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ADAPTIVE MESH REFINEMENT FOR NONPARAMETRIC IMAGE
REGISTRATION*
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Abstract. Three-dimensional (3D) image registration is a computationally intensive problem
which is commonly solved in medical imaging. The complexity of the problem stems from its size and
nonlinearity. In this paper we present an approach that drastically reduces the problem size by using
adaptive mesh refinement. Our approach requires special and careful discretization of the variational
form on adaptive quad/octree grids. It further requires an appropriate refinement criterion. We show
that in some cases this approach can reduce the computational time by a factor of approximately 10
or so in two dimensions and 5 in three dimensions compared to the nonadaptive approach.
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1. Introduction. Image registration is one of today’s challenging image process-
ing problems. Given a so-called reference image R and a so-called template image T,
the objective is to find a reasonable transformation such that a transformed version of
the template image becomes similar to the reference image. Image registration has to
be applied whenever images resulting from different times, devices, and/or perspec-
tives need to be compared or integrated; see, e.g., [8, 33, 14, 29, 32, 13, 22, 44, 35, 15]
and references therein. In medical applications at least one of the images is typically
obtained from an individual (patient), and it needs to be matched to another image
of the same patient or to an atlas image.

Image registration involves three major challenges. The first challenge is to design
an appropriate distance or similarity measure. For images of the same modality, the
idea is to find a vector field u such that T'(z + u(x)) = R(x), and thus the Lo-norm of
the difference is a common distance measure. For images of different modalities, spe-
cialized measures have been designed; see [38, 39, 25, 20]. The second challenge stems
from the inherent ill-posedness of the problem [35]. Hence, regularization is inevitable.
Parametric and nonparametric approaches are common. In the parametric approach,
the transformation is restricted to a typically low or modest dimensional subspace
spanned, for example, by rigid, affine linear, or spline based functions. The task is
then to identify optimal expansion coefficients. For the nonparametric approach, an
explicit regularizer or penalty for unwanted transformations is introduced; see [35] for
an overview. Probably the most commonly used regularizer is the elastic potential;
see, e.g., [7, 9, 35]. The idea is that transformations with a large elastic potential
are considered to be less likely than those with a small elastic potential. More recent
approaches aim to incorporate additional information in terms of constraints. From
a modeling point of view, the nonparametric approach is the most powerful one. In
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fact, other approaches might be considered as particular specifications of different
regularizations; see [35]. The third challenge in image registration is provided by the
computational complexity of the problem. Fast and efficient numerical schemes are
crucial. This is especially the case for three-dimensional (3D) images, where tens or
hundreds of millions of unknowns need to be evaluated. This problem can particularly
cast a challenge in clinical applications when results are needed in minutes rather than
hours or days.

In this paper, we address the third challenge. For ease of presentation, we focus on
the La-norm as a distance measure and the elastic potential as a regularizer. However,
it is important to note that the proposed concepts carry over to any differentiable
distance measure and regularizer.

Several approaches toward fast implementations have been discussed in the lit-
erature: iterative solvers [9, 36], specialized direct solvers [12], fast filter techniques
[42, 6], and multigrid [24, 23, 10, 27, 21]. All these techniques are combined with a
multilevel strategy. However, they all use the original image grid as the finest grid.
Already for moderate sized 3D images this results in a large number of degrees of
freedom. For example, for 128% images, one has roughly 6 million unknowns. Thus,
even a superfast implementation of a multilevel /multigrid method might be too slow
in clinical application. In this paper we propose a strategy to reduce the size of the
problem by using adaptive multilevel mesh refinement. The idea is hardly new for
numerical methods for partial differential equations (PDEs); see [34, 11, 5] and ref-
erences therein. Nevertheless, the use of adaptive meshing for inverse problems is a
relatively new field with very few references; see [2, 3, 4]. To the best of our knowl-
edge, it is completely new in the field of elastic image registration. Some relevant
work on octree based image registration is in [40, 41, 28] and our recent work on
parametric image registration [18]. In [41, 28] the displacement field was discretized
using quadtree splines and in [40] a two-dimensional (2D) surface was embedded in
three dimensions and represented using an octree. Other relevant contributions using
octrees in image processing have been made in the field of computer graphics [31, 30].
In particular, the work of Losasso et al. on octree discretization demonstrates that
images of fine detail, flows, and smoke can be represented efficiently and reliably with
this type of data structure.

