acquisition with spatial encoding in a Cartesian system.

A drawback of these sequences is their high sensitivity against small perturbations

of the magnetic field, caused, e.g., by differences in magnetic susceptibility of soft

tissue, bone, and air. The resulting magnetic field inhomogeneities thus cause

geometrical distortions and intensity modulations in diffusion weighted images. This

complicates the fusion with anatomical T1- or T2-weighted MR images obtained with

conventional spin- or gradient echo images and negligible distortion. In order to limit

the degradation of diffusion weighted MR data we present here a variational approach

based on a reference scan pair with reversed polarity of the phase- and frequency

encoding gradients and hence reversed distortion.

The key novelty is a tailored nonlinear regularization functional to obtain smooth

and diffeomorphic transformations. We incorporate the physical distortion model into

a variational image registration framework and derive an accurate and fast correction

algorithm. We evaluate the applicability of our approach to distorted DTI brain

scans of six healthy volunteers. For all datasets, the automatic correction algorithm

considerably reduced the image degradation. We show that after correction, fusion

with T1- or T2-weighted images can be obtained by a simple rigid registration.

Furthermore, we demonstrate the improvement due to the novel regularization scheme.

Most importantly, we show that it provides meaningful, i.e., diffeomorphic geometric

transformations, independent of the actual choice of the regularization parameters.
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1. Introduction and Background

Within the last years, diffusion weighted magnetic resonance imaging has become one

of the most important imaging methods especially in neuroscience research, but also in

clinical routine. It is used either to obtain data on isotropic mean diffusivity, when it

is commonly referred to plainly as DWI (diffusion weighted imaging, usually acquired

with diffusion weighting gradients in three orthogonal directions), or to obtain additional

directional information, referred to as DTI (diffusion tensor imaging), when gradients

in more than 6 directions are measured. DWI allows the visualization of the mobility of

water molecules within brain tissue (Stejskal & Tanner 1965, Basser et al. 1994), which

is also clinically important, e.g., for early stroke detection (Warach et al. 1992) and

characterization (Neumann-Haefelin et al. 1999) and for tumor characterization (Bergui

et al. 2011, Hu et al. 2008). If with DTI directional information is also obtained,

anisotropy measures of micro-structural integrity (Shimony et al. 1999, Wieshmann

et al. 1999, Le Bihan et al. 2001, Deppe et al. 2007) and improved morphometric analysis

of specific brain structures (Wiegell et al. 2003, Heidemann et al. 2010) is enabled.

In addition, nerve fiber tracts and anatomical connectivity can be modeled (Conturo

et al. 1999, Mori et al. 2000, Kaden et al. 2007, Makuuchi et al. 2009). Especially

structural information obtained from DTI, e.g., fractional anisotropy, contributes to

diagnosis of clinically relevant white matter alterations (Deppe et al. 2008, Wersching

et al. 2010, Duning et al. 2011).

To speed up the acquisition of the relatively large number of images necessary to

calculate a fractional anisotropy map or to visualize fiber bundle tracts, fast readout

sequences are required. Moreover, to avoid motion and pulsation artifacts, diffusion

weighted images are commonly acquired with a single-shot imaging method. The fast

acquisition scheme of conventional echo planar imaging (EPI) is most frequently used

for DWI and DTI. It is an ultra fast MRI sequence that allows acquisition times in the

order of seconds for a whole brain volume (Stehling et al. 1991). This is achieved by

sampling the entire space frequency domain of a selected slice with only one excitation

using fast gradient blipping, which results in a very low acquisition bandwidth in the

direction of the phase encoding gradient (Liang & Lauterbur 2000).

Owing to this low bandwidth, one limitation of EPI is the high sensitivity against

small perturbations of the magnetic field (Chang & Fitzpatrick 1992, Jezzard & Clare

1999). These field inhomogeneities are inevitably caused by the fact that any object in

an MR scanner distorts the field because its (magnetic) susceptibility is different from

the surrounding medium (air in medical imaging). Furthermore, different tissues in

the human body also have different susceptibilities (e.g., cerebrospinal fluid and bone)

(Chang & Fitzpatrick 1992, Jezzard & Clare 1999, Morgan et al. 2004). The resulting

field inhomogeneity scales with the B0 field strength. The inhomogeneity affects the

spatial encoding of the signal and degrades the reconstructed images by a geometrical

deformation and a modulation of signal intensities (Chang & Fitzpatrick 1992). In EPI,

the spatial displacement is dominant along the phase encoding direction and its extent
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depends on acquisition bandwidth which can be controlled by measurement parameters,

e.g, the readout time.

Image distortions severely complicate the fusion of information obtained by

diffusion weighted images and anatomical information from T1- or T2-weighted

images, obtained with conventional spin- or gradient echo sequences with negligible

spatial distortion. This strongly influences the possibility to adequately model the

human head in other neuroscience fields such as Electroencephalography (EEG)

and Magnetoencephalography (MEG) source analysis (Wolters et al. 2006, Güllmar

et al. 2010) and in simulation studies of brain stimulation techniques such as transcranial

direct current stimulation (Holdefer et al. 2006) and transcranial magnetic stimulation

(Opitz et al. 2011).

1.1. Existing approaches

Various approaches have been proven successful to limit the degradation of field

distortions. The commonly used field map approaches include a direct measurement

of the field-inhomogeneity by a reference scan and rectification of the distorted image

data based on a physical distortion model, see (Jezzard & Balaban 1995, Andersson et al.

