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Abstract

A new approach to image registration is proposed. The approach
enables the proper segregation of the transformation space into a
low dimensional so-called coarse space and a remaining non-linear so-
called fine part. The segregation concept is combined with a multilevel
approach, where the two parts are treated simultaneously.

Modeling and computation issues are discussed. Finally, we present
a highly non-linear real life example.

1 Introduction

Image registration is one of today’s challenging image processing problems.
The problem can be formulated as follows: Given two images, find a “reason-
able” transformation such that a transformed version of the so-called tem-
plate image becomes ”similar” to the so-called reference image. Image reg-
istration is applied whenever images resulting from different times, devices,
and/or perspectives need to be compared or integrated; see, e.g. [26, 20] and
references therein.

A registration procedure is typically based on two main building blocks.
The first one is a distance measure. The distance measure quantifies the
meaning of similarity or proximity of images. A distance measure can be
based on image features (e.g., moments [1], landmarks [23, 20], or mark-
ers [19]) on image intensities (e.g. L2-norm or sum of squared differences [7],
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correlation, mutual information [10, 25]), on image surfaces [3, 4], on level
sets [11], or on combinations hereof [8, 13]. For an overview and comparisons,
see also [22, 17, 20].

The second building block is a regularizing term. Since image regis-
tration is an ill-posed problem, regularization is inevitable and becomes a
central topic [20]. Typical regularization techniques are a restriction to a
low dimensional transformation space (e.g., the space of rigid or affine linear
transformations) or an explicit regularization of the problem. The regularizer
of the latter approach is typically based on a bilinear form

S[u] =
1

2

∫
Ω

〈Bu,Bu〉 dx, (1)

where B is a partial differential operator. This includes well-known regular-
izers like, for example, the elastic [6, 2], diffusion [24, 12], or curvature [14],
and, in a qualified sense, also the fluid registration [9, 5]; see also [20] for an
overview.

In many applications one has to deal with large linear but also impor-
tant non-linear deformations of the displayed object. Typical examples aris-
ing from medical applications include the registration of a histological serial
sectioning or the registration of two images from a joint taken at different
positions; see also Fig. 1. Therefore one would prefer a registration scheme
which handles both the linear (more general: the coarse) and the remain-
ing non-linear (more general: the fine) part simultaneously. However, as it
is well-known to practitioners, existing registration schemes can not handle
this goal in an appropriate way, and in some cases such registration does not
converge to an acceptable solution.

In the literature either of the following two ways is used to bypass this
problem. The first one is to assume that the overall registration problem
decouples into in a linear and non-linear part and to solve for the two parts
separately and sequentially. However, though this approach seems to work
quite well in practise, the decoupling assumption is artificial and it is an open
question whether this assumption is true or not. The second remedy is to
design a regularizer that does not penalize the affine linear part. In [14] it is
suggested to used B = ∆, since a second order derivative operator does not
penalize affine linear transformation. However, not all applications allow for
an arbitrary regularization. Higher order derivative based operators result
in smoother transformations which may not be physically correct. Finally,
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from an implementation point of view, boundary conditions and the solution
of the resulting system of equations become more troublesome.

Therefore we proposed a new way of dealing with these difficulties. We
split the transformation space into two disjoint subspaces, a coarse space and
a fine space. The coarse space is a low dimensional linear space and the fine
space is the remaining orthogonal complement. Only the components of the
transformation belonging to the fine space are regularized. We call this novel
COarse and Fine Image Registration scheme Cofir. In this new approach,
the coarse and the fine spaces are guaranteed to be disjoint and therefore the
above mentioned decoupling assumption holds by construction.

Different applications may demand for different choices of the coarse
space C. For example, in studying tumor growth, one may want to con-
sider only volume preserving transformations and thus choose C to be the
set of rigid transformations. In our mathematical formulation we therefore
consider a general coarse space but concentrate on the space of affine linear
transformations in our examples.

The paper is organized as follows. In Section 2 we introduce the continu-
ous mathematical framework which is of particular interest for our multilevel
approach and in Section 3 we discuss discretization issues. The optimization
schemes and the implementation of Cofir are discussed in Section 4. Finally,
in Section 5 we present results for a highly non-linear real life application;
see also [18].