In this paper we derive a multilevel adaptive mesh refinement method for elastic
image registration. We use octrees as a basic structure for the underlying displace-
ment field and discretize the optimization problem on an octree. The goal is to
represent a less complex transformation by a smaller number of unknowns. An ex-
treme example is a translation or shift, where the complete transformation can be
represented by only three unknowns. Note that the octree structure is used for the
transformation, while we use the original high resolution representation for the given
images. Further acceleration of the method proposed here can be obtained by using
an image-pyramid structure. However, we choose to concentrate on the discretization
of the transformation assuming a fixed image size.

The paper is structured as follows. In section 2 we present the adaptive approach
taken. In section 3 we describe the discretization of the problem on an octree mesh.
In section 4 we discuss how to solve the optimization problem. We explore briefly the
limited memory Broyden-Fletcher—Goldfarb—Shanno (L-BFGS) method [37] for the
solution of the problem given a single octree grid. In section 5 we discuss refinement
criteria to effectively solve the problem. In section 6 we carry out numerical exper-
iments and demonstrate how an order of magnitude in computational time can be
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saved. Finally, in section 7 we summarize the new approach.

2. The adaptive image registration approach. In this section we present
the overall idea; details are given in the following sections. In monomodal image
registration, the objective is to minimize the functional

1 o
(2.1) J(w) = S|IT(u) - R|I7, ) + §HBU||2L2(Q)7

where ) is the underlying data domain (for ease of presentation Q =]0,1[3), the
transformed image is T'(u)(x) := T(z + u(z)), B is a differential operator related to
the regularizer, and o > 0 is a regularization parameter; see, e.g., [35]. In general
there is no analytic solution for this problem, and we rely on numerical optimization
schemes. Here, we first discretize the functional and then optimize using a quasi-
Newton method [37].

In standard approaches, J and the displacement field u are discretized on the
voxels of the underlying images. Therefore, a standard discretization [21] in three
dimensions on a regular rectangular grid €, with n = ny X ng x ng cells (voxels) and
uniform cell width (voxel size) h = (hq, ha, h3) yields

1
(2.2) Thwh) = SIT ") = RIF+ 5 ()T AN
where u = [ull,...,ul]" is a vector collecting the displacements for all voxel lo-
cations " € Qp, R is the vector R(z"), and A" = (B")T B" where B" is a dis-

cretization of B; see [21] for details. Here, we use the elastic potential with B =
(p? I3 ®V , A/2V.) such that

| Bul%,0 = MZ VU7, + AV - ullZ, 0,
J

and thus A" is a discrete version of the Navier-Lamé operator,
Al = AP 4 AV

with Lamé constants A and p (here we take the common choice p = 1, A = 1), and
AP is the vector Laplacian.

The time consuming part in registration is the solution of the 3n Euler-Lagrange
equations which arise from the minimization of (2.2). The idea here is to use an
adaptive sparse grid S;, with fewer grid points than €, for the discretization u” of u
in order to reduce the number of unknowns and thus the computational cost. Since the
image grid does not necessarily coincide with the transformation grid, we construct a
linear interpolation operator  that maps u” from the sparse grid, Sy, to the image
grid, Q5. The matrix @ is typically sparse, and nonsquare with only a few nonzero
entries per row. In this paper, for the sake of simplicity, we assume that the image
grid does not reduce the information in the image. This assumption is realistic even
for relatively coarse meshes (see [18]). The new objective function is thus

(07

(23) ) = JITQu) ~ RI3 + 5

(u") T Al

Note that now A" = (B")T B", where B" is a discretization of B on the sparse, in
general, nonregular grid Sj,.
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Algorithm 1 Adaptive Image Registration

1. choose initial grid S}, and initial guess u’(}

create @), Ay, for the sparse grid Sp,

find u” minimizing (2.3) based on the starting value u

if |uf — u|| < tol then stop

refine S, and interpolate u” on the refined grid to obtain a starting guess for
the refined grid; goto 2

U

Qgp Qup Qon Qn

Ssn San San Sh
(b)

Fi1G. 1. 2D example for grid refinement: (a) regular; (b) adaptive.

