
Linear Algebra and its Applications 431 (2009) 459–470

Contents lists available at ScienceDirect

Linear Algebra and its Applications

j ourna l homepage: www.e lsev ie r .com/ loca te / laa

A computational framework for image-based constrained

registration�

Eldad Haber a,b, Stefan Heldmann a, Jan Modersitzki b,∗
a Department of Mathematics and Computer Science, Emory University, Atlanta, GA, USA
b Department of Computing and Software, McMaster University, Hamilton, ON, Canada

A R T I C L E I N F O A B S T R A C T

Article history:

Received 11 September 2008

Accepted 3 March 2009

Submitted by B. Fischer

This paper is dedicated to Sir Henk van der

Vorst on the occasion of his 65th birthday

Keywords:

Image registration

Elastic matching

Constrained image registration

Local rigidity

Volume preserving registration

Adding external knowledge improves the results for ill-posed prob-

lems. In this paper, we present a new computational framework

for image registration when adding constraints on the trans-

formation. We demonstrate that unconstrained registration can

lead to ambiguous and non-physical results. Adding appropriate

constraints introduces prior knowledge and contributes to reli-

ability and uniqueness of the registration. Particularly, we con-

sider recently proposed locally rigid transformations and volume

preserving constraints as examples.
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1. Introduction

Image registration is one of today’s challenging problems in digital imaging. Roughly speaking, the

problem is as follows: Given two images, find a reasonable spatial transformation such that a trans-

formed version of the so-called template image, T , becomes similar to the so-called reference image R.

Image registration is appliedwhenever images resulting fromdifferent times, devices, and/or perspec-

tives need to be compared or integrated. It is used for example, in the evaluation of radiation therapy,

surgery planning, estimation of treatment after cardiac arrest and more, see, e.g. [18,31,23,28,19] and

references therein.
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As it is discussed in more details in Section 2, a registration procedure is typically based on two

main building blocks. The first one is a distance measure that measures the similarity or proximity of

images. A distance measure can be based on image features (e.g., landmarks or markers [3,27,34,28]),

on image intensities (e.g., sum of squared differences, correlation, ormutual information [6,11,41]), on

level sets [10,22], or on combinations hereof. For an overviewand comparisons, see also [32,24,28]. The

second building block is regularization. Since image registration is an ill-posed problem, regularization

is inevitable and becomes a central topic [28]. There are two general approaches. In the first approach

one restricts admissible transformations to a parametric model as, e.g., rigid or affine transforma-

tions (parameterized by rotation angles, scaling, and translations), or transformations that are linear

combinations of a small set of basis functions (e.g. B-splines); see, e.g., [28] for an overview. It turns

out that in many cases, this type of regularization is too restrictive and the desired transformation is

not included in a parametric model. In these cases one has to turn to a more general regularization

technique which is to add a penalty term to the objective function that outrules unwanted properties.

This approach includeswell-known regularizers such as the elastic [5], diffusion [13], or curvature [14]

(and in aqualified sense also thefluid registration [8,4]); see also [28] for anoverview. Fluid registration

is in fact a flow approach, where the current configuration is updated in a regularized fashion. Other

examples for flow approaches are Thirion’s demons approach [38,40] or the diffeomorphic approaches

[39,2,1,35] which restrict the transformation to be diffeomorphic.

Non-surprisingly and well-known, different regularizers can lead to highly different transforma-

tions as image registration is a highly ill-posed. The choice of regularization can have a key effect on

the solution and its properties [28]. While choosing a regularization that fits a particular application is

generally difficult, one can takemeasures to drastically reduce the level of non-uniqueness in the prob-

lemand thusmake it less dependent on the particular regularization. Onenewandpromising direction

is to add physiologically meaningful constraints. Such constraints can be for example, incorporation

of anatomical landmarks [12,9], rigidity of bones [36,26,29], or volume preservation of tumor tissue

[33,21,20]. See also [15] for an overview. Note that diffeomorphic transformations do not necessarily

fulfill any of these constraints, a trivial example is given by the diffeomorphism ϕ(x) = 2x.

Constraints canbeaddedeither as “hard”-constraints (i.e. the constraintshave tobe fulfilledexactly)

or as “soft”-constraints (i.e. the constraints hold only approximately). As it is explained later, “soft”-

constraints lead to a penalty approach which is known to be numerical untable or less efficient [30].

Therefore, this paper concentrates on “hard”-constraints.

