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Abstract. In this work we present a new variational approach for image registration where part of
the data is only known on a low-dimensional manifold.
Our work is motivated by navigated liver surgery. Therefore, we need to register 3D volumetric CT
data and tracked 2D ultrasound (US) slices. The particular problem is that the set of all US slices does
not assemble a full 3D domain. Other approaches use so-called compounding techniques to interpolate
a 3D volume from the scattered slices. Instead of inventing new data by interpolation here we only use
the given data.
Our variational formulation of the problem is based on a standard approach. We minimize a joint
functional made up from a distance term and a regularizer with respect to a 3D spatial deformation
field. In contrast to existing methods we evaluate the distance of the images only on the two-dimensional
manifold where the data is known. A crucial point here is regularization. To avoid kinks and to achieve
a smooth deformation it turns out that at least second order regularization is needed.
Our numerical method is based on Newton-type optimization. We present a detailed discretization and
give some examples demonstrating the influence of regularization. Finally we show results for clinical
data.

1 Introduction

In this paper we describe a new method for the registration of volumetric images to data that
is given only on a low dimensional submanifold. The work is motivated by a clinical problem
on improved resection of tissue by pre-operative intervention planning in liver surgery [1,
2]. Before an intervention an extensive planning including the definition of surgical paths
and risk analysis is made. The planning is based on abdominal CT scans of the patient and
subsequent segmentation of liver, liver segments, and vessels, cf. Figure 1(a). During the
intervention the surgeon is guided by tracked ultrasound (US) images of the liver. Conse-
quently, the pre-operative CT planning data has to be aligned to the actual deformation of
the liver given by the US data.

A challenge in laparoscopic liver surgery is that the US data is recorded as a sequence of
two dimensional slices in 3-space. Although the spatial ordering of the slices follows the scan
path, they are not aligned and in general each slice can have an arbitrary position, cf. 1(b).

One approach for the registration of a CT volume and US slices is to use so-called
compounding techniques. Therefore, in a first step the US slice data is compounded into
volume by interpolation and subsequently standard volumetric image registration is applied.
However, using compounding has several drawbacks [3–5]. and practical experiments showed
that using this approach for registration performs poorly and did not produce reasonable
results. Besides poor performance, matching volumetric CT data to artificially generated
volumetric US data does not provide confidence in registration results for the surgeon.



(a) (b)

Fig. 1. Clinical image data; (a) pre-operative CT planning data (few slices out of volume and segmentation of the
liver); (b) few US slices from a single scan.

Here, we take a different approach by comparing volumetric data directly to the given
slice data. We use a variational setting for image registration. Therefore we minimize a
cost-functional consisting of a so-called distance measure and regularizer with respect to a
volumetric deformation. Here the regularizer is an integral on a d-dimensional domain while
the distance is an integral on a d−1-dimensional manifold. Although this seems to be a slight
modification it turns out that higher order regularization is necessary to ensure smooth and
differentiable deformations.

In this work we provide proof-of-concept for our new approach. Therefore we consider a
simplified mono-modal setting, i.e., we assume the volumetric and the slice data stem from
the same type of imaging device. Without loss of generality, this allows for using the easy to
present so-called Sum-of-Squared distance measure for the description of our method.

The paper is organized as follows. First we present our variational approach to image
registration and the novel distance measure. Next we discuss the need of higher-order regu-
larization. In Section 4 we present a numerical scheme and subsequent we discuss our specific
discretization of the distance measure and the regularizer in detail. part. Finally, in Section 5
we demonstrate the method with a synthesized clinical example.

2 Approach

In general we are given two images, a so-called reference R : Rd → R and a so-called template
T : Rd → R. The goal of image registration is to find a smooth deformation y : Ω → Rd

that spatially aligns the images best on a domain of interest Ω ⊂ Rd. Typically Ω is a
rectangular domain. Mathematically we formulate image registration as an optimization
problem [6]. That is, we want to compute a solution y to

min
y

J (y) := D(R, T (y)) + αS(y) (1)
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where T (y) denotes the composition T ◦ y. The first term D of the objective function is a so-
called distance measure that quantifies similarity between the reference R and the deformed
template T (y). The second building block S is a regularizer forcing smoothness of the solution
where α > 0 is a fixed chosen parameter. Typically S has the form [7]

S(y) :=
1

2
‖By‖2L2(Ω) (2)

where B is a linear differential operator.
The particular difficulty in our case is that the template is a volumetric image while the

reference is only known on a few scattered slices. As mentioned in the introduction one can
use compounding-techniques to generate an artificial volume and subsequently use standard
distance measure that relies an comparing two images of same dimension.

