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E-mail: fischer@math.uni-luebeck.de and modersitzki@math.uni-luebeck.de

Received 30 July 2007, in final form 14 January 2008
Published 23 May 2008
Online at stacks.iop.org/IP/24/034008

Abstract
Image registration is the process of aligning two or more images of the same
scene taken at different times, from different viewpoints and/or by different
sensors. Image registration is a crucial step in imaging problems where the
valuable information is contained in more than one image. Here, spatial
alignment is required to properly integrate useful information from the separate
images. It is the goal of this paper to give an overview on modern techniques in
this area. It turns out that the registration problem is an inverse problem which
does require a sound regularization and the use of proper models. Also, the
numerics have to be done with great care. We will comment on these issues
and supplement it by real life examples.

1. Introduction

One of the many problems in current image processing is image registration, sometimes also
called fusion, matching or warping. Very often, information obtained from multiple images
appears at different poses and is of a complementary nature. Therefore spatial alignment is
required to properly integrate useful information from separate images. This procedure is
called registration. In other words, given a reference and a template image, the goal is to find
a transformation such that the transformed template is similar to the reference image.

There is a large number of applications demanding registration. Areas range from art,
astronomy, astro-physics, biology, chemistry, criminology, genetics, physics, or basically any
area involving imaging techniques. More specific examples supported by registration are, for
example, remote sensing (constructing a global picture from different partial views), security
(comparing current images with a data base), robotics (tracking of objects), and in particular
medicine, where computational anatomy, computer-aided diagnosis, fusion of different
modalities, intervention and treatment planning, monitoring of diseases, motion correction,
radiation therapy or treatment verification demand registration. Since imaging techniques,
like computer tomography (CT), diffusion tensor imaging (DTI), magnetic resonance imaging
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(MRI), positron emission tomography (PET), single-photon emission computer tomography
(SPECT) or ultrasound (US) underwent a remarkable, fascinating and ongoing improvement
in the last decade, a tremendous increase in the utilization of the various modalities in medicine
takes place.

Unfortunately, no unified treatment or general theory for image registration has been
established. It appears that each application area has developed its own approaches and
implementations. Depending on the particular application, the focus ranges from computing
time (industrial inspection, tracking), image features (remote sensing), memory (high
resolution 3D images), to accuracy of a model (treatment planing). Many of the solution
strategies are designed by practitioners employing various heuristics for stabilization. Care
has to be taken, as image registration is ill-posed as is explained in section 3.3. Therefore, any
implementation suffers from instabilities if not properly regularized.

The last decade has also witnessed several mathematical attempts to build a bridge
between theory and practice. The most prominent approaches are based on stochastics,
appropriate parameterizations or variational techniques. The focus of this paper is on a
general mathematical model for medical image registration. This model allows one to classify
most of the currently used schemes in a unified manner and thereby to discuss their pros and
cons in a systematic fashion. However, it is probably impossible to provide an overview on
image registration, even if one restricts oneself to the field of medical image registration. There
are some books, covering parts of the field; see, e.g., [1–6]. Other important contributions
aiming for an overview are, e.g., [7–17]. For important theory related contributions see, e.g.
[18–21]. Among the many outstanding original publications are, e.g., [22–35].

This paper is organized as follows. Some exemplary real life applications are presented
which are intended to give an idea on the widespread medical registration problems as well
as the application-driven demands on a solution. In section 3, the general model is presented
gradually and its main ingredients are discussed and commented. Finally, section 4 touches
upon the state-of-the-art numerics for solving the challenging registration problems. We close
with some remarks on future challenges.

2. Motivation

To illustrate the basic challenges and the diversity of medical image registration, three
exemplary applications are presented. The first one is concerned with the alignment of
images from serial sectioning of a human brain (image courtesy Oliver Schmitt), the second
example deals with the bending of a human knee (a challenging test case supplied by Philips
Research, Hamburg), whereas the third one is a typical multimodality example (images from
FUSION, Germany).

