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Abstract. Non-parametric image registration is still among the most
challenging problems in both computer vision and medical imaging. Here,
one tries to minimize a joint functional that is comprised of a similarity
measure and a regularizer in order to obtain a reasonable displacement
field that transforms one image to the other. A common way to solve this
problem is to formulate a necessary condition for an optimizer, which in
turn leads to a system of partial differential equations (PDEs). In gen-
eral, the most time consuming part of the registration task is to find a
numerical solution for such a system. In this paper, we present a gener-
alized and efficient numerical scheme for solving such PDEs simply by
applying 1-dimensional recursive filtering to the right hand side of the
system based on the Green’s function of the differential operator that
corresponds to the chosen regularizer. So in the end we come up with a
general linear algorithm. We present the associated Green’s function for
the diffusive and curvature regularizers and show how one may efficiently
implement the whole process by using recursive filter approximation. Fi-
nally, we demonstrate the capability of the proposed method on realistic
examples.
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1 Introduction

The problem of image registration arises in many application of medical image
processing and computer vision. Given two images, a reference R and a template
T , we try to find a suitable transformation that aligns the template to the ref-
erence.
In this paper, we focus on non-parametric image registration, where we mini-
mize a joint functional depending on a (dis)similarity measure and a regularizer.
The optimization leads to a system of partial differential equations, the so-called
Euler-Lagrange equations. In the literature one may find various ways for solving
the PDEs, see [7] for an overview. In this paper, we introduce a generalization
of solving this problem by convolution. For speed purposes, this convolution is
approximated by 1-dimensional recursive filtering. The paper is organized as fol-
lows. We start by describing the registration problem in more detail followed by a
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short introduction to the Green’s function approach. In particular we comment
on an efficient way to determine the Green’s function based on eigenfunction
expansion. In the following we come up with a recursive filter approximation
approach for the presented filters and present the resulting algorithm. Finally,
we provide numerical examples for CT lung data.

2 Image Registration

In this section we will state the mathematical formulation for the non-parametric
image registration problem and give an overview of well-known methods. For d-
dimensional images R, T : Rd → R, we are looking for a non-parametric transfor-
mation φ(x) = x− u(x), where u : Rd → R is such that the deformed template
Tu(x) := T (x − u(x)) is similar to the reference R. In this context, the vector
field u is called displacement field. This problem can be solved by minimizing
the joint functional

J [u] = D[R, T ; u] + αS[u], (1)

where D is a image similarity or distance measure and S is a regularization or
smoothing term. The smoothing term constrains the transformation to a set of
”reasonable” ones, which may be used to advantage for the given application.
The regularization parameter α controls the relative contributions of the two
terms.

2.1 Distance Measures

To measure similarity of the two images we have to define an appropriate distance
measure D. Frequently used measures are the sum of squared differences (SSD),
normalized gradient fields [5] or mutual information [12]. In this paper, we will
exemplarily use SSD, that is given by

DSSD[R, T ; u] :=
∫
Ω

(Tu(x)−R(x))2 dx. (2)

2.2 Regularizers

Basically regularizers measure the smoothness of the wanted the transformation.
Popular regularization terms are defined as follows:

Sdiff[u] :=
1
2

d∑
j=1

∫
Ω

‖∇uj(x)‖2 dx, (3)

Scurv[u] :=
1
2

d∑
i=1

∫
Ω

(∆ul(x))2
dx, (4)

Selas[u] :=
∫
Ω

µ

4

d∑
j,k=1

(
∂xj

uk + ∂xk
uj
)2 +

λ

2
(∇ · u)2

dx. (5)
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For fluid registration Sfluid[u] := Selas[v]. In this context ∂xj denotes the partial
derivative in direction xj , ∇ the gradient, ∇· the divergence and ∆ the Laplacian
operator. Furthermore v : Rd → Rd is the velocity field and λ, µ are called
Lamé constants. The regularization terms shown above are known as diffusive,
curvature, elastic, and fluid registration, respectively (see [7]).