2001, Hutton et al. 2002) and (1). In addition to the problem of subject motion during

the relatively long acquisition time, field map measurements demand regularization to

overcome problems near tissue edges and regions with large inhomogeneities (Holland

et al. 2010). Relatively noise-robust and accurate correction is achieved using the

measurement of the point spread function (PSF) in MRI (Robson et al. 1997, Zeng

& Constable 2002). However, measuring the PSF is very time consuming taking

several minutes for a full brain volume (Holland et al. 2010), which motivated speed-

ups using parallel imaging (Zaitsev et al. 2004) and simplified formulations such as

Phase Labeling for Additional Coordinate Encoding (PLACE) (Qing-San Xiang 2007).

Direct registration of EPI data to anatomical images have been proposed in (Merhof

et al. 2007, Tao et al. 2009).

In this paper we follow a reversed gradient strategy for susceptibility correction that

is based on inverted phase- and frequency-encoding gradients causing reversed distortion

effects. This motivates the acquisition of two echo planar images that are identical apart

from their opposite distortions (Chang & Fitzpatrick 1992, Morgan et al. 2004, Skare

& Andersson 2005, Mohammadi et al. 2011). If the acquisition of the additional EPI

can be restricted to a representation of basic geometry, e.g., by skipping measurements

for redundant functional or diffusion information, the increase in scan time is kept to a

minimum.

After image acquisition, the field-inhomogeneity is estimated such that the corrected

datasets are as similar as possible. Different numerical schemes for this inverse

problem have been proposed. Point-to-point references between the reference scans are

established column-wise along the phase encoding direction (Chang & Fitzpatrick 1992,

Morgan et al. 2004, Weiskopf et al. 2005). Image registration techniques, operating
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in 3D, were successfully used to implement the reversed gradient scheme (Andersson

et al. 2003, Skare & Andersson 2005). The field inhomogeneity was modeled with a

set of basis functions thus yielding a finite dimensional optimization problem limiting

the spatial variation of the field inhomogeneity estimate. By contrast, in a variational

setting, optimization is carried out in function spaces and hence problems are infinitely

dimensional. This allows highly nonlinear and very flexible transformation and omits,

e.g., the specification of appropriate knot spacing in B-spline registration algorithms.

The efficiency of variational algorithms for susceptibility correction is also supported by

the recent works (Olesch et al. 2010, Holland et al. 2010), which will be our starting

point.

1.2. Contribution and Outline

This paper summarizes and extends the variational approach (Holland et al. 2010) and

our previous work of a diploma thesis (Ruthotto 2010) and a conference proceedings

(Olesch et al. 2010) by a novel nonlinear regularization functional. This additional

term directly controls the intensity modulation and ensured diffeomorphic geometrical

transformations. Its formulation and discretization is motivated by (M.Burger et al.

2012), where we proposed a numerically sound scheme of a hyperelastic regularization

energy for general image registration problems. In susceptibility correction of EPI,

deformations are practically limited to the phase-encoding direction. We therefore

derive a tailored and simplified version of the hyperelastic scheme. The new scheme

still provides diffeomorphic transformations and thus meaningful intensity modulations

and moderate computational costs.

Our novel algorithm is evaluated on a set of distorted DTI brain scans of six

healthy volunteers obtained from widely applied clinical routine imaging protocol.

The correction scheme is embedded into a DTI acquisition and processing pipeline

to evaluate the impact on clinically relevant biomarkers. Our results indicate that,

after susceptibility correction, registration to undistorted T1- or T2-weighted images

can be performed by a simple rigid registration. In a numerical example on real data,

we show that the novel regularization scheme can be crucial to guarantee meaningful

solutions and is thus a valuable extension of (Olesch et al. 2010, Ruthotto 2010, Holland

et al. 2010).

Our algorithm is embedded into the freely available image registration toolbox

FAIR (Modersitzki 2009) and our Matlab code with example data is available at

http://www.siam.org/books/fa06.

2. Materials and Method

2.1. Physical Distortion Model

In MRI the frequency of the resonance signal originating from each volume element

depends on the exact magnetic field at that volume by the Larmor relationship. Spatial
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encoding of the received signal is thus possible, if during acquisition of the resonance

signal the magnetic field varies with position in a known way. During the slice-

wise reconstruction of an image using a two-dimensional equidistant Fourier-transform

method (Kumar et al. 1975, Edelstein et al. 1980) it is thus assumed that the switched

magnetic field gradients, i.e., the frequency encoding gradient and the phase encoding

gradient, are linear, and that the underlying static field is constant over the field of

view, i.e., the resonance frequency depends linearly on position. Assuming a known

field inhomogeneity B : Ω → R, where Ω ⊂ R3 is a domain, a forward model that

relates the unobservable undistorted image I : Ω → R to the observation I1 : Ω → R
was introduced in (Chang & Fitzpatrick 1992). Let v ∈ R3 denote the known direction

of the spatial mismatch, the model reads

I(x) = I1(x +B(x)v) · (1 + ∂vB) ∀x ∈ Ω, (1)

where ∂v denotes the directional derivative of the scalar field B along v. In addition

to a geometrical displacement, the inhomogeneity also causes an intensity modulation

represented by (1 + ∂vB) (Chang & Fitzpatrick 1992).

The orientation and length of the vector v can be deducted and controlled by

the measurement parameters of the imaging sequence (Chang & Fitzpatrick 1992). In

EPI, severe artifacts are prominent and are most pronounced along the phase encoding

direction, and negligible along the frequency encoding direction (Hutton et al. 2002).