Our adaptive scheme is summarized in Algorithm 1; details are given in the
following sections.

A naive concretization of Algorithm 1 would be to start on a very coarse grid and
refine the grid by just doubling the points in each direction; see Figure 1(a). This
is related to the standard multilevel approach. A drawback is that one will finally
end up with the fine data grid €25, where a fine grid is used even in regions where
the transformation is more or less constant. As a remedy, we use octrees. From our
point of view, this choice is quite natural, since an octree grid S}, is nested in the
finest regular grid €, and still relates to the pixel structure of discrete images; see
Figure 1(b) for a simple example of a sequence of refined sparse grids. A more detailed
description of octrees is presented in section 3.

In the next section, we explain the octree data structure and the discretization
of the regularizer on a particular octree (step 2 in Algorithm 1). Section 4 explains
the optimization technique for a particular discretization and also how to solve the
arising linear systems (step 3 in Algorithm 1). Finally, in section 5, we explain how
to refine the octree (step 5 in Algorithm 1).

3. Octree data structure and discretization. In this section we discuss oc-
tree based discretization of the image registration problem. Following [1], we envision
a uniform underlying coarse grid Qy with cell width H and a uniform underlying
fine grid Qj, with cell width h; see Figures 1(b) and 1(a). We assume that H = 2Eh,
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where L denotes the total number of refinement levels. The fine grid is basically the
voxel grid of the images, and the coarse grid is inexpensive to work on while still
producing a meaningful coarse grid solution that can serve as a starting guess for a
refined level.

3.1. Octree data structure. In contrast to the regular grids, the octree grid S,
is composed of square cells of different sizes. Each of these cells can have a width 27h,
where 0 < j < L. Thus, S} is nested in ;. To make the data structure easier to
access, we limit the ratio of widths of adjacent cells by two. This results in a tree
structure, where each node (cell) has up to eight children in three dimensions and
four for the 2D case; see Figure 1(b) for an example.

The grid structure is then stored as a sparse array. The size of each cell is stored
in the upper left corner of the array. This allows us to quickly find neighbors, which
is a major operation in the computational process. This data structure is closely
related to the one suggested in [26]. For example, for the sparse grid Sa; presented
in Figure 1, the nonzero entries are stored as

4 2 2
2 2
Sop = 1 1

3.2. Discretization of the regularization operator. Given a particular oc-
tree grid one has to decide where to discretize the different variables. In our previous
work [21] we have used staggered grids in order to discretize u = (u1,ug,u3). In
the context of octree discretization and due to the discretization of derivatives in the
tangential directions, a second order staggered grid discretization is possible but dif-
ficult to obtain; see [17]. In this work, we have therefore chosen a nodal grid based
discretization which implies that all variables are discretized at the nodes. While this
discretization is not optimal from a multigrid perspective, it is substantially simpler
to work with and implement, and second order accuracy can be easily obtained even
on octrees. For ease of presentation, we derive our discretizations in two dimensions;
the 3D extension is straightforward.

3.2.1. Discretizing the gradient. We focus on an arbitrary component u, of
the displacement. Consider the quadtree (2D octree) cell depicted in Figure 2 with
cell-center e at position (x1,x2) and cell-width 2h.

