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Combined Reconstruction and Motion Correction in
SPECT Imaging

Hanno Schumacher, Jan Modersitzki, Bernd Fischer

Abstract— Due to the long imaging times in SPECT, patient
motion is inevitable and constitutes a serious problem for any
reconstruction algorithm. The measured inconsistent projection
data lead to reconstruction artifacts which can significantly
affect the diagnostic accuracy of SPECT if not corrected. To
address this problem a new approach for motion correction is
introduced. It is purely based on the measured SPECT data and
therefore belongs to the data-driven motion correction algorithm
class. However, it does overcome some of the shortcomings of
conventional methods. This is mainly due to the innovative idea
to combine reconstruction and motion correction in one optimiza-
tion problem. The scheme allows for the correction of abrupt and
gradual patient motion. To demonstrate the performance of the
proposed scheme extensive 3D tests with numerical phantoms for
3D rigid motion are presented. In addition, a test with real patient
data is shown. Each test shows an impressive improvement of the
quality of the reconstructed image.

Index Terms— motion correction, image reconstruction,
SPECT

I. INTRODUCTION

IN Single Photon Emission Computed Tomography
(SPECT), the imaging time is typically in the range of

5-30 minutes. Here, patient movement, which has frequently
been reported in clinical applications [?], constitutes a serious
problem for any reconstruction scheme. The movements cause
misalignment of the projection frames, which degrades the
reconstructed image and may introduce artifacts. These motion
artifacts may significantly affect the diagnostic accuracy [?],
[?], [?]. Different methods have been proposed for the cor-
rection of motion in SPECT studies. These methods may be
divided into two categories.

The first category includes hardware methods, for example
the triple scan [?] or dual scan [?] protocol. These methods do
produce motion corrected projections and thus may be used
in conjunction with any reconstruction method. Unfortunately
not all types of motion, for example gradual motion, can
be corrected. Other methods in this category rely on the
placement of some markers on the patient and use camera or
tracking systems to detect or estimate patient motion during
the SPECT imaging [?], [?]. Here, in list-mode the position of
each detected photon can be corrected directly in conjunction
with every reconstruction algorithm. Yet another way is to
subdivide the measured data in sets belonging to the same
patient position and employing a reconstruction method based
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on the estimated motion information [?], [?]. The marker-
based approaches clearly decrease the motion artifacts for the
price of having to place the markers on each patient and the
need for additional equipment.

In this note we advocate the employment of a novel method
within the second category, the software methods. These ap-
proaches are working solely with the measured raw data. Here
one distinguishes between projection- and image-space based
approaches. One idea is to reconstruct the image followed
by a simulation of SPECT-imaging based on the obtained
reconstructed data [?], [?]. Next, the measured projections and
the computed forward-projections are compared in order to
estimate and to correct for patient motion in the projection-
space. It should be noted, that due to the projection geometry,
this method is not able to compensate for rotational move-
ment. Therefore a method, the so called Data-Driven Motion
Correction (DDMC) approach [?], [?], was developed. Here
the idea is to estimate the motion and to correct for it within
the image-space by applying a registration scheme onto the
images obtained by corresponding partial reconstructions. This
method can handle full rigid-body motion. Unfortunately it
was designed only for SPECT systems with perpendicular
camera-heads. Furthermore, the partial reconstructions have
to be based on at least 30% of all measured projections as the
success of the registration scheme relies on high quality partial
reconstruction images. Consequently, the DDMC method can
only correct for abrupt patient motion and can not be employed
for gradual motion problems.

In this note, we report on a novel motion correction ap-
proach, working solely on the raw data, which does overcome
the above mentioned shortcomings. The new scheme, which
Combines Reconstruction and Motion Correction in one op-
timization step is called CRMC and was briefly introduced
in [?]. One may find a similar idea within the super-resolution
methodology [?], where roughly speaking, the goal is to obtain
a ”nice image” out of two or more related ”bad images”. As it
turns out, the CRMC approach is able to correct for abrupt and
gradual motion. Furthermore, it works successfully with any
one-, two-, or triple-head SPECT system. As it is characteristic
for inverse problems, the reconstruction process is ill-posed
and its formulation and implementation does need special care.
To this end we introduce a novel regularization term which
overcomes possible problems and works just fine in practice.