2.1. Example: serial sectioning

Especially in anatomy, serial sectioning is a common technique for exploring tissue properties
down to a cellular level. Figure 1 illustrates a typical work flow. Here, an organ (the brain of a
human donator) is prepared and embedded into paraffine wax (a). Using a sliding microtome,
the tissue is sectioned into thin slices (b), which amount to about 6.000 for a whole human
brain. The slices are stained, mounted and covered by an objective slide. These slides serve
as the basis for a microscopic study (c). The overall process destroys the three-dimensional
correspondences of tissue: the fixation of the tissue on the objective slide is almost arbitrary
and in addition the sectioning procedure itself introduces nonlinear distortions of the tissue.
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(a) paraffine imbedded brain (b) sectioning process (c) microscope

(d) exemplary section 1435 (e) difference before registration (f) difference after registration

Figure 1. Histological serial sectioning (image courtesy Oliver Schmitt, Institute of Anatomy,
University of Rostock, Germany): paraffine embed human brain (a), slicing microtome with tissue
section on the blade (b), microscope exploring objective slide (c), digitized section 1435 (d),
difference with respect to the consecutive section before (e) and after registration (f).

(a) detail with grid (b) 3D reconstruction

Figure 2. Detail of a transformed section with a visualization of the grid (a) and a stack of
registered section (b) (100 sections, left hemisphere, zoom in the z-direction).

The rearrangement of the original tissue correspondence constitutes a typical registration
problem.

Figure 1 also shows an exemplary section (d) and the difference in the consecutive section
before (e) and after (f) registration. As it is apparent, all structural differences have been
removed by registration. Figure 2 shows a stack of sections after the registration (b). To
appreciate the computed transformation, a detail of a transformed grid is displayed for a
sample slice (a). The numerical details are provided in section 3.7.

2.2. Example: human knee

Next, an alignment of two MR scans of a human knee is presented (data courtesy by Thomas
Netsch, Philips Research, Hamburg, Germany). Though this example has no clinical relevance,
it shows many of the features and challenges of typical registration problems but at the same
time allows for an intuitive visualization and interpretation.

To keep the issue of interest simple, we display 2D cross sections from 3D MRI’s of a
human knee. Figure 3 shows the images to be registered (a, b). Assuming that these two
images are taken before and after an intervention, the objective is to automatically detect
correspondences between points in both images. Due to a bending of the knee, these
correspondences are non-trivial, as can be observed from a visual inspection or from the
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(a) reference R (b) template T (c) difference T − R

(d) transformed
template & grid

(e) transformed
template T (y)

(f) difference
T (y) − R

Figure 3. Local rigidity constrained registration of a human knee (data courtesy of Thomas Netsch,
Philips Research, Hamburg, Germany): the nonlinear transformation has been kept locally rigid to
preserve bone structures.

difference image (c). Figure 3 also illustrates the transformation (visualized by a transformed
grid (d)), the transformed image (e) and the distance after a registration (f). The registration,
which is discussed in section 3.7, enables a direct comparison of the images.

2.3. Example: image-guided surgery

The next example discusses another challenging real life application for image registration,
namely the use of intraoperative imaging to facilitate an image-guided surgery. This work
is part of the FUSION project (Future Environment for Gentle Liver Surgery Using Image-
Guided Planning and Intra-Operative Navigation) granted by the BMBF (German Federal
Ministry of Education and Research); see www.somit-fusion.de.

Image-guided surgery aims to provide the surgeon with accurate in situ spatial information
regarding the location of pathology during intervention. FUSION focuses on liver resection
and ablation. Typically the removal of tumors leaves the surgeon with a dilemma: remove all
tumor tissues while sparing a sufficient portion of the patient’s liver. Preoperative imaging is
an important tool for a qualified planning. Figure 4 displays a typical plan for a liver resection
(planing by MeVis, Bremen, Germany).

Due to liver movement during surgery, registration is required to match the planning data
to the current situation. In order to get a real-time measurement of the current configuration a
fast 2D freehand US image acquisition is used which is optically tracked. A US compounding
is used to generate a 3D US volume.

For illustration purposes, a simplified 2D problem is considered. Figure 4 depicts a cross
section of the preoperative planning MR data (a) and a corresponding US view (c). Apart
from the fact that one faces the problem of only partial overlap of the US image and the
MR data one has also to deal with different modalities. This first problem is bypassed in
the FUSION project by an initial pre-registration of the region of interest (ROI) using some
user-supplied landmarks and the second problem by using NGF [36], a particular modality-
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Figure 4. Liver resection planning by MeVis, Bremen, Germany.

