
Inverse Problems and Imaging doi:10.3934/ipi.2010.4.505

Volume 4, No. 3, 2010, 505–522

A VARIATIONAL SETTING FOR VOLUME CONSTRAINED
IMAGE REGISTRATION

Christiane Pöschl
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Wallstr. 40, 23560 Lübeck, Germany
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Abstract. We consider image registration, which is the determination of a

geometrical transformation between two data sets. In this paper we propose
constrained variational methods which aim for controlling the change of area

or volume under registration transformation. We prove an existence result,

convergence of a finite element method, and present a simple numerical example
for volume-preserving registration.

1. Introduction. Registration is concerned with the determination of a geomet-
rical transformation that aligns points in one view of an object with corresponding
points in another view of the same or a similar object. There exist many applica-
tions, particularly in medical imaging, which demand for registration. Examples
include the treatment verification of pre- and post-intervention images, the study
of temporal series of cardiac images, and the monitoring of the time evolution of a
contrast agent injection subject to patient motion. Another important application
is the combination of information from multiple images, acquired using different
modalities such as computer tomography (CT) and magnetic resonance imaging
(MRI), a technique also known as fusion. In the last two decades, computerized
non-rigid image registration has played an increasingly important role in medical
imaging, see, e.g., [21, 27, 12, 35, 24] and references therein.

Recent work on image registration concerns taking into account prior information
on the geometrical transformation. For example, many applications require the
transformation to be one-to-one. In this context two major directions have been
suggested. One approach facilitates diffeomorphic or geodesic splines; see, e.g.,
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[32, 9, 4, 23, 22, 33, 19]. The underlying idea is to add time as a further dimension
and to establish an energy minimizing flow of correspondent particles. An additional
regularization enforces that particles can not cross and as a consequence, the flow
and hence the transformation is one-to-one. These techniques are of particular
interest for constructing transformation groups and for performing shape analysis.
However, these techniques require an additional time integration and do not provide
full control on the transformation. The second approach is based on constrained
optimization. Introducing the displacement u with y(x) = x+u(x), the constraints
are based on the determinant of the Jacobian

C(u)(x) = det (∇(x + u(x))) for almost all x .

Equality C(u)(x) = 1 as well as inequality k(x) ≤ C(u)(x) ≤ K(x) constraints
have been discussed in the literature [17, 18]. The choices 0 < k(x) ≤ K(x) < ∞
provide lower and upper bounds for volume changes. In contrast to the diffeo-
morphic approach, the equality constrained approach guarantees that the volume
of tissue is constant under transformation. The inequality approach enables the
usage of pre-knowledge. For example, one could restrict on subregions displaying
bones with k(x) = K(x) = 1 and on subregions displaying soft-tissue with some
relaxed bounds. It is worthwhile noticing, that there is a connection to local rigidity
constraints, where with Id the identity matrix in R d, the constraints are essentially

Crigid(u)(x) = ∇u>(x)∇u(x)− Id = 0.

Volume preservation and local rigidity have been treated in terms of soft-constraints
and hard constraints. For soft-constraints, an appropriate penalty term is added
to the overall objective [30, 31, 25, 34], whereas hard constraints are much more
delicate. For the local rigidity approach, it has been shown that a Lagrangian
framework leads to linear constraints and thus enables an efficient numerical im-
plementation and analysis [15]. Numerical schemes have been proposed for the
non-linear and differential volume preserving hard constraints [17, 18]. However,
existence theory has only be established for a finite dimension setting.

In this paper, we use variational techniques to derive an existence theory for a
minimizing element of the constrained optimization problem in an infinite dimen-
sional setting. From a mathematical point of view the work most closely related
work is [8], where variational regularization methods motivated from nonlinear elas-
ticity have been used. However, there the minimization problem is treated in an
unconstrained setting.

This paper is organized as follows. In Section 2 we introduce the registration
setup for this paper, then we quote some important results from the calculus of
variation, that are relevant for this work. Using them we prove existence of min-
imizers of the constrained regularization functionals for registration in Section 4.
Theorem 4.1 indicates that in the volume constrained case, the spacial dimension
determines the choice of the regularization functional strongly. A central part of
this work is the convergence analysis of the finite dimensional approximation of the
minimization problem. In Section 5 we explain how to approximate the constraints
and the involved functionals, and show in Theorem 5.5 that under certain condi-
tions, the approximated regularized solution converges to a solution of the original
registration problem. At the end we give a brief outline how we implemented the
area/volume preserving image registration problem and show a simple numerical
result.
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2. The registration setup. Given a reference image I0 and a template image I1,
which are assumed to be compactly supported functions I0, I1 : Ω → R , where Ω =
]0, 1[d and d = 2 or d = 3. Hence, I1(x) is a gray value at spatial position x
and I0(x) = I1(x) = 0 for all x 6∈ Ω. The objective is to find a displacement
u = (u1, . . . , ud) : Ω → R d such that the distance between the transformed template
image I1(id + u) and the reference is small in an appropriate sense. In principle
every integral based distance measure can be used; see, e.g., [29, 20, 24] for an
overview. The most widely used distance measure is the squared distance

(1) S(u) =
∫

Ω

|I1(x + u(x))− I0(x)|2 dx .