The paper is organized as follows. First, a short introduction
to the DDMC approach is given. Afterwards we describe on
how to combine reconstruction and motion correction in one
go. Afterwards the performance of the CRMC approach is
demonstrated for a variety of examples including real patient
data.
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II. METHODS

Obviously any reconstruction scheme can be improved by
correction for patient movement. On the other hand, if one is
looking for a correction algorithm based on the reconstructed
image, both schemes should learn from each other. Therefore,
it is natural to combine reconstruction and motion correction
within SPECT imaging.

First, before describing the DDMC method and our new
CRMC method, let us introduce some notation. The image to
be reconstructed is denoted by f , defined on the set Ωf ⊂ R3.
We assume for simplicity, that it is isotropically discretized
with voxel size hf . Other discretizations are easily dealt with.
It is notationally convenient to store the 3D object f in a
(long) vector, which will be denoted by f ∈ Rn3

as well.
The collection of 2D-projections will be denoted by g. Their
pixel size is hg . Again, we represent g ∈ Rq·n2

as a vector,
where q denotes the number of projections. Next we introduce
the projection matrix A = Ahf

. Its entries describe the
probability that an event in voxel i (column) of the image
is detected in pixel j (row) of the projections [?]. The idea
is to simulate the characteristics of the present SPECT-system
via the matrix A ∈ Rq·n2×n3

. It may be used to model the
response of the detectors, the structure of the collimator, and
scatter or absorption properties [?], [?]. For the examples to
be presented, we are using a simple model without scatter
or absorption effects and assume a perfect parallel projection
geometry.

A. Data-Driven Motion Correction

The DDMC approach [?], [?] can handle full 3D rigid-
body motion (6 degrees of freedom) that occurs between
projections. For an approach used in reconstruction of PET
images, including motion correction in a single projection see
[?] and references therein. To start the scheme, it is assumed
that the rigid-body motion of the patient is known. The actual
determination of the movement is not subject of this paper, see
[?], [?], for an overview in this direction. Once the motion is
known it needs to be corrected. The idea is to subdivide the
projection data into subsets where no motion has been detected
and to move the object estimate for each of these subsets
accordingly. To this end the rigid-body parameters after the
ith movement of the patient are stored in the vector wi.
Furthermore, all projections that were measured between the
ith and the i+1st movement are collected in the projection set
gi. The image, which has been in the course of the algorithm
reconstructed up to the ith step, is denoted by f (i). This image
has to be corrected with respect to the next object position
wi+1. The result is denoted by f (i)(wi+1). Next the partial
reconstruction f (i)(wi+1) is updated with the help of measured
projections gi+1 via

f (i+1) = <[gi+1, f (i)(wi+1)], (1)

where < denotes a reconstruction algorithm. Ideally, the re-
sulting image f (m) should contain less motion artifacts. An
important ingredient in the overall scheme is an interpolation
method taking care of the necessary image interpolation in the
m steps of the scheme, in particular for the computation of

f (i)(wi+1). Here, we refer to [?] and references therein. A
widely used reconstruction algorithm is the so-called OSEM
algorithm [?]. It employs iteratively projection and backprojec-
tion in order to calculate a reconstruction based on the actual
set of projections. As we are working with discrete data, the
projection and backprojection needed in the OSEM scheme
may be written in terms of matrices A and A>, respectively.
Let Ai+1 denote the projection matrix corresponding to the
projection set gi+1. The update scheme (??) together with the
OSEM algorithm may then be conveniently written as

f (i+1) = f (i)(wi+1) ·

A>i+1

(
gi+1

Ai+1f (i)(wi+1)

)
A>i+11

 . (2)

Here 1 = (1, . . . , 1)> denotes a vector corresponding to the
size of A>i+1. Furthermore, the notation x · y and x

y indicates
a component wise multiplication and division of the vectors
x,y. For convenience, we assume throughout the paper that
the denominator has no zero components. Unfortunately the
DDMC method was designed only for SPECT systems with
perpendicular camera-heads. Furthermore, the partial recon-
structions have to be based on at least 30% of all measured
projections as the success of the registration scheme relies on
high quality partial reconstruction images. Consequently, the
DDMC method can only correct for abrupt patient motion and
can not be employed for gradual motion problems.

