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Abstract

The paper is concerned with image registration algorithms for the alignment of computer tomography
(CT) and 3D-ultrasound (US) images of the liver. The necessity of registration arises from the surgeon’s
request to benefit from the planning data during surgery. The goal is to align the planning data, derived
from pre-operative CT-images, with the current US-images of the liver acquired during the surgery.
The registration task is complicated by the fact, that the images are of a different modality, that the
US-images are severely corrupted by noise, and that the surgeon is looking for a fast and robust scheme.
To guide and support the registration, additional pairs of corresponding landmarks are prepared. We
will present two different approaches for registration. The first one is based on the pure alignment of
the landmarks using thin plate splines. It has been successfully applied in various applications and is
now transmitted to liver surgery. In the second approach, we mix a volumetric distance measure with
the landmark interpolation constraints. In particular, we investigate the promising normalized gradient
field distance measure. We use data from actual liver surgery to illustrate the applicability and the
characteristics of both approaches. It turns out that both approaches are suitable for the registration
of multi-modal images of the liver.
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1 Introduction

In liver surgery one major task is the resection of tumors. Typically, this task leaves the surgeon with a
dilemma: remove all tumor tissue while sparing a sufficient amount of the patient’s liver. With modern
computed tomography (CT) and magnetic resonance imaging (MRI) the precise individual anatomy
and the location of the tumor in relation to vascular structures can be imaged. From this imaging 3D
models of the relevant structures and individual vascular territories can be computed [31], which are
the basis of modern planning systems for liver surgery. These systems offer the surgeon the possibility
to perform a detailed risk analysis and to define optimal individual resection plans [15]. The goal
is to preserve as much of the liver volume as possible to improve convalescence of the patient. The
importance and clinical use of such 3D planning systems is increasing.
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The precise transfer of the preoperative plan to the patient in the operating room (OR) is a challeng-
ing task. During surgery the location of the tumor and relevant vessels is hidden underneath the liver
surface and the location of the virtual resection line can only be estimated. Intraoperative navigation
systems support the surgeon by visualizing the spatial relation of surgical instruments to anatomical
structures, which are not directly visible. For liver surgery such navigation systems are under develop-
ment and clinical approval. They are based on either intraoperative liver surface information acquired
by a range scanner [7] or intraoperative 2D [4] or 3D ultrasound [2, 3].

To use the preoperative planning data in an ultrasound-based navigation system the necessity of
non-rigid registration comes up. The goal is to find a transformation, such that the transformed CT-
volume matches the current intraoperative US-volume.

In the literature one may find only a few publications regarding CT/MR-ultrasound registration.
Some rigid methods have been reported, which are either intensity- [27, 32] or feature-based [24, 23].
Usually the liver vessels are used as features, because they are identifiable in CT/MRI and ultrasound
data, in particular in power doppler ultrasound. Extensions of such vessel-based approaches to non-rigid
transformations are reported in [17, 16, 26, 25]. The extraction of the vessels from the intraoperative
ultrasound data constitutes a bottleneck of these attempts, as this task is hardly to be accomplished
in a robust, fast and reliable fashion. Hybrid approaches [1], which fit preoperatively extracted fea-
tures directly to the intensities of intraoperative image data are an alternative. Often features are
already available by the planning software like vessel models in liver surgery. Hybrid methods are also
extendable to non-rigid transformations [18].

One way of looking at hybrid methods, is their ability to incorporate user and/or a priori knowledge
about anatomical structures of the underlying tissue. A priori knowledge induces constraints on the
registration problem. Applying constraints reduces the level of non-uniqueness of a registration task
and thus generates more reliable transformations. The incorporation of constraints is a very recent and
challenging topic in image registration. Typical examples for incorporation of a priori knowledge are
masks indicating lesions or anatomical structures [14, 30], volume preservation [28, 11, 13] and local
rigidity constraints [19, 33, 22].

Another kind of constraints are user-defined corresponding landmark pairs. In our application
these landmarks are set pre-operatively in the planning data and intra-operatively in the US-data
by the surgeon. Pure non-rigid landmark registration has already been applied to MRI-ultrasound
registration [10]. Usually thin-plate splines (TPS) [5, 29, 21] are used as transformation model for the
non-rigid landmark registration.

To supplement a nonparametric intensity-based registration scheme [21] by landmarks a constraint
optimization problem may be formulated [9]. Another approach is an alternating optimization of a
distance measure and a spline based landmark registration with coupled displacement fields [35].

