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Abstract

PurposeFor many image registration tasks the information
contained in the original resolution of the image data is cru-
cial for a subsequent medical analysis, e.g. accurate assess-
ment of local pulmonary ventilation. However, the complex-
ity of a non-parametric registration scheme is directly con-
nected to the resolution of the images. Therefore, the reg-
istration is often performed on a downsampled version in
order to meet runtime demands and thereby producing sub-
optimal results. To enable the application of the highest res-
olution at least in regions of high clinical importance, an ap-
proach is presented replacing the usually taken equidistant
grids by tensor grids for image representation.

MethodsWe employ a non-parametric approach for the reg-
istration of a respiratory-gated 4D CT thorax scan. Tensor
grids are introduced for the registration setting and com-
pared to equidistant grids. For ventilation assessment theJa-
cobian metric is explored.

ResultsThe application of the tensor grid approach makes
the local usage of the original resolution feasible; thereby
a smaller registration error is achieved in regions of higher
resolution using the tensor grids, while the two types of grids
perform similar in regions of equal resolution. Concerning
the ventilation assessment, the Jacobian metric yields rea-
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sonable results, showing more detail using the tensor grids
due to the higher resolution.
ConclusionsThe proposed approach using tensor grids pre-
serves registration accuracy, while reducing computational
demands. The application of the Jacobian metric for ventila-
tion assessment in conjunction with tensor grids is promis-
ing; however, due to a missing ground-truth the medical rel-
evance could not be established for the ventilation estima-
tion so far.

Keywords Image Registration· Tensor Grid· Pulmonary
Ventilation· 4D-CT

1 Introduction

The usefulness of the new registration technique to be in-
troduced is best explained in conjunction with a real exam-
ple. Therefore, we start out by introducing the application.
The assessment of lung function has become increasingly
interesting in recent years, especially in diagnosis of pul-
monary diseases, e.g. emphysema [1,2], placement of radia-
tion beams in radiation therapy [3,4] or drug delivery via in-
halation [5]. The two main parameters evaluated to analyze
lung function are perfusion and ventilation [6,7]. The latter
is a measure of the gas exchange of the lung and the ambi-
ent air, while pulmonary perfusion quantifies the amount of
blood flow inside the vessels supplying the alveoli. For the
lung to work efficiently, these two parameters have to cor-
relate, meaning that, if the amount of air inside the lung is
high, there has to be an increase in blood flow, such that the
exchange of oxygen and carbon dioxide can take place.

In this work, we will confine to the assessment of ven-
tilation. Almost all medical imaging modalities can be used
for this task [5], with nuclear imaging like PET (Positron
Emission Tomography) and SPECT (Single Photon Emis-
sion Computed Tomography) being considered the current
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gold-standard [6]. However, most of these modalities have
major drawbacks like low spatial or temporal resolution or
the need of special equipment like suitable contrast agents.

To resolve these drawbacks, research has been under-
taken on the possibility of evaluating ventilation from 4D-
CT (Computed Tomography) images, which consist of sev-
eral 3D images taken at different phases of the breathing cy-
cle. In radiation therapy planning these images are aquired
routinely and thus no further aquisition is necessary to deter-
mine the ventilation in this case, yielding a further advantage
for 4D-CT usage in ventilation assessment. The ventilation
information is extracted from the images by determining the
local change in volume relative to a reference phase or at
each phase transition [8–11]. To assess the ventilation using
the proposed methods, a registration of the different phase
images is needed to establish a correspondence between the
images and to be able to quantify the change in volume.

There are various ways to handle the registration prob-
lem. In this work, we will use a popular non-parametric ap-
proach, where a dense deformation vector field is searched
for that maps one image onto the other. The advantage of
this approach is that a physical model is included in the reg-
istration process, which globally models the physical nature
of the image and yields a dense deformation field after reg-
istration that can be used directly to evaluate the ventila-
tion. However, the problem with non-parametric image reg-
istration is that it is subject to the curse of dimensionality.
The resolution of medical images has become higher over
the last years such that more detail is visible in the images.
From a medical point of view the improvement in resolu-
tion is remarkable, conversely the increase in data size that
goes along with the improved resolution makes computa-
tions much more demanding. For a thorax CT scan with a
slice thickness of 2.5 mm and a size of about 5122 × 141
voxel, a linear system of equations with more than 100 mil-
lion unknowns needs to be solved in each iteration step, in-
ducing a challenge in both time and memory.