We propose a different method. The idea of our new approach is to use only the given
data rather than guessing the missing parts of the reference. To make the idea clear, in the
following we assume that the distance measure is the so-called sum-of-squared-differences
(SSD) [8], i.e, D is the squared L2 norm of the difference of the images. This is no loss of
generality. The proposed modification applies to other distance measures such as mutual
information [9, 10], too, which is more suitable for multi-modal registration of CT and US
data. As mentioned in the introduction, the goal of this paper is proof-of-concept and to
outline the general method. Therefore and for ease of presentation, here we use the SSD
distance measure. However, the standard SSD for d-dimensional images is given by

SSD(R, T ) =
1

2

∫
Ω

(
T (x)−R(x)

)2

dx. (3)

In our approach we assume the reference is given only on a few planes on Ω. More generally,
we assume R is known only on a set of smooth and bounded (d−1)-dimensional sub-manifolds
Mj ⊂ Ω, j = 1, . . . ,m. Therefore, we modify (3) and define our distance measure by

D(R, T ) :=
1

2

m∑
j=1

∫
Mj

(
T (x)−R(x)

)2

dS(x) (4)

where dS is the (d− 1)-dimensional surface measure. Note that in the particular case when
Mj are slices we can trace back our modified distance to a sum of SSD distances of (d− 1)-
dimensional images similar to serial registration. In this particular case we can parametrize
Mj by linear maps τj with Gram determinant det Dτ>j Dτj = 1, where Dτj denotes the
Jacobian matrix of τj, such that

D(R, T ) =
m∑
j=1

SSD(Rj, Tj)

with Rj := R ◦ τj and Tj := T ◦ τj.
Although changing integration in the distance measure seems a slight modification of

problem (1) it turns out that regularization becomes crucial and needs to be chosen care-
fully. Since now the data is only given on a low-dimensional manifold the solution is strongly
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influenced by the full-space regularization. It turns out that first-order regularization, e.g, by
choosing B = ∇ in (2), will produce non-differentiable solutions with kinks at the boundary
of the manifold, cf. Figure 2(e) and (h). In contrast, using second order regularization, e.g.,
setting B = ∆ where ∆ denotes the vector Laplacian, produces smooth results, cf. Figure 2(f)
and (i). In Section 3 we analyze this behavior by considering a simplified quadratic func-
tional. Generally, the order of regularization to ensure differentiability depends on the space
dimension. However, from the analysis in Section 3 we found that second order regularization
is sufficient for space dimension d = 2 and d = 3. As a result we particularly propose using
the curvature regularizer, i.e., setting B = ∆.

Summarizing, for volume-to-slice registration we consider problem (1) with the distance
measure (4) and smoother (2) with B = ∆. Thus, our approach is

min
y

1

2

m∑
j=1

∫
Mj

(
T (y(x))−R(x)

)2

dS(x) +
α

2

∫
Ω

|∆y|2 dx. (5)

3 Regularization

In the following we motivate second order so-called curvature regularization [11, 12] by choos-
ing B = ∆. The resulting functional for the registration (cf. (5)) is highly non-linear and in
general non-convex which makes an analysis difficult and involved. To illustrate the main
point on regularization we now consider a simplified quadratic problem

min
y

1

2
‖By‖2L2(Ω) +

∫
M
gy dS (6)

where Ω ⊂ Rd is a domain with smooth boundary (Lipschitz),M⊂ Ω is a smooth (d− 1)-
dimensional manifold, and a function g ∈ L2(M). Without loss of generality we assume that
locally coordinates can be chosen such that M = {x ∈ Ω : xd = 0}. Then we can define a
distribution f as the product of g multiplied by a Dirac-delta distribution, i.e., f is given by
f = g δxd

, such that ∫
Ω

fy dx =

∫
Ω

gδxd
y dx =

∫
M
gy dS. (7)

Furthermore we assume that g 6= 0, i.e., ‖g‖L2(M) 6= 0. Computing the Euler-Lagrange
equations in its weak form shows a necessary condition for a minimizer is

Ay = f (8)

where A := −B∗B and B∗ denotes the adjoint of B.
The right-hand-side f belongs to the space H−1(Ω) but clearly f 6∈ L2(Ω) = H0(Ω)

where H−1(Ω) denotes the dual space of H1(Ω) and Hm(Ω) is the Sobolev space of all
m-times weakly differentiable functions [13, §3].