In this paper we follow a different strategy. A suitable term is added to the registration functional
which penalizes distances between corresponding landmarks, which may be seen as a so-called soft
constraint. It is the goal of this note to devise and discuss first steps for the solution of the resulting
challenging registration problem.

2 Methods

In this section we present two approaches to solve the registration problem associated with a given
US-volume R and CT-volume T . We assume that M ∈ N pairs of corresponding anatomical landmarks
rj ∈ R, tj ∈ T , j = 1, . . . , M , in both data sets are given. The wanted displacement field is denoted by
y : R

3 → R
3.

Proc. of SPIE Vol. 6918  691808-2



The first approach is based on a direct matching of the landmarks using thin plate splines. The use of
landmarks within the registration of ultrasound images is quite popular [20, 6, 8, 10]. The underlying
mathematics is outlined in [21, 29]. To set up notation, let us briefly introduce the problem to be
solved. One is interested in obtaining a smooth function, measured by the global smoothness measure

SLM[y] =
∫

(∂11y)2 + (∂22y)2 + (∂33y)2 + 2
(
(∂12y)2 + (∂13y)2 + (∂23y)2

)
dx.

Adding the landmark conditions, i.e. y(rj) = tj , as so-called hard constraints, one ends up with the
constraint optimization problem

J [y] = SLM[y] → min s. t. {y(rj) − tj = 0, j = 1, . . . , M}.

The solution of this problem is analytically known and turns out to be a linear combination of thin plate
splines. It is worth noticing that the actual computation of the optimal y boils down to the solution of a
linear system of the size of the number of chosen landmarks. Therefore, the scheme is computationally
very attractive. To our best knowledge, the scheme has not been applied to the special situation of
liver data (i. e. vessel structures). Of course, the performance of any landmark based procedure highly
depends on a proper choice of landmarks, as images are replaced by just a few outstanding points. The
determination of landmarks in US-data is a tricky problem. Only the bifurcation points of large vessels,
like the portal vein, may be selected with high assurance. That is, the ’save landmarks’ are located in
the interior of the liver and consequently the computed deformation has to be closely examined in the
exterior parts. Outcomes in this direction will be presented in the result section.

As a second approach we introduce an algorithms that combines the landmark correspondence with
the intensity value information from the US- and the CT-images. To measure the volumetric distance
of the multimodal images, we choose the so-called normalized gradient field introduced in [12] which
may be seen as an enhancement of [34]:

DNF[y; T, R] =
∫

Ω

‖∇nR ×∇nT (y)‖2 dx,

where × denotes the outer or cross product of vectors and ∇nR and ∇nT (y) the normalized gradient
of R and T (y), i.e. ∇nR = ∇R/‖∇R‖. The term DNF may be interpreted as a measure that quantifies
pointwise the area of the rectangle spanned by the normalized gradients. The quantity ∇nR×∇nT (y)
reaches its maximum when ∇nR and ∇nT (y) are perpendicular and is zero when both vectors are
linear dependend. That is, the smaller DNF[y; T, R], the better R and T (y) match.

We combine the measure DNF with a penalizer which forces the deformation field y to fulfill the
landmark conditions (i.e. y(rj) = tj) as good as possible, which is related to the approach of Fischer
and Modersitzki [9]. The penalizer looks like

P [y] =
M∑

j=1

‖δrj � y − tj‖2, (1)

where the somewhat awkward formulation as convolution with a delta distribution allows one to for-
mulate the penalizer as a function of y, with δrj � y − tj is equal to y(rj) − tj . The resulting overall
functional looks like

J [y] = DNF[y; T, R] + βP [y], (2)
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where β controls the influence of the penalizer. The actual choice of β depends on the size of the trust
region of the chosen landmarks.
In this paper, we restrict y to the set of affine linear mappings, i.e. for each point x = (x1, x2, x3)�,
the deformation may be written as

y =

⎛
⎝γ1 γ2 γ3

γ5 γ6 γ7

γ9 γ10 γ11

⎞
⎠x +

⎛
⎝ γ4

γ8

γ12,

⎞
⎠

the thought after function y = y(γ) is a linear combination of rotation, shear, translation and scaling.
To solve the minimization problem (2) we use the promising discretize-optimize approach, which allows
for fast Newton-like optimization schemes. The idea to interpolate the given images by differentiable
functions, e.g. B-splines, then to discretize the resulting continuous optimization problem with respect
to any desired resolution and finally to solve the resulting discrete optimization problem. Here, the
discrete version of the normalized gradient field is easily to identify. We briefly outline the discretization
of the penalty term. Due to its linearity with respect to y the discretization of P is straightforward.
Let y be the evaluation of y on a discrete grid, then we can specify a vector cj with

c�j y = tj .