2 The mathematical setting

With d ∈ N we denote the spatial dimension of the given images R, T : Rd →
R which are assumed to be sufficiently smooth. To be precise, we interpolate
or approximate the given discrete data by a smooth spline functions R and
T , respectively. Thus, for any spatial position x = (x1, . . . , xd), T (x) gives
the corresponding gray value. We assume that the supports of the images are
contained in a bounded domain Ω :=]0, L[d, i.e. R(x) = T (x) = 0 for x /∈ Ω.

Our goal is to find a “reasonable ” deformation u = (u1, . . . , ud)T : Rd →
Rd such that the “distance ” between the reference image R and the deformed
template image T (x+u(x)) becomes small. As explained in the introduction,
we divide the space of feasible transformations into two disjoint subspaces,
a coarse space C and a fine space F . The space C is an m dimensional linear
space spanned by some basis functions cj, j = 1, . . . ,m, such that a generic
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element reads

uC =
m∑

j=1

zjcj(x) =: C(x)z, z ∈ Rm. (2)

Example 1 Probably the most important example is when C is the space of
affine linear transformations. For spatial dimension d = 2 we have

uC =
(
z1 + z2x1 + z3x2
z4 + z5x1 + z6x2

)
and for d = 3,

uC =

(
z1 + z2x1 + z3x2 + z4x3
z5 + z6x1 + z7x2 + z8x3

z9 + z10x1 + z11x2 + z12x3

)
.

To find u = uC + uF , we formulate the following optimization problem

minimize D[R, T ; uC + uF ] + αS[uF ] (3a)

subject to
〈
uF , cj

〉
= 0 j = 1, . . . ,m, (3b)

where D is some distance measure, S is some regularization term, and α >
0 is a regularization parameter that compromises between similarity and
regularity. In contrast to previous approaches the transformation has been
divided into two parts and only the fine part is regularized. Moreover and
most importantly, the fine part is constrained to be orthogonal to the coarse
part and therefore unlike previous work, this splitting is disjoint.

Any differentiable choice of building blocks D and S is feasible. However,
for ease of presentation, we restrict to the sum of squared differences (SSD)
and the elastic regularizer,

D[R, T ; u] =
1

2

∫
Ω

(
T (x + u(x))−R(x)

)2

dx (4)

B[u] = [
√

µ∇u1, . . . ,
√

µ∇ud,
√

λ + µ∇ · u]>, (5)

A := B∗B = µ∆ + (λ + µ)∇∇· , (6)

where λ and µ are the so-called Lamé constants and natural boundary con-
ditions are imposed; see, e.g., [20].

Remark 1 Let P denote the projector onto the orthogonal complement of
C. Hence, (3) can be replaced by

minimize D[R, T ; u] + αS[Pu]. (7)
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3 Discretization

The image registration problem 3 is discretized using staggered grids for
the components of u. Since the images may be noisy and derivatives are
needed for efficient optimization procedures, we use a smoothing B-spline
approximation Rspline and T spline for the images R and T , respectively; see
also [16]. In order to reduce the notational overhead, we denote discrete
quantities with the the same symbol as their continuous analogs. The precise
meaning will be clear from the context. For ease of presentation, we also only
discuss the two-dimensional case.

Let xj denote the knots of the jth staggered grid, uj the values of the
jth component of u on xj, and u the collecting of all these values. Our
discretization of T is given by

T (u) := T spline(x1 + P1u1, x2 + P2u2),

where Pj denotes an averaging from the jth staggered to the cell centered
grid and we use a B-spline interpolation or approximation scheme; see [16]
for details. We denote the Jacobian of T by

Tu :=
∂T

∂u
(u) =

(
diag(P>

1 ∂1T ), diag(P>
2 ∂2T )

)
, (8)

where the partial derivatives ∂jT have to be evaluated at (x1 + P1u1, x2 +
P2u2). For a discretization of the SSD distance measure (4), we use

D(u) := 1
2
‖T (u)−R‖22 and Du(u) = Tu(u)>(T (u)−R)

and for the regularizer (1) we take

S(u) = 1
2
u>Au and Su(u) = Au,

where A = B>B is based on a finite difference based discretization of B. For
details concerning the discretization of the elastic regularizer (5) see [16].