A popular approach to speed up computations is to em-
bed the registration algorithm into a multi-level setting.By
omitting the highest level(s) of resolution the problem of
memory is solved as well. This approach is feasible and of-
ten results at lower levels are satisfactory. However, Cooket
al. [12] stated that the impact of image resolution on the reg-
istration result depends locally on the anatomy. This proves
right for various medical applications, like e.g. the above
mentioned ventilation studies. In this case the information
contained in the highest resolution is crucial in some regions
of the images and should not be neglected, e.g. trapped air
regions (emphysema), where lung texture and thus image
contrast is low. The little information contained in these ar-
eas will be lost after downsampling. Yet in other regions
with distinctive structures, which can still be well distin-
guished on lower resolution levels, the original resolution is

negligible. Another example is the planning of beam place-
ment for radiation therapy. Here the beams should be placed
such that high functional regions in the lung are spared to
reduce side effects induced by the radiation. A precise ven-
tilation estimation and hence registration of the image in re-
gions close to the tumor is therefore of higher interest than
in regions distant to the tumor.

Thus an approach using adaptive grids should be favored
as has been introduced by Papenberg et al. [13] or Haber et
al. [14]. Haber et al. propose to use octrees for non-para-
metric registration. Here the adaptive grid is chosen auto-
matically based on image gradient information; thereby a
sparse but also computationally fiddly representation of the
problem is obtained. Papenberg et al. initiate a more straight-
forward approach using a multi-level setting, where the reg-
istration starts on a low level with a coarse resolution of the
image. The field of view is diminished on each level, while
the resolution becomes finer, such that the same number of
voxel is processed on every level. Hence the registration fo-
cuses on a certain region of interest and does not yield a
dense deformation of the entire image.

In this note we will present another method for arriving
at a computationally feasible but still satisfying registration
method for large data sets. Its main advantage with respect to
the above mentioned approaches is its simplicity. The idea
is to apply so called tensor grids in the registration frame-
work [15,16]. These grids achieve to adapt to the problem
of memory and processing time by being fine in user chosen
regions of interest, while being coarser in the remaining im-
age domain, such that the highest resolution can be applied
at least locally. This results in a sparser but still meaningful
representation of the image and a reduction in the size of the
data.

2 Registration using Tensor Grids

For the task of registration two images are considered, one
is called the reference imageR and the other the template
imageT. Both images are defined on a domainΩ . The task
is now to find a deformationϕ such that the deformed image
T ◦ϕ is similar toR.

The task of image registration [17,18] can be solved us-
ing different approaches, which can be subdivided into the
two large categories of parametric and non-parametric reg-
istration. The easiest parametric approach is to use rigid or
affine registration, where a small set of parameters is sear-
ched for to globally transform the image. The other big cat-
egory is non-parametric image registration [19], which will
be used within this work. The advantage of non-parametric
registration over the parametric methods is the possibility to
model the physical behavior of the underlying anatomy in
the images.
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(a) Equidistant Grid (b) Tensor Grid (c) Quadtree

Fig. 1 Comparison of the different types of grids.

However, one disadvantage of non-parametric registra-
tion approaches is the high computational demand concern-
ing run time and memory need. To reduce the computational
cost we introduce a new type of grid for the registration in
the next section, which yields a sparser data representation.

2.1 Tensor Grids

Tensor grids [15] are an adaptive grid structure that can be
ranked in-between equidistant grids and quadtrees (2D) or
octrees (3D). As example an illustration of each type of grid
is given in Fig. 1.

As can be seen there, quadtrees are the sparsest data rep-
resentation. Starting on a coarse equidistant grid the quad-
tree is refined locally by subdividing a grid element into four
smaller grid elements, until the desired precision is reached.
This approach leads to a regular but non-uniform grid, where
each grid element may have more than one neighbor on each
side. The non-uniformness introduces a significant overhead.
It might be cumbersome to compute derivatives and most
important, the structure of the resulting linear systems is
no longer regular, ruling out the direct application of fast
solvers.