Though it is very desirable to add constraints to the registration process, the computational frame-

work for this incorporation is notwell developed. This is especially the case for local constraints, where

constraints are being applied on a small region within the image. There are two main difficulties in

current methods for constrained image registration. First, all methods known to us are based on a

Eulerian framework.While this approach is appropriate for theunconstrainedcase, problemsmayarise

for the constrained case. In particular and as discussed in Section 2, the Eulerian approach generates

non-differentiable constraints. Second, most of the current methods are based on a penalty approach,

which leads to numerical ill-conditioning as well as inexact feasibility.

The goal of this paper is to propose a new computational framework for constrained image reg-

istration with emphasis on local constraints. Differentiability is maintained by using a Lagrangian

framework and feasibility is obtained by using a Sequential Quadratic Programming (SQP) approach.

Moreover, the potential of the new framework is demonstrated by applying it to two important

applications. The first application incorporates local rigidity; see also [25,26,37,29]. The second appli-

cation integrates volume preservation; see also [33,20].

Incorporating constraints in registration is an important challenge. In contrast to choosing a par-

ticular regularization approach which is ad-hoc, image-based constraints are based on the physical

attributes of the underlying image and therefore limit the optimization to physically feasible transfor-

mations.

The rest of the paper is structured as follows. In Section 2, we introduce the framework and form

themathematical setup.We show that superior numerical treatment can be given if we use a Lagrang-

ian formulation to the problem. In Section 3, we discuss the examples of local rigidity and volume

constraints. In Section 4, we suggest an SQP constrained optimization technique in order to solve

the problem. In Section 5 we demonstrate the viability of our technique using synthetic models that
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highlight the advantages of our approach. Finally, we show the benefit of our approach for a clinical

application.

2. Mathematical framework and problem description

In this section we formulate the constrained registration problem. Let R, T ∈ L2(R
d; R) be two

d-dimensional images. We want to find a transformation ϕ in some admissible functions space V

such that the deformed template T is similar to R on a certain domain Ω ⊂ Rd. In particular, we

only consider smooth and invertible transformations since we do not want cracks or folding in the

deformed image. Therefore, the set of admissible functions contains only diffeomorphisms. While

diffeomorphisms are commonly assumed for registration, we assume that additional information on

ϕ is given. In particular, we assume a constraint on the transformation based on prior knowledge of

the template image. Generally, such a constraint can be written as

C(ϕ)(x) = 0 ∀x ∈ Σ ⊂ Ω.

That is, whenever we move a point, x in a certain sub-domain Σ ⊂ Ω the constraint applies to

ϕ. For example, Σ can be obtained by the segmentation of the template image into rigid structures

(bones inmedical images) and therefore the constraint allows only rigidmotion onΣ . Incompressible

sub-structures present in the template image give another example for local constraints. Here, the

Jacobian of transformation has to be one: det(∇ϕ(x)) = 1 for x ∈ Σ .

It is also possible to add “soft”-constraints by using a penalty based on a semi-norm on C. However,

the penalty can be deduced from the “hard”-constraints [30], and we therefore focus on the latter.

Since the constraints apply only to a subset of the domainweuse a regularized approach to compute

a stable solution. To this end, we base our approach on constraint optimization where we minimize a

functional build fromof adistancemeasureD anda regularizerS . That is,we compute a transformation

that minimizes D + αS subject to the given constraints, where α > 0 is the regularization parameter.

For clarity of presentation, we particularly consider the sum of squared differences (SSD) for the

distance measure and an L2-norm based regularizer S , where with a differential operator B,
S(ϕ) := ‖Bϕ‖2

L2(Ω)
.

The above description of our approach is still not specific enough. Before we give an exact mathe-

matical formulation we have to decide about a transformationmodel. Generally, we have the Eulerian

or Lagrangian frameworks, see also Fig. 1.

Let ϕ be a transformation that moves a point x ∈ Ω to y = ϕ(x). Since we consider invertible

transformations, this is equivalent to arriving at point y from x = ψ(y), where for ease of presen-

tation ψ = ϕ−1. Let us consider the pair of a point x and the function value T(x). In the so-called

Lagrangian framework we consider the forward transform ϕ. Here, (x, T(x)) is moved and arrives at

(y, T(x)) = (ϕ(x), T(x)) from x ∈ Ω . Alternatively, in the Eulerian framework we fix the location in

the deformed image. Here, at a fixed point y ∈ Ω in the deformed image the point is arriving from

Fig. 1. The Lagrangian approach (a): grid point x inΣ maps to non-grid point y = ϕ(x). The Eulerian approach (b): a grid point

y is mapped from the non-grid point x = ψ(y), whereψ = ϕ−1. (a) Lagrangian (b) Eulerian.
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point x = ψ(y) such that the deformed image at y is given by (y, T(x)) = (y, T(ψ(y)) for y ∈ Ω . The

two concepts are illustrated in Fig. 1.