Minimizing the distance measure is known to be ill-posed, in the sense that the min-
imizers of the distance measure are non unique. Therefore regularization becomes
inevitable. For regularization, in this paper we focus on regularization functionals
involving gradients, for instance

R(u) =
∫

Ω

|∇u|p dx, p ∈ N ,

where |∇u|p :=
∑d

i,j=1

∣∣∂iu
j
∣∣p. Another choice for regularization functional (elastic

potential) is discussed in Remark 3. The considered regularized registration problem
then read as follows

(2) minimize T (u) := S(u) + αR(u) subject to u ∈ A ,

where A is an intersection of two of the following sets of constraints:

Ap
b := {u ∈ W 1,p | ‖u‖Lp ≤ b}, b < ∞} ,(3)

As,p
E :=

{
u ∈ W s,p | C(u) = 1 a.e. in Ω

}
,(4)

As,p
I :=

{
u ∈ W s,p | k ≤ C(u) ≤ K a.e. in Ω

}
.(5)

The set of bound constraints Ap
b is very general. In particular bounding the dis-

placement by twice the diameter of Ω does not provide a constraint to the regis-
tration problem at all. The set As,p

E (E stands for equality constraints) is the set
of all volume preserving transformations. The elements of the sets As,p

I allow for
some tolerance for local volume preservation. Note that for the particular choices
K(x) ≡ k(x) ≡ 1 the equality constraints are a special case of the inequality con-
straints.

Remark 1. For spatial dimension d = 1 and a smooth and differentiable displace-
ment u, the condition u ∈ A1,p

E implies u′(x) = 0 for all x ∈ Ω. Hence the only
feasible transformation is a translation y(x) = x + b with b ∈ R . For d = 2,
the situation is already much more complex. For example, any transformation
y(x) = x + u(x)T with u(x) = (0, g(x1))T does fulfill the constraints C(u) = 1,
independent on the choice of g:

C(u) =
∣∣∣∣ 1 0

g′ 1

∣∣∣∣ = 1 .

In general, C(u) = 1 leads to non-linear differential constraints since the determi-
nant results in a polynomial of degree d in the partial derivatives of u. For example,
det (∇u) = u1

x1
u2

x2
− u1

x2
u2

x1
for d = 2.
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3. The variational setup. The goal of this paper is to characterize and identify
feasible choices and combinations of regularization functionals and set of constraints
guaranteeing the existence of minimizing elements of problem (2). The main result
in this section is Theorem 4.1. The first part of this section concentrates on existence
results in general and the second part is dedicated to the set of volume constrained
functions. Theorem 3.3 states under which assumptions the constraint sets are
weakly closed.

To formulate the results of this subsection we use the concept of Carathéodory
functions [7, page 74].

Definition 3.1 (Carathéodory [7]). Let Ω ⊂ R d be an open set and let f : Ω ×
R d × R d×d → R := R ∪ {±∞}. Then f is a Carathéodory function if

1. f(x, ·, ·) is continuous for almost every x ∈ Ω,
2. f(·, ξ, A) is measurable in x for every (ξ,A) ∈ R d × R d×d.

It is convenient to rewrite the functional T from (2) as

(6) T (u) =
∫

Ω

f(x, u(x),∇u(x)) dx,

with f : Ω × R d × R d×d → R , (x, u, A) 7→ f(x, u, A) . For example, choosing
R(u) =

∫
Ω
|∇u(x)|p dx results in f(x, ξ, A) = |I1(x + ξ)− I0(x)|2 + α |A|p .

Finally, if second order derivatives are involved, we use the notation

T (u) =
∫

f(x, u(x),∇u(x),Hu(x)) dx ,

where the last component Hu stands for second order terms. Definition 3.1 extends
straightforwardly to the higher order case.

3.1. Existence theorems in the calculus of variations. We summarize condi-
tions on f which ensure that the constrained problem (2) has a minimizing element.
The following results from [7, Chapter 3] are reviewed. For our registration problem
we have to modify these results a little bit, since boundary-settings in the original
problem are too strong for our application (see Remark 2 for the difference).

Theorem 3.2. Let f : Ω× R d× R d×d → R be a Carathéodory function satisfying
the coercivity condition

(7) f(x, u, A) ≥ β|A|p + γ(x)

for almost every x ∈ Ω, for every (u, A) ∈ R d × R d×d, for some function γ ∈
L1(Ω, R ), β > 0 and p > 1. Assume that f is convex in A. For u0 ∈ W 1,p,
let Ã ⊂ u0 + W 1,p

0 be a weakly closed set of admissible functions and T as in (6)
defined on W 1,p. Moreover, assume that there exists z ∈ Ã with T (z) < ∞, then
T (u) attains a minimum.

Proof. The central assumption is that the Carathéodory function f is convex with
respect to A. This is a sufficient condition for T to be weakly lower semi-continuous
in W 1,p [7, Section 3.3]. From this and the coercivity of f it follows that attains a
minimum on u0 + W 1,p

0 .

Remark 2. A central assumption of Theorem 3.2 it is that the weakly closed set
Ã is a subset of u0 + W 1,p

0 . This means, that for u ∈ Ã, u = u0 on ∂Ω, hence in
our numerical implementation, we would have to set boundary conditions. Since
for our registration problem we do not know u0 and we do not want to fix u on
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the boundary of Ω, hence we need to replace the condition Ã ⊂ u0 + W 1,p
0 my a

more reasonable condition, under which we still can proof existence of a minimizing
element (see blow).