B. Combined Reconstruction and Motion Correction

To descripe our new CRMC method which overcomes the
problems of the DDMC approach we start from a reconstruc-
tion framework. In the literature one may find analytic as
well as iterative method for the reconstruction step, cf. [?],
[?], [?]. Here, we have chosen an iterative approach, as it is
much easier to incorporate additional requirements. Ideally,
the thought after f should be a solution of the linear equation
Af = g. This naive approach exhibits several problems. A
solution, if at all existing, need not to be unique and is not
necessary non-negative f ≥ 0, an obvious requirement for
measurements. This leads us to the constraint least-squares
problem

J1(f) =
hg

2
‖Af − g‖22 → min s.t. f ≥ 0 (3)

with the Euclidean vector norm ‖.‖2. However, the ill-
posedness of the underlying problem, cf. [?], [?], indicates that
the optimization problem (??) needs special care, a regularizer
has to be introduced, which brings us to

J2(f) =
hg

2
‖Af − g‖22 + αR1(f)→ min s.t. f ≥ 0, (4)

where R1 is an appropriate regularizer and α a parameter
controlling its influence. In the literature one may find various
choices for R1. For the computed example, we have chosen

R1(f) =
hf

2

3∑
j=1

‖Bjf‖22, (5)
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where Bj denotes a matrix which encodes a finite difference
approximation of the first derivative in the j-th image direc-
tion. This choice clearly prefers smooth images and is well
suited for handling noisy images, where the regularization
parameter α should reflect the present noise-level in the data.
Its actual choice is not straightforward and depends on the
actual situation. However, the choice α = 0.01 works well in
all our tests runs. Of course other choices for the regularizer,
like for example the total variation functional [?], are possible
too. The solution of (??) may be computed by any sound
optimization scheme [?] and does provide what we want in
the absence of motion artifacts.

The next step it to combine reconstruction and motion cor-
rection. To this end, we assume that the measured projections
can be divided in K sets, where no patient movement occurred.
These subsets are denoted by gi, i = 1, ...,K. Furthermore, we
denote by Ai the portion of A which corresponds to gi. Now,
the partial reconstruction Aifi ≈ gi would lead to different
fi reflecting the patient movement. To come up with a single
reconstruction f , the idea is to compensate for the motion right
away by introducing a transformation T(wi), depending on
the parameter set wi and solving the combined optimization
problem

J3(f ,w) =
hg

2

K∑
i=1

‖AiT(wi)f − gi‖22 (6)

+αR1(f)→ min s.t. f ≥ 0,

where w denotes the collection of local parameter wi.
Several comments are in order. Depending on the expected
patient motion, a corresponding transformation model has
to be chosen. Here, we simply use a rigid transformation,
based upon six degrees of freedom. However, any other
parameterizable model could be used. In general, when
applying T(wi) onto f an interpolation step is required. Here,
a tri-linear interpolation is employed. On the first glance, one
might get the impression that the precise knowledge of the
number K is required. As we will see later on, the correct
estimation of the number of motions is not critical for (??)
and may be overestimated and may be even not related to the
projection where a patient movement occurred.

There is still an obstacle connected to the proposed approach
which is brought out in the following test run and is depicted in
Figure ??. A synthetic image (top left) is perturbed by motion
leading to a motion corrupted reconstruction (top right). Now,
the solution of (??) is computed with three different starting
guesses for the parameter set w. The respective results are
displayed in the bottom row of Figure ??. In each case, the
ring is nicely reconstructed. However, its position seems to
depend on the starting guess. To overcome this ambiguity, we
propose the use of a second novel regularizer

R2(w) =
1
2
‖ 1
K

K∑
i=1

wi‖22. (7)

The idea is to penalizes an offset of the motion parameter
and therefore to favor a mean position of the object. The
actual value of the regularization parameter β is not critical.

Fig. 1. A SPECT imaging of an numerical phantom (top left) is perturbed
with motion (top right). The second row shows three results for the CRMC
method starting with different parameter sets w.

Fig. 2. Results of (??) for the three tests presented in Fig. ??.

We always choose a high value (β = 106, 107), in order to
ensure its impact.