2.3 Numerical Solutions

For an optimal displacement field u the Gâteaux derivatives of the joint func-
tional in Equation (1) vanishes. This leads to the corresponding set of non-linear
Euler-Lagrange equations

αA[u] = f(x,u(x)), (6)

where the differential operator A and the force f are the Gâteaux derivatives of
S and D, respectively (under the assumption of specific boundary conditions).
The resulting differential operators for the various regularization terms (3), (4),
and (5) are

Adiff = ∆, (7)

Acurv = ∆2 and (8)

Aelas = µ∆+ (λ+ µ)∇∇ · . (9)

The differential operator for fluid registration is similar to the elastic one, but
operates on the velocity field as opposed to the displacement field as discussed
in e.g. [7]. A fixed-point-type iteration scheme, such as

A[uk+1] = f(x,uk(x)), (10)

is a practical way to linearize and solve these equations. We have various op-
tions in providing a numerical scheme for first discretizing and solving the PDEs.
The main work is the solution of the resulting linear system. This can be done
by successive overrelaxation (SOR) [3], multigrid methods [6], additive operator
splitting (AOS) for diffusive regularization and homogeneous Neumann bound-
ary conditions [7] or by Fourier methods [2], to name few popular options. An
alternative method, as suggested by Bro-Nielsen and Gramkow, for fluid regis-
tration [1] is to solve the Euler-Lagrange equations by means of the convolution
operation

uk+1 = G ∗ fk, (11)

where G is an appropriate filter kernel which turns out to be the Green’s function
w.r.t. the differential operator under the assumption of translational invariance.
In the following we will assume this condition is fulfilled although boundary
conditions are applied. This approach can be generalized to other regularizers
as well.
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3 Green’s Function

The Green’s function is used to solve linear inhomogeneous ordinary or partial
differential equations, e.g. in electromagnetic theory [10]. We consider sufficiently
smooth functions u, f ,g : Rd → Rd, an open set Ω ⊂ Rd with smooth boundary
∂Ω and the linear operator A for the Euler-Lagrange equations (6). Therefore,
we have

AGi(x; y) = δ(x− y)ei for x ∈ Ω (12)

Gi(x; y) = g(x) for x ∈ ∂Ω, (13)

where Gi =
(
Gi1 . . . G

i
d

)T , is called vector Green’s function in the direction
ei, i ∈ {1, . . . , d}. Then G(x; y) :=

(
G1(x; y) . . . Gd(x; y)

)
is called dyadic

Green’s function, using which the following equation must hold:

A[G](x; y) = I · δ(x− y), (14)

where I ∈ Rd×d is the identity.

3.1 Green’s Function Calculation

To the best of our knowledge, there is no established and commonly accepted
way to derive Green’s function for a differential operator. Here, we will introduce
the method of eigenfunction expansion.

Eigenfunction Expansion The idea of the eigenfunction expansion is to ex-
press the solution of a differential equation by a weighted sum of orthonormal
eigenfunctions Φi, i.e.

u(x) =
∞∑
i=1

aiΦi(x), ai =
Φi(y)
κi

, (15)

where κi is the eigenvalue that corresponds to the eigenfunction Φi (see e.g.[1]).
Equation (15) leaves us with two problems. How to compute the eigenfunctions
and eigenvalues for a given operator and how to deal with the infinite sum. For
the latter problem an answer is also given in [1]. In the following, we present
the eigenfunction expansions for diffusive and curvature registration for the 2-
dimensional case. The extension to the 3-dimensional case is straightforward.
The Green’s function for the elastic regularizer coincide with the one of the fluid
registration. The only difference is the fact that it is applied to the displacement
instead of the velocity.

Diffusive Registration The Green’s function for the diffusive operator Adiff

under zero boundary conditions on the domain Ω =]0, 1[2 is given by a scalar
Green’s function

G(x; y) = −
∞∑
k=1

∞∑
l=1

Φ(y)
κk,l

Φ(x). (16)
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with eigenfunctions and eigenvalues

Φk,l(x) = sin(kπx1) sin(lπx2) resp. κk,l = −π2
(
k2 + l2

)
. (17)

One can shown that the diffusive operator is separable and therefore the displace-
ment field can be computed by u1(x) = (G ∗ f1) (x) and u2(x) = (G ∗ f2) (x).