In the original proof of Theorem 3.2 in [7, Theorem 4.1, p. 82] the condition
Ã ⊂ u0 + W 1,p

0 guarantees that a minimizing sequence (uk)k∈N is bounded in
the Lp-norm (via the Poincaré-inequality). However, in our application all elements
of A are bounded in the Lp-norm, hence it is sufficient to assume that the set of
admissible functions is a subset of W 1,p instead of u0 + W 1,p

0 . This implies that no
additional boundary conditions on the transformation have to be imposed.

To see that Ap
b is closed weakly closed in W 1,p, consider Ap

b for some b < ∞. Note
that Ap

b is convex and closed in W 1,p. The mapping M : W 1,p → R , u → ‖u‖Lp is
continuous. Thus A1,p

b is the pre-image of [0, b] under a continuous mapping, thus
it is closed with respect to the W 1,p-norm. Thus, since Ap

b is convex and closed in
W 1,p, it is weakly closed in W 1,p.

The previous theorem can be extended to higher order derivatives.

3.2. Weak closedness of the sets of constraints. In the previous subsection,
we showed existence of a minimizing element of the registration functional assum-
ing that the sets of constraints A are closed with respect to the weak topologies
(see Theorem 3.2 and Remark 2). We now prove the weak closedness of the sets
As,p

E ,As,p
I as defined in (4) and (5), respectively.

Theorem 3.3.

1. For d ≥ 2 and p ≥ d, the sets A1,p
I ,A1,p

E are weakly closed with respect to the
W 1,p-topology.

2. The sets A2,p
I ,A2,p

E are weakly closed with respect to the W 2,p-topology.

Proof. For part (1) we distinguish the cases p = d and p > d. For p > d, the mapping
M : A1,p

I → L
p
d (Ω, R ), u 7→ C(u), is continuous with respect to the weak topology

on both W 1,p and L
p
d (Ω, R ); see [11, Section 8.2.4, Lemma, p. 454]. Hence, the set

A1,p
I is a pre-image of the closed set {u ∈ Lp/d : k ≤ C(u) ≤ K a.e. in Ω} under the

weakly continuous mapping M with respect to the weak topology on W 1,p. Thus
A1,p

I is weakly closed.
For p = d, we assume 0 < K ≤ B < ∞ and define the set

B1,p := {u ∈ W 1,p | ‖C(u)‖L∞ ≤ B}.

First we prove that B1,p is weakly closed with respect to the W 1,p-topology, then we
show that the mapping M : B1,p → Lq(Ω, R ), u 7→ C(u) is continuous with respect
to the weak topology on W 1,p and the weak topology on Lq. With this we can
argue as before, that A1,p

I is the pre-image closed set of a weakly closed mapping
and consequently it is weakly closed.

Every weak convergent sequence (uk)k in B1,p with weak limit u induces a se-
quence ck := C(uk) in L∞. Since supk∈N {‖ck‖L∞} ≤ B and according to the
Alaoglu-Bourbaki-Kakutani Theorem, (ck)k contains a weak ∗ convergent subse-
quence (cki

)i with a weak limit z ∈ L∞,

(8) ∀ φ ∈ L1(Ω, R ) : lim
k→∞

∫
Ω

C(uki)φ dx =
∫

Ω

zφ dx

Inverse Problems and Imaging Volume 4, No. 3 (2010), 505–522
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¿From [7, Chapter 4, Theorem 2.6, p. 172] we know that for uk ⇀W 1,p u, C(uk) ⇀
C(u) weakly in D′(Ω), meaning that

∀ φ ∈ C∞0 :
∫

Ω

C(uk)φ dx →
∫

Ω

C(u)φ dx.

Moreover, since C∞0 (Ω) ⊂ L1(Ω) we have z = C(u) and thus C(u) ∈ L∞(Ω). Hence
B1,p is weakly closed.

Since Ω is bounded, L∞(Ω) ⊂ Lq(Ω) and Lq′(Ω) ⊂ L1(Ω), for 1 < q < ∞, where
1
q + 1

q′ = 1. Hence for uk ∈ B1,p, C(uk) ∈ Lq, and thus (8) also holds for all φ ∈ Lq′ .
This implies that the mapping M is weakly closed with respect to the weak topology
on W 1,p and the weak topology on Lq. Thus A1,p

I ⊂ B1,p is the pre-image of the
closed set

{u ∈ Lq(Ω, R d) | k ≤ C(u) ≤ K a.e. in Ω}
under a weak continuous mapping. Hence, A1,p

I is weakly closed.
For the second statement we show that A2,p

I is weakly closed. Using again the
result in [7, Chapter 4, Theorem 2.6, p. 172] and the compact imbedding W 2,p ⊂
W 1, dp

d−p one can proof that M : A2,p
I → L1+δ(Ω, R ), u 7→ C(u) is continuous with

respect to the weak topologies on W 2,p and L1+δ(Ω, R ). The set A2,p
I is thus the

pre-image of the closed set

{u ∈ L1+δ | k ≤ C(u) ≤ K a.e. in Ω}

under the weak continuous mapping M , and hence weakly closed.

4. Minimizing elements for the registration problems. In the previous sec-
tion we proved the weak closedness of the constraint sets. We are now ready to
prove the existence of minimizing elements for the registration problem (2) with
respect to the different constraints. According to Theorems 3.2, it remains to check
the following conditions for f (or f in case of higher order regularization):

1. f or f is a Carathéodory function,
2. f or f satisfies the coercivity condition (7) or f(x, u, A,H) ≥ β |H|p, respec-

tively,
3. the admissible set of functions A ⊂ A1,p

b is weakly closed with respect to
W 1,p; A ⊂ u0 + W 2,p

0 is weakly closed with respect to W 2,p.