Hence, v points mainly along the phase encoding direction and its magnitude depends

on the acquisition bandwidth. Most importantly in our application it is to note that

the orientation of v is reversed when reversing the direction of the encoding switched

field gradient (Chang & Fitzpatrick 1992).

One crucial assumption of correction techniques based on (1) is identified in (Chang

& Fitzpatrick 1992). Namely, the measurement parameters have to be chosen such that

the intensity modulation 1 + ∂vB remains positive. As this factor is the Jacobian

determinant of the geometrical transformation x+B(x)v, this requirement corresponds

to the invertibility of the mapping.

2.2. Variational approach to inhomogeneity correction

Given two echo planar images I1 and I2 measured with reversed spatial encoding

gradients, the goal is to efficiently obtain the undistorted image I using (1) in an

automatic post processing step. To this end, the unknown field inhomogeneity B is

estimated such that I1 and I2 become as similar as possible to one another. Note, that

ideally, because of the opposite distortion directions in I1 and I2, the inhomogeneity B

satisfies

I(x) = I1(x +B(x)v) · (1 + ∂vB) = I2(x−B(x)v) · (1− ∂vB) ∀x ∈ Ω. (2)

Hence, we introduce the distance functional

D(B) =
1

2

∫
Ω

(I1(x +B(x)v) · (1 + ∂vB)− I2(x−B(x)v)(1− ∂vB))2 dx. (3)
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Minimization of the distance functional with respect to B : Ω → R will in general not

provide smooth estimates and fast convergence. We therefore regularize the problem by

introducing prior knowledge on the smoothness of B. From the corresponding forward

problem (De Munck et al. 1996) it can be seen that the inhomogeneity should be

differentiable at least almost everywhere. Therefore, as in (Holland et al. 2010), we

add a diffusion regularization to our problem

Sdiff(B) =
1

2

∫
Ω

|∇B(x)|2dx. (4)

This regularization functional can be shown to be sufficient with respect to the existence

of a minimizer (Ruthotto 2010). However, this regularization does not ensure that the

minimizer fulfills the assumption outlined in (Chang & Fitzpatrick 1992) and thus

intensity modulations might be negative, see example in Sect. 3.3. Motivated by

hyperelastic image registration schemes (Droske & Rumpf 2004, M.Burger et al. 2012)

we aim to guarantee that the inhomogeneity estimate B satisfies

(1 + ∂vB(x)) ∈]0,∞[ and (1− ∂vB(x)) ∈]0,∞[ for almost every x ∈ Ω, (5)

which is equivalent to

∂vB(x) ∈]− 1, 1[ for almost every x ∈ Ω. (6)

To this end, we introduce an additional nonlinear regularization term that directly

controls the intensity modulations. The additional regularization functional S jac reads

S jac(B) =

∫
Ω

φ(∂vB(x)) dx, with φ(z) =
z4

1− z2
. (7)

The function φ : ]− 1, 1[→ R+ is symmetric, convex, grows rapidly as |z| → 1, and has

its minimum at z = 0, see Fig. 1. It is inspired by the control of volumetric changes

in hyperelasticity, see (Droske & Rumpf 2004, M.Burger et al. 2012). We prove in the

appendix that our model guarantees existence of diffeomorphic transformations.

To sum up, we obtain the inhomogeneity estimate B as the solution of the

variational problem

min
B
J (B) := D(I1, I2;B) + αSdiff(B) + βS jac(B) (8)

with regularization parameters α, β > 0 that balance between distance reduction,

smoothness of B and the range of the intensity modulations.

2.3. Discretization and Implementation

For the discretization of problem (8) we follow the guidelines from (Modersitzki 2009).

For the intensity modulation and the additional regularization we re-use the concepts

from the mass-preserving hyperelastic registration model in (Ruthotto 2010, Gigengack
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Figure 1. Plot of the proposed penalty function φ(z) acting on ∂vB(x), see (7). The

growth behavior of φ(z) to infinity as |z| → 1 is crucial to ensure that the intensity

modulations are positive almost everywhere and thus (5) is fulfilled. Since 1± ∂vB(x)

is the Jacobian determinant of the mapping x±B(x)v this condition is equivalent to

the diffeomorphy of the geometric transformation.

et al. 2012, M.Burger et al. 2012). Hence, the inhomogeneity is discretized on a nodal

grid to allow direct access to the intensity modulation, which, as outlined, corresponds to

the volumetric change induced by the transformation. As in (M.Burger et al. 2012) this

relation is used and thus the Jacobian is computed based on this quantity. Compared to

(M.Burger et al. 2012) considerable simplifications are realized, since the deformation

in (8) is restricted to the direction v. Consequently, the deformed voxels are trapezoids

and computing volumes does not require a partition into 24 tetrahedra as in (M.Burger

et al. 2012).

Our model is implemented as an extension to the freely available FAIR (Flexible

Algorithms for Image Registration) toolbox in Matlab (Modersitzki 2009). The

variational problem (8) is solved in a discretize-then-optimize approach on a hierarchy of

levels representing coarse to fine discretizations of (8). The latter improves the stability

against local minima and gives additional speed up as the prolongated solution from a

coarse discretization serves as a good starting guess for the optimization problem on the

next finer discretization.

