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ABSTRACT

Interpolation is a key ingredient in many imaging routines. In this note, we present a thorough evaluation of an
interpolation method based on exponential splines in tension. They are based on so-called tension parameters,
which allow for a tuning of their properties. As it turns out, these interpolants have very many nice features,
which are, however, not born out in the literature. We intend to close this gap. We present for the first time
an analytic representation of their kernel which enables one to come up with a space and frequency domain
analysis. It is shown that the exponential splines in tension, as a function of the tension parameter, bridging
the gap between linear and cubic B-Spline interpolation. For example, with a certain tension parameter, one is
able to suppress ringing artefacts in the interpolant. On the other hand, the analysis in the frequency domain
shows that one derives a superior signal reconstruction quality as known from the cubic B-Spline interpolation,
which, however, suffers from ringing artifacts. With the ability to offer a trade-off between opposing features of
interpolation methods we advocate the use of the exponential spline in tension from a practical point of view
and use the new kernel representation to qualify the trade-off.

Keywords: Interpolation, Exponential Splines, Tension, Kernel Representation, Ringing, Aliasing, Signal Re-
construction

1. INTRODUCTION

Interpolation routines often constitute a mayor ingredient in imaging applications. Typically, the goal is to
embed given discrete data into a continuous setting. The choice of the specific interpolation scheme is highly
application dependent and encompasses fundamental properties like signal reconstruction, approximation order,
differentiability and computational complexity. The present work deals with a specific interpolation class, the
so-called exponential splines in tension.1 This class enables one to tune the interpolants towards the wanted
properties with the help of so-called tension parameter. In a 1D setting this interpolation scheme ranges inbetween
two outstanding interpolation approaches: the simple linear and the cubic B-Spline interpolation. To see this,
note that the exponential spline in tension of order four has to fulfill the differential equation

(D4 − τiD
2)s = 0 (1)

in each interval Ii, which are based upon predefined knots. Here, D denotes the differentiation operator and
τi ≥ 0 the tension parameter. For τi → 0 the term D4s dominates and consequently the solution of (1) is nearly
a cubic polynomial. On the other hand, if τi → ∞ the term D2s leads to a close approximation of a linear
polynomial. We refer to Ref. 2 for a detailed discussion.

To set up the notation, the thought after interpolant t may be phrased in terms of the basis functions Bi(u)
via

t(u) =
n−1
∑

i=0

ciBi(u). (2)

In Section 2 the linear and the cubic B-Spline basis functions and their kernel representations are defined and
discussed in terms of the interpolant’s inherited features. Later, in Section 3, the exponential spline in tension
basis functions, as presented by Koch and Lyche,1 are shown. Based on their definition, we give an analytic
derivation of a kernel representation of an exponential spline in global tension. Finally in Section 4 this kernel
representation is used to examine and compare the exponential spline’s features under different tensions to the
one by linear and cubic B-Spline interpolants, respectively.



Figure 1. Linear, exponential spline with different tension (7 · 102, 8, 10−4) and cubic B-Spline 1D basis functions (from
left to right). To have consistent plots the basis functions are scaled independently.

2. LINEAR AND CUBIC B-SPLINE INTERPOLATION

In the linear case, the basis functions are given by the hat functions

BLin(u) =

{

1 − |u| , |u| < 1
0 , |u| ≥ 1,

(3)

that is Bi(u) = BLin(u − i − 1). For this special case the coefficients ci in the basis representation are simply
the data points. For cubic B-Spline interpolation, the basis functions in (2) are based on the following piecewise
cubic polynomial

BCub(u) =























u3 , u ∈ [0, 1),
4− 12u + 12u2 − 3u3 , u ∈ [1, 2),
−44 + 60u− 24u2 + 3u3 , u ∈ [2, 3),
64− 48u + 12u2 − u3 , u ∈ [3, 4),
0 , otherwise,

(4)

where Bi(u) = BCub(u − i − 2). In Figure 1, a linear basis function (left) and a cubic B-Spline basis function
(right) is shown. In addition, some exponential splines with respect to different tensions are depicted, which will
be discussed later. One quality measure for interpolation schemes is their signal reconstruction capability,3 i.e.,
the ability to match the underlying function as exact as possible. Here, the cubic B-Spline interpolation scheme
is among the top performing methods. This may be shown by interpreting (2) as a convolution

t(u) =

n−1
∑

i=0

ciB
Cubic(u − i − 2) = c ∗ BCubic(u − 2). (5)