Theorem 4.1. Assume that I0 and I1 are continuous and that the sets A1,p
b and

As,p
I are as in (3) and (5), respectively. For the following constrained image regis-

tration functionals there exist minimizing elements:
1. for d ≥ 2, p ≥ d, and

T (u) = S(u) + α

∫
|∇u|p dx → min subject to u ∈ A1,p

I ∩ A1,p
b ,

2. for d ≥ 2, p ≥ 1, and higher order regularization

T (u) = S(u) + α1

∫
Ω

|∇u|p dx + α2

∫
Ω

|H(u)|p dx → min

subject to u ∈ A2,p
I ∩

(
u0 + W 2,p

0

)
. Here H(u) is the hessian of u.

Proof. Since the images I0 and I1 are assumed to be continuous, the functions f or
f are Carathéodory functions.
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1. For d ≥ 2 and p ≥ d we have

f(x, ξ, A) = (I1(x + ξ)− I0(x))2 + α |A|p ,

thus α |∇u|p ≤ f(x, u,∇u), and hence f is coercive in W 1,p. Moreover,
A1,p

b ∩A1,p
I is weakly closed with respect to the W 1,p-norm; cf. Theorem 3.3.

According to Theorem 3.2, T attains a minimum.
2. For higher order regularization,

f(x, ξ, A,H) = (I1(x + ξ)− I0(x))2 + α1|A|p + α2|H|p.

Since α2|H(u)|p ≤ f(x, u,∇u, H(u)) the coercivity condition is satisfied in
W 2,p. The set of admissible functions A2,p

I ∩ (u0 + W 2,p
0 ) is weakly closed

with respect to the W 2,p-norm; cf. Theorem 3.3. An application of a straight-
forward extension of Theorem 3.2 to higher order derivatives completes the
proof.

Remark 3 (Elastic Regularization Functional). Theorem 4.1 indicates that in our
existence analysis, the spacial dimension d influences the choice of the regularization
functional R strongly. The limiting factor in this existence result is the determinant
constraint, since the determinant is a polynomial of degree d. For example, the
probably most commonly used elastic regularization [1, 3, 2, 5, 14, 17] is given by

(9) Relas(u) :=
∑

i=1..d

∑
j=1..d

∫
Ω

(
λ1

2
∂ ui

∂xi

∂ uj

∂xj
+

λ2

4

(
∂ ui

∂xj
+

∂ uj

∂xi

)2
)

dx ,

with material parameters λ1, λ2 > 0. Using min {λ1/2, λ2/4}
∫
Ω
|∇u|2 ≤ Relas(u),

and Theorem 4.1, existence of a minimizing element for the volume preserving
constraint registration functional is only guaranteed for d = 2.

5. Finite dimensional approximation. In this section we study a finite dimen-
sional approximation of the minimization problem in (2). The main result of this
section is stated in Section 5.3, where we give necessary assumptions under which
the solutions of the discretized minimization problem converge to a solution of the
original registration problem.

An index m is connected to the approximation of the images, an index n to
the approximation of the Sobolev spaces, and An are the approximated spaces of
functions, satisfying the constraints as explained in the next section.

5.1. Approximation of the minimization functional. We assume that
I0, I1 ∈ C0

0( R d, R ) and that the components of ∇I1 are bounded by CI1 :=
‖∇I1‖L∞ . We consider the following operator

(10) F : W 1,2 → L2( R d, R ), u 7→ I1(id + u).

We approximate the images Il by piecewise affine functions such the approximated
image Il,m, satisfies ‖Il,m − Il‖2

L2 ≤ δl
m. The parameter m is connected to the

image-resolution. Moreover we define the approximated operator Fm by

(11) Fm : W 1,2 → L2( R 2, R ), u 7→ I1,m ◦ (id + u).

Since we have assumed that the images Il are continuous, the operator F in (10)
is compact and satisfies a Lipschitz condition; cf. Lemma 5.1. This properties are
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exploited in Theorem 5.5 which states convergence of the solutions of the approxi-
mated problem to a solution of the original problem.

In the following we consider the case of inequality constraints, i.e, the sets As,p
I .

Lemma 5.1. Assume that I1 ∈ C0
0( R d, R ), and F, Fm as in (10),(11). Then

1. F is compact,
2. F is Lipschitz continuous: there exists CF > 0 such that ‖F (v)− F (u)‖ ≤

CF ‖v − u‖ ,
3. Assume that 0 < k ≤ det(id + u) ≤ K, then

(12) ‖Fm(u)− F (u)‖2 ≤ k−1δ1
m for all u ∈ D (F ) ∩ A1,d

I .

Proof.