Altogether, we end up with the optimization problem

J4(f ,w) =
hg

2

K∑
i=1

‖AiT(wi)f − gi‖22 (8)

+αR1(f) + βR2(w)→ min s.t. f ≥ 0.

To see on whether R2(w) does its job, we repeat the previous
test case with β = 107. As it is apparent from Figure ??, the
CRMC results no longer depend on the starting guess.

Next, we employ the standard substitution f = ez (see,
e.g., [?], [?]) to turn the constraint (??) into an unconstrained
optimization problem

J5(z,w) =
hg

2

K∑
i=1

‖AiT(wi)ez − gi‖22

+
αhf

2

d∑
j=1

‖Bje
z‖22 +

β

2
‖ 1
K

K∑
i=1

wi‖22.
(9)

This problem may be attacked by any sound optimization
procedure.

Here we advocate the use of a proper Gauss-Newton
method [?]. To this end let ∇J5(z,w) denote the gradient of
J5. To bypass the need for the computation of the Hessian
∇2J(z,w), it is approximated by the Jacobian DJ5(z,w)
of J5. As usual, the main part of the iterative scheme is the
solution of the following linear system

DJ5(z,w)
(

zu

wu

)
= −∇J5(z,w).
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To solve this system we follow [?] and use a decoupled
approach. Here each iteration is divided in two steps. First an
update of the image parameter z is computed with fixed motion
parameters, second the motion parameters w are updated while
the image parameters are fixed. Due to the different types
(linear image parameter with constraints and non linear motion
parameter) of parameters a decoupled approach work better
than a coupled one. To solve the linear systems in both parts
of the decoupled approach we use the Conjugate Gradient
method. Furthermore to speed up the optimization and for a
better handling of local minima a multi-level schema is used.
Therefore we smooth the projection data and represent them
on a coarser resolution. After solving the optimization problem
at the coarser level the result is used as a starting guess for
the next finer level and so on.

III. RESULTS

To demonstrate the performance of our new CRMC ap-
proach, it is compared to the DDMC approach. All imple-
mentations are done in MATLAB. Each test was calculated
on a standard PC with a 2.13GHz dual core system with 2GB
RAM. For a first test, three 2D numerical phantoms were
created (see Fig. ??). Every image is of size 64 × 64 pixel
and perturbed by noise. To simulated noise we used Matlabs
random generator to add up to ±20% of the image maximum
to each pixel (negative image values are set to zero). For every
image we simulate a SPECT imaging with 60 projections and
two abrupt rigid movements, one after projection 20 and the
other after projection 40. The results for all three tests are
presented in Fig. ??. It shows the original (first column), the re-
construction obtained by 20 steps of the standard Expectation-
Maximization (EM) algorithm [?] (second column), and the
motion correction results of the DDMC (third column) and
the CRMC approach (fourth column), respectively.

To start with, both the DDMC and CRMC approach where
supplied with the correct motion information, that is, both
are working with those three projection sets where no motion
occured. The DDMC scheme was stopped after 7 iterations,
whereas the CRMC was based on a multi-level scheme with
4 levels and [40, 20, 5, 2] iterations from coarse to fine. In
all three cases we have chosen α = 0.01 and β = 106. The
results in Fig. ?? indicate that the quality of the reconstruction
obtained by the CRMC approach is comparable to the one of
the DDMC approach, when the correct motion time is known
beforehand.

In a clinical setting, no motion information is at hand.
Therefore, to run the DDMC scheme, an automatic tool for
detecting motion [?], [?] is needed. However, the new CRMC
scheme does not need any motion information. To demonstrate
this, we run the same tests (cf. Fig. ??) with K = q = 60,
assuming that each projection belongs to a new object position.
Clearly, this is the only option left to the user when no motion
information is available. The results are depicted in Fig. ??.
The quality is comparable to the one obtained with motion
information. However, as the method has no information on
the original position of the object, a rotation or shift may occur.
Again we set α = 0.01 and β = 106 and were using 4 levels
with [40, 20, 5, 2] iterations.