Here, the coefficients of cj are given by the weights of the coordinates of rj using an arbitrary inter-
polation scheme. Collecting the vectors cj for all given landmarks row-wise within the matrix C the
discrete formulation of the penalizer reads

P (y) = ‖Cy − t‖2,

where t contains the landmarks’ coordinates of the template image. This function is differentiable with
respect to y, i.e. dyP = C�(Cy − t) and d2

yP = C�C. The derivatives with respect to the parameter
γ is calculated via the chain rule.

This approach allows the usage of a multiresolution strategy, since the resolution of the discrete
penalizer depends only on the grid size of y. For each resolution only the interpolation weights, i.e. the
coefficients of C, have to be evaluated. The special usage of nodal grids to discretize the transformation
y bewares of boundary artifacts.

The minimization of the discrete, nonlinear objective function is performed by a Gauss-Newton
scheme. Supplemented by a clever multiresolution strategy, this scheme allows for a fast and robust
optimization strategy. We start the whole scheme by an affine linear pre-registration based solely on
the landmark information.

3 Results

In this section we demonstrate the applicability of the introduced methods using real-life data from
liver surgery. The data is acquired before and during surgery at the Department of Surgery and
Surgical Oncology, Charitè Berlin, Germany. For better visualization we illustrate only the seg-
mented portal vessel system in both data-sets using standard segmentation algorithms of Amira (see
http://www.amiravis.com). The landmarks are determined by an clinical expert.

The set of data consists of a CT-scan of the liver with a ROI of size 171×166×96 and a 3D US-scan
of the ROI of size 146× 136× 161, both a B-mode scan and a power doppler scan were measured. The
locations of the landmarks in the ultrasound volume are presented in Figure 1(a). In (b) both vessel
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system were visualized after rigid alignment of the two datasets. This image can be seen as a benchmark
for the comparison of the results of the registration algorithms, which are presentetd in 1(c)-(e). Part
(c) documents the outcome of the thin plate spline registration. One may notice a clear compression of
the CT-vessels in upright direction that matches the vessel systems in the interior of the volume very
well. As foreseen above, the exterior vessels, like the beginning of the portal vein in the upper right of
the image, do not mach very well. Figure 1(d),(e) show the results of the second approach with a affine
linear model of y. Here we used the ultrasound power doppler data. Image (d) is just illustrating the
landmark-based pre-alignment, whereas (e) clearly shows that the combined approach is superior to the
plain landmark based approach, in particular for the portal vein. The overall value of J is minimized
to about 11% compared to its starting value, i.e. the one obtained from the landmark registration.

4 Conclusion and Outlook

In this paper we present registration algorithms for the alignment of US- and CT-data of the liver.
The first one is based on a conventional landmark based technique. In contrast, the second combined
approach is entirely new, both on the theoretical and the practical side. It combines the landmark
penalizer with the normalized gradient field distance measure. The initial test runs on 3D-real life data
turned out to be very promising and most likely outperform alternative approaches. The presented
results open the door towards a fast and reliable alignment of planning information with the actual
intra-operative view of the liver and thereby providing a better navigation for the surgeon and hopefully
a better convalescence of the patient.

This paper can be considered as a first step of transferring the theoretical well understood image
registration algorithms to liver surgery. Next items will be the replacement of the affine linear model of
the deformation by a non-parametric approach like elastic-matching (see e.g. [21]). Due to the physical
properties of the elastic registration methods, the actual deformation of the liver during surgery can
be approximated and estimated more realistically. In [9], Fischer and Modersitzki, demonstrate the
combination of non-parametric registration algorithms with landmark registration, where the estimated
displacement fulfills the landmarks condition. We will apply these methods to the special case of liver
surgery. As a third step we will test different distance measures like mutual information, which is
standard measure for multi-modal images, like CT and US. This way, we expect to improve upon the
registration quality.
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(a)

(b) (c)

(d) (e)

Figure 1: Ultrasound vessels are bright; CT vessels are dark: (a) positions of the landmarks marked
with bubbles; (b) after rigid alignment; (c) after landmark registration with thin plate splines; (d) after
the pre-registration for the combined approach; (e) after combined registration
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