Curvature Registration As in the case of the diffusive registration, the op-
erator for the curvature registration is separable as well. We also consider zero
boundary conditions and the domain Ω =]0, 1[2. The eigenfunctions and eigen-
values are given by

Φk,l(x) = sin(kπx1) sin(lπx2) resp. κk,l = π4
(
k2 + l2

)2
. (18)

3.2 Deriving a Recursive Filter

In this work the Green’s function G(x; y) is given in its continuous eigenfunction
representation. The force field is given by Equation 2. Both of them are dis-
cretized on a finite grid. We get the Green’s filter G and the discrete force field
F. The discrete displacement field U is now given by the convolution U = G∗F.
This operation has high computational costs, i.e. O(N2), where N is the num-
ber of voxel. To reduce these costs the idea of 1-dimensional recursive filtering
will be introduced. In the following we will compute a separable filter approx-
imation where the recursive filtering in each direction can be handled step by
step. This allows us to use an implementation of diffusive and curvature regis-
tration with the computational costs of the demons approach using a recursive
implementation of the Gaussian.

We start with the 2-dimensional case. In terms of computing a separable
recursive filter approximation for the Green’s filter G ∈ Rn1×n2 , we need a
separable approximation G̃ ∈ Rn1×n2 of G of the form

G̃ = x⊗ y, resp. G̃ = xyT , (19)

where x ∈ Rn1 and y ∈ Rn2 . This is the case if rank(G̃) = 1 . We choose this
approximation to be optimal in terms of the Frobenius norm (‖ · ‖F ) that com-
putations are easy to handle. This optimal approximation is called a rank-one
approximation and can be achieved by a singular value decomposition (SVD)[4].
A singular value decomposition is possible for all matrices G. Let G = USVT ,
where U =

(
u1 . . .un1

)
∈ Rn1×n1 and V =

(
v1 . . .vn2

)
∈ Rn2×n2 are or-

thogonal matrices and S ∈ Rn1×n2 is a diagonal matrix. Then G̃ = uvT =(√
s11u1)

) (√
s11v1)

)T . For the 3-dimensional case the application of the SVD
is not possible in this way. A rank-one approximation of a third order tensor
can be seen as a generalization of the SVD and is often called multidimensional
SVD. This problem can be attacked by the generalized Rayleigh-Newton itera-
tion as described by Zhang and Golub[13]. The separable approximation G̃ is
then given by G̃ = x⊗ y ⊗ z.
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The d-dimensional convolution can now be substituted by d 1-dimensional
convolutions what is already a nice speed-up. But the 1-dimensional convolution
has still high costs. That is where recursive filtering becomes an issue. The
recursive filter approximation of the 1-dimensional filters is done by using Matlab
implementation of Prony’s method [8] with a zero padding to emphasize the zero-
boundary conditions in the filter. It should be mentioned that the combination of
causal and anti-causal recursive filter approximation does not lead to a perfect
symmetry in this implementation. However, in our case this aspect is hardly
noticeable. This recursive filtering scheme can now be implemented with O(N)
computation cost.

4 Numerical Examples

In the following evaluate the capability of the Green’s function registration on the
POPI breathing thorax model of the Léon Bérard Cancer Center & CREATIS
lab, Lyon, France [11]. Before starting the evaluation we leave some words on the
algorithm. We modified the fixed-point type iteration scheme (Equation (10)).
Instead of computing the whole displacement field in one iteration, we compute
update steps uk by recursive filtering the force field. The final displacement
field after n iteration steps is then given by u =

∑n
k=1 uk. The modification

is already mentioned in [7] for elastic registration. To have more control over
the iteration step we included an Armijo line search for these updates. To allow
larger deformations we start with an affine-linear preregistration followed by a
multi-level Green’s function registration. The choice of the distance measure is
the SSD (Equation 2). This is not the best choice for the registration of lung
volumes but the aim of this paper is to show the capability of the proposed
linear algorithm. Stopping criteria on each level is a difficult topic. Here, we
consider the relative distance measure d̄k = DSSD(R, T ; uk)/DSSD(R, T ; 0). The
algorithm stops when the change of the relative distance d̄ is less than 1%, i.e.
d̄k − d̄k−1 < 0.01. Furthermore a maximum number of iterations is given that is
descending as the level is ascending.