The discretized problems are solved by Gauss Newton optimization (Nocedal &

Wright 2000, Modersitzki 2009). Analytical first order derivatives are used and the

Hessian is approximated such that its positive definiteness is assured. To determine

the search direction, the approximated Hessian system is solved iteratively by a

Preconditioned Conjugate Gradient (PCG) method. The step size is determined by

a backtracked Armijo linesearch (Nocedal & Wright 2000) that guarantees sufficient

descent, and updates satisfy (6). Standard criteria for automatic stopping of the

optimization are employed, see (Modersitzki 2009), and the maximum number of

iterations is set to 10 in our experiments.

For computationally expensive routines such as image interpolation and

regularization we use parallelized C-Code in a matrix free fashion. That is, operators
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such as the Hessian are not represented by sparse matrices but their acting on a vector

is described in functions. See, e.g., (Modersitzki 2009) for more details on this general

concept. Hence, memory consumption is kept to a minimum and the algorithm runs

within fast runtimes on a standard computer.

2.4. Measures for the quantification of the registration quality

We quantify the quality of our new correction approach based on two image based and

two transformation based measures.

The relative reduction of the distance between the digital images I1 and I2 is

measured using a discretization D of the distance measure in (3) as the fraction

D(B)/D(0), where 0 ≡ 0 denotes zero displacement. A value of zero thus represents

identical images after registration.

An alternative image based distance measure is the Normalized Cross Correlation

(NCC) of I1 and I2, i.e.,

NCC(I1, I2) :=
∑
i,j,k

(
I i,j,k1 − µ(I1)

σ(I1)
· I

i,j,k
2 − µ(I2)

σ(I2)

)2

, (9)

where µ(I) := (1/N)
∑

i,j,k I
i,j,k, σ2(I) := µ((I−µ(I))2), and N is the number of voxels.

Extreme values for the NCC are 1 and −1, where a value of 1 indicates maximally

correlated images.

The range of B measures the maximal deformation. Motivated by the regularity

criterion (6), we consider it as important to additionally measure the range of ∂vB,

which needs to be strictly between −1 and 1 for a diffeomorphic solution.

2.5. DTI processing pipeline

In order to validate the impact of our method on the spatial correspondence between

the distorted DTI data and undistorted anatomical images like T1- and T2-weighted

MRI, we embedded our correction model into an existing DTI processing pipeline. Using

state-of-the-art methods from the publicly available package FSL (Smith et al. 2004),

the DTI data is corrected for eddy currents. For improved assessment of the geometrical

correspondences a brain segmentation is performed jointly based on the rigidly co-

registered T1w and T2w images. To this end, the brain is segmented individually in both

images using the bet routine (Smith et al. 2004). Subsequently, a joint segmentation

into cerebrospinal fluid, white matter and gray matter is performed using the fast

routine (Smith et al. 2004). Finally, the anatomical images and their segmentation are

registered to the b = 0 weighted diffusion image using a rigid registration.

The inhomogeneity estimate is obtained once as the solution of (8) with I1 and

I2 being the images acquired with ”flat” diffusion gradient (diffusion weighting factor

b = 0), but reversed spatial encoding gradients. Based on this estimate the remaining

image volumes of the DTI data are corrected for inhomogeneity artifacts using dtifit
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(1). Finally, diffusion tensors are reconstructed using (Smith et al. 2004). Comparison

of the fractional anisotropy maps before and after correction serves as a measure for the

overall quality of the correction, see Section 3.2.

2.6. Data acquisition

Whole-head structural and diffusion weighted MR images of six healthy subjects were

measured on a 3T scanner (Gyroscan Intera/Achieva 3.0T, System Release 2.5 (Philips,

Best, NL)). T1 weighted anatomical images were acquired with a 3D fast gradient echo

sequence (’Turbo Field Echo’), with water-selective excitation (i.e., no fat signal), TR

= 9.5 ms, TE 4.6 ms, FA = 9◦, two signal averages, inversion prepulse every 1024 ms,

acquired over a field of view (FOV) of 300 (FH) x 240 (AP) x 234 (RL) mm, in a matrix

of 256×204×200, resulting in cubic voxels of 1.17 mm edge length. T2w images with the

same resolution were acquired with a multislice Turbo Spin-Echo sequence, TR = 5465

ms, TE = 60 ms, FA = 90◦, 1 signal average, echo train length 6, 180 sagittal slices,

1.17 mm thick without slice gap, FOV 300 (FH) x 240 (AP) mm, matrix 256×240.

Diffusion weighted MRI was performed using a Steijskal-Tanner spin-echo EPI

sequence. Geometry parameters were: FOV 240 x 240 mm for 36 transverse slices,

3.6 mm thick, with a square matrix of 128, resulting in voxels of 1.875 x 1.875 x 3.6

mm, interpolated by zero filling to 0.9375 x 0.9375 x 3.6 mm. Contrast parameters

were TR = 9473 ms, TE = 95 ms. One volume was acquired with diffusion sensitivity

b = 0 s/mm2, and 20 volumes with b = 1000 s/mm2 using diffusion weighted gradients

in 20 directions, equally distributed on a sphere according to the scheme of Jones (Skare

et al. 2000, Jones 2004). Bandwidth in phase encoding direction - selected as anterior

posterior - was 9.1 Hz/pixel, in frequency encoding direction it was 1675 Hz/pixel.

With one exception (difference 14%), the difference of mass (i.e., the integral of the

intensities over the image domain between I1 and I2) was less than 1.5%. Although

only the image pair with ”flat” diffusion gradient, i.e., b = 0 s/mm2, is required for our

correction, we acquired two full data sets with reversed phase- and frequency encoding

gradients for each subject to investigate the impact of the correction on the localization

of the fractional anisotropy, see Section 3.2 and Section 4.