1. First we prove that F is compact. Assume therefore that we have a ‖·‖W 1,2-
bounded sequence {ui}, which defines a sequence {F i} in L2( R d, R ), by the
relation F i := F (id + ui) = I1 ◦ (id + ui) . Since I1 ∈ C0

0( R 2, R ), F i is
bounded in W 1,2, which can be seen by the following inequalities∥∥F i

∥∥
L2 ≤ ‖I1(id + ui)− I1(id) + I1(id)‖L2

≤ ‖I1(id + ui)− I1(id)‖L2 + ‖I1(id)‖L2

≤ CI1 ‖ui‖L2 + ‖I1(id)‖L2

and
∥∥∇F i

∥∥
L2 ≤ ‖∇I1(id + ui)∇(id + ui)‖L2 ≤ CI1 ‖∇(id + ui)‖L2 . Thus

according to the assumptions
{
F i
}

is bounded and has a weakly convergent
subsequence

{
F ik
}

in W 1,2. Using Sobolev embeddings it follows that
{
F ik
}

is strongly convergent in the L2-norm. Hence F is compact.
2. For arbitrary x, x̃ ∈ Ω we have |I1(x)− I1(x̃)| ≤ CI1 |x− x̃| . Thus we get the

following estimate:

‖F (v)− F (u)‖L2 = ‖I1 ◦ (id + v)− I1 ◦ (id + u)‖L2 ≤ CI1 ‖v − u‖L2 .

The Lipschitz-constant of F is less or equal to CI1 .
3. Since we assume that 0 < k ≤ det(id+u) ≤ K we can use the transformation

formula and obtain

k

∫
Ω

|I1(x + u(x))− I1,m(x + u(x))|2 dx

≤
∫

Ω

|I1(x + u(x))− I1,m(x + u(x))|2 det(∇(id + u)(x))dx

=
∫

Ω

|I1(x)− I1,m(x)|2 dx ≤ δ1
m .

In the following we consider the approximated functionals. Setting Sm(u) :=
‖I1,m ◦ (id + u)− I0,m‖2 and R(u) := ‖∇u‖d

Ld , the approximated objective func-
tional reads

(13) Tm,n(u) = Sm(u) + αR(u) −→ min over An.
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5.2. Approximation of the constraints. The final step is the approximation of
the box constraints A1,d

I by a sequence of finite dimensional subspaces An. We aim
for an approximation which allows easy handling of the determinant-constraint. In
particular, we choose linear finite elements on triangles or tetrahedrons of polyno-
mial degree one. With these the determinant of the approximation is a constant on
each triangle of the triangulation.

In the two dimensional case, starting with a triangulation as shown in Figure 1, a
refinement is obtained by dividing each triangle into four congruent triangles. This
leads to a family of regular triangulations Γn := (τ1, · · · , τ2·22n) . Analogously we
handle the 3d-triangulation, which is denoted again by Γn.

τ1

τ2 τ1

τ2

Figure 1. Refinement of the triangulation. Left: Γ1, right: Γ2.

The displacements are elements of the following set:

Un :=
{

u ∈ C0(Ω, R d) | u|τi
∈ Π1(Ω, R d) for every τi ∈ Γn

}
,

where Π1 is the set of polynomials of degree 1. By this choice of the refinement we
have a nested sequence of spaces

· · · ⊂ Un ⊂ Un+1 ⊂ · · ·
⋃

m∈N
Um

⋃
n∈N

Un = W 2,2.

For d = 2, u|τi
is of the form:

u|τi
(x) =

(
a1

i + b1
i x1 + c1

i x2

a2
i + b2

i x1 + c2
i x2

)
and hence ∇u|τi

(x) =
(

b1
i c1

i

b2
i c2

i

)
.

The challenging part in the registration problem is to incorporate the determinant
constraints. For the ease of presentation, we restrict ourself to the case of constant
bounds k and K (that appear in definition of As,p

I ). The case of non-constant box
constraints is along the same lines.

We distinguish two cases: the integrated or global and the local constraints.
• The integrated constraints are based on the L1-norm, and give the constraint a

global nature. The bound for the discrepancy is a function of the discretization
parameter hn, i.e. basically the size of the triangles/tetrahedrons. Note that
‖det(Id +∇un)− 1‖L1 ≤ ε(hn) does not prevent det(Id+∇un) to be negative
in some of the triangles. Here Id ∈ R d×d denotes the identity matrix.

For the global L1-norm based integrated determinant-constraint we work
with

(14) A1
ε(hn) := {un ∈ Un | ‖det(Id +∇un)− 1‖L1 ≤ ε(hn)} .
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In the 2d case this reads

A1
ε(hn) =

{
un ∈ Un | h2

n

2

∑∣∣(1 + b1
i )(1 + c2

i )− c1
i b

2
i − 1

∣∣ ≤ ε(hn)
}

.

The reason for this choice is that under the right choice of the tolerance ε(hn)
in dependence of hn, (see Lemma 5.3) we can use the W 1,2-norm projection

(15) P 1
n : W 1,2 → Un, u 7→ argminun∈Un ‖u− un‖2

W 1,2 .

in order to project onto this space. As a consequence we have to specify a
condition on ε(·) that guarantees that P 1

n(u) ∈ A1
ε(hn). This condition is given

in Lemma 5.3.
• The measure for the local determinant-constraints is based on the L∞-norm.

This implies that we take the maximal change of the determinant on each
triangle. A disadvantage of this choice is that we cannot guarantee that
W 1,2-norm projected functions are elements of the set of functions satisfying
the local determinant constraints. Hence we have to introduce an alternative
projection operator. Since the corresponding sets are not convex, the projec-
tion onto them does not have to be unique. For the local L∞-norm based
determinate-constraints we work with

(16) A∞n,ε := {un ∈ Un | ‖det(∇un + I)‖L∞ ≤ ε} ,

with a constant ε. For the 2d case this reads:

A∞n,ε =
{
un ∈ Un |

∣∣(b1
i + 1)(c2

i + 1)− c1
i b

2
i − 1

∣∣ ≤ ε, i = 1 . . . 2 · 22n
}

.