4 Optimization scheme

In order to have an efficient optimization scheme we use a multilevel strategy
(or grid continuation) where the problem is discretized and solved on a se-
quence of grids starting from a coarse grid. On level `, the discretized analog
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of the image registration problem (3) for u` = uF
` + C`z` reads:

minimize D`(u
F
` + C`z`) + αS`(u

F
` ) (9a)

subject to C>
` uF

` = 0, (9b)

The discrete version C` on the `th level is computed directly by evaluating
the basis functions cj on the the underlying grids.

On each level, we use an iteration alternating between the minimization
with respect to z and with respect to uF . In the next subsections we describe
the three parts of our algorithm: the minimization with respect to z, the
minimization with respect to uF and the multilevel approach. The algorithm
is summarized in Alg. 1. For the discussion of the optimization schemes we
consider a fixed level and therefore drop the level index in the description.

Algorithm 1 Multilevel COarse and Fine Image Registration:
[uF , z]← COFIR(R, T,C).

for ` = 1, . . . , max` do
transfer the images to the level `;
solve the coarse problem for z with uF

` fixed;
solve the fine problem for uF

` with z fixed;
prolongate uF

` to the finer level;
set `← ` + 1;

end for

4.1 Optimizing the coarse part

Assuming we have an approximation to the fine part uF we compute a solu-
tion to the problem

given uF , C, minimize DC(z) := D(uF + Cz), (10)

we apply a Gauß-Newton scheme with an Armijo line search; see, e.g., [21].
Note that the computational expensive parts of this algorithm are the com-
putation of T (v) and Tu(v). Particularly the linear system in the Gauss-
Newton approach are just m-by-m, where m is the dimension of the linear
space C, i.e., m = 6 for the 2D linear space.
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4.2 Optimizing the fine part

Assuming we have an approximation to the coarse part, i.e., z is given, we
compute a solution to the problem

minimize DF(uF) := D(uF + Cz) + αS(uF) (11)

subject to C>uF = 0.

To solve the problem we consider the Lagrangian

L(uF , p) := DF(uF) + p>C>uF ,

where p denotes a vector of Lagrange multipliers. The necessary conditions
for a minimizer uF of (11) read(

DF
u (uF + Cz) + Cp

C>uF

)
= 0 (12)

and a numerical solution of (11) is computed using a Sequential Quadratic
Programming (SQP) scheme (cf., e.g., [21]). Starting with a feasible initial
guess uF (i.e. C>uF = 0), we solve(

H C
C> 0

)(
δu

p

)
= −

(
DF

u (uF + Cz)
0

)
(13)

and update u← u + δu. Note that typical to SQP algorithms the Lagrange
multipliers are computed directly. For the Hessian we use a Gauß-Newton
approximation with respect to the data term

H = T>
u Tu + αA.

For the computation of a numerical solution of the so-called KKT sys-
tem (13) we use the multigrid based solution scheme as proposed in [15]. The
optimization procedure is summarized in Alg. 2.

Note that in contrast to the linear part we now have to solve a (n + m)-
by-(n+m) linear system where m is the dimension of the linear space and n
is approximately the number of pixels/voxels.
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Algorithm 2 Fine Image Registration: [uF
t ]← FIR(R, T,C, uF , z).

for k = 0, . . . do
Set u← uF + Cz and compute T (u), Tu(u), DF(uF), DF

u (uF).
Set H ← T>

u Tu + αA and solve(
H C
C> 0

)(
δu

p

)
= −

(
DF

u

0

)
.

set γ ← 1
while line search do

uF
t ← uF + γδu

if DF(uF
t ) < DF(uF) then

STOP line search
end if
γ ← γ/2

end while
if
∥∥uF

t − uF
∥∥ ≤ tol then

return
end if
uF ← uF

t .
end for

4.3 The multilevel approach

For our multilevel approach we require two types grid transfer operators.
Firstly, we need a grid transfer operator which coarsen the images, i.e. trans-
fers an image from a fine level `−1 to a coarser level `. Secondly, we need two
grid transfer operators which restrict and prolongate the transformation uF .