Tensor grids have a regular and non-equidistant spacing
as well but here every grid element has exactly one neigh-
bor on each side. Therefore its data structure is much sim-
pler compared to quadtrees, resulting in less overhead. Fur-
thermore, the regular spacing of the tensor grid still allows
for the usage of the fast and efficient solvers, which typi-
cally constitute the computational bottleneck in a registra-
tion scheme.

A three dimensional tensor grid is represented by three
vectorsxi , i = 1,2,3 containing the center coordinates of
the grid elements in each dimension. By taking the tensor
product of these vectors the tensor gridG is formed:

G =
{

(x j1
1 ,x j2

2 ,x j3
3 ) | j i = 1, . . . ,ni , i = 1,2,3

}

.

Note that in the followingi = 1,2,3 will represent the di-
mension, whilej i = 1, . . . ,ni indexes the grid elements.

Opposed to equidistant grids, the grid spacing and the
size of the grid elements are not equal for the tensor grid.
The resolution of the grid is defined by a coarsest and a finest
spacing, noted byhc ∈ R

3 andh f ∈ R
3, respectively, which

bound the values of the grid spacing:

hci ≥ h j i+1/2
i ≥ hfi ∀ j i ∀i,

whereh j i+1/2
i is the spacing in-betweenx j i

i andx j i+1
i .

To obtain a regular grid, we will constrain the spacing
of the tensor grid to values given by a multiplication of the
finest spacing by a power of two, such that the coarsest and
finest spacing are linked through the following relationship:

hc = h f ·2
lc−1,

therebylc is the number of different resolution levels.
The finest grid spacing will later be given by the image

resolution, the coarsest will be user chosen. Depending on
the application, the user may chose one or more rectangu-
lar regions of interest (ROI), where the grid has the finest
resolutionhf .

The tensor grid is built by starting on a coarse equidistant
grid with spacinghc. In each iteration it is further refined by
bisecting the grid elements, where they pass through one of
the ROIs. The algorithm stops afterlc iterations when the
finest spacingh f is reached inside the ROIs. An example of
the different steps of the construction can be seen in Fig. 2.
The intermediate grids that are generated as a by-product
in each iteration of the construction procedure can be saved
and later be used for the multi-level setting of the image
registration. The resolution inside the ROIs differs by factor
two for subsequent intermediate grids; therefore basically
leading to a usual image pyramid representation.

Depending on the application and the desired accuracy,
the grid can be further constrained or refined by
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(a) First iteration (b) Second iteration (c) Final grid

Fig. 2 Intermediate and final grids of the construction. In this example only two levels of resolution are allowed. The ROI chosen for the refinement
is shown as a dashed rectangle.

– allowing only a certain number of consecutive resolution
levelslr on each levell , i.e.

h j i+1/2
i ∈

{

hfi ·2
k|k∈ {l + lr −1, . . . , l} ,k≤ lc

}

∀ j i ∀i,

– restricting the ratio of the sizes of neighboring grid ele-
ments byq, i.e.

h j i+1/2
i

h j i−1/2
i

≤ q and
h j i−1/2

i

h j i+1/2
i

≤ q ∀ j i ∀i.

The tensor grids are applied in the registration approach
as described in the next section. For the evaluation of the
results in Sect. 5.1 we will use three partitions of the tensor
grid, which are defined based on the resolution. Naturally
one partition of the grid is the ROI, which has the highest
resolution. In addition, we will subdivide the area outside
the ROI into the tails of the ROI and the coarse regions. The
tails are defined as those regions beside the ROI that have
a higher resolution in at least one dimension. The coarse
regions are the ones with the lowest resolution.

2.2 Elastic Registration

We will use the tensor grids in a non-parametric image regis-
tration approach as described in [19] to determine the trans-
formationϕ that maps one image onto another. In the fol-
lowing ϕ will be seperated into:

ϕ(x) = x+u(x),

wherex is the identity andu the deformation that we want
to find.