(a) MR template (b) MR ROI (c) US reference (d) transformed MR ROI

Figure 5. MR/US registration of a human liver (data by FUSION): cross section of the MR data
(a), region of interest (b), US reference (c) and detail of the transformed ROI (d).

independent distance measure. The overall result is shown in figure 5(d), the numerical details
are provided in section 3.7.

3. Problems and solutions

Medical image registration algorithms usually estimate the transformation by either following
a data-driven flow or minimizing a certain cost function. Flow approaches are very similar
to approaches in so-called optical flow in computer vision, a technique used to estimate
motion in an image sequence like video. In image registration, flow approaches have been
studied for example in [24, 37, 35]. Here, the focus is on registration via optimization. In
particular, a variational-based approach is discussed. This approach not only allows for a
sound mathematical treatment but also enables a characterization and classification of some
of the most prominent methodologies.

Optimization-based registration can be classified according to the space to which the
wanted deformation belongs: rigid or affine linear registration algorithms depend on only a few
parameters, while spline-based approaches may use a very high-dimensional transformations
space. Rigid registration methods are in general very limited and not descriptive enough
and therefore nonrigid approaches are to be used in most applications, like those presented
in this paper. More generally, the search space might be explicitly given (e.g. spanned by
splines) or implicitly determined by a variational formulation (e.g. using Sobolev semi/norm
regularization).

As is outlined in section 3.3, image registration is ill-posed which results in ill-
conditioning, instability of solutions and a highly non-convex cost function. Regularization is
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introduced to alleviate these issues and also to incorporate user knowledge into the problem
formulation. Therefore, the image registration is usually phrased as an optimization problem,
where the cost function consists of a similarity measure, a regularization and additional
penalty terms that discourage undesirable transformations or constraints that rule out unfeasible
solutions.

Two major directions can be distinguished. One direction is based on a fixed Tichonov
regularization, penalizing against a fixed starting point, for example a pre-registration, while
the other direction is based on iterative Tichonov regularization where the update is regularized.
The second approach generally allows for more flexible transformations and thus is an
interesting tool for inter-patient registration. The first approach is more restrictive and,
with a proper choice of the regularization parameter, can be used to ensure a one-to-one
transformation, which is very valuable for some applications.

In the following, it is assumed that the images T and R are given, smooth, and compactly
supported functions on a rectangular domain � ⊂ R

d , where d denotes the data dimensionality.
Since the given data are typically discrete, an interpolation or approximation step might become
necessary, in particular for the computation of the transformed template T [y] (cf section 3.1).
Using an appropriate distance measure D (cf section 3.2) and a regularizer S (cf section 3.3),
the wanted transformation is a solution of the optimization problem

D[T [y],R] + αS[y] + βP[y] = min subject to y ∈ M, (1)

where α is a regularization parameter, P is a penalty or soft constrained (cf section 3.4), β

is a penalty parameter and M is a set of admissible transformations (cf section 3.5). Note
that a functional setting is used. A major advantage of this continuous formulation is that the
following steps are consistent and justifiable. Dealing with discrete data requires interpretation
and work around at later stages. For example, already a rotation of an object is a non-trivial
operation within a discrete setting.

3.1. Transforming images, the forward problem

A major ingredient that is often overlooked and underestimated is the computation of the
transformed image T [y]. A first step is the interpolation of the typically discrete given data Ti .
In particular, the d-linear interpolation is widely used. The advantages of d-linear interpolation
are a continuous representation, a min/max principle (min{Ti} � T (x) � max{Ti}) and its fast
computation time. A drawback is a resulting non-differentiable overall objective function. As
a consequence, only rather slow optimization techniques can be applied. Higher order spline
interpolation is a commonly used alternative, resulting in a smoother, differentiable image
model. The drawbacks of spline interpolation are under-/overshooting (Gibb’s phenomena)
and its slightly higher computation time [32, 38–41].

Sometimes, in addition, approximation or scale-space ideas are used for convexification of
the objective function. Rather than interpolating the measurements that are usually corrupted
by noise, a smoother approximation is used [41, 42]. Thus image details are omitted and the
danger of being trapped into local minima can be reduced. Figure 6 illustrates these concepts,
and a spline interpolation (a), a smoother approximation (b) and a very sooth approximation (c).
Note that the images are represented with respect to different scales rather than at a different
resolution, which will be discussed in section 3.3.