2.7. Computational platform

All computations were run on a Linux PC with a six core Intel Xeon X5670 @2,93 GHz

using Matlab 2010b.

3. Results

3.1. Susceptibility correction results

We first aim to correct the six diffusion tensor datasets by applying the novel algorithm

on the baseline images without diffusion weighting. For all datasets, we use the same
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regularization parameters (α = 20 and β = 10), see Section 3.3 for the motivation

of this choice. As the image resolution is very anisotropic we did not reduce the

number of slices in the multi-level approach. Thus, four steps with discretizations on

m1 = (32, 32, 36),m2 = (64, 64, 36),m3 = (128, 128, 36) and m4 = (256, 256, 36) are

performed.

Detailed correction results are summarized in Table 1. Across all datasets, the

distance between I1 and I2 with respect to D was reduced considerably (2nd column in

Table 1). The similarity with respect to the NCC almost improved to the optimal value

of 1 (3rd and 4th columns in Table 1). For all six datasets a smooth inhomogeneity

estimate was found and, indicated by the range of the directional derivative ∂vB being

in [−0.92, 0.91], the regularity criterion (6) was fulfilled for all subjects (5th column in

Table 1).

The overall range of B was comparable for all datasets with a maximum of 30.6

mm in dataset DTI-5 (6th column in Table 1). Maximal runtime of the algorithm was

133 seconds on our test platform (7th column in Table 1).

In Figure 2 we visualize the correction results for dataset DTI-3. It can be seen that

the estimated field inhomogeneity B considerably reduces the geometrical mismatch

between I1 and I2. Note the strong reduction of the remaining intensities in the

difference images (|I1−I2|) after correction (right column of the right 3-columns-block in

Figure 2) when compared to before correction (right column of the left 3-columns-block

in Figure 2). The interpolation lines are smooth and do not overlap, which indicates

that the mapping is diffeomorphic.

3.2. DTI Pipeline and Registration

We investigated the impact of our method on the spatial correspondence between

the distorted DTI data and T1- and T2-weighted MRI. Figure 3 (a) shows both

Table 1. Results of susceptibility correction for the six DTI datasets: Reduction

of the distance measure D (2nd column), Normalized Cross-Correlation between I1
and I2 before (NCC(0), 3rd column) and after (NCC(B), 4th column) registration.

Range ∂vB (5th column) as a measure of registration regularity and range of B (6th

column) as a measure of the maximal deformation. Runtime (7th column) and number

of iterations on the different levels (from coarse to fine) of the multi-level optimization

approach (8th column).

Dataset D(B)
D(0) NCC(0) NCC(B) Range ∂vB Range(B) runtime[sec] iterations

DTI-1 0.04 0.74 0.98 [−0.92, 0.86] [−18.5, 30.3] 133 [10, 4, 4, 6]

DTI-2 0.04 0.74 0.98 [−0.91, 0.89] [−16.0, 28.8] 100 [10, 5, 3, 3]

DTI-3 0.05 0.66 0.97 [−0.89, 0.91] [−24.1, 29.1] 80 [10, 6, 4, 2]

DTI-4 0.05 0.69 0.97 [−0.90, 0.84] [−19.7, 24.1] 70 [10, 4, 3, 2]

DTI-5 0.05 0.72 0.98 [−0.91, 0.90] [−14.1, 30.6] 87 [10, 3, 3, 3]

DTI-6 0.04 0.72 0.98 [−0.91, 0.89] [−16.3, 22.8] 63 [10, 4, 3, 2]
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Figure 2. Distortion correction results for dataset DTI-3: Axial and saggital slices

of the images I1 (left) and I2 (middle) and the di↵erence image (right) before (left 3-

columns-block) and after (right 3-columns-block) correction are visualized. The scale

for the di↵erence images was chosen identical before and after correction such that

the reduction of the image distance is clearly visible. The middle 3-columns-block

shows the estimated inhomogeneity B (left) and the two geometrical transformations

represented by interpolation lines (middle and right).

In Figure 2 we visualize the correction results for dataset DTI-3. It can be seen that

the estimated field inhomogeneity B considerably reduces the geometrical mismatch

between I1 and I2. Note the strong reduction of the remaining intensities in the

di↵erence images (|I1�I2|) after correction (right column of the right 3-columns-block in

Figure 2) when compared to before correction (right column of the left 3-columns-block

in Figure 2). The interpolation lines are smooth and do not overlap, which indicates

that the mapping is di↵eomorphic.

Figure 2. Distortion correction results for dataset DTI-3: Axial and saggital slices

of the images I1 (left) and I2 (middle) and the difference image (right) before (left 3-

columns-block) and after (right 3-columns-block) correction are visualized. The scale

for the difference images was chosen identical before and after correction such that

the reduction of the image distance is clearly visible. The middle 3-columns-block

shows the estimated inhomogeneity B (left) and the two geometrical transformations

represented by interpolation lines (middle and right).