For the registration two elements are needed, one is a
distance measureD and the other one a regularizerS . A
combination of these two elements yields the formulation of

the non-parametric images registration problem in a varia-
tional setting [19], where given two smooth images

R, T : Ω → R

a deformation vector fieldu ∈ C 2(Ω ,R3) is searched for
such that the functionalJ ,

J [u] := D [R,T;u]+α ·S [u]
u
→ min, (1)

is minimized. At thisC 2(Ω ,R3) is the class of twice contin-
uously differentiable functions,u : Ω → R

3 andα ∈ R
+ is

a weighting parameter that regulates the impact of the regu-
larizer and the distance measure on the registration. A larger
α will thereby yield a smoother deformation field.

The distance measureD determines the similarity of the
two images. It should be a function that, given the two im-
ages and the deformation, will return a scalar value. De-
pending on the application this similarity measure can be
based on intensity, correlation or mutual information. Since
we will work with monomodal images, the intensity based
sum of squared differences (SSD) will be used, which com-
pares the images pointwise:

D [R,T;u] := 1
2

∫

Ω
[R(x)−Tu(x)]

2dx,

with Tu being an abbreviated form of the deformed image
T(x+u(x)).

The SSD becomes smaller if the difference of the inten-
sity values of the two images becomes smaller.

The regularizerS is used to privilege certain deforma-
tions, which are more likely or reasonable than others. The
reasonability of the deformation is given in most cases by
a physical model. For this reason the regularizer can also
be used to model the physical behavior of the underlying
anatomy in the image by e.g. presuming that the template
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image emerged from the reference image through a diffu-
sion process or by making assumptions about the material
properties of the image as is done e.g. in elastic or fluid reg-
istration. For the registration of the lung images the elastic
regularizer will be used, which has first been introduced by
Broit [20]:

S [u] :=
∫

Ω

µ
4

3

∑
i, j=1

(∂x j ui(x)+∂xi u j(x))
2 + λ

2 (∇ ·u(x))2dx.

λ andµ are the so called Laḿe-parameters, which are used
to model the elastic behavior.

A possible physical interpretation of the elastic regular-
izer is to imagine the image to be drawn upon an elastic
canvas. The elasticity of the canvas is determined byλ and
µ . If a force is applied to the canvas, it will stretch. How
strong it stretches and how strong the neighboring material
will be affected depends on the Lamé-parameters.

Setting the associated Gâteaux derivative of (1) to zero,
results in a system of non-linear partial differential equations
for u, which constitute a necessary condition for a minimizer
of (1). Given appropriate boundary conditions, the system
can be discretized and finally solved with e.g. a conjugate
gradient method [21].

To accelerate the algorithm, it will be embedded into a
multi-level setting by performing the registration on subse-
quent levels of an image pyramid; thereby the images are
first aligned on a coarse level where the size of the images is
small and the registration is fast. The resulting deformation
vector field is upsampled and used as an input for the next
level of the pyramid, which thus has a better starting point
and therefore converges after fewer iterations. Furthermore,
this approach does not only speed up computations but also
helps to bypass local minima of the registration problem,
since the images are first aligned on a coarser level where
less detail is visible.

In the next section, an application for the registration in
form of lung ventilation assessment is presented.

3 Lung Ventilation

Pulmonary ventilation is the exchange of gas between the
lungs and the ambient air. The amount of ventilation pro-
vides information about the function of the lung.

The assessment of ventilation is needed for the distinc-
tion of high- and low-functional regions of the lung. This is
important e.g. in the diagnosis of emphysema or the plan-
ning of the placement of beams during radiation therapy [3,
4]. For the latter the ventilation information should be used
to avoid high-functional areas of the lung and therefore re-
duce the damage imposed upon healthy tissue.

Pulmonary ventilation can be measured globally with a
spirometer or locally using different imaging modalities.A

spirometer measures the amount of air that is taken in and
out during each breath. However, due to the ability of the
lung to compensate for mal-functioning areas, this measure-
ment is not very precise and differences in lung ventilation
will only be apparent in late stages of pulmonary diseases
like lung tumors or emphysema; therefore a local analysis
of the ventilation has a higher significance. An overview
of the imaging modalities used for lung function analysis
can be found in Hoffman et al. [5]. Among these are nu-
clear medicine imaging [22], currently also considered as
the gold-standard, magnetic resonance imaging [6] and Xe-
non-CT [11]. However, all of these modalities have major
drawbacks like the need of special contrast agents, lack of
anatomical information, susceptible artifacts or low axial
coverage.