Based on the continuous representation of T , the above so-called Eulerian framework
is obtruding, T [y](x) := T (y(x)). An alternative, though less commonly used approach
is the so-called Lagrangian map, where basically T Lagrange[y](x) := T (y−1(x)) (in a proper
formulation, the inverse transformation is not required).
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Figure 6. Multi-scale image approximation.

(a) Landmarks (b) stereotactic frame (c) moments

Figure 7. (a) MR scan of a human head with manually set landmarks; (b) stereotactic frame;
images from [43], see http://cns.bu.edu/∼rash/paper.htm; (c) image with principal axis deduced
from second-order moments.

3.2. Distance measures

The next step is to quantify image similarity, proximity or distance. Several approaches have
been proposed. These measures are based either on image features (like for example markers—
tags that are attached to objects before imaging, landmarks—tags deduced after imaging,
moments—statistical quantities), substructures (surfaces, level sets, crest lines) or volumetric
data. Here, landmark and L2-norm-based distance measures are discussed exemplarily.

For landmark-based approaches, it is assumed that a number of points r1, . . . , rm ∈ R
d

are specified in the reference image and the corresponding points t1, . . . , tm are located in the
template image (see figure 7) and the MR/US example. A commonly used distance measure
then reads

DLM[y] =
∑

‖y(rj ) − t j‖2
R

d , (2)

where extensions using different norms are used as well (see, e.g., [44]).
Several approaches are employed to compute the wanted transformation. The first one is to

restrict the search space to a typically low-dimensional parametric space M. Common choices
for M are based on rigid, affine linear or spline transformations. Clearly, the transformation
is a linear combination of some basis functions qk , i.e. y(x) = ∑

qk(x)wk , and it is computed
by solving a least-squares problem for the coefficients:

minimize DLM[y] subject to y ∈ M. (3)
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A second approach is to optimize a certain smoothness S of the transformation, i.e.
minimize S[y] subject to DLM[y] = 0. This more general concept is discussed further in
section 3.3. Particularly for landmark-based registration, a thin-plate-spline bending energy
is used as a smoothness measure and the resulting registration is called the thin-plate spline
registration (see also [23, 44–46]). Following representer theory [46], it can be shown that the
solution to this problem belongs to a certain parameterizable space MTPS, spanned essentially
by translates of a radial basis function related to S. Hence, this approach is a special case
of (3). Numerical solutions can be obtained by solving a linear system of equations for the
coefficients.

In practice, in particular in the presence of noise, the exact location of landmarks is a
tricky problem. Therefore, the interpolation condition is sometimes replaced by a weighted
approximation condition

minimize D[y] + θS[y] subject to y ∈ MTPS.

Setting θ = 0 returns (3) whereas θ = ∞ results in a very smooth transformation which may
not fulfil the interpolation constraints; see [4, 44] for a more detailed discussion.

Advantages of landmark-based registrations are that their interpretation is easy and
intuitive, solutions can be computed fast and efficiently. However, neither the determination
of landmarks nor the identification of proper locations of corresponding landmarks is an easy
task and a scheme for a fully automatic detection of landmarks in medical images is still
missing.

A striking property of landmark-based registration is its build in dimension reduction.
The images are replaced by just a few outstanding points. Alternative approaches along these
lines consider 3D space curves [47], the surface of the given objects [48, 49] or other geometric
features [50]. Sometimes, these methods are additionally intermixed with the use of a proper
biomechanical model [51, 52]. However, all these methods benefit and at the same time suffer
from the fact that the algorithm only sees parts of the images and may produce unwanted
results for the remaining parts.

To overcome the just-mentioned drawbacks one is bound to consider the whole images.
Probably the most intuitive volumetric distance measure is the so-called sum of square
difference (SSD) (also L2-norm of the image difference or energy of image distance),

DSSD[y] = ‖T [y] − R‖2
L2(�) =

∫
�

(T [y] − R)2 dx. (4)

It has been proven to be robust and very effective for images of one modality, e.g., the serial
sectioning or the human knee. It is based on the assumption that T [y](x) = R(x), which most
often does not hold. For image modalities like CT, one has a normalized protocol; however,
for MRI this normalization does not hold (T1, T2, FLAIR, 1.5, 3, 7 Tesla; see figures 8(a), (b)
and (c) for an example). Moreover, applications of particular interest are the registration of
images originating from different imaging devices, like MR and US as in the previous example
or like CT (displaying anatomy) and PET (displaying functionality); see figures 8(d) and (e)
for an example.