b = 0 weighted diffusion images in an axial slice visualization, zoomed into the

frontal brain region for better visibility for dataset DTI-3. Superimposed contour lines

represent a white matter segmentation obtained from T1w and T2w-MRI are depicted

in all subplots excluding (f) and (h). Geometrical mismatch of the uncorrected EPI

measurements and T1w and T2w images is most pronounced in frontal regions and

around the Corpus Callosum. After correction, the geometrical correspondence improves

crucially, see visualizations in (c). Figure 3 (e) illustrates the fractional anisotropy (FA)

maps derived from the DTI measurements with reversed spatial encoding gradients

without susceptibility correction. The absolute difference visualization in (f) reveals the

geometrical mismatch of the FA maps, which, as to be expected from (a), is severe in the

region of the Corpus Callosum. After applying the proposed susceptibility correction

pipeline the localization of the fractional anisotropy on the segmented white matter

improves notably, see (g). This also manifests in a decay in the absolute difference

image visualized with identical colormaps in (h) and (f).
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(a) initial data (b = 0) (b) T1 weighted MRI

(c) corrected data (b = 0) (d) T2 weighted MRI

(e) FA map uncorrected data (f) FA di↵erence = 100 %

(g) FA map after correction (h) FA di↵erence = 63 %

Figure 3. Registration result for dataset DTI-3 visualized in an axial slice, zoomed

into the frontal brain region for better visibility. Contour lines representing a white

matter segmentation are superimposed in all images excluding (f) and (h). Geometrical

mismatch of the uncorrected b = 0 weighted di↵usion weighted measurements (a)

and T1w (b) and T2w (d) images is most severe in frontal regions and around the

Corpus Callosum. After correction, geometrical correspondence improves crucially, see

(c). Fractional anisotropy (FA) maps computed from both DTI measurements with

reversed spatial encoding gradients without susceptibility correction and their absolute

di↵erence are shown in (e) and (f). As to be expected the FA maps are not well aligned

to the white matter segmentation, especially around the Corpus Callosum. After

correction, localization of the fractional anisotropy on the segmented white matter

improves notably, see (g). This also manifests in a reduction of the absolute di↵erence

before (f) and after (h) correction (identical colormap).

3.2. DTI Pipeline and Registration

We investigated the impact of our method on the spatial correspondence between

the distorted DTI data and T1- and T2-weighted MRI. Figure 3 (a) shows both

b = 0 weighted di↵usion images in an axial slice visualization, zoomed into the

frontal brain region for better visibility for dataset DTI-3. Superimposed contour lines

represent a white matter segmentation obtained from T1w and T2w-MRI are depicted

in all subplots excluding (f) and (h). Geometrical mismatch of the uncorrected EPI

measurements and T1w and T2w images is most pronounced in frontal regions and

Figure 3. Registration result for dataset DTI-3 visualized in an axial slice, zoomed

into the frontal brain region for better visibility. Contour lines representing a white

matter segmentation are superimposed in all images excluding (f) and (h). Geometrical

mismatch of the uncorrected b = 0 weighted diffusion weighted measurements (a)

and T1w (b) and T2w (d) images is most severe in frontal regions and around the

Corpus Callosum. After correction, geometrical correspondence improves crucially, see

(c). Fractional anisotropy (FA) maps computed from both DTI measurements with

reversed spatial encoding gradients without susceptibility correction and their absolute

difference are shown in (e) and (f). As to be expected the FA maps are not well aligned

to the white matter segmentation, especially around the Corpus Callosum. After

correction, localization of the fractional anisotropy on the segmented white matter

improves notably, see (g). This also manifests in a reduction of the absolute difference

before (f) and after (h) correction (identical colormap).

3.3. Impact of the new regularization functional

We compared our method with the proposed nonlinear regularization term to the

diffusion regularized scheme proposed in (Holland et al. 2010), obtained by setting β = 0

in (8). To this end, we varied the weight α on the diffusion regularizer Sdiff between

1 and 70 and compared the image distance after correction D(Bα) and the range of

∂vB
α for three scenarios for β = 0, 1, 10. In order to safe computation time for this

parameter study, only two multi-level steps with discretizations of m1 = (32, 32, 36) and
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Figure 3. Comparison of di↵usion regularization scheme (� � = 0) as in [19] with

the proposed extension by the nonlinear regularization term S jac in Eq. (7) (⇤ � = 1

� � = 10). The final image distances, depicted in (a) for ↵ increasing from 1 to 70, is at

a comparable level for all tested choices of �. As to be expected the image distance is

reduced marginally more for � = 0. However, in plot (b), visualizing the range of @vB↵,

it can be seen that the regularity condition Eq. (6) is violated for � = 0 and small

values of ↵. Adding the proposed nonlinear regularization term successfully limits the

range between �1 and 1. Hence meaningful intensity modulations and di↵eomorphic

transformations were obtained both for � = 1 and � = 10 and all tested ↵.

4. Discussion

In the present work a di↵eomorphic susceptibility correction algorithm for di↵usion

weighted MRI (DW-MRI) was developed, implemented and evaluated on a set of

largely distorted data. The key novelty of the method is an additional nonlinear

regularizer that guarantees positive intensity modulations and di↵eomorphic geometrical

transformations independent on the actual choice of regularization parameters.

Incorporating the physical distortion model and reversed gradient method into a

variational image registration framework yielded an e�cient algorithm that computes

smooth and meaningful estimates of the field-inhomogeneity. The correction approach

e↵ectively reduced the huge distortions in all six datasets. We showed that a simple rigid

registration is su�cient to register the corrected DW-MRI data to T1- and T2weighted

images.