It is important to note that constraints on the transformation are often modeled in the Lagrangian

framework, i.e., usually we pose constraints on the forward transform ϕ rather than ψ (as we did in

the above examples). Therefore, when using the Eulerian framework we have to find an equivalent

expression for the constraints. Formally, having a constraint

CL(ϕ)(x) = 0 for all x ∈ Σ (1)

on ϕ in the Lagrangian framework, we have to find an equivalent formulation CE(ψ) that holds for all
x = ψ(y) ∈ Σ . Thus, (1) can be expressed in the Eulerian approach as

CE(ψ)(y) = 0 for allψ(y) ∈ Σ. (2)

The crucial difference between both approaches is that in the Lagrangian framework the points

where the constraint is active depend on Σ alone while in the Eulerian framework they depend

on Σ and ϕ. A typical remedy is to trace the indicator function for Σ . However, this results in a

non-differentiable constraint.

Since it provides some computational advantages for unconstrained applications, most often the

Eulerian framework is used for registration. However, it turns out that when adding constraints it

becomes more difficult. Therefore, we propose using the Lagrangian framework in the constrained

setting. Next, we explore the difference between the Eulerian and Lagrangian approaches.

2.1. Constraint registration within the Eulerian framework

In theEulerian framework,wecompareapoint (y, R(y))of the reference image to (y, T(ψ(y)) fory ∈
Ω , where againψ = ϕ−1. For example, the standard SSD distance measure for this setting is given by

DE(ψ) := 1

2

∫
Ω
(T(ψ(y))− R(y))2 dy, (3)

and the constrained image registration problem in Eulerian framework reads

Findψsuch that DSSD(ψ)+ αS(ψ) = min

subject to CE(ψ)(y) = 0 for allψ(y) ∈ Σ. (4)

Theproblemwith theEulerian approach is that thedomain inwhich the constraints are activeneeds

to be tracked; see also [29]. This implies that the constraints are not differentiable with respect to ψ
in general. Fig. 1 (right) presents an intuitive explanation. Considering the point y′ and x′ = ψ(y′),
where x′ is outside but arbitrarily close to Σ . As long as x′ is outside Σ the constraint is inactive.

However, a small change ofψ can bring x′ inside and the constraint becomes active. This implies that

the constraint is not differentiable with respect to ψ . Since in the Eulerian framework ψ is precisely

the quantity to look at, computational problems are to be expected.

To explain the above point a bitmore formallywe use the characteristic functionχΣ(x) and rewrite

the Eulerian constraint CE(ψ)(y) = 0 forψ(y) ∈ Ω as

χψ(Σ)(y) C
E(ψ)(y) = 0 for all y ∈ Ω.

Then clearly, thenon-differentiability of the indicator function yields non-differentiable constraints

in the usualway. One could still workwith the interface and use an approximation to the delta function

as derivatives but this is rather complicated [29]. Next we see that a much simpler treatment can be

obtained by considering the Lagrangian approach.

2.2. Constraint registration within the Lagrangian framework

Theproblemofnon-differentiable constraintsandconstraint-tracking leadsus touse theLagrangian

approach. In the Lagrangian framework, we consider the forward transform ϕ. Here, (x, T(x)) gets
moved to (y, T(x)) = (y, T(ϕ−1(y))) for all x ∈ Ω or equivalently for all y ∈ ϕ(Ω). For example, the

SSD distance measure for this setting is given by
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1

2

∫
ϕ(Ω)

(
T(ϕ−1(y))− R(y)

)2
dy.

First we note that, with changing ϕ we also change the domain of integration. This is a problem,

since if a transformation shrinks Ω , the above distance is reduced. To prevent this, we consider an

averaged distance

1

2

1

|ϕ(Ω)|
∫
ϕ(Ω)

(
T(ϕ−1(y))− R(y)

)2
dy where |ϕ(Ω)| :=

∫
ϕ(Ω)

dx.