Another imaging modality that can be used for the as-
sessment of ventilation and that resolves some of the just
mentioned drawbacks is 4D-CT [9,2], which we will use
for the evaluation of the ventilation. Advantages of this ap-
proach include the high resolution of the images, the avail-
ability of the equipment in most hospitals and the combina-
tion of functional and anatomical information in the images.
In addition, the evaluation of the 4D-CT images yields a dis-
tribution of the ventilation over the breathing cycle, instead
of one average value as is obtained from the above men-
tioned static imaging modalities.

For the evaluation of the ventilation using the 4D-CT
images a registration of the different phases of the dataset
is needed as has been realized in the previous section. In
literature different metrics1 have been proposed [8–11] that
analyze the ventilation based on the registration results and
the change in volume that can be observed therein. All of
these metrics assume that the change in volume is related to
the amount of ventilation.

In the following, we will introduce one of the proposed
ventilation metrics, which from our point of view yields the
most reasonable result [15,9].

3.1 Jacobian Metric

The Jacobain metric, which will be applied here to evaluate
the ventilation, is given by the Jacobian determinant of the
deformation:

∆VJac(x) := det(∇(x+u(x)))−1.

The absolute value of the Jacobian at a pointx yields the
factor by which the deformation vector fieldu expands or
contracts a given volume or, in our case, more precisely
the neighborhood of a voxel. The metric is centered around

1 Note that in conjunction with the ventilation analysis the term met-
ric is not to be understood in the mathematical sense of a metric.
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Fig. 3 Coronal view of the lung in the end-exhale phase with the tumor
visible in the superior right lobe.

zero, such that negative values indicate a volume contrac-
tion, while positive values correspond to an expansion. As-
suming that the ventilation and the change in volume within
the lungs are correlated, the Jacobian metric gives a phys-
iologically meaningful estimate of the ventilation. Further-
more, the metric is little sensitive to noise and artifacts due
to the smoothness of the underlying vector field which is
used for the evaluation.

Several research groups [9,23] have found a good global
agreement of the known volume change of the entire lung
with the volume change computed with the Jacobian anal-
ysis as well as a good local correlation to Xenon-CT [11],
supporting our decision to favor this metric for the ventila-
tion assessment.

4 Material

For the evaluation of the registration algorithm and the sub-
sequent ventilation assessment the POPI-Data provided by
Vandemeulebroucke et al. [24] was used. The dataset is free-
ly available on the internet2 and contains a breathing gated
4D-CT image with 10 phases covering the whole breathing
cycle, with phase 7 being the end-exhale and phase 1 being
the end-inhale state. A sample slice of the end-exhale image
with a tumor visible in the superior lobe of the right lung
can be seen in Fig. 3. The images were acquired on a Philips
Brilliance CT Big Bore Oncology with an isotropic in-slice
resolution of 0.98 mm and a slice thickness of 2 mm. After
reducing the field of view to the lungs, the images had a size
of 352×288×128 voxel.

2 http://www.creatis.insa-lyon.fr/rio/popi-model

Fig. 4 Coronal (top) and transversal (bottom) view of the lung together
with the chosen ROIs. The landmarks that lie within a ROI are shown
in red.

To assess the registration accuracy, each of the 10 phase
images was equipped with a set of 100 landmarks. The land-
marks were first set in phase 7 using the Distinctive Point
Finder (DPF) by Murphy et al. [25]. The advantage of the
DPF is that it does not necessarily place the landmarks on
all the bifurcations of the bronchial tree as a medical expert
would most likely do, but instead searches for distinctive
points that are the furthest possible apart from each other.
Thereby a set of landmarks is created that is equally dis-
tributed across the whole lung and yields a better ground-
truth since also regions with little texture are included inthe
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Fig. 5 Boxplot of the distribution of the inter-observer error (left) together with an explanation of the boxplot (right).

evaluation. In Fig. 4 a projection of the landmarks on a coro-
nal and transversal slice of the end-exhale image is shown.