In the nodal discretization all the components of u are discretized on the nodes.
The partial derivatives are thus naturally discretized to second order accuracy along
the centers of the edges of each cell, i.e.,

Ohue(xy, m0) = 8{1ug(x1,x2) +O(h?) and  Oouy(zy,z2) = 8§ug(a:1, x2) + O(h?),

with GJ’? the standard central finite difference approximation and ¢ = 1,2. Thus, for
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ue(z1 — hyx2 + h) a?ug(xl,»xg +h) ug(z1 + hyx2 + h)
n »

AQDup(xy + h,mo + %)

35%@(331 — h,xQ)A ) .ue(xl + h7.’E2)
(w1, x2)
Adbug(zy + by — %)
u > [ ]
ue(1 = h,x2 = h) Ofug(xy, w2 — h) we(z1 + h,x9 — )

F1G. 2. Discretization of Vuy.

the quadtree in Figure 2 we obtain the second order approximations

a{lug(xth " h) _ uz(xl + h,zo + h) — uz(xl — h,xo + h)

2h ’

OMug(xy, 9 —h) = we(ry + hyx9 — h)2—hue($1 —h, 9 — h)’

OMug(zy — h, ) = ue(x1 — hy 2 + h)2—hw(x1 — h, 2o — h)’
Oue(wy + h,x2 — h/2) = ue(z1 — h,22) — Ze(arl —h, 3 — h)7
OMug(zy 4 hyxo + h/2) = wp(zy — h,y + hf)b —ug(zy — h,l?g).

Using this second order difference scheme, we can discretize the gradient of u, on the
quadtree edges.

We now show how to use this approximation in order to discretize the regulariza-
tion operator. To this end we write

/ |Vue|? doe = Z/ |Vug|? do = Z/
Q j cell; j c

|01ue|? da + Z/ |0og|? dux.
ell; j cell;
Using the midpoint quadrature rule we approximate the integral over each cell, which
yields a second order approximation to the integral. In the case of the above 2D
example, with v; = volume(cell;) = (2h)? the cell’s volume, we obtain

) 2 ) 2
(3.1&% |01 |? da = %J [8{%(3:1, Ty — h)] + %J [8{%(3:1, To + h)} + O(h?),
cell;

Vs 2 . 2
/ |Ooug|* dx = ZJ [837%(331 +h,xo — %)} + ZJ {ague(arl +h,z2 + %)}
cell;

Y

(3.1Db) + 5

{851@(3:1 — h,$2):|2 + O(Rh?).

Summing over all of the cells, we hence obtain an O(h?) approximation to the integral
Jo, lgradug|? dz and therefore to [, | gradu/® d.
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For ease of presentation, we derive a matrix representation for the discrete gradi-
ent operator. Let ® denote the Hadamard (or elementwise) product, V* = [D?, DT
with D;?u? the collection of ajhw(xl , x2) for all discretization points, v the vector col-
lecting all cell volumes, and A¢ an average matrix from edges to cell-center of each
cell; we have

/ |Vue|? doe = / |O1ue|? + |Ooug|*da
Q Q
=0T A (V') © (Thul)) + O(h?)
(3.2) = (up) T (V") T diag[(AS) "v]V"u} + O(h?).
Note that the regularization is quadratic in u? with a symmetric positive semidefinite
matrix (V?)Tdiag[(A¢) Tv]V" whose size is the number of nodes in the quad/octree

mesh. The diagonal weighting matrix diag[(A¢) " v] handles the different cell volumes
as well as the averaging from edges to cell-centers.

3.2.2. Discretizing the divergence. To discretize V- u at cell-centered points,
we again average the second order discretization of the derivatives to the cell-center.
For the quadtree presented in Figure 2 we obtain

Blul(xl,xg) = %Gful ((El,xg + h) + %8{1U1($1,x2 — h) + O(h2),
Oouz(x1,x2) = %35/21@(331 +h,zo —h/2)+ i@gﬂuz(a}l + h,zo 4+ h/2)
+305us(z1 — b, 22) + O(h?)
%aQUQ(xl - h,$2) + %85112(551 + h,$2) + O(h2),

and hence
/ (V- u)? de = %J (aful(xl,xg + h) 4 Oty (21, 22 — h)
(3 3) cell;
+ OMug (1 — by x9) + Oug () + h,xg)) + O(h?).