In the next picture (Fig. ??) we present a 2D test for gradual
motion. It displays the original image, a reconstruction of the
motion perturbed imaging using the EM algorithm with 20
iterations, and the result of the CRMC approach. In this case
a SPECT imaging with a translation of the object after every
projection is simulated. That is, each projection belongs to a
different object position. Due to this, the DDMC approach has
not enough information for the needed partial reconstruction
and can not calculate a motion corrected reconstruction. How-
ever, the CRMC approach can also handle this situation and
compensates all motion artifacts using 4 levels with [40, 20,
5, 2] iterations, α = 0.01, and β = 106.

Next, we turn our attention to 3D tests. To this end, two
3D numerical phantoms, shown in Fig. ??, are used. Both
images are of size 64× 64× 64. A SPECT imaging of these
images is simulated with 60 projections measured around the
object. In a first step no attenuation or scattering is simulated.
For both phantoms 21 simulations are performed, one without
motion and 20 perturbed by motion. The SPECT imaging
is corrupted with one to five rigid motions occurring after
different projections. Here the three motion angels are in the
range of −10 to 10 degrees and all three translation parameters
are between −7 to 7 voxel. The number of motions, the time of
motion, and the six motion parameters are determined by the
Matlab random generator. For each test, the CRMC method
uses a multi-level scheme based on 4 levels with [30, 20, 6,
2] iterations, α = 0.01, and β = 106.

First the motion free case of the two numerical phantoms
is reconstructed with the CRMC approach without motion
correction. Later, these reconstructions will be used to evaluate
the results of the CRMC approach. Next, the 40 motion
corrupted SPECT simulations are also reconstructed without
motion correction. To measure the error between the motion
free and the motion corrupted case we first use a rigid
registration to fit the motion corrupted reconstruction to the
motion free one, see, e.g., [?]. After the rigid registration the
distance measure

D(fref , f tmp) =
∑N

i |f
ref
i − f tmp

i |
2 ·
∑N

i fref
i

· 100 (10)

is used to measure the difference, where N denotes the total
number of voxel. This error measure can be interpreted as the
misplaced radioactivity in percent.

Next the 40 motion corrupted SPECT simulations are re-
constructed under the assumption that the correct motion time
is known. This takes up to 5 min for each test. Again, these
results are compared to the motion free case. Therefore these
images are fitted to the motion free case by a rigid registration
before using (??). Finally, the CRMC method is applied to all
40 cases without any prior information, that is K = 60 is
used. Due to the higher number of motion parameters this
takes about 20 min for each test. Again these results are
compared to the motion free case. All results are collected
in table ??. An overview of the tested motion scenarios can
be found in table ??. As it is apparent from table ?? and
??, the CRMC approach shows impressing results. In all 40
cases the influence of the motion artifacts could be reduced
significantly, even when the motion time is not known. To
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Original Reconstruction DDMC CRMC

Fig. 3. SPECT imaging of three numerical phantoms (Original) perturbed by abrupt rigid motion and reconstructed with the EM algorithm (Reconstruction),
the DDMC and the CRMC approach.

Fig. 4. Motion correction with the CRMC approach of the examples of Fig. ?? with K = 60 subsets.

Original Reconstruction CRMC

Fig. 5. SPECT imaging of an numerical phantom (left) which is perturbed by gradual motion. The middle image shows an EM reconstruction and the right
image the one obtained by the CRMC scheme.

Fig. 6. The 3D numerical phantoms from different views.

Phantom 1
Reconstruction CRMC, known subsets CRMC, unknown subsets
41.74± 10.30 6.76± 1.90 8.19± 1.63

Phantom 2
Reconstruction CRMC, known subsets CRMC, unknown subsets
21.21± 7.12 2.97± 1.57 3.51± 1.12

TABLE I
MEAN ERROR AND STANDARD DEVIATION IN PERCENT BETWEEN MOTION

FREE RECONSTRUCTION AND MOTION CORRUPTED RECONSTRUCTION

AND THE CRMC RESULTS WITH AND WITHOUT MOTION INFORMATION.
THE ERROR IS MEASURED WITH (??). THE FIRST THREE ROWS REPRESENT

THE RESULTS OF THE FIRST PHANTOM, THE LAST THREE ONES FOR THE

SECOND PHANTOM.