On first view, this expression seems to have two major drawbacks. First it depends on both ϕ and

ϕ−1. Second, thedomainof integrationalsodependsonϕ. This is probably the reason for thepopularity

of the Eulerian approach for unconstrained registration. However, changing variables to x = ϕ−1(y)
and using the transformation rule, we find∫

ϕ(Ω)

(
T(ϕ−1(y))− R(y)

)2
dy =

∫
Ω
(T(x)− R(ϕ(x)))2 | det∇ϕ(x)| dx

and |ϕ(Ω)| = ∫
Ω | det∇ϕ(x)| dx. Therefore, we define

DL(ϕ) := 1

2

(∫
Ω

| det∇ϕ(x)| dx
)−1 ∫

Ω
(T(x)− R(ϕ(x)))2 | det∇ϕ(x)| dx. (5)

Clearly, this distance measure is more involved than DE in the Eulerian framework. However, the

main point is that this approach is better suited for the constraints. To see that, we rewrite the problem

in the Lagrangian framework

Find ϕ such that DL(ϕ)+ αS(ϕ) = min

subject to CL(ϕ)(x) = 0 for all x ∈ Σ. (6)

In particular, the constraint domain does not have to be tracked and thus, the constraint is differ-

entiable with respect to ϕ, assuming differentiability of CL with respect to ϕ.
To demonstrate the above points we next consider two applications, the local rigidity and vol-

ume constraints. Using these constraints as model problem, we demonstrate the application of the

constraints in the Lagrangian framework and subsequently its numerical treatment.

3. Constraints

3.1. Rigidity constraints

Human anatomy presents a couple of visible compartments in most image modalities, such as

air, blood, bone, CFS, fat, or muscle. Probably the most obvious constraint is to maintain the rigidity

of bones. Consider the illustrative example presented in Fig. 2, where a simplified model of a knee

is being registered to a bent model using elastic registration. Using an unconstrained approach, the

grid shows somehighly non-physical deformations in areas onewould expect the transformation to be

rigid. To overcome suchdifficultiesweadd local rigidity constraints that allow for amuchmore realistic

deformation. It is important to stress that the resulting images of the constrained and unconstrained

approach are almost identical though the deformations are very different.

Since a 2D rigid transformation canbephrased asQ(θ)x + b, where b ∈ R2 denotes the translation,

and

Q(θ) =
(

cos θ sin θ
− sin θ cos θ

)
,

the rotation matrix, the local rigidity constraint in the Lagrangian framework can be written as

CL(ϕ)(x) = CL(ϕ, θ , b)(x) = ϕ(x)− (Q(θ)x + b) = 0 for all x ∈ Σ. (7)

This constraint is nonlinear with respect to rotation angles θ but linear with respect to the trans-

lation b and transformation ϕ. Furthermore, it is important to note that if Σ = Σ1 ∪ · · · ∪ΣM is
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Fig. 2. Registration results for a synthetic knee; the top row shows the reference, template, and a segmentation for the rigid

structures in the template. The constrained and unconstrained results are shown in second and third row, from left to right: the

transformed template (Lagrangian view) with a visualization of the transformation, the transformed reference (Eulerian view),

and a map of the volume change.

composed of several disjoint domainsΣk weneed a set of parameters (θk , bk) for each domain to allow

for independent rigid motion. In this case, we can write (7) as

CL(ϕ, θk , bk)(x) = 0 for all x ∈ Σk and k = 1, . . . ,M.

For ease of presentation, we drop the dependence on k. The local rigidity constrained registration

is to solve the following problem:

Find ϕ, θ , b such that DL(ϕ)+ αS(ϕ) = min

subject to CL(ϕ, θ , b)(x) = 0 for all x ∈ Σ. (8)
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In this particular case,

y = ϕ(x) = Q(θ)x + b ⇔ x = ψ(y) = Q(θ)�(y − b) = Q(θ̂)y + b̂

setting θ̂ = −θ and b̂ = −Q(θ̂)b. Thus, the nature of the constraints CL and CE for the Lagrangian and

Eulerian framework coincides and the Eulerian version of (8) reads:

Findψ , θ̂ , b̂ such that DE(ψ)+ αS(ψ) = min

subject to CE(ψ , θ̂ , b̂)(y) = 0 for allψ(y) ∈ Σ ,

where CE(ψ , θ̂ , b̂)(y) = CL(ψ , θ̂ , b̂)(y) = ψ(y)− (Q(θ̂)y + b̂). However, even in this case of basically

identical constraints for both frameworks, the problems of non-differentiability and constraint-track-

ing in the Eulerian approach remain and cause major computational problems. Before presenting our

Lagrangian based computational approach, local volume preserving constraints are considered.

