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Abstract. We present a novel method for iterative reconstruction of
high resolution images. Our method is based on the observation that
constant regions in an image can be represented at much lower resolu-
tion than region with fine details. Therefore, we combine adaptive re-
finement based on quadtrees with iterative reconstruction to reduce the
computational costs. In our experiments we found a speed up factor of
approximately two compared to a standard multi-level method.

1 Introduction

Imaging systems are important tools in today’s clinical routine. Tomographic
images as, e.g., MRI, CT, PET, or SPECT images, have become standard for
diagnosis and clinical testing. However, due to existing techniques, image recon-
struction from tomographic data is still an open and active research field.

Here, we focus on iterative reconstruction methods particularly for SPECT.
Such algorithms are able to compute high resolution high quality images and
they are particularly useful when dealing with noisy data. Nevertheless, comput-
ing high quality images comes not for free. The complexity of such algorithms
depends on the desired (high) target resolution. Typical dimensions are 1283
2563, or 5123 involving huge amount of data and thus lead to a non-neglectable
computational effort.

Our new approach reduces the computational complexity without reducing
the desired resolution. The basic idea is that regions of (almost) constant in-
tensities can be represented at a very low resolution. To this end, we combine
iterative reconstruction with adaptive multi-level refinement. Starting from a
very low resolution, we locally refine regions where we expect details in the im-
age while other regions with, e.g., only background information, stay coarse.
Due to their simplicity and the rectangular pixel-structure of image, we propose
quad- (2D) and octrees (3D) for the local refinement [1].

The ideas of representing images with local low and high resolutions as well
as adaptive refinement are not new. These techniques are well known and have
already been used in many other fields, too. Recent examples particularly in-
corporating quad-/octrees include image registration [2,3,4], computer graphics
[5], or inverse problems [6]. A similar approach for image reconstruction using a
fixed non-uniform mesh generated from external knowledge is presented in [...].



However, to our best knowledge adaptive multi-level refinement has not been
used for image reconstruction, yet.

The paper is organized as follows. In section 2 we state the image recon-
struction problem and describe our new method. Subsequently, we present a
real SPECT data and an academic example in section 3. Finally we discuss the
results in section 4.

2 Materials and Methods

Here we focus on reconstruction of SPECT images [7]. Therefore, emitted radi-
ation of an injected radioactive contrast agent is measured at different position
around the object. Then, the measured projection data d is used to reconstructed
an image f such that the image f represents the distribution of the contrast
agent. Formally, this leads to the problem

Af =d st. f>0 (1)

with a linear projection operator A describing the SPECT measurement. The
constraint f > 0 is required to guarantee a positive distribution since negative
concentrations are not physical. It is well known that (1) is an ill-posed problem
[8,9]. Therefore, additional constraints and/or regularization is needed. Further-
more, real measured data d comes with non-neglectable noise such that solving
Af = d for f exactly will not produce wanted results. Therefore, instead of
trying to solve (1) directly, we consider the optimization problem

minimize J(f) = %HAf —d|i, +aR(f) st. f>0. (2)

Here, || Af —d||3, forces fitting the data d and R is a regularizer addressing the
ill-posedness and the noise in the data. Typically, R forces smoothness of the
image f such that the parameter o > 0 weights the influence of the regularizer
versus the (noisy) data fit. In particular, here we choose

R =3 1012, 3

where n is the dimension of the image f (n =2 or n = 3).

To compute a numerical solution we first discretize (2) on a given quad-
or octree. We proceed analog to [1,2,3,6]. Quad- and octrees are an efficient
way to compress structured data. To make the idea clear, let us consider a
regular discretization of a image composed of pixels/voxels with uniform size.
For the quad-/octree we combine square blocks of pixels and represent each of
theses blocks by a single large pixel, i.e., lower resolution. See Figures 1,2 for
2D quadtree examples. Thus, we discretize the image on cell-centers of the given
quad-/octree such that the discretized problem reads

1
minimize J(f) = §||Af —d|? + %fTBTBf st. £>0. (4)



where the matrix A is a discretization of the A and the fTBTBf is a finite
difference approximations to the regularizer R(f) (cf. [5]).