The POPI-model provides a 4D-CT series of the lung, including ten 3D-CT
volumes (v0, . . . , v9) representing ten different phases of an average breathing
cycle. For evaluation purposes a set of corresponding landmarks is given for all
these volumes. For the registration the preprocessed versions of these volumes
with removed background and reduced image size are used. This results in an
image size of 482 x 360 x 141 with resolution 0.976562mm × 0.976562mm ×
2mm. Our registration works on an image size of 256 × 256 × 128 computed
by linear interpolation. Therefore the resulting working resolution on the finest
level is 1.8387mm × 1.3733mm × 2.2031mm. We perform a curvature and a
diffusive recursive Green’s function registration on these data. An exemplarily
result for the diffusive registration is shown in Figure 2. To coincide with the
results presented with the model computed with a demon-based approach, we
use the second volume v1 as the reference and all others as templates. For each
registration the mean and standard deviation of the 40 landmarks are given for
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the initial situation as well as the mean and standard deviation of the TRE.
Additionally the maximal TRE is presented (see Figure 1). Considering the

Fig. 1. Results of the recursive curvature Green’s function registration on the POPI-
model in mm. The row with the registration index v1v2 presents the registration result
of the registration of volume v1 and volume v2. Presented are the mean and standard
deviation of the initial landmarks (second column) and the TRE of the registration pre-
sented with the POPI-model (pTRE, third column), the curvature registration (cTRE,
fourth column) and diffusive registration (dTRE, fifth column). The last three columns
show the maximal TREs for POPI, curvature and diffusive

Reg Data µ/σ pTRE µ/σ cTRE µ/σ dTRE µ/σ pMax cMax dMax

10 0.48 / 0.54 1.3 / 0.3 0.67 / 0.35 0.68 / 0.34 1.8 1.79 1.75
12 0.49 / 0.62 1.4 / 0.2 0.71 / 0.37 0.69 / 0.42 2.1 1.69 1.57
13 2.19 / 1.82 1.4 / 0.4 1.58 / 0.89 1.33 / 0.70 2.3 3.63 2.70
14 4.33 / 2.51 1.2 / 0.4 1.42 / 0.83 1.20 / 0.73 2.3 5.03 4.32
15 5.75 / 2.64 1.3 / 0.5 1.50 / 0.99 1.42 / 0.92 2.6 6.27 5.48
16 6.10 / 2.92 1.1 / 0.4 1.43 / 0.84 1.30 / 0.72 2.0 5.29 4.20
17 5.03 / 2.33 1.3 / 0.5 1.42 / 0.88 1.34 / 0.76 2.4 4.66 3.56
18 3.68 / 1.57 1.1 / 0.3 1.12 / 0.80 1.12 / 0.72 1.7 3.76 3.71
19 2.07 / 1.06 1.1 / 0.3 0.95 / 0.68 0.88 / 0.58 1.9 3.18 2.97

Total 3.35 / 1.78 1.2 / 0.4 1.20 / 0.74 1.17 / 0.66 2.6 6.27 5.55

working resolution these results are very satisfying. The mean µ of the TRE of the
three methods is nearly the same. However, the standard deviation σ recursive
Green’s function registration is larger. This might have two reasons. Firstly,
the errors occur mainly in the x3-component where we use a lower resolution.
The other and probably more important reason results from the used distance
measure. As mentioned before we apply the SSD without further preprocessing
to take the lung density change into account as proposed in [9]. To achieve better
results, a next step would be to incorporate this preprocessing or to use a more
suitable distance measure for this specific application. This would also help to
catch the outliers. Another important information from the table is the fact that
the curvature Green’s function registration produces less accurate but smoother
results than the diffusive one, so the behavior of the regularizers are preserved
in this method.

5 Conclusions

This papers presents a generalization of the registration by a convolution with
the Green’s function. It was shown that also for the diffusive and curvature
regularization filter kernels can be established and recursively approximated.
This helps us to speed up the computation in such a way a linear algorithm
could be presented. The numerical section presents promising results of this
approach by registering a set of CT lung data. Next steps include e.g. the search
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Fig. 2. The absolute difference of the template and the reference before (left) and after
the diffusive (middle) and curvature (right) recursive Green’s function registration for
an exemplarily slice

for the best filter kernel size on each level and the use of application specific
distance measures.
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