Using the notation (V") for the discretized divergence, we end up with the
following approximation:

/(V cu)? dr =0 (VP W) o (VP uh) + O(h?)
Q
(3.4) = (") T(V")T diag(v)(V" )u" + O(h?).

3.3. The discrete regularizer. Summarizing the previous subsections, the dis-
cretized regularizer is

(uh) T Ahyh 4 O(h?),

N =

1 I A
§HBUHQL2(Q =3 D IVuslii o + §||v “ullf =
J

where A" is

(3.5) Al = ply @ (V") diagl(A) o] V"] + (V)T diag(v) (V).
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4. Solving the optimization problem. Since we use standard optimization
techniques with implementation details similar to those in previous work [21], we only
briefly summarize the strategy.

We implemented the L-BFGS method as suggested in [37]. Since the optimization
scheme is applied for a fixed refinement level, for ease of presentation, we drop the
subscript & in this section. Our goal is to minimize the discrete objective function

(4.1) J(u) = %HT(Qu) - R|3+ %UTAU.

Any gradient descent direction requires the computation of the gradient of the objec-
tive function. Differentiating the different components with respect to u yields the
Euler-Lagrange equation

VJ=Q'"T)(T - R) + adAu =0,

where T, is the Jacobian of T with respect to u; see [19, 21]. Though the Jacobian is
a sparse matrix, the nonzero entries can vary by order of magnitudes.

For the L-BFGS method we build an approximation to the inverse of the Hessian
of the objective function by using the most recent L directions {u*=%), ... u(®}, the
gradients {grad JE=L) . grad J(k)}, and an initial approximation to the Hessian;
see [37, 16] for implementation details. As discussed in [16], it is crucial to initialize
the approximation to the Hessian with the Hessian of the regularizer. Thus, each
iteration requires solving a linear system with the matrix A.

For an efficient solution of the linear system, iterative methods are required. In
particular, a multigrid method can be applied (see [17]). To this end, the discretization
is required to be h-elliptic (see [43] for details). While the analysis of multigrid for the
octree discretization of the Navier—Lamé operator is beyond the scope of this paper,
we note that multigrid methods have been successfully applied to nodal discretization
of such systems [43].

5. Adaptive mesh refinement. The cost of the optimization process is directly
impacted by the size of the problem and the initial guess for the solution. Adaptive
multilevel refinement methods are targeted to achieve a low-cost good starting guess
by using coarse grids, and to reduce the size of the discrete fine grid problem by using
adaptive nested grids that refine only in areas where the error in the solution is large.
Unfortunately, finding a unique refinement criterion that works for different problems
is rather difficult; see, e.g., [43].

We next develop a refinement criterion. The basic idea is bounding the discretiza-
tion error of the underlying continuous optimization problem and the objective func-
tional J, respectively. Let Sy be a given octree discretization with cells Qy,...,Q,,.
Then J can be written as a sum over the octree cells, i.e.,

J(u) = %Z/QJ (T(u) — R)2 + a|Bul? dz.

In our discretization we approximate the integrals over the octree cells £; by the
midpoint rule. For the derivation of an error estimate let

p(x) = (Tu(@)) ~ R) + olBu(z)P
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such that J(u) = %Z; Jo pdz, and let Q; = {z : ||z — 7]l < h;} C R? be an
octree cell with cell-center z; and width h;. Using a first order Taylor expansion of
p, we obtain

[ pt)de = vspla) + [ sradplé@) (@ - ;) da
Q; Q;

where £(z) is a point in €; and v; := h{ is the volume of the cell in d dimensions.
Thus, the discretization error is bounded by

Vd
<w; sup |Vp(&)| sup |z —z;| = Thjvj sup [Vp(§)|.
£eQ); TEQ; £eQ);