As projection operator we choose

(17) P∞
n : W 1,2 → A∞n,ε, u 7→ argminun∈A∞n,ε

‖u− un‖2
W 1,2 .

When minimizing over A∞n,ε, we solve a finite dimensional minimization prob-
lem. Existence of a minimum is assured, due to the continuity of the absolute
value and the determinant, in the finite dimensional setting. In our algorithm,
the condition un ∈ A∞n,ε is realized via a Lagrangian method [28, p. 317–319],
described in Section 6.

In the following we provide a Lemma that gives a condition on the function ε(hn)
used for the definition of the global determinant constraint sets, that assures that
the least squares approximation P 1

n(u) in (15) is an element of the set of integrated
determinant constraints. A central estimation in the proof of Lemma 5.3 is given
by the following theorem, see Cialet [6, Theorem 18.1. , p 138] or [10, Corollary
110, p. 61–62].

Theorem 5.2 (Approximation of W 2,2 functions). There exists a constant CΩ < ∞
such that

inf
un∈Un

‖u− un‖W 1,2 ≤ CΩ ‖u‖W 2,2 hn

for every u ∈ W 2,2.

The following Lemma suggests the choice of ε(h) as in (18).

Lemma 5.3. Let u ∈ W 2,2 and hn be the mesh size parameter. If

(18) ε(hn) ≥ CΩCdet ‖id + u‖W 2,2 hn ,

then P 1
n(u) ∈ A1

ε(hn). The constant CΩ depends on Ω and the regularity of the
triangulation. The constant Cdet depends on the space dimension d and on ∇u.
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Proof. Given A ∈ R d×d , for 1 ≤ i, j ≤ d, define Aij
S ∈ R d−1×d−1 to be the sub

matrix of A, formed by removing from A its ith row and jth column. Then we can
write

det(A) =
d∑

j=1

(−1)i+jAij det(Aij
S ) .

For the gradient of the the determinant-function we obtain

∇ det(A) =
(
(−1)i+j det(Aij

S )
)

1≤i,j≤d
.

We denote |M |R d×d :=
∑

1≤i,j≤d |Mij |, and 〈M,M〉R d×d is the point wise product
of matrices. Let An ∈ R d×d, then Taylor-expansion gives:

(19) det(A) = det(An)− 〈∇det(An), A−An〉R d×d + O((A−An)2) .

The entries of |∇det(A)| are polynomials of degree d−1 in the variables Aij . With
this we can estimate the norm by

|∇det(A)|R d×d ≤ |A|R 2×2 := c(A, 2), for d = 2

|∇det(A)|R d×d ≤ 2 |A|2R 3×3 := c(A, 3) for d = 3 .

which together with (19) implies

|det(An)− det(A)| = |〈∇det(A), A−An〉R 4 |+ O
(
(A−An)2

)
≤ |∇ det(A)| |A−An|+ O

(
(A−An)2

)
≤ c(A, d) |A−An|+ O

(
(A−An)2

)
.

For v = id + u ∈ W 2,2 Theorem 5.2 states that
∥∥P 1

n(v)− v
∥∥

W 1,2 ≤ CΩ ‖v‖W 2,2 hn .
Set

Cdet :=

{
‖c(∇u, 3)‖2

L2 =
∫
Ω
|∇u(x)|2 dx for d = 2

‖c(∇u, 3)‖2
L2 =

∫
Ω

2 |∇u(x)|4 dx for d = 3.

Then we obtain following estimate:∥∥det
(
∇P 1

n(v)
)
− det (∇v)

∥∥
L1

=
∫

Ω

∣∣det
(
∇P 1

n(v)(x)
)
− det (∇v(x))

∣∣ dx

≤
∫

Ω

c(∇v(x), d)
∣∣∇P 1

n(v)(x)−∇v(x)
∣∣ dx + O

(∥∥∇P 1
n(v)−∇v

∥∥2

L2

)
≤ ‖c(∇v, d)‖L2

∥∥∇P 1
n(v)−∇v

∥∥
L2 + O

(∥∥∇P 1
n(v)−∇v

∥∥2

L2

)
≤ Cdet CΩ ‖v‖W 2,2 hn .

Thus if ε(hn) ≥ C ‖v‖W 2,2 ‖∇v‖L2 hn then P 1
n(v) ∈ A1

ε(hn) (set with integrated
determinant constraints).

A necessary ingredient for the convergence of solutions of the discretized problems
to a solution of the inverse problem is that the projection operators converge to the
identity.

Theorem 5.4. Let A1
ε(hn),A

∞
n,ε be as in (15), (16) and P 1

n , P∞
n as in (15), (17).
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1. Equality constraints: Assume that u ∈ A2,d
E , limn→∞ ε(hn) = 0 and

ε(hn) ≥ C ‖∇u‖L2 ‖u‖W 2,2 hn .

For P 1
n as in (15), limn→∞

∥∥P 1
n(u)− u

∥∥
W 1,2 = 0.

2. Box constraints: Assume u ∈ A2,d
I with constant bounds k = 1− ε,K = 1 + ε.

For P∞
n as in (17) we have limn→∞ ‖P∞

n (u)− u‖W 1,2 = 0.