For images of different modalities, cross-correlation (and variants), normalized gradient
fields [36] and in particular mutual information [25, 26] are commonly used alternatives; see,
e.g. [4, 53, 54] for a detailed overview. Based on either a histogram or the Parzen–Window-
based estimator qT ,R for the joint density of the intensity distribution of the images T , R,
mutual information is a normalized entropy:

DMI[y] = H(qT [y]) + H(qR) − H(qT [y],R),

H(q) = −
∫

R
2
q(τ, ρ) log ρ(τ, ρ)d(τ, ρ),
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(a) FLAIR (b) T1 (c) T2

(d) CT (e) PET

Figure 8. MR images of a brain tumor ((a), (b) and (c)) acquired with different protocols (images
are taken from CASIMAGE http://www.pubimage.hcuge.ch); CT (d) and PET (e) images of a lung
tumor (images courtesy by the Institute of Nuclear Medicine, University Hospital, Zürich).

(a) Reference (b) template

Figure 9. Ambiguous results for image registration.

where qT [y] and qR denote the marginal densities, respectively. Mutual information seems
to be the most powerful distance measure, but as a consequence may cause trouble for the
optimization routine; see, e.g, [36, 55, 56].

3.3. Regularization

As already pointed out several times, image registration is inherently ill-posed. For every
spatial location x ∈ � ⊂ R

d , one asks for a vector valued transformation y(x) ∈ R
d , but in

general only scalar information (image intensity) is provided. Regularization is thus important
and inevitable. A more subtle point is emphasized in figure 9, showing a gray rectangle on
a white background. A possible registration is a translation, transforming for example the
top-left corner of the template onto the top-left corner of the reference. However, rotating the
image about 180◦ around the center of the domain results in an alternative meaningful, though
completely different, solution. Note that both solutions are rigid transformations. Finally, if
one does allow for more complex transformations, the transformation is indefinite in areas
of constant gray values. In fact, any permutation of points of equal color yields the same
distance. In the extreme case when both images are constant, any transformation is a solution.

9
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The problem becomes even more delicate in the presence of noise. Adding one black dot
to either of the four corners of both images would lead to a unique rigid solution (which is then
completely determined by noise). Fortunately, images with more structure (more variations
in intensities) are in general less vulnerable.

The focus of regularization in the image registration is on the existence rather than on
the uniqueness of the underlying optimization problem (1). To ensure uniqueness alternative
strategies (penalties, constraints), as discussed later on, are considered. Additionally, the
choice of an appropriate starting guess is a crucial ingredient of any registration scheme. In
FUSION, a landmark-based pre-registration is used to provide an improved starting guess.
Regularization is achieved by selecting an admissible setM and/or by choosing an application-
dependent Sobolev semi-norm (bi-linear form),

S[y] = ‖B[y]‖2
L2(�)q =

∫
�

〈B[y],B[y]〉 dx, (5)

where in particular the following choices are common (omitting some parameters):

Bdiff[y] = (∇y1, . . . ,∇yd) (diffusion),

Belas[y] = (∇y1, . . . ,∇yd,∇ · y) (elastic), (6)

Bcurv[y] = (�y1, . . . ,�yd) (curvature), (7)

see [4, 22, 57–59]. Typically, the regularization is used for the displacement u, where
y(x) = x + u(x); see, e.g. [4] for a detailed discussion. Unlike other ill-posed problems,
the particular regularizer and in particular the choice of boundary conditions (not discussed
here) can effect the solution considerably. As pointed out for the above example, the influence
becomes less prominent, if the images have more structure. For example, treating the serial
sections with different regularizers yields visually undistinguishable results.

Another important issue is the choice of the regularization parameter. Typically,
this parameter is hand-tuned. For an automatic choice of the regularization parameter, a
continuation method has been suggested in [60].

3.4. Soft constraints, penalties

Another step toward a more reliable outcome of the registration is to add a penalty P (see
(1)), penalizing unwanted solutions. In contrast to a regularizer, which is needed to guarantee
solutions of the registration problem, the penalty is an add-on which may serve as an instrument
for incorporating user knowledge.