In contrast to the approaches [6], [34] and [52], our proposed algorithm does not rely

on pre-segmentation and edge-detection which is di�cult especially in frontal regions,

where in either I1 or I2 the signal is wrongly localized outside the head. Due to the

intensity modulation, this stretching, however, is followed by a reduction of intensity,

complicating the threshold-based segmentation. Compared to the 3D reversed gradient

Figure 4. Comparison of diffusion regularization scheme (∆ β = 0) as in Holland et

al 2010 with the proposed extension by the nonlinear regularization term S jac in (7)

(∗ β = 1 ◦ β = 10). The final image distances, depicted in a semi logarithmic plot (a)

for α increasing from 1 to 70, is at a comparable level for all tested choices of β. As

to be expected the image distance is reduced marginally more for β = 0. However, in

plot (b), visualizing the range of ∂vB
α, it can be seen that the regularity condition (6)

is violated for β = 0 and small values of α. For β = 1, 10 the range is in the interval

[−0.99, 0.84] for all tested α.

m2 = (64, 64, 36) were performed.

Figure 4 (a) shows the final value of the distance functional (3) with increasing

values for α on a semi logarithmic scale. The image distance is at a comparable level

for all three choices of β with, as to be expected, marginally smaller values for β = 0.

However, for β = 0 and too small values of α violations of the regularity criterion (6)

occur. For β = 1, 10 the range of ∂vB
α was in the interval [−0.99, 0.84]. Thus the

criterion (6) was fulfilled for all tested α after adding the novel nonlinear regularization

functional.

4. Discussion

In the present work a diffeomorphic susceptibility correction algorithm for diffusion

weighted MRI was developed, implemented and evaluated on a set of distorted data. The

key novelty of the method is an additional nonlinear regularizer that guarantees positive

intensity modulations and diffeomorphic geometrical transformations independent on

the actual choice of regularization parameters. Incorporating the physical distortion

model and reversed gradient method into a variational image registration framework

yielded an efficient algorithm that computes smooth and meaningful estimates of the

field-inhomogeneity. The correction approach effectively reduced the distortions in all
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six brain DTI datasets obtained from widely applied clinical routine imaging protocol.

We showed that a simple rigid registration is sufficient to register the corrected diffusion

weighted data to T1- and T2-weighted images.

The extent of the spatial distortions is a result of the very small bandwidth of

EPI sequences in phase-encoding direction. In a clinical setting, the drawback of severe

distortions, typically in the frontal region, are accepted in exchange for the clinically

required speed of EPI. Distortions are less pronounced in more central brain regions,

and are often acceptable for diagnostics without in-depth quantitative evaluation. The

extent of the distortions may be reduced by the use of techniques like parallel imaging

(Prüssmann 2006) or segmented EPI acquisition (Atkinson et al. 2000), which is not

always feasible, and significant distortions remain nevertheless.

In contrast to the approaches (Chang & Fitzpatrick 1992), (Morgan et al. 2004)

and (Weiskopf et al. 2005), our proposed algorithm does not rely on pre-segmentation

and edge-detection which is difficult especially in frontal regions, where in either I1 or I2

the signal is wrongly localized outside the head. Due to the intensity modulation, this

stretching, however, is followed by a reduction of intensity, complicating the threshold-

based segmentation. Compared to the 3D reversed gradient approaches in (Andersson

et al. 2003) and (Skare & Andersson 2005), computational expenses were lowered due

to both the non-parametric transformation model and the use of high-end optimization

and multi-level techniques. As indicated by (Olesch et al. 2010, Holland et al. 2010)

non-parametric transformation models are capable of estimating high gradients of the

field inhomogeneity which was crucial for our distorted test data.

The proposed method can be understood as an extension of the recently presented

variational approach (Holland et al. 2010) by a nonlinear regularization term that

guarantees diffeomorphic geometrical transformations. In a numerical example we

showed that this extension was crucial to obtain meaningful solutions for the distorted

data, see Section 3.3. On the other side, our extension requires a second regularization

parameter, which, at first glance, could be seen as a rather big disadvantage for broader

practical application. However, as we showed, the new method turned out to be very

stable with regard to the choice of the regularization parameters. With the presented

fixed choice of both parameters, we obtained good results for all tested datasets. Future

investigations will show, how much our new method is able to contribute to datasets

from other diffusion weighted sequences, e.g., datasets constructed from raw data

acquired with parallel imaging (Prüssmann 2006), and if our presented fixed choice

of regularization parameters is also sufficient for such datasets and for datasets with

different imaging parameters.

Although only the image pair without diffusion gradient is used for our correction,

we acquired two full data sets with reversed phase- and frequency encoding gradients for

each subject to investigate the impact of the correction on clinically relevant measures

such as the fractional anisotropy. Hence, measurement time increased by 8 min for

the full data set with 20 directions. Notably, the necessary additional data acquisition

needed for distortion correction requires only about 1 min. If one relaxes the requirement
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that the ”flat” diffusion gradient be acquired with more signal averages than the steep

gradients as proposed in (Jones 2004), the additional time requirement may be even

shorter. Moreover, it does not increase with the number of gradient directions.

We like to mention that the correction technique is not limited to susceptibility

correction in diffusion weighted MRI or even EPI, as the underlying physical distortion

model was first developed for compensation of any inhomogeneity-induced localization

errors in MR sequences (Chang & Fitzpatrick 1992).

Problems due to possible head movements between the acquisitions of I1 and I2 are

neglected in our study as both images are consecutively acquired using fast EPI imaging

within a sufficiently short time. If this assumption fails to hold, severe complications may

arise from the fact that even small head rotations can lead to crucial image distortions

in an inhomogeneous field (Jezzard & Clare 1999).