A reformulation of the coefficient vector c and a little analysis uncovers the cubic B-Spline interpolation kernel

KCubic(u) = BCubic(u − 2) ∗
∞
∑

m=−∞

√
3(
√

3 − 2)|m|δ(u + m), (6)

see Ref. 3 for details. This kernel and its single sided magnitude spectrum is depicted in Figure 2. As it is

apparent, the kernel is very similar to the sinc(u) = sin(πu)
πu

function and therefore close to the ideal interpolation
kernel. The same observation is true for the magnitude spectrum, as it nicely resembles the rect function

rect(u) =

{

1 , |u| < 1
2

0 , |u| ≥ 1
2

, (7)

which is the magnitude spectrum of the sinc function. Furthermore, the sidelobes in the stopband and the
magnitude at the cutoff point are very low for the cubic B-Spline kernel magnitude spectrum.

On top, as it is well-known (see Ref. 3), the cubic B-Spline may be evaluated faster than any other method
with a similar signal reconstruction quality. The linear interpolation method, on the other hand, is less ex-
act. Its kernel KLin(u) = BLin(u) and its magnitude spectrum is shown in Figure 3. Here, one observes a



Figure 2. 1D cubic B-Spline kernel representation (|u| < 5) and its single sided magnitude spectrum (linear scaling). The
vertical line indicates the cutoff point, that is the area left to the vertical line is the passband; the area right to the vertical
line is the stopband.

Figure 3. 1D linear Kernel representation (|u| < 5) and its single sided magnitude spectrum (linear scaling). The vertical
line indicates the cutoff point.

significant higher amplitude of the sidelobes, resulting in more aliasing in the reconstructed signal. In addition
higher frequencies in the passband are more absorbed than in the B-Spline Kernel case. This leads to a inferior
reproduction of higher frequencies. However, due to its simplicity, the linear interpolation is one of the fastest
interpolation methods. The price paid for this, is the fact, that the interpolant is not differentiable at the
interpolation points, which can be a drawback, in particular in conjunction with the employment of fast opti-
mization schemes. A feature of the linear interpolation method which has often been neglected is the fact, that
its interpolant is free of ringing. This is not a true artefact and almost every interpolation method with a more
exact signal reconstruction may produce ringing.4 Figure 4 (left) shows ringing occuring in the cubic B-Spline
interpolant. Note that the under- and overshooting can produce pixel values that are beyond the reasonable
range of values. As seen in Figure 4 (right), no ringing is observable for the same data for the linear interpolation
scheme.

In Table 1 the outlined features of linear versus cubic B-Spline interpolation are listed.

Linear Cubic B-Spline

ringing inexisting existing
reconstruction less exact more exact

differentialbility not at data points twice continuous differentiable

Table 1. Inherited features of linear versus cubic B-Spline interpolation schemes



Figure 4. The interpolated data values (left) and the cubic B-Spline interpolant (middle) as well as the linear interpolant
(right) is shown. Note the ringing in the B-Spline interpolant.

Ideally, one is looking for an interpolant, which is easy to compute, exhibits no ringing artefacts, is differ-
entiable and does nicely reconstruct the given function. Neither a linear nor a cubic B-Spline interpolant does
fulfill all these features. On the other hand, as mentioned above, the tension parameter associated with the
exponentional spline in tension may be used to tune these basis functions towards a linear interpolant or to a
cubic B-Spline interpolant or to any situation inbetween. This enables the user to choose “the right dose” of
features that are inherited in interpolation schemes by simply changing one parameter. The exponential spline
in tension will be closely examined in the next section.

3. EXPONENTIAL SPLINE IN TENSION

3.1 B-Spline representation

As mentioned in the introduction, the general interpolation setting (2) is used for the locally supported expo-
nential B-Spline basis introduced by Koch and Lyche.1 They defined the basis in question recursively for an
arbitrary order k > 2 by successive integration:

Bi,k = Φi,k−1 − Φi+1,k−1, (8)

with

Φj,k−1(u) =











0, if u < tj
R

u

tj
Bj,k−1(v)dv

σj,k−1
, if tj ≤ u < tj+k−1

1, otherwise,

(9)

and

σj,k−1 =

∫ tj+k−1

tj

Bj,k−1(v)dv (10)

Here, the tj , j = 0, 1, ..., m − 1, denote an increasing knot sequence. For our interpolation purposes we assume
that the tj are equidistantly distributed with tj − tj−1 = 1. Moreover we use a global tension parameter τ to
keep the issues of interest clear. Furthermore, this choice allows for a straightforward calculation of a basis in
higher space dimensions by simply envoking tensor products. The recursion starts with

Bi,2(u) =















sinh(τ(x−ti))

sinh(τ)
if ti ≤ u < ti+1,

sinh(τ(ti+2−u))

sinh(τ)
if ti+1 ≤ u < ti+2,

0, otherwise.