3.2. Volume preserving constraints

A typical task for image registration is the combination complementary information from several

images. For example in multi-phase CT imaging when a contrast agent is used for the visualization of

vessels and blood-flow or to compare pre-and-post treatment of tumors. In such cases, one would like

to register the images without changing the volume of some of the structure, like tumors.

If unconstrained registration is performed, volumeof tumors is changed if this reduces the objective

function. To prevent such phenomena we add volume preservation as a local constraint. To this end

we use a segmentation to identify a setΣ of points where the transformation has to preserve volume.

Formally, we explicitly require that

|S| = |ϕ(S)| for all subsets S ⊂ Σ , (9)

where |ϕ(S)| := ∫
ϕ(S) dx and |S| := ∫

S dx. Furthermore, after changing variables we find

ϕ(S)| =
∫
ϕ(S)

dx =
∫
S
| det∇ϕ| dx

and hence (9) is equivalent to det∇ϕ = 1 onΣ . Therefore, the volume preservation constraint in the

Lagrangian framework can be defined as

CL(ϕ)(x) = det∇ϕ(x)− 1 = 0 for all x ∈ Σ. (10)

This constraint is highly nonlinear and involves the product of the derivatives of the transformation

ϕ. For consistentdiscretizationof this constraintwepoint to [20]. Thediscretizationof theseconstraints

yields a highly nonlinear set of equations that need to be solved in the course of the solution of the

registration.

4. Numerical approaches for constrained image registration

We now discuss a general framework to solve the constrained optimization problem posed in the

Lagrangian framework.

Considering (8) as model problem, we seek a transformation ϕ which solves the following discret-

ized constrained optimization problem:

Minimize J(ϕ) := D(ϕ)+ αS(ϕ) subject to C(ϕ) = 0, (11)

where D, S, C are discretized versions of D, S , C, and with abuse of notation we use the same symbol

ϕ for a discrete grid function of the continuous deformation.

We propose to use two different optimization frameworks. First, we discuss the use of Sequen-

tial Quadratic Programming (SQP). Second, in the particular case of the rigidity constraints where

C = C(ϕ, θ , b), we are able to eliminate the constraints.
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4.1. Optimization via SQP

In the SQP framework Newton’smethod is used in order to find a stationary point of the Lagrangian

L(ϕ, θ , b, λ) = J(ϕ)+ λ�C(ϕ, θ , b),

where λ is a vector of Lagrange multipliers. That is, one needs to solve the nonlinear system ∇L = 0,

i.e.,

∇J(ϕ)+ ∇C(ϕ, θ , b)Tλ = 0,

C(ϕ, θ , b) = 0.
(12)

At each iteration the linearization of (12) is solved for updates δϕ, δθ , δb, δλ of our variables, that

is (
H ∇C�

∇C 0

)(
δϕ̃
δλ

)
= −

(
∇J + ∇C�λ

C

)
, (13)

whereH is an approximation to the Hessian∇2L and δϕ̃ = (δϕ, δθ , δb)�. In standard line search SQP

methods the variables are updated using a line search that guarantees a sufficient reduction in some

merit function. To be more specific, we seek to decrease the non-differentiable L1 merit function

merit(ϕ, θ , b;μ) = J(ϕ)+ μ‖C(ϕ, θ , b)‖1,

where μ is a parameter which needs to be chosen judicially [30].

Recent developments in SQP algorithms are described in [17,7,16]. Themajor difficultywhen apply-

ing SQP methods to constrained image registration is that a reasonably accurate solution of the linear

sub-problem in (13) is required for most algorithms. Since the system is large and indefinite we use an

iterative Krylov solver (MINRES) for the solution of the system with block preconditioning; see [20]

for details on solving the linear system.

4.2. Optimization via constraint elimination

In some cases such as rigidity constraints, the constraints are simple enough such that we can

consider a simple elimination of the constraints. Consider first the case of a single domain Σ where

the displacement is rigid. In this case we can divide the displacement vector into two parts. The first

part, ϕ0 is the part that is outside Σ and the second, ϕ1 is the part that belongs to Σ . Thus we can

rewrite the displacement vector as

ϕ =
(
ϕ0
ϕ1

)
=
(

ϕ0
Q(θ)x + b

)
.