Examples for penalty terms include the deviation from user-supplied landmarks [61] (i.e.
setting PLM[y] = DLM[y]) volume preservation [62] (PVP[y] = ∫

�
log(det ∇y)2 dx), or local

rigidity [63–66]. In addition to anatomical issues (branching points of vessel should be co-
registered), the landmark penalty not only provides a specific starting guess but also pushes
the scheme toward a particular solution. Consequently, as a by-product, this penalty helps
to avoid unwanted local minima. In the example of the square (figure 9), three additional
landmarks would lead to a perfect solution, if the correspondence of landmarks is correctly
established. Volume preservation is a more application-oriented penalty. Any unconstrained
registration scheme most likely would lead to a change of volume if the objects in question
are of different size; otherwise it would make a poor job. However, a registration-induced
change of volume may lead to false diagnoses with severe consequences. For example, the
evaluation of tumor growth in follow-up screening might be effected by an artificial volume
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change due to registration. The idea of local rigidity is to transform hard tissue like bones
rigidly but still allow for a globally nonrigid transformation elsewhere; see the knee example.
To this end, rigidity is considered on particular segments (sub-domains) by penalizing deviation
from linearity, orthogonality and orientation preservation.

3.5. Constraints

In contrast to the penalty approach, where unwanted solutions are penalized, hard constraints
are used to rule out these transformations. The feasible set is either described explicitly or
in terms of constraints C (see (1)). Explicit descriptions are, for example, parameterized
transformations like rigid, affine linear or diffeomorphic spline transformations [67–69].
Implicit constraints range from equality constraints C[y] = 0 like landmarks constraints
[70]

CLM[y] = (y(rj ) − t j )mj=1,

space segregation [71], volume preservation [41]

CVP[y](x) = det ∇y(x) − 1, x ∈ �,

or local rigidity [72], to inequality constraints like

k(x) � CVC[y](x) = det ∇y(x) � K(x), 0 < κ(x) � K(x),

which ensure that the transformation is one-to-one, see also [73]. The displayed equality
constraints match the penalty terms of the previous section. However, instead of penalizing
unwanted solutions, the constraints completely rule out them. In particular for volume
preservation this is of great value. The penalty term leads to a small integral, which still
allows for a considerable volume change in small regions like tumors. In contrast, the volume
constraint ensures volume preservation in any part of the image.

3.6. Optimization

In this section, we briefly comment on the numerical solution of the outlined registration
problems. The backbone of the solution schemes is optimization techniques. For a general
overview on numerical optimization techniques, see, e.g., [74–77].

In the literature one may find essentially three different optimization approaches within a
registration procedure. As already pointed out, often the registration formulation is based on
practitioners heuristics. Based on the rough modeling, the objective functions are in general
not differentiable or even not continuous. Thus, the optimization techniques are in general
limited to basic schemes like Nelder–Mead’s simplex method or Powell’s downhill method.
In addition particular implementations may act as regularizer and stabilize the overall scheme.

The second class of approaches aims for the necessary condition for a minimizer of
the objective function in (1), which turns out to be a nonlinear system of partial differential
equations

f [T ,R, y](x) + αAy(x) = 0,

where the so-called force field f is related to the particular distance measure and the
partial differential operator A corresponds to the regularizer. Subsequently, the partial
differential equation, equipped with appropriate boundary conditions, is solved by some
sort of discretization technique. Various techniques have been proposed; for an overview, see
[4] or the original papers [24, 30, 37, 57–59, 78, 79]. The overall scheme is also known under
the notion optimize–discretize, which indicates the order of its major ingredients.
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A more recent approach is known as the discretize–optimize technique. It is based
on a sequence of nested discretizations of (1) [60]. Each discretization leads to a finite-
dimensional optimization problem. Starting with a coarse discretization, a minimizer is
computed which then serves as a starting point for the optimization problem associated with
the finer discretization. If the coarse grid solution is a good starting guess, the optimization
on the finer discretization is more like a correction step and is expected to be performed with
low computational costs. To arrive at a fast converging scheme, care has to be taken during
modeling. If the objective function is sufficiently smooth, even Newton-type optimization
techniques can be applied. A major advantage, as compared to the PDE-based approaches, is
that sound stopping rules and line search procedures are available. Focusing on optimization
aspects rather than smoothing and grid transfer operations makes a difference to similar
multigrid-type techniques; see, e.g., [80, 81].