(11)

Thus, after successive integration, an explicit form for a basis of order four (assuming four nontrivial intervals)



looks like

Bτ
0,4(u) =























ϕτ
1(u) , u ∈ [0, 1)

ϕτ
2(u) , u ∈ [1, 2)

ϕτ
2(−u + 4) , u ∈ [2, 3)

ϕτ
1(−u + 4) , u ∈ [3, 4)

0 , otherwise,

(12)

with

ϕτ
1(u) = (sin(τx) − x)

(

1
(2 cosh(τ)−2)τ − 1

2 sinh(τ)+τ+1

)

ϕτ
2(u) = (2 cosh(τ)(u − 1)τ + sinh(τ(2 − x)) − 2 sinh(τ(x − 1)) − x)

(

1
(2 cosh(τ)−2)τ − 1

2 sinh(τ)+τ+1

)

(13)

As a result, we can now use these basis functions in the general interpolation problem (2) with the setting
Bi(u) := Bτ

0,4(u − i − 2).

3.2 Kernel representation

To derive a kernel representation we first interpret (2) as a convolution

t(u) =
n−1
∑

i=0

ciB
τ
0,4(u − i − 2) = c ∗ Bτ

0,4(u − 2). (14)

To reformulate ci, we evaluate (14) at the interpolation points

t(j) =

n−1
∑

i=0

ciBi(j) =

j+2
∑

i=j−2

ciBi(j), (15)

and observe

t(j) = c(j) ∗ 1

2bτ
−1 + bτ

0

(bτ
−1δ(j − 1) + bτ

0δ(j) + bτ
−1δ(j + 1)), (16)

which follows from Bτ
0,4(1) = bτ

−1 = Bτ
0,4(3), Bτ

0,4(2) = bτ
0 . A Fourier transformation of (16) leads to

t̂(f) = ĉ(f)
1

2bτ
−1 + bτ

0

(bτ
0 + 2bτ

−1 cos(2πf)). (17)

A reformulation of (17) and a Fourier sum representation is used to express ĉ(f) as

ĉ(f) = t̂(f)

(

−2 log(−
√
−1 + 2b2) + log(−1 + 2b2)

2
√
−1 + 2b2π

+

∞
∑

m=1

dm cos(2πmf)

)

(18)

with the coefficients

dm =
2
√
−1 + 2b2(a

n
1 − an

2 )π − 2
√

b2
1 − b2

2(a
n
1 + an

2 ) log(−
√
−1 + 2b2) +

√

b2
1 − b2

2(a
n
1 + an

2 ) log(−1 + 2b2)

2
√
−1 + 2b2

√

b2
1 + b2

2π
(19)

and

a1 =
−b1 +

√

b2
1 − b2

2

b2
, a2 = −b1 +

√

b2
1 − b2

2

b2
(20)

and the constants b1 =
bτ
0

2bτ
−1

+bτ
0

and b2 =
2bτ
−1

2bτ
−1

+bτ
0

. With an inverse Fourier transform it follows that

c(j) = t(j) ∗
(

−2 log(−
√
−1 + 2b2) + log(−1 + 2b2)

2
√
−1 + 2b2π

δ(j) +

∞
∑

m=1

dm(δ(j − m) + δ(j + m))

)

. (21)



Figure 5. Upper row: Linear basis function and cubic B-Spline basis function; lower row: Exponential Spline with different
global tension (10−4, 8, 7 · 102).

Finally, by taking (14) into account, we obtain an explicit expression for the interpolation kernel which is
summarized in the following theorem.