The landmarks were propagated to the remaining phase
images by two independent observers using the Matching
Points Annotator also supplied by Murphy et al. Depen-
dent on the phase a mean inter-observer error of 0.59 mm
to 1.32 mm was noted. The distribution of the inter-observer
error can be seen in form of a boxplot in Fig. 5. The almost
constant value of the median in most phases is outstand-
ing, but can be explained by the fact that more than 50% of
the landmarks annotated by the two observers differ only by
one voxel or less. A closer look at the outliers visible in the
plots showed that these landmarks lie within artifact regions
showing duplicated or blurred structures, which hamper the
right positioning of the landmarks.

Six different ROIs were chosen for the evaluation, which
can also be seen in Fig. 4. The ROIs are named after their
position in the lung (upper, middle, lower and right, left)
meaning that ROIlr is located in the lower part of the right
lung.

It should be noted that for the ventilation assessment no
ground-truth was available. Therefore an evaluation of the
medical significance of the computed ventilation was not
possible.

5 Results

5.1 Registration

For a comparison of the tensor and the equidistant grid ap-
proach, the registration was run for both types of grids using
the same set of parameters in the registration. Thereby the

Lamé-parameters were set toµ = 0.0025 andλ = 0; these
values were chosen based on previous analyses. The com-
putations were performed in an all-to-phase setting, where
one reference phase is chosen and the remaining phases are
registered to this reference phase. As reference image the
end-exhale phase was chosen since it is supposed to have the
least artifacts [26]. As we are only interested in a precise reg-
istration of the lungs, the images underwent a preprocessing,
where gray-values above zero HU were clamped by convo-
lution with a smooth function; thereby the strong influence
of surrounding brighter structures, in particular the ribs, is
eliminated. The tensor grids were constrained with the num-
ber of allowed resolution levels in one gridlr = 3 and the
ratio of neighboring grid elementsq= 2. For the multi-level
setting six levels were chosen such that the registration starts
on an image with 11×9×8 voxel. Due to the size of the im-
ages, we were only able to run the algorithm based on full
equidistant grids up to level 3, while the algorithm using
tensor grids does not cause any trouble up to level 1. Fur-
thermore, to speed up the registration, it was preceded by
an affine pre-registration. In addition, the pre-registration is
needed to incorporate the affine motion of the lungs, which
would otherwise be penalized by the elastic regularizer [19].

In Tab. 2 the processing time and image size applying the
different grids are displayed. As can be seen there the reduc-
tion in image size for the images on the equidistant grid on
level 3 and the tensor grids on level 1 is about the same. Yet,
the tensor grid has a much higher resolution in certain ar-
eas of the image, namely in the ROIs and its tails, while still
covering the whole field of view. The difference in process-
ing time compared to the number of voxel is striking but can
be explained by a small overhead that is introduced by the
tensor grid approach and a higher number of iterations since
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Table 1 Comparison of the target registration error using the equidistant grid and the tensor grid evaluted for the different regions of the tensor
grids. Results are shown for all ROI’s, also stating the number of landmarks for each region. The error is displayed as ’mean± std (max)’.

ROI region #landmarks before registration using equidistant grid using tensor grid improvement

upper all 100 6.28± 3.32 (20.00) 1.80± 1.21 (6.40) 1.85± 1.44 (7.11) -0.05
left roi 4 2.41± 1.05 (3.50) 0.97± 0.20 (1.23) 0.77± 0.18 (1.01) 0.20

tail 52 5.74± 2.99 (14.04) 1.60± 0.98 (4.88) 1.41± 1.00 (4.71) 0.19
coarse 44 7.26± 3.46 (20.00) 2.12± 1.46 (6.40) 2.47± 1.68 (7.11) -0.35

upper all 100 6.28± 3.32 (20.00) 1.80± 1.23 (6.40) 1.89± 1.37 (7.10) -0.09
right roi 2 4.96± 0.31 (5.18) 1.89± 0.25 (2.07) 1.18± 0.54 (1.56) 0.71