Phantom 1
# projection tx ty tz rx ry rz

6 5 0.0 3.1 −6.2 −3.5 −6.4 2.5
13 0.5 −0.4 −7.0 −7.6 0.5 7.6
40 −1.2 5.9 3.5 3.9 2.2 −4.9
52 −4.8 5.3 −0.9 −7.9 −8.5 2.6

8 14 −6.8 −4.5 3.5 −7.1 6.4 −2.2
29 −3.1 −0.8 −5.5 3.4 −5.0 7.9
32 0.2 −6.4 −6.2 7.5 7.9 −9.7

10 45 3.9 5.9 2.9 −3.2 −5.5 1.4
33 5.9 0.9 5.4 −9.6 −6.0 −5.8
45 3.9 5.9 2.9 −3.2 −5.5 1.4

Phantom 2
# projection tx ty tz rx ry rz

13 7 −3.5 5.2 0.2 8.9 8.3 2.0
27 −6.0 0.7 −2.9 4.7 −1.6 9.2
39 −6.2 −2.0 0.0 7.2 −3.3 3.6
49 −5.4 5.6 3.6 −1.3 1.2 2.3

18 7 3.6 6.3 0.8 −2.7 −3.9 7.0
28 6.7 −3.9 2.9 −9.7 1.9 6.3

7 7 2.8 3.2 −0.3 −2.9 −6.9 3.5
28 3.0 5.5 −3.2 1.0 −7.6 −1.0
42 4.2 5.7 −3.8 −4.9 7.3 −5.4

TABLE II
SOME MOTION SENARIOS FOR BOTH PHANTOMS. IT IS PRESENTED AFTER

WHICH PROJECTIONS A MOTION OCCURS AND THE USED MOTION

PARAMETERS IN PIXEL (TRANSLATION tx , ty , tz ) AND DEGREES FOR

EACH AXIS (ROTATION rx , ry , rz )

underscore the results from Table ?? the worst examples are
displayed in Fig. ??, namely test 5 for the first and test 18 for
the second virtual phantom.

Finally we present an example using real-patient data. It
shows the feet of a patient, which had a tremor resulting in
several feet movements during the acquisition. 64 projections
were acquired with a one-head SPECT using a full 360 degree
rotation around the patient. The CRMC method was started
with the assumption that each projection belongs to a new
position. A reconstruction of these data with and without
motion correction, each 128 × 128 × 128 voxel, is shown
in Fig. ??. The 3D images are generated using a volume
rendering with a threshold of 2 for the background and 25 for
the tumor. The 2D images are displayed using an offset in the
colour map to seperate the object contour an the background.
It can be seen that the contours of the feet are sharper and
the shape of the tumor has changed after motion correction.
The improved quality of the result is confirmed by the MiE
company which provides the data available.

IV. DISCUSSION

We presented a new approach for motion correction in
SPECT imaging, which can correct abrupt and gradual rigid
object motion. The approach combines reconstruction and mo-
tion correction and uses solely the measured SPECT raw data.
The performance of the new approach was demonstrated for
numerical phantoms in 2D followed by extensive 3D test runs.
In all cases the CRMC approach came up with meaningful mo-
tion corrected reconstructions. Furthermore it is demonstrated
that the novel approach does not need any prior information
on the motion time. Due to this extraordinary feature, the
CRMC can be used as a fully automatic motion correction
method. On the other hand, however, the computation time
depends on the number of assumed projection sets, that is, the
scheme would benefit from any user knowledge. Therefore
it is intended to combine our scheme with automatic motion
detection methods to gain a fast fully automatic data-driven
motion correction scheme. Future work will also include the
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Original Reconstruction CRMC, known position CRMC, unknown position

Fig. 7. A SPECT imaging of both 3D numerical phantoms (left) is perturbed with abrupt rigid motion and reconstructed without motion correction (middle
left). The results of the CRMC approach with (middle right) or without (right) knowing the motion time indicate its capability of compensating for motion
artefacts.

improvement of the optimization scheme by using multi-scale
techniques within the multi-level approach. Additionally other
regularizers for handling the noisy SPECT data or the motion
parameters should be tested.
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Reconstruction CRMC, unknown subsets

Fig. 8. Volume rendering of reconstructed SPECT feet data without (top)
and with motion correction (bottom). Additionally two 2D slices (xz- and
yz-plain) are shown.