Our overall method is an adaptive multi-level scheme. We start with discretiz-
ing the problem on a coarse regular grid say 8 by 8 and compute a minimizer
of (4). Subsequently, we locally refine our discretization due to some criteria ex-
plained below and compute a minimizer of (4) discretized on the new grid. Then,
we locally refine again, solve the problem on the new grid and so on. We proceed
until the finest cells in our discretization have reached the target resolution.

To compute a minimizer of (4) on a fixed level we use Newton’s method with
projecting each iterate to the constraints f > 0. The method is similar to the
gradient-projection algorithm described in [10] except that for fast convergence
we take a Newton search direction instead of the negative gradient. Therefore,
in each step we have to solve a large linear system. Here we spend the main
computational efforts and this is also the point where we get the major benefit
from our method by reducing the number of unknowns. Our experiments show
that we gain a speedup of a factor 2 compared to a standard method.

Our local refinement strategy is based on the general idea that constant
regions of an image can be represented with low resolution than regions with
rapidly changing gray values, i.e., edges. To this end, we consider the gradient
of the image and do a refinement where it is large. Since we do not have an
analytic gradient, we compute a finite difference approximation [6,5]. Let g; be
an approximation to the image gradient on the j-th cell of our current grid
such that g; = V f(cell;). Then we subdivide the j-th cell into four sub-cells if
llgjlloc > 7 where v > 0 is a chosen parameter.

3 Results

We present two 2D examples where we compare our adaptive method with a
standard uniform refinement. In the first academic example, we reconstruct a
Sheep-Logan-Phantom (256 pixels, max. gray value 255) where the artificial
projection data was generated from an ideal noise-free image. The aim of this
experiment is to demonstrate that we are able to reconstruct high quality images
on quite sparse quadtrees. For the second example we reconstruct images (1282
pixels, max. gray value 800) from real SPECT data. Here, we demonstrate the
use of our method for real data with noise. In both experiments we started our
multi-level method from a coarse 8 by 8 grid and the regularization parameter
a was set to 1073,

For the Sheep-Logan-Phantom we simulated 120 SPECT projections with
256 pixels each. We evaluated several choices for the refinement parameter ~.
The resulting images and quadtrees are presented in Figure 1. As expected, the
results show that with increasing v the resulting quadtrees become more sparse
and the number of pixels is drastically reduced. Nevertheless, the visual quality
of the images remains reasonable even for very large values of ~.

In our real data example, 120 projections of the Benchmark-Jaszczak-Phantom
were measured with a SPECT system from the MiE company in Seth, Germany.



In contrast to the academic example, here we have to deal with noise that is in-
cluded in the data. However, we are able to compute images on sparse quadtrees
that are visually indistinguishable from the result when using a standard uniform
refinement, cf. Figure 2.

In both experiments we successfully apply our adaptive refinement strategy
that drastically reduces computational efforts. Basically, we found that we only
need 30-50% of the pixels resulting an overall speedup factor of approximately
2. The computational results for both experiments are presented in Table 1.

uniform refinement

Fig. 1. Results for the Sheep-Logan-Phantom.

Fig. 2. Results for the Benchmark-Jaszczak-Phantom. Left result for uniform refine-
ment, middle + right result after adaptive refinement (v = 40).



Data refinement|#iter|average time per iter|#pixels|resolution

Sheep-Logan| uniform 6 5.39 sec 65,536 2562
Sheep-Logan| v =6 3 2.96 sec 22,198 2562
Sheep-Logan| ~ =10 4 2.22 sec 16,732 2562
Sheep-Logan| ~ = 20 4 1.52 sec 11,749 2562
Real-data | uniform 4 1.25 sec 16,384 1282
Real-data v =40 4 0.60 sec 5,782 1282

Table 1. Computational results for the finest level. The used algorithms are imple-
mented in Matlab.

4 Discussion

We have presented a novel multi-level reconstruction scheme using an adaptive
refinement strategy based on quadtrees. The method is able to produce high
quality images at the same level of detail as standard methods while significantly
reducing the computational costs. Moreover, no external knowledge about the
image content is used. In our experiments we found a speedup factor of roughly 2.
Our examples demonstrate the potential of the new method and its successful
use with real data having noise.

The presented results are basically 2D and can be used for slice-wise recon-
struction of 3D data. However, in future work the approach shall be extended
to fully 3D, i.e., by using 3D octrees instead of 2D quadtrees. Furthermore, we
aim for an automatic estimate of the refinement parameter ~.
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