Theorem 3.1. (Kernel Representation of exponential spline in global tension) Let u ∈ R and Bτ
0,4 the exponential

B-Spline in global tension τ ∈ R
>0 (12). Furthermore let the constants bτ

−1 = Bτ
0,4(1) and bτ

0 = Bτ
0,4(2) and

b1 =
bτ
0

2bτ
−1

+bτ
0

, b2 =
2bτ
−1

2bτ
−1

+bτ
0

be given. Then the kernel representation of an exponential spline in global tension

may be written as

Kτ (u) = Bτ
0,4(u − 2) ∗

(

−2 log(−
√
−1 + 2b2) + log(−1 + 2b2)

2
√
−1 + 2b2π

δ(j) +

∞
∑

m=1

dm(δ(j − m) + δ(j + m))

)

(22)

with

dm =
2
√
−1 + 2b2(a

n
1 − an

2 )π − 2
√

b2
1 − b2

2(a
n
1 + an

2 ) log(−
√
−1 + 2b2) +

√

b2
1 − b2

2(a
n
1 + an

2 ) log(−1 + 2b2)

2
√
−1 + 2b2

√

b2
1 + b2

2π
(23)

and

a1 =
−b1 +

√

b2
1 − b2

2

b2
, a2 = −b1 +

√

b2
1 − b2

2

b2
(24)

Thus the kernel of an exponential B-Spline in global tension can be described as a convolution with its B-Spline
basis. In conjunction with the cubic B-Spline kernel in (6), this kernel exhibits an infinite support. Consequently,
for an interpolation based on an exponential spline in tension an infinite support kernel has to be taken into
account. This is a mayor advantage as opposed to interpolation methods based on a truncated sinc function, for
example.

4. RESULTS

In Section 2 we presented some results for the linear and cubic B-Spline interpolation method based on their
kernel representation. In particular the respective magnitude spectrum has been used to investigate the signal
reconstruction quality by analyzing the passband and stopband characteristics. Based on the novel kernel



Figure 6. The data points (left) and the grid where the points are located (right) is shown.

representation for the exponential spline in global tension, we are now in a position to compare it with the linear
and cubic B-Spline kernel in order to quantify its properties. Furthermore a simple example is given which
shows the different interpolation methods on duty. here the interpolation data as shown in Figure 6 (left) is
used. The 502 data points are located at the equidistant distributed grid, shown in Figure 6 (right). As we
have a two-dimensional grid, we need two dimensional basis functions. These can be easily derived from the 1D
basis functions by a straightforward tensor approach (see Appendix A for details). The two-dimensional basis
functions for the linear, cubic B-Spline and exponential spline in global tension are shown in Figure 5.

The interpolants corresponding to the aforementioned data points of the three interpolation methods are
shown in Figure 7 (first column). One may see that with the linear interpolation method no ringing occured in
the interpolant in opposition to the cubic B-Spline method. The exponential Spline in global tension interpolant
reduces the ringing significant by increasing the tension. However, ringing close to the cubic B-Spline case is
observable for low tension. Note the similarity of the exponential spline kernel to the linear kernel (resp. cubic
B-Spline kernel) for high tension (resp. low tension) in the third column of Figure 7.

On the other hand, if we have a look at the magnitude spectrum of the different kernel representations
(fourth column of Figure 7), the linear interpolation method’s attenuation of high frequencies in the passband
is observable, as previously discussed. In addition we discussed the magnitude spectrum of the cubic B-Spline
interpolation which resembles nicely the rect-function. Again we can observe a trade-off in the passband char-
acteristics in the magnitude spectrum of the exponential spline’s kernel in different tension situation. The same
is true for the stopband characteristics: The sidelobes in the stopband are high and close to the linear case for
high tension and hardly existing for a low tension and therefore close to the cubic B-Spline case.

The effect of an attenuation of high frequencies in the passband and high sidelobes can be seen in the second
column of figure 7. Here the interpolant is successivly evaluated at a rotated grid as shown in Figure 6 (right). it
has been rotated 30 times with an angle of 2π/30. Thus, after 30 rotations, the interpolation result should be in
theory the start configuration. Here, one observes a significant smoothed interpolant for the linear interpolation
method. In contrast the cubic B-Spline’s interpolant is less smoothed and the exponential spline’s interpolant
again offers a nice trade-off.

Table 2 underscores this statement by presenting the relative Euclidian distance between the data presented
in Figure 6 (left) and the interpolant after 30 interpolations evaluated at the grid shown in Figure 6 (right). As
a reference, the distance in the linear case is set to 100%.

It is worth noticing, that the exponential spline is, independent of the tension parameter, two times continuous
differentiable in contrast to the linear case (see Ref.5). So, if one suppresses the ringing further by choosing a



single Interp. succ. Interp. Kernel Magn. Spectrum

Figure 7. The plot shows the different interpolation methods for one single interpolation, 30 successive interpolations as
well as the kernel representation and its single sided magnitude spectrums (column 1-4). The first row shows the linear
interpolation method. The second to forth row show the exponential spline in different tension (row 2: τ = 10, row 3:
τ = 5, row 4: τ = 0.1). The last row is associated with the cubic B-Spline. Again, in the plots of the magnitude spectrums
the vertical bar denotes the cutoff point, that is, the area to the left indicates the passband and the area to the right
indicates the stopband.