Now we discuss two different choices for the regularizer B. First first-order so-called
diffusive regularization [14] with B = ∇ and second second-order curvature regularization
by B = ∆.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. Volume-to-slice-registration results for academic 2D (a)–(f) and 3D (g)–(i) experiments. (a) Template image
and 1D manifold (vertical line); (d) Original Reference that is compared to the template on the 1D manifold (vertical
line); (b)+(e) Deformed template (a) and deformation for 1st order regularization (B = ∇); (c)+(f) Deformed
template (a) and deformation for 2nd order regularization (B = ∆); (g) Surface of 3D template (elongated bar) and
three orthogonal 2D manifolds with reference data taken from a big cuboid; (h) Deformed template for 1st order
regularization (B = ∇); (i) Deformed template for 2nd order regularization (B = ∆)
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In the first case B = ∇ yields B∗ = −∇· and hence A = ∆ is a second-order differential
operator. Since the right-hand-side f belongs to H−1(Ω)\H0(Ω) a solution of (8) must be in
H−1+2(Ω)\H0+2(Ω) = H1(Ω)\H2(Ω) (cf. [15, §8]). Due to the embedding Hk(Ω) ⊂ Cm(Ω)
for m < k − d/2 this shows that if d > 1a solution cannot be differentiable [13, §6].

Applying the same logic in the second case for B = ∆, we find B∗ = −∆ yielding the
fourth-order differential operator A = ∆2. Therefore, a weak solution y of (8) has to satisfy
y ∈ H3(Ω) \ H4(Ω). Hence, if d < 4 then y ∈ C1(Ω) such that a solution is continuously
differentiable for d = 2, 3.

4 Numerical Method

In this section we describe our approach to compute a numerical solution for the volume-
to-slice registration problem (5). Here, we follow the first-discretize-then-optimize paradigm.
Therefore, we discretize the functional and subsequently apply Gauss-Newton optimization.
We start by explaining our discretization.

In the following we particularly describe the discretization for the three-dimensional case,
i.e., d = 3. That is, the domain of interest Ω is a subset of R3 and Mj are two-dimensional
manifolds. We assume that the domain of interest is rectangular, i.e.,

Ω = (a1, b1)× (a2, b2)× (a3, b3) with −∞ < ai < bi <∞, i = 1, 2, 3,

andMj are rectangular slices. For simplicity we assume that all slicesMj are parametrized
over the same parameter space Θ such that

Mj = {x = τj(t) : t ∈ Θ} and Θ := (0, θ1)× (0, θ2)

with parametrizations τj : Θ ⊂ R2 →Mj ⊂ R3 given by

τj(t) := Qjt+ bj, Qj ∈ R3×2 such that Q>j Qj = I and bj ∈ R3. (9)

Note that the condition Q>j Qj = I implies det Dτ>j Dτj = 1 where Dτj denotes the Jacobian
matrix of τj. This property simplifies computing the integrals on the manifolds and will be
used later. We start with the discretization of the deformation and the distance measure.
Subsequently we describe the discretization of the regularizer.

Discretization of the Deformation

We use a nodal discretization for the deformation y on Ω. Therefore, we introduce a uniform
grid composed of n1×n2×n3 cells with grid-spacing h = ( b1−a1

n1
, b2−a2

n2
, b3−a3

n3
) and nodal grid

points

Ωh :=
{
xk = x0 + k � h : k ∈ {0, . . . , n1} × {0, . . . , n2} × {0, . . . , n3}

}
where x0 = (a1, a2, a3) and � denotes the Hadamard (point-wise) product of two vectors.
Then, we collect the values y(xk) ∈ R3 of the deformation at all N = (n1 +1)(n2 +1)(n3 +1)
nodal grid points xk ∈ Ωh in a grid-function, i.e., a vector yh ∈ R3N .
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of the parameter-space

nodal discretization Ωh of the deformation (gray)

with cell-centered discretization Mh′
j for the manifold

(black)
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Fig. 3. Schematic overview on the discretization of the parameter-space Θ (left) and a manifold Mj and the domain
Ω (right).