tail 36 6.35± 3.77 (14.53) 1.86± 1.11 (4.88) 1.72± 1.06 (4.60) 0.14
coarse 62 6.27± 3.11 (20.00) 1.77± 1.32 (6.40) 2.01± 1.53 (7.10) -0.24

middle all 100 6.28± 3.32 (20.00) 1.80± 1.23 (6.40) 1.82± 1.34 (6.95) -0.02
left roi 3 4.43± 0.45 (4.95) 0.78± 0.47 (1.27) 0.74± 0.21 (0.88) 0.04

tail 47 5.11± 2.18 (10.29) 1.44± 0.87 (3.93) 1.19± 0.81 (3.85) 0.25
coarse 50 7.49± 3.85 (20.00) 2.21± 1.41 (6.40) 2.48± 1.45 (6.95) -0.27

middle all 100 6.28± 3.32 (20.00) 1.80± 1.23 (6.40) 1.83± 1.25 (6.51) -0.03
right roi 2 6.51± 0.50 (6.86) 0.91± 0.43 (1.21) 0.61± 0.00 (0.61) 0.30

tail 34 6.08± 2.75 (13.80) 1.82± 1.11 (4.88) 1.73± 0.94 (4.41) 0.09
coarse 64 6.37± 3.65 (20.00) 1.83± 1.30 (6.40) 1.92± 1.38 (6.51) -0.09

lower all 100 6.28± 3.32 (20.00) 1.80± 1.23 (6.40) 1.78± 1.21 (6.31) 0.02
left roi 2 7.54± 0.03 (7.56) 1.44± 0.94 (2.11) 0.79± 0.63 (1.24) 0.65

tail 30 8.36± 3.23 (15.02) 2.30± 1.38 (5.49) 2.04± 1.35 (5.69) 0.26
coarse 68 5.32± 2.98 (20.00) 1.60± 1.11 (6.40) 1.69± 1.14 (6.31) -0.09

lower all 100 6.28± 3.32 (20.00) 1.80± 1.23 (6.40) 1.80± 1.23 (6.84) 0.00
right roi 2 10.49± 0.62 (10.92) 4.71± 0.62 (5.15) 4.62± 1.85 (5.93) 0.09

tail 18 9.63± 3.33 (15.02) 2.47± 1.55 (5.49) 2.31± 1.49 (5.53) 0.16
coarse 80 5.42± 2.77 (20.00) 1.58± 1.00 (6.40) 1.61± 1.04 (6.84) -0.03

Table 2 The table shows the number of voxel, reduction in image size
in % and average total processing time in minutes for the equidistant
grid on level 1 and 3 and the tensor grids on level 1. Note that the
processing time for the equidistant grid on level 1 is only a prediction.

grid #voxel reduc.[%] proc. time[min]

eq. grid, level 1 12,976,128 0 ≈ 300
eq. grid, level 3 405,504 96.88 12.70
tensor grid, ROIul 784,875 93.95 78.34
tensor grid, ROIur 731,745 94.36 65.91
tensor grid, ROIml 728,910 94.38 67.72
tensor grid, ROImr 707,940 94.54 62.96
tensor grid, ROIll 728,886 94.38 56.51
tensor grid, ROIlr 679,470 94.76 52.94

the tensor grid approach is run on all six levels of the image
pyramid unlike the approach applying the equidistant grids.
If the registration on the equidistant grid had been performed
up to the first level of the image pyramid a total processing
time of up to 5 hours would have been expected.

Considering the landmark error of the registered images
using the two different types of grids, we would expect a
lower error inside the ROIs and possibly in the tails using
the tensor grids due to the higher resolution. Since the res-
olution of the images in the coarse regions is equal for both
types of grids, we would expect a similar behavior there. As
a reminder, the resolution inside the ROIs is equal to level 1,

in the tails it is approximately level 2, while the resolution
in the coarse regions is the same as for the equidistant grid
namely level 3. Exemplary, the landmark error for the reg-
istration of the end-inhale to the end-exhale phase is shown
in Tab. 1 for all proposed ROIs. From there it becomes obvi-
ous that globally no significant change in registration error
can be observed. However, locally in the ROIs and the tails
an improvement in registration accuracy by up to 1 mm is
achieved.