Proof. For the first part we use that P 1
n is the W 1,2-least square spline approxima-

tion of u onto Un and u ∈ A2,d
E ⊂ W 2,d ⊂ W 2,2. Hence we can apply Theorem 5.2.

Moreover Lemma 5.3 states that P 1
n(u) ∈ A1

ε(hn) by the choice of ε(hn).
For the second part, we denote with the closure in W 1,2. Note that by the

choice of k = 1− ε,K = 1 + ε, we have that A∞n,ε = Un ∩A1,d
I . Since Un is dense in

W 2,2 [6], we have⋃
n∈N

A∞n,ε =
⋃

n∈N
Un ∩ A1,2

I =
⋃

n∈N
Un ∩ A1,2

I = W 2,2 ∩ A1,2
I = A2,2

I .

Thus, for u ∈ A2,d
I it holds that limn→∞ ‖u− P∞

n (u)‖W 1,2 = 0.

5.3. Convergence of the approximate solutions. The proof of the theorem
that finite dimensional solutions converge to a solution of the registration problem
is based on the following assumptions and definitions.

1. Constraints: Let Acon denote the constraints and satisfying the volume pre-
serving constraints, i.e Acon = A1,d

E ∩Ad
b or Acon = A1,d

I ∩Ad
b (see (3)-(5) for

the definition of the sets). Assume u ∈ Acon ∩ W 2,d. Let (An)n∈N denote
either A1

ε(hn) with operator P 1
n or A∞n,ε with operator P∞

n .
2. Define Dn := D (F ) ∩ An, where D (F ) is the domain of F (see (10)). Since

0 ∈ Dn, it follows that Dn 6= ∅ .
3. Images: For l = 0, 1, let Il ∈ C0

0( R 2, R ), with approximations Il,m as outlined
in Section 5.1; thus, ‖Il − Il,m‖2

L2 ≤ δIl
m → 0 as m → ∞; set δm := k−1δI1

m +
δI0
m , where k is the lower bound for the determinant constraint, as in Lemma

5.1.
4. let α = α(m,n) such that for m,n →∞ it holds that

(20) α → 0, δm/α → 0,
∥∥u† − Pn(u†)

∥∥2

W 1,2 /α → 0.

The following result can be found in a slightly modified version in [26] and is the
main result of this section. However, in [26] they consider only the special case with
a regularization function R(u) = ‖u− u0‖2

H and projection Pn : H → H, where H
is a Hilbert space.

Theorem 5.5. Let u = u† be a solution of the inverse problem F (u) = I0. Under
the above assumptions and with R(u) := ‖∇u‖d

Ld , the sequence {umk,nk
(αk, δk)}

has a convergent subsequence. The limit of every convergent subsequence is an R-
minimizing solution.

If in addition the R-minimizing solution u† is unique, then

lim
δm→0,m→∞,n→∞

um,n = u† .

Proof. Let n be large enough, then according to Theorem 5.4, Pn(u†) ∈ An. By defi-
nition F (u†) = I0 and by assumption we have ‖I0 − I0,m‖2 ≤ δI0

m . Moreover accord-
ing to Lemma 5.1 the conditions on I1,m imply that

∥∥Fm(Pn(u†))− F (Pn(u†))
∥∥2 ≤
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Cδm. Since um,n minimizes (13) we have

‖Fm(um,n)− I0,m‖2 + αR(um,n) ≤

≤
∥∥Fm(Pn(u†))− I0,m

∥∥2
+ αR(Pn(u†))

≤ 2
[∥∥Fm(Pn(u†))− F (Pn(u†))

∥∥2
+
∥∥F (Pn(u†))− F (u†)

∥∥2
+∥∥F (u†)− I0,m

∥∥2
]

+ αR(Pn(u†))

≤ 2
(
k−1δI1

m + C2
F

∥∥u† − Pn(u†)
∥∥2

+ δR
m

)
+ αR

(
Pn(u†)

)
.

(21)

¿From this we obtain

‖Fm(um,n)− I0,m‖2 ≤
(
k−1δI1

m + C2
F

∥∥u† − Pn(u†)
∥∥2

+ δR
m

)
+

α
∣∣R(Pn(u†))−R(um,n))

∣∣ .

Taking the limit m,n → ∞, we know from the assumptions on α, δm and Pn that∥∥u† − Pn(u†)
∥∥

L2 → 0 and α → 0. Hence

(22) ‖Fm(um,n)− I0,m‖ → 0 .

Moreover, from (21) together with Theorem 5.4 implying that R
(
Pn(u†)

)
→ R(u†)

and the assumptions on α it follows that

lim inf R(um,n)

≤ lim inf α−1
(
k−1δI1

m + C2
F

∥∥u† − Pn(u†)
∥∥2

+ δR
m

)
+R

(
Pn(u†)

)
≤ lim sup α−1

(
k−1δI1

m + C2
F

∥∥u† − Pn(u†)
∥∥2

+ δR
m

)
+ lim supR

(
Pn(u†)

)
=

(20)
0 + lim supR(Pn(u†)) = R(u†).

Since {um,n} is a W 1,2-bounded sequence, we know that um,n has a weakly con-
vergent subsequence with limit u ∈ U . For the sake of simplicity of notation, we
denote this weakly convergent subsequence again with {um,n}. Moreover taking
into account (21), the fact that u† is an R-minimizing solution and the weak-lower
semi continuity of R, it follows that

R (u) ≤ lim inf R (um,n) ≤ R(u†) .