Discretization of the Distance Measure

Now we turn to the to the discretization of the distance measure. Recall, that it was defined
as

D(R, T (y)) =
1

2

m∑
j=1

∫
Mj

(
T (y(x))−R(x)

)2

dS(x).

For an approximation of the integrals on Mj we start by discretizing the parameter space
Θ. Therefore, we define

Θh′
:=
{
tk = k � h′ − h′

2
: k ∈ {1, . . . , p1} × {1, . . . , p2}

}
with h′ =

(
θ1

p1

,
θ2

p2

)

such that Θh′
contains the cell-center of a regular discretization by p1×p2 cells. Consequently,

we discretize Mj by

Mh′

j := {mk = τj(tk) : tk ∈ Θh′}.

Note that we have two different grid-spacings h and h′ for the discretization of the deforma-
tion y on Ω and the discretization of the manifoldsMj, respectively. An schematic overview
of the different discretizations Θh′

, Mh′
j , and Ωh is shown in Figure 3. Using the common
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mid-point rule for the discretization of an integral over Mj we obtain∫
Mj

(
T (y(x))−R(x)

)2

dS(x) =

∫
Θ

(
T (y(τj(t)))−R(τj(t))

)2 √
det Dτ>j Dτj dt

=

∫
Θ

(
T (y(τj(t)))−R(τj(t))

)2

dt

≈ h′1h
′
2

∑
tk∈Θh′

(
T (y(τj(tk)))−R(τj(tk))

)2

= h′1h
′
2

∑
mk∈Mh′

j

(
T (y(mk))−R(mk)

)2

,

where we used orthogonality of the Jacobian matrix Dτj, cf. (9). For short notation, analogues
to the deformation we collect the M = p1p2 grid points inMh′

j in a vector mh′
j ∈ R3M . With

some abuse of notation let Rh′
j := R(mh′

j ) ∈ RM be the values of the reference R on Mh′
j

and analogues T (y(mh′
j )) be the values of T (y) such that

‖T (y(mh′

j ))−Rh′

j ‖22 =
∑

mk∈Mh′
j

(
T (y(mk))−R(mk)

)2

.

As we can see this approximation involves values of the deformation y at points mk ∈ Mh′
j

which are in general no grid-points of our nodal discretizationΩh. To this end we approximate
the values y(mk) for mk ∈Mh′

j by interpolation of the nodal grid-function yh, i.e.,

y(mk) ≈
3N∑
i=1

ξiy
h
i for mk ∈Mh′

j .

We particularly use linear interpolation such that in fact only 8 coefficients per point are
involved. Collecting all interpolation weights ξi for each point mk ∈ Mh′

j in a 3M × 3N
matrix Pj we have

T (Pjy
h) ≈ T (y(mh′

j )).

Summarizing, we approximate the distance measure by

D(R, T (y)) =
1

2

m∑
j=1

∫
Mj

(
T (y(x))−R(x)

)2

dS(x) ≈ h′1h
′
2

2

m∑
j=1

‖T (Pjy
h)−Rh′

j ‖22.

Setting Rh′
= (Rh′

1 , . . . , Rh′
m) ∈ RMm, P = diag(P1, . . . , Pm) ∈ R3Mm×3N we obtain a concise

formulation for a discrete version of D(R, T (y)) given by

D(yh) :=
h′1h

′
2

2
‖T (Pyh)−Rh′‖22. (10)

8



Discretization of the Regularizer

For a discrete version of the curvature regularizer we use standard finite differences for
approximating derivatives and the mid-point rule for the approximation integrals. Recall the
curvature regularizer was defined as

S(y) =
1

2
‖∆y‖2L2(Ω) =

1

2

∫
Ω

|∆y|2 dx.