Interpolation Method Euclidian Distance
(Linear interp. set to 100 %)

Linear 100%
Exp. Spline (τ = 10) 71.79%
Exp. Spline (τ = 5) 51.64%
Exp. Spline (τ = 0.1) 20.16%
Cubic Spline 20.13%

Table 2. This table shows the Euclidean distance between the data shown in Figure 6 exemplarily and the interpolant
after 30 successive interpolations (second column in Figure 7). The data is denoted here with ai,j , i, j = 1, ..., 50. If
I denotes the current interpolant and xi,j the two dimensional location of ai,j , then the Euclidean distance is E =
q

P

50

i=1

P

50

j=1
(ai,j − I(xi,j))2. The Euclidean distance for the linear case is set to 100%.

higher tension τ the exponential spline behaves more and more like the linear interpolant and has less pronounced
features than a cubic B-Spline interpolant and vice versa.

5. DISCUSSION

The outlined analysis shows, from a practical point of view, that the exponential splines in tension bridge the gap
between two opposing interpolation schemes: The linear and the cubic B-Spline interpolation. Both have features
that are more or less desired, depending on the application. We derive an analytical kernel representation of
the exponential spline and show that the tension parameter enables the user to determine the best trade-off for
a given application with respect to signal reconstruction versus ringing. Nevertheless we still have a two times
differentiable interpolant which can be useful for fast optimization schemes.

As a conclusion, a variation of tension in the exponential spline in global tension results in a specific accen-
tuation of features depending on the application. An analysis of the passband and stopband characteristics of
the magnitude spectrum of the exponential spline’s kernel can be used to qualify the accentuation.

APPENDIX A. TENSOR APPROACH

With the linear, the cubic B-Spline, and exponential B-Spline in tension one obtains an enhancement to higher
dimensional interpolation by using a tensor product approach as follows (cf. (2)):

t(u) =

nd−1
∑

id=0

· · ·
n1−1
∑

i1=0

ci1,...,id
Bi1(u

1) · · · Bid
(ud), (25)

with ui as the evaluation point in the i-th dimension. To calculate the coefficients ci1,...,id
for the cubic B-Spline

and the exponential spline in tension we rewrite (25) and obtain for instance for d = 2

T (i1, i2) =

n2−1
∑

k2=0

n1−1
∑

k1=0

ck1,k2
Bk1

(t1i1)Bk2
(t2i2 ), (26)

with t1i1 and t1i2 as the knot sequences in the first and second dimension respectively. The corresponding interpo-

lated value is denoted by T (i1, i2). By introducing the matrix Anj
= [Bk(tji )]

nj−1
k,i=0, equation (26) can be written

as

T (i1, i2) =

n2−1
∑

k2=0

n1−1
∑

k1=0

ck1,k2
An1

(k1, i1)An2
(k2, i2). (27)

This can again be reformulated with the linearized orderings r = i1 + i2n1, s = k1 + k2n1 and the Kronecker
product An = An2

⊗ An1
with n = (n1 − 1)(n2 − 1):

T (r) =

n
∑

s=0

An(r, s)cs. (28)



Thus, the coefficients can be computed by
c = A−1

n1
TA−1

n2
. (29)

Next, we make use of the underlying spline basis. In order to use the local support of the basis one only needs to
evaluate the spline (cf. (25)) on a few basis functions once the coefficients are computed. If we want to evaluate
the spline for an (u1, u2) ∈ [tl1 , tl1+1] × [tl2 , tl2+1], l1, l2 ∈ Z, we only have to evaluate the sums

t(u) =

l2+2
∑

i2=l2−2

l1+2
∑

i1=l1−2

ci1,i2Bi1
(u1)Bi2

(u2), (30)

by assuming that the interpolation values T (i1, i2) are zero for i1 /∈ [0, n1] and i2 /∈ [0, n2] and therefore ci1,i2

equals zero. This leads to a fast evaluation of the spline interpolant.

In Figure 5 the basis functions (linear, cubic B-Spline, exponential spline in tension) are shown for d=2. For
all 2D representations the tensor approach is used with the aforementioned 1D basis functions (cf. (3), (4), (12)).
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