Thus, R (u) = limR (um,n) = R(u†) and I0 = lim F (um,n) = F (u).
Moreover, (12) implies that for any subsequence umk,nk

of um,n

‖F (umk,nk
)− I0‖2 ≤ 2 ‖F (umk,nk

)− Fm(umk,nk
)‖2 + 2 ‖Fmk

(umk,nk
)− I0‖2

≤ 2k−1δI1
mk︸ ︷︷ ︸

→0

+4 ‖Fmk
(umk,nk

)− I0,m‖2︸ ︷︷ ︸
→(22)0

+ 4δI0
m︸︷︷︸

→0

.

Taking the limit mk, nk →∞, this implies that

‖F (umk,nk
)− I0‖2 → 0 ,

Hence u is an R-minimizing solution.
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6. Solving the registration problem with finite elements. To show that this
theory can be applied to determinant based constraints, we present a simplified ex-
ample for the equality case. An implementation of the more general box constraints
is subject of current research. In order to solve the registration problem numerically
we use a finite element approach. In particular, we use triangles and tetrahedron to
ensure a nested sequence of the finite element spaces. Particularly, we use the least
squares functional S in (1) to compare the reference and the deformed template im-
age and R = Relast (elastic) as in (9) or R(u) = ‖∇u‖3

L3 (cubic) as regularization
functionals. We note that for the elastic regularizer the existence of a minimizing
element is only guaranteed in the 2d case.

We apply the Augmented Lagrangian method [28] to incorporate the deter-
minant constraints det (∇u + Id) = 1, that is, we iterate the following minimization
problem

uk ∈ argminu∈Un

{
S(u) + αR(u) + β ‖u− ũl‖2

L2︸ ︷︷ ︸
T (u)

+...

(23)

..
κk

2

∫
Ω

(det(∇u + Id)− 1)2 −
∫

pk−1 (det(∇u + Id)− 1)
}

pk = pk−1 + κk (1− det(∇uk + Id))

in order to minimize S(u)+αR(u) under the local determinant equality constraints
with ε = 0 (volume/area preserving).

We do not set any boundary conditions, instead, we achieve that uk stays
bounded by adding an additionally term β ‖u− ũl‖2, that stabilizes the minimiza-
tion process (steepest decent iteration) and vanishes, if the minimizing sequence
converges to a minimum of (23) with β = 0. We solve (23) with a semi-implicit gra-
dient decent method. In each iteration step (for the minimization of (23)) we have
to update the stiffness-matrix, and ũl. We mention again that we do not minimize
over W 1,3

0 but over W 1,3. Since we bound u, we can still guarantee the existence of
a solution (see Remark 2).

For the cubic regularization, in order to avoid solving a nonlinear problem, we
approximate the gradient of the cubic regularization functional by

R(u, v) =
1
3

∑
i,j=1..3

∫ ∣∣∣ui
xj

∣∣∣ui
xj

vi
xj
∼

∑
i,j=1..3

∫ ∣∣∣(ũl)i
xj

∣∣∣ui
xj

vi
xj

where again ũl is the solution of the previous step in the gradient decent minimiza-
tion process.

6.1. Numerical example. The above scheme was implemented in C++ (2D and
3D) using the imaging2 class written by Matthias Fuchs [13]. The imaging2 class
provides an object-oriented implementation of basic mathematical objects and func-
tions used in image processing. It includes a FEM module that provides functions
to assemble the stiffness matrix and force vector for user-defined equations.

The results for a simple 3D-example are shown in Table 1 and Figures 2 and 4.

7. Conclusions. In this paper we have investigated the existence of minimizing
elements of area/volume preserving registration functionals. One motivation for
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Figure 2. Minimal and maximal values of det(I +∇un)−1. The
jumps in the plot for the constraint case, indicate an update of the
Lagrange parameter pk.

1 (UC) 2 3
error: ‖I1(u + id)− I0‖2

L2 0.26 0.11 0.22
min(det(id + u)− 1) -0.13 -0.06 -0.08
max(det(id + u)− 1) 0.21 0.05 0.06

Table 1. Parameters of the example shown in Figure 4: β = 1,
Example 1 (unconstrained): κk = 0, λ1 = 0.1, λ2 = 0.2. Example
2 (constrained, elastic regularization): κ1 = 0.1, λ1 = 0.1, λ2 =
0.2. Example 3 (constrained, cubic regularization R(u) = ‖∇u‖3

L2 :
κ1 = 0.1, α = 1.

studying these is due to our previous work, where we introduced numerical meth-
ods for volume preserving image registration [17]. Here we used variational tech-
niques to prove the existence of minimizers of the registration functional. More-
over we provide convergence analysis of the finite dimensional approximation of the
minimization problem, clarified the difficulties caused by the discretization of the
area/volume preserving constraints and proposed two ways to approximate the set
of area constrained transformations.
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[1] R. Bajcsy and S. Kovačič, Multiresolution elastic matching, Computer Vision, Graphics and
Image Processing, 46 (1989), 1–21.

[2] M. Bro-Nielsen, “Medical Image Registration and Surgery Simulation,” PhD thesis, IMM,

Technical University of Denmark, 1996.

Inverse Problems and Imaging Volume 4, No. 3 (2010), 505–522
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