[, pos=ste
Q

J

Therefore, if |gradp| is large compared to the cell-width h;, the approximation is
inaccurate. Since the solution of the optimization problem depends on an accurate
discretization of the integral, we want to refine in areas where the error is large.
Clearly, we cannot evaluate the supremum exactly. To this end we use the quan-
tities for which we already have an approximation p? ~ p(z;) and subsequently an
approximation V" p" to the gradient Vp(x;) using finite differences. Then, in areas

where | gradh p?| is large, we may assume that the grid should be finer, while in areas
where the approximation to p is relatively flat, no further refinement is needed.
In order to decide if | grad” p?| is large, we use a parameter 7 and refine every cell

that satisfies | grad” p%| > 7. The refinement process is terminated when | grad” Pl <
7 for all cells. The choice of 7 is, in general, difficult. Nevertheless, a simple strategy
can help to determine an appropriate value. If 7 is set to be large first, then a coarse
grid is obtained. One can then observe the misfit and decide if 7 should be decreased.
If 7 is decreased but without a significant improvement in the registration quality,
then we conclude that this 7 is sufficiently small.

6. Numerical experiments. To demonstrate our method, we present two 1282
2D examples and a 1283 3D example. The goal of the experiments is to investigate
different aspects of our algorithms and compare octree to standard multilevel methods.

The general setup for each test case is as follows. We performed registrations
for various tolerances 7 in our refinement criteria. For the underlying image domain
we considered the unit cube [0, 1]¢ and the images were scaled to a gray-value range
of [0,1]. The tolerances T were chosen between 0 (refine everywhere) to 10. In all
experiments we started our multilevel method on a coarsest mesh consisting of a
single cell yielding 2 x 4 and 3 x 8 unknowns in two dimensions and three dimensions,
respectively. The stopping criterion for the optimization on a single level was when
the maximum difference of consecutive iterates was below 0.1 voxel/pixel width. The
linear systems were solved to a precision of 10~° using a preconditioned conjugate
gradient method.

In two dimensions, we considered an academic and a real data example. In the
academic example we registered a square to a “flag”; cf. Figure 3. The real data
example is about the registration of two X-ray images of hands; cf. Figure 4. Both
images have a size of 128 x 128 pixels.

In three dimensions, we registered two CT data sets of the chest under maximal
inspiration and expiration, respectively; cf. Figure 5. Both images have 1283 voxels.

The results are summarized in Tables 1, 2, and 3. For each experiment we give the
number of cells on the finest level, the misfit of the images, i.e., || T (uops) — R||/||T— R,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



ADAPTIVE MESH FOR IMAGE REGISTRATION 3021

R T

[T - R

Fic. 3. Images for the 2D flag example.

R T

[T - R|

-

F1G. 4. Images for the 2D hand ezample.

[T - R

F1G. 5. Images for the 3D CT example (volumes orthogonally sliced).

and the speedup to a regular refinement (7 = 0). To provide a fair measurement of
the speedup, we compared the execution times to the execution time for the regular
refinement without meshing; i.e., we compared the total time to the time spent only
for the optimization (Algorithm 1, step 3) in the experiment with 7 = 0.

As observed in Tables 1 and 2, major computational savings can be obtained as
T increases. These computational savings do not come without cost; coarser meshes
yield worse matching between the images. For example, for the flag example, using
103 cells we obtain a misfit of 15%, while using the full grid we obtain a misfit of 7%.
Thus, the adaptive mesh adds regularization to the process. Although the misfit for
7 = 10 is larger than the misfit for 7 = 0 (full grid), the results of the registration
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TABLE 1
Results for the 2D flag example. We observe a major speedup with only a slight increase of the
misfit.

Elapsed time
T #cells | misfit | total | interp. | solving | meshing | speedup
0.00 16384 | 0.18% | 78.1s 4.4s 67.5s 0.9s 1.0
0.10 1084 | 0.16% | 19.3s 4.6s 10.5s 0.2s 3.9
0.20 772 | 0.23% | 13.6s 4.4s 5.3s 0.2s 5.5
0.30 769 | 0.16% | 15.3s 4.6s 6.8s 0.3s 4.9
0.40 556 | 0.14% | 14.1s 4.8s 5.2s 0.3s 5.3
0.50 505 | 0.19% | 12.9s 4.6s 4.3s 0.3s 5.8
1.00 376 | 0.21% | 11.7s 4.4s 3.4s 0.2s 6.4
5.00 169 | 0.21% 9.2s 4.0s 1.9s 0.2s 8.2
10.00 139 | 0.39% 8.6s 4.0s 1.4s 0.2s 8.7
TABLE 2

Results for the 2D hand example. A factor of 12.5 speedup is observed. The misfit is increased,
but visually the images are still very similar.