The transformation model (1) is mass-preserving, i.e., the total amount of intensity

in both images is unaffected by the correction, see (Ruthotto 2010, Ch 2.1). Hence,

it is assumed that no signal dropout occurs during the acquisition. This assumption

is natural, since the distortion model only considers the mislocalization effect of the

field inhomogeneity. Signal loss during the acquisition can thus be recovered neither by

field map nor image-based correction approaches. While the assumption is well satisfied

by spin echo data, see Section 2.6 , it is only approximately fulfilled by gradient echo

schemes commonly used in functional MRI. Nevertheless, first preliminary numerical

experiments suggest that our algorithm can also be used to improve the geometrical

alignment and similarity for reversed gradient scans for fMRI data.

An important direction of future research will be the combination of our algorithm

with methods correcting other important artifacts in DTI, e.g., due to eddy currents

and vibration. In fact the acquisition schemes in (Bodammer et al. 2004, Mohammadi

et al. 2011) are essentially equivalent to ours. Hence, no additional acquisition time is

required.

5. Conclusion

We proposed a novel algorithm for susceptibility correction of diffusion weighted MRI

based on a reversed gradient strategy. A novel nonlinear regularization functional

guarantees diffeomorphic transformations and meaningful intensity modulations

regardless of the actual choice of regularization parameters. In a DTI group study it is

shown that the algorithm improves the image similarity between both reference scans

and the geometric correspondence to anatomical images after a simple rigid registration.

Our freely available implementation is highly efficient and correction of 3D volumes can

be performed quickly on standard computers.
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Appendix: Existence of diffeomorphic solutions

In the following we prove that there exists at least one minimizer of the EPI functional

and, most importantly, positive intensity modulations and diffeomorphic geometric

transformations can be ensured due to the proposed nonlinear regularization functional.

It is not obvious that the claimed strict inequalities in (6) hold for the limit. Consider,

e.g., the sequence { 1
k
}k∈N, where each element in the sequence is strictly positive,

however, the limit for k → ∞ equals zero. Our proof uses the framework of direct

methods in variational calculus. In order to keep the discussion focussed, we refer the

interested reader to (Evans 1998, Ch. 8.2) for more details on the underlying theory.

Theorem 1. Given images I1, I2 ∈ C1(Ω,R) and regularization parameters α, β > 0.

Assume that the objective functional J in (8) is finite for the zero displacement, i.e.,

J (0) <∞.

Then there exists at least one minimizer B∗ of J in the set

A =

{
B ∈ W 1,2(Ω,R) | 1

|Ω|

∫
|B(x)|dx ≤ K and |∂vB(x)| < 1 a.e. in Ω

}
, (A.1)

where the constant K ∈ [0,∞] bounds the mean magnitude of feasible inhomogeneities.

Proof. In order to show existence of minimizers in the Sobolev space W 1,2(Ω,R), we

verify that the objective functional J is coercive, i.e., J grows sufficiently fast, and is

lower semicontinuous, see (Evans 1998, Ch. 8.2).

Noting that all summands in J are positive, the diffusion regularizer Sdiff is essential

to obtain coercivity

J (B) = D(I1, I2;B) + αSdiff(B) + βS jac(B) ≥ αSdiff(B) = α‖∇B‖2
L2 . (A.2)

In order to derive a lower bound with respect to the W 1,2(Ω,R) norm we apply a

generalized Poincaré inequality, (Evans 1998, p.275), denote the new constant by C > 0,

and apply the triangle inequality

J (B) ≥ C(‖∇B‖2
L2 +

∥∥∥∥B − 1

|Ω|

∫
B(x)dx

∥∥∥∥2

L2

) (A.3)

≥ C(‖∇B‖2
L2 + ‖B‖2

L2)− C
∥∥∥∥ 1

|Ω|

∫
B(x)dx

∥∥∥∥2

L2

(A.4)

≥ C‖B‖2
W 1,2 − |Ω|C

(
1

|Ω|

∫
|B(x)|dx

)2

. (A.5)
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By using the boundedness of the mean absolute displacement (first condition in (A.1))

we finally see that J growth sufficiently fast with respect to the W 1,2(Ω,R) norm and

is thus coercive

J (B) ≥ C‖B‖2
W 1,2 − |Ω|C

(
1

|Ω|

∫
|B(x)|dx

)2

≥ C‖B‖2
W 1,2 − |Ω|C K2. (A.6)

Lower semicontinuity of J follows directly from the convexity of the integrand with

respect to ∇B. In combination, coercivity and lower semicontinuity yield the existence

of a minimizer B∗ in W 1,2(Ω,R) (Evans 1998, p. 448f).

The most important part, i.e., that B∗ actually belongs to A, remains to be shown.

Bounding the mean magnitude of B∗ is less critical. It follows directly from the convexity

and continuity of the mapping B 7→ 1
|Ω|

∫
|B(x)|dx. The challenging part is to verify

that B∗ fulfills the regularity requirement (6). To this end, we fix a sufficiently small

ε > 0 and consider the set

Sε := {x ∈ Ω | |∂vB∗(x)| ≥ 1− ε}. (A.7)

We finally bound the volume of Sε by computing

β φ(1− ε)|Sε| = β

∫
Sε

φ(1− ε)dx ≤ β

∫
Sε

φ(∂vB
∗(x))dx ≤ J (B∗) ≤ J (0) <∞. (A.8)

Hence |Sε| ≤ J (0)/(βφ(1 − ε)) and due to the growth behavior of φ(z) → ∞ as

|z| → 1 this yields that S0 must be a set of volume zero and thus B∗ fulfills (6) almost

everywhere.
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