In a first step we approximate the Laplacian based on the standard second-order seven-point-
formula, i.e., we define

∆hy(x) :=
3∑
`=1

1

h2
`

(
y(x− h`e`)− 2y(x) + y(x+ h`e`)

)
where e1, e2, e3 are the unit vectors of R3. Furthermore, let Bh ∈ R3N×3N be its matrix
representation such that Bhyh is a second order approximation to ∆y at the nodal grid
points in Ωh yielding (Bhyh) � (Bhyh) is a second order approximation to (∆y)2. Now,
let Acn ∈ Rn1n2n3×N be a matrix that averages values from nodes to the cell-centers such
that Acn(Bhyh)� (Bhyh) is a second order approximation to (∆y)2 at the cell-centers. Thus
applying the mid-point rule for mesh size h = (h1, h2, h3) we obtain

h1h2h3 e
>Acn(Bhyh)� (Bhyh) ≈

∫
Ω

|∆y|2 dx

with e = (1, 1, . . . , 1) ∈ Rn1n2n3 the one-vector. Moreover, applying some linear algebra we
find

e>Acn(Bhyh)� (Bhyh) = e>Acndiag(Bhyh)Bhyh = yh
>
Bh>diag(e>Acn)Bhyh.

As a result, we define the discrete version of the curvature regularizer by

S(yh) :=
1

2
yh
>
Ahyh

with a matrix Ah := h1h2h3B
h>diag(e>Acn)Bh ∈ R3N×3N .

Gauss-Newton Optimization

Having established discrete versions of the distance measure and the smoother now we aim
to

min
y

D(yh) + αS(yh). (11)

Clearly, (11) is not a quadratic function due to the non-linearity in the distance D. Therefore,
we cannot compute a solution directly and have to rely on an iterative method. Here, we us
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a standard Gauss-Newton method [16]. Therefore, in each iteration we solve a linear system
of the type

Hs = −g (12)

to compute an update s for the current iterate. Thereby g is the gradient ∇D+α∇S of the
objective function given by

g = h′1h
′
2 P
>∇T>(T (Pyh)−Rh′

) + αAhyh

and H is an approximation to the Hessian ∇2D + α∇2S. Neglecting second order terms in
∇2D we set

H := h′1h
′
2 P
>∇T>∇TP + αAh.

Thus, the Hessian is a sparse symmetric positive definite matrix such that we can apply a
conjugate gradient (CG) method for solving the linear system (12). In our implementation we
use CG with symmetric Gauss-Seidel relaxation as a preconditioner. Summarizing this leads
to an efficient numerical algorithm for computing a solution to the discrete volume-to-slice
registration problem (11).

5 Experiments

We demonstrate our method by an academic example on real liver data. Therefore, we use
238 × 155 × 156 US volumetric data captured by a 3D US-scanner. We simulate a typical
ultrasound sweep by extracting few 2D slices from the volume. Figure 4(a) shows the setting
for five slices where we visualize the volumetric data by a surface rendering of the contained
vessels. This slice data is used as reference. Subsequently, we apply an artificial non-linear
deformation to the volume that is used as a template. Figure 4(b) displays a surface rendering
of the template with the reference slice data. Based on the five reference slices and the
volumetric template then we performed a volume-to-slice registration.

Figure 4(c) and 4(d) shows the 3D template vessels before and after registration together
with original vessels. Note that the original vessels served only to generate the reference slices
and was not take into account during registration. As we can see we obtain an amazing and
almost perfect alignment based on very few reference data (see Figure 4(d)).

6 Conclusions

We described a new method for registration of a d-dimensional template to d−1-dimensional
reference data motivated by CT/US registration. A key observation is that high order regu-
larization is required to avoid unwanted and non-differentiable deformations. Furthermore,
we described an efficient algorithmic based on a Gauss-Newton optimization method.

In a first experiment we successfully demonstrated our method for the registration of
artificially deformed data where we were able to almost recover the original deformation
based only on very few reference data.
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(a) (b) (c) (d)

Fig. 4. 3D Volume-to-slice-registration results for clinical data. (a) 3D data (black) with five 2D reference slice; (b)
3D template (gray) with five reference slice; (c)+(d) 3D template (gray) and original data (black) before and after
registration

These promising first result shows that out approach works in general. Clearly, the chosen
SSD distance measure is not suitable for the target application on CT and US registration.
However, our overall method is independent of a particular choice for the distance measure.
An extension to other distance measure that can handle multi-modality, such as mutual
information, is straightforward.

Concluding, we have presented a novel scheme and proof-of-concept for a clinical-relevant
problem based on sound theory and efficient numeric. Future work includes extension to a
multi-modal setting for registration of CT and US.
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