Elapsed time
T Fcells misfit | total | interp. | solving | meshing | speedup
0.00 16384 6.99% | 70.3s 4.0s 59.6s 0.9s 1.0
0.10 1282 7.60% | 11.5s 4.0s 3.4s 0.3s 5.8
0.20 886 8.45% | 10.1s 3.8s 2.2s 0.3s 6.7
0.30 700 8.65% 9.5s 4.0s 2.0s 0.2s 7.0
0.40 613 8.92% 8.8s 3.9s 1.4s 0.2s 7.6
0.50 574 9.31% 8.3s 3.7s 1.2 0.2s 8.0
1.00 409 | 10.10% 7.7s 3.3s 0.9s 0.2s 8.8
5.00 148 | 13.24% 6.6s 3.3s 0.5s 0.2s 10.2
10.00 103 | 15.45% 5.4s 2.4s 0.4s 0.1s 12.5
TABLE 3

Results for the 3D CT example. A factor of 5 speedup is observed with an increase in the misfit.
Visually, we could not see the difference between the 6.96% and the 12.06%.

Elapsed time
T F#cells misfit total interp. solving | meshing | speedup
0.00 || 2097152 6.96% | 17933.9s | 2637.3s | 12904.1s 27.9s 0.9
0.50 83140 6.43% | 10461.4s | 2824.2s 6005.6s 10.2s 1.6
1.00 47216 7.89% 5355.3s | 2650.3s 1270.1s 8.1s 3.1
5.00 17165 7.65% 5000.4s | 2624.2s 975.5s 4.6s 3.4
10.00 16038 8.47% 4443.2s | 2506.1s 582.5s 4.0s 3.8
50.00 6385 | 10.01% 4144.1s | 2513.8s 268.7s 2.1s 4.1
100.00 3935 | 10.55% 3976.4s | 2450.1s 179.6s 1.7s 4.2
200.00 2794 | 11.33% 3642.0s | 2290.5s 99.2s 1.4s 4.6
500.00 2017 | 12.08% 3559.6s | 2254.5s 63.2s 1.3s 4.7

look almost identical. This is demonstrated in Figures 6, 7, and 8, where we present
the final deformed images for different values of 7.

From a computational point of view, our results show that the proposed method
scales well with the grid tolerance, and in general we found an acceleration factor
of 6-10 in two dimensions and a speedup of approximately 5 in three dimensions.
Furthermore, we observed that the overhead for the adaptive grid refinement (meshing
time in the table) was in general less than 0.1% of the execution time in two dimensions
and 0.2-0.3% in three dimensions.

7. Summary. In this paper we have developed an adaptive multilevel refine-
ment (AMR) method for nonparametric image registration. We have used the elastic
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F1G. 6. Results for the flag example. The recovered images (top), the difference between T' and
R (middle), and the quadtree mesh (bottom) for different values of T.

potential as a regularizer and discussed how to effectively and accurately discretize
and solve the problem on octree grids. We have used the L-BFGS method for opti-
mization which requires the solution of a linear system which evolves from the Hessian
of the regularizer. We develop a refinement criterion based on the accurate evaluation
of the variational form. Numerical experiments demonstrate that we can obtain a
substantial speedup and reduction in problem size by using our method.
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F1G. 7. Results for the hand example. The recovered images (top), the difference between T
and R (middle), and the quadtree mesh (bottom) for different values of T.
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Fic. 8. Results for the 3D CT example. A middle slice from the recovered images (top), the
difference between T and R (middle), and the quadtree mesh (bottom) for different values of 7.
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