To show that, apart from increasing registration accuracy
in some regions of the image, the tensor grid approach is also
beneficial for subsequent medical evaluations, the obtained
registration results are applied to assess the ventilationin the
next section.

5.2 Ventilation

In conjunction with the radiotherapy planning, the registra-
tion result using the tensor grid with the ROI in the superior
right lobe, which is located close to the tumor, is evaluated
for the ventilation assessment. To this end the Jacobian met-
ric will only be computed inside the lungs, where the venti-
lation takes place. As segmentation of the lungs the masks
provided within the POPI-data were used, which were ob-
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tained by simple thresholding and connected labelling tech-
niques [24].

The resulting ventilation maps for the different stages
of the breathing cycle can be seen in Fig. 6. The images
exhibit mainly a blue colouring, which indicates an expan-
sion of the lungs. It can be observed that the blue coloring
grows stronger towards the end-inhale phase and subsides
again thereafter. Since the end-exhale phase was chosen as
reference phase this result is physiologically reasonableand
would have been expected. The first and last images show
some light brown areas which suggest that the inhale and
exhale phase do not start at the same point in time in all re-
gions of the lungs. Note that the brownish spots close to the
diaphragm can be attributed to slight motion artifacts, which
may occur in 4D imaging.

To justify the usage of the tensor grids a coronal view
of the ventilation images assessed with both approaches is
given in Fig. 7. It is clearly visible that the approach using
the tensor grids yields more detail, especially in the ROI,
than the one applying equidistant grid. However, the medical
relevance of these details still needs to be proven.

6 Discussion

An approach using tensor grids in non-parametric image
registration was presented. The advantage of this type of
grid over the common equidistant grids is the possibility to
use a higher resolution in user chosen ROIs, while keeping
the original field of view. The sparser image representation
results in a lower memory demand and a faster algorithm
on each level of the multi-level setting. Although the size
of the images used in this work is not very impressive, they
were still too large to carry out the registration on equidistant
grids with the original image resolution on a desktop PC due
to lack of memory. By applying the tensor grid approach it
was possible to at least locally take advantage of the original
resolution and the information contained therein.

The registration of a 4D-CT thorax scan using differ-
ent ROIs for the tensor grid showed that both algorithms
work equally well on the coarse regions, while the tensor
grid approach yields better results within the ROIs and its
tails thanks to the higher resolution, as would have been ex-
pected. A decrease in landmark error of up to 1 mm was
observed inside the ROIs, while preserving registration ac-
curacy on the remaining part of the image. In this analysis
the same registration parameters, which were determined for
the equidistant approach, were used for both types of grids
for a better comparability. By optimizing the parameters for
the tensor grid approach a further improvement in accuracy
is conceivable.

Concerning ventilation studies an accurate registration
of the complete lungs is needed for a precise analysis of

lung function. Using equidistant grids the highest level of
resolution needs to be omitted due to the size of the images
and thus details in diseased regions are easily lost. The ten-
sor grid approach enabled the registration of the complete
lungs, putting focus on user chosen regions, which could be
of high interest for the analysis.

Using the results of the registration, it turned out that
the ventilation assessed inside the ROIs showed more detail
when computed on the results using the tensor grid approach
relative to the registration performed on the equidistant grid.
The images indicate an expansion for all phases compared to
the end-exhale reference phase. From our point of view, the
Jacobian metric therefore yields a physiologically meaning-
ful result. Yet the significance of the ventilation map and the
higher level of detail inside the ROIs still needs to be deter-
mined since no ground-truth was given for this evaluation.
Nevertheless, the higher resolution in the ventilation images
should be useful for a precise classification of the severity
of emphysema or for the placement of radiation beams in
radiation therapy planning to avoid high-functional regions
of the lung.

Moreover, the tensor grid approach is not only useful for
the assessment of ventilation, but can be applied to any prob-
lem, where a rather good registration of a complete image is
needed, with a high interest in certain regions. If a focus in
multiple areas of the image is of high interest, it is also pos-
sible to include several ROIs in one single grid and process
them at once.
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