In the case that we have more than a single domain of rigidity we rewrite the displacement vector

as

ϕ =
⎛
⎜⎜⎝
ϕ0
ϕ1
. . .
ϕM

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

ϕ0
Q(θ1)x + b1

. . .
Q(θM)x + bM

⎞
⎟⎟⎠ .

Substituting ϕ in the objective function we obtain an unconstrained optimization problem. We

then use the Gauss–Newton method for the solution of the optimization problem.

5. Numerical experiments

Wepresent results from three experiments that demonstrate the importance of rigidity and volume

constraints. The first two experiments are academic in nature and the third is a realistic difficult

knee registration. For all experiments we use the elastic regularizer and compare the results for the

constrained and unconstrained approach. For the rigidity constrained registrationweused themethod
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where we eliminated the constraints while for the volume constrained registration we used SQP. All

images considered are 2D and have a size of 256 × 256 pixels.

In the first experiment we explore a synthetic knee model where two blocks are deformed; cf.

Fig. 2. A direct comparison of the constrained and unconstrained approach is presented. Though the

transformed images are very similar, the transformations are very different: the constrained approach

preserves the rigid structures.

In the second experiment we useMRI images of a knee.We usemanual segmentation to obtain the

bones; cf. Fig. 3. Again,we see thatwhen constraints are not present, non-physical results are obtained.

An important difference to the academic examples above is that not only the transformation but also

the transformed image are different. Moreover, the unconstrained approach fails and does not give a

meaningful result. Therefore, adding the constraints is substantial to obtain a reasonable solution.

Fig. 3. Registration results for human knee images; the top row shows the reference, template, and a segmentation for the rigid

structures in the template. The constrained and unconstrained results are shown in second and third row in the Lagrangian

view; from left to right: the transformed template with a visualization of the transformation, the difference between template

and transformed reference, and a map of the volume change.
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Fig. 4. Registration results for artificial images; the top row shows the reference, template, and a segmentation for the rigid

structures in the template. The constrained and unconstrained results are shown in second and third row, from left to right: the

transformed template (Lagrangian view) with a visualization of the transformation, the transformed reference (Eulerian view),

and a map of the volume change.

We emphasis that the constrained approach does not necessarily yield the “true” solution. How-

ever, since we assume that some structure do transform rigidly, we know that the unconstrained

approach yields a non feasible result. In this sense, the constrained approach is more reliable than the

unconstrained approach.

In our third experiment we use a synthetic example of the deformation of two ellipses, one with

a Y-structure embedded in it (see Fig. 4). When no constraints are present, the Y tends to shrink. This

helps to reduce the distancemeasure and thus reduces the objective function. This result is not realistic

as we do not expect the Y structure to disappear. When the volume constraint is added, the ellipses fit

without changing the volume of the Y.
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Table 1

Computation results for the unconstrained Eulerian approach and the constrained Lagrangian framework.

Problem Constraints CPU time

Synthetic knee X 40.8s

Synthetic knee � 57.9s

Real knee X 220.1s

Real knee � 240.5s

Synthetic Y X 220.1s

Synthetic Y � 240.5s

Using the Lagrangian framework with constraints adds to the computational cost. We have addi-

tional computational costs from the Jacobian in distancemeasure (5) and the constraints (6) compared

toanunconstrainedapproach in theEulerian framework; cf. (3) and (4).However,we foundthe increase

of computations is moderate. To give a rough idea, the computation times of the three different exper-

iments for the constrained approach in the Lagrangian framework and corresponding unconstrained

methods in theEulerian frameworkare summarized inTable 1. Comparing the computationalwork,we

see that using constraints adds roughly 15% of computational time compared with the unconstrained

approach. Thus, adding constraints increases the computational work but gives more reliable results.

6. Conclusions

In this paper we have developed a framework for local constrained image registration and applied

it to rigidity and volume constraints. There are a few features that distinguish our method compared

to others. In particular

• The proposedmethod uses constraints rather than a penalty and therefore the constraints are actu-

ally fulfilled. Also, using constrained optimization does not require choosing a penalty parameter.

• We use the Lagrangian approach. This saves the need to track the domain of the constraints but

adds the cost of computing the determinant of the Jacobian.

• Generally, sequential quadratic programming can be used for solving the constrained optimization

problem.

• As a particular example, we examined rigidity and volume constraints. We have found that the

increase of computations stayed moderate with approximately 15% compared to a unconstrained

approach.

Numerical experiments show that adding constraints can increase the reliability of non-parametric

registration and reduce the inherent non-uniqueness of the problems. We therefore advocate that

adding constraints will become common practice in image registration.
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