No matter which strategy is employed, there is always the danger of being trapped by
an unwanted minimum. To reduce this problem, four main ideas are given, which may
be seen as convexification of the overall optimization problem. The first is to start with a
pre-registration that generates an acceptable starting guess in a neighborhood of a wanted
minimizer. The second step is to add a regularization S and/or penalties P , penalizing
unwanted solutions. The third idea is to solve the problem in a multilayered fashion, i.e. in
a sequence of discretizations ranging from coarse to fine, where on a coarse level only main
characteristics of the underlying images are visible and resolved and where subsequently
on finer levels more and more characteristics are added and resolved. Here, the point
is to use a multi-resolution of the images. The fourth concept is along the same lines,
details are suppressed for the start-up phase and then are gradually added. This way one
arrives at a multi-scale technique which of course can be mixed with the multi-resolution
approach.

3.7. Numerical details of the examples

In this section we summarize the particular building blocks used for the motivating examples
in section 2. All results were obtained by solving problem (1) with a multi-resolution approach
running from coarse to fine. On every level, a quasi-Newton scheme serves as a working horse
for the optimization, where the Hessian of the data fitting term is approximated by first-order
derivatives.

3.7.1. Serial sectioning. For this histological serial sectioning problem, the L2-norm distance
measure (4) and the elastic potential regularizer (6) are exploited. This choice is motivated
by the fact that the tissue is homogeneous paraffine wax and is supposed to deform elastically
[82]. A pre-processing step has been used to homogenize the intensity values.

3.7.2. Human knee. For the human knee, again, the L2-norm (4) and the elastic potential (6)
are used as main building blocks. In addition, the transformation is constrained to be rigid on
the tibia and femur parts:

y|tibia, y|femur ∈ {y : R
d → R

d |y(x) = Ax + b,A�A = Id, det A = 1}.
To do so, a segmentation of these areas has to be supplemented. A Lagrangian framework
for the problem is used to keep the constraints linear. The overall implementation is based on
standard SQP techniques.
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3.7.3. Image-guided surgery. For the registration of multi-model liver data the normalized
gradient field [36] and the curvature regularizer (7) have been used. The registration is
constrained by the correspondence of user-supplied landmarks rj , tj , j = 1, . . . , m:

y ∈ {y : R
d → R

d |y(rj ) = t j , j = 1, . . . , m}.
In addition, the multiscale approach has been envoked in order to smooth the noisy ultrasound
image. For the optimization, a reduced basis of the manifold is used.

4. Summary, conclusions, outlook

The paper introduces medical image registration, shows characteristic examples and explains
state-of-the-art techniques. Based on a general variational modeling, substantial building
blocks and problems are considered and are discussed. In particular, the inherently ill-
posedness has been addressed and several techniques to overcome this problem have been
outlined. Common numerical approaches have been introduced briefly.

It has been shown that registration is an important task in various disciplines. In particular,
medical applications have been discussed which are likely to become even more important
as imaging techniques are undergoing an amazing development. As of today, many of the
practical problems have been addressed, though important issues are still to be solved, resulting
in a very active research community.

Probably the most important open issue is the objective validation of registration
results. Todays validation approaches are mostly based on subjective eye-ball norms of
trained experts, on artificial examples or phantoms, or on tagged data, which are of limited
significance in a clinical environment (for promising approaches toward validation see
also http://www.insight-journal.org/RIRE or http://www.NIREP.org). Another issue is the
integration of user knowledge, which might be seen as a step toward well-posedness. Recent
approaches based on constrained registration proved to be very promising. A further bottleneck
is computing time which still limits the applicability of many techniques. Current scanners
can produce 10243 data resulting in systems with approximately 3 × 109 unknowns which
have to be processed preferably in real time. Finally, most schemes depend on a variety of
parameters which most often have to be hand-tuned. An automatization of parameter and
regularization choices is another important research area.

New trends include the integration of several imaging tasks into a unified framework.
Examples include the combination of segmentation and registration [83] or an automatic
correction of gray value disturbances as they can appear for example in serial sectioning
[84].
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