For image transfer we use the down-sampled and convolved image

R` = transfer(R`−1)

where the convolution stencil corresponds to a smoothing with (1, 3, 3, 1)/8
in each coordinate direction. For the prolongation of uF we use a linear in-
terpolation scheme, as it is common for multigrid approaches. We denote the
matrix representation of the prolongation by P ` and use P>

` as a restriction
operator. We assemble B1 on the finest level and define B` := B`−1P `−1

for the coarser levels. Our numerical approach is summarized in Alg. 1.
For the minimization on the coarsest level max` we initialize uF

max`
= 0

and zmax`
= 0. The numerical solutions of the optimization problems are
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transferred to the finer grid and used as starting values. For the linear
part we set z` = z`+1 and for the non-linear part we use the prolongation
operator P `+1. However, since our prolongation scheme may not maintain
the constraints, we apply an additional explicit orthogonalization step

u` = proj(P `u`+1, C`) where proj(u, C) = u−C(C>C)−1C>u.

The optimization scheme on the `th level is consider as converged if uF
`

and/or z` converges.

5 Numerical Example

Fig. 1 shows two two-dimensional sections of two three-dimensional magnetic
resonance (MR) scans of a human knee; see also [18]. In this example, we
choose C to be the space of affine linear transformations, such that the coarse
and the linear registrations schemes coincides.

We start with some general remarks. Tab. 1 summarizes our results for
four different multilevel registration of the two 256× 256 images, where five
levels have been used such that the images on the coarsest level are 16× 16.
For comparison reasons, we used the same stopping criteria for the building
blocks. The coarse registration on an `th level is considered as converged
if
∥∥z(k) − z(k−1)

∥∥
2
≤ 1% or the number of iterations k exceeds 100. For the

non-linear/fine part, we stopped if
∥∥u(k) − u(k−1)

∥∥
2
≤ 0.01% or the number

of iterations k exceeds 5.
In the following we discuss three registration approaches, the linear (or

coarse), the common sequential linear/non-linear, and the new Cofir regis-
trations.

Plain coarse/linear The most common approach is to use a linear prereg-
istration. The results of the linear registration are depicted in Fig. 1 (d,e,f).
We observe that the overall result is fair in average but considerable defor-
mations are still observable particularly at the upper part of the Tibia. This
is in accordance to the chosen integral based distance measure; cf. (4). The
computed deformation field is almost a pure rotation about 13 degrees.

Plain non-linear The results of a non-linear registration without an affine
linear preregistration are depicted in Fig. 1 (g,h,i)). Note that the results
are meaningless (see, e.g., the deformation of the Tibia).
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The new Cofir approach Fig. 1 (j,k,`) shows the results of the new
Cofir registration scheme. As is apparent from this figure, this registration
gives reasonable results for the deformation as well as for the transformed
image TCOFIR.

Remark 2 The new Cofir approach combines two features, the clear segre-
gation of the transformation space to coarse and fine parts and their treatment
in a combined multilevel strategy.

In all our examples, the new Cofir registration and the usual sequen-
tial linear/non-linear registration lead to visually undistinguishable results.
Therefore, one may conjecture that the separation assumption is true.

6 Conclusions and further discussion

In this paper we present a novel and general framework for image registra-
tion based on a variational principle. As compared to other variational based
registration schemes, the new approach has two new features. Firstly, a clean
separation of the transformation space in a coarse and its orthogonal comple-
ment, the fine space, is performed. Only the fine part of the transformation
is regularized. Secondly, rather than optimizing the parts separately using a
multilevel scheme for each of the parts, we combine and solve for both parts
simultaneously.

We present an implementation which is based on a multilevel sequential
Gauss-Newton scheme that allows for the introduction of coarse and fine
transformations on coarse grids. For the fine part, we used a constrained
optimization procedure to ensure the proper segregation of spaces.

For convex optimization problems, the optimization procedure is of mi-
nor importance. For non-convex problems, like image registration, where one
generally encounters many local minima, the procedure does play an impor-
tant role. Therefore, the simultaneous treatment in the multilevel approach
becomes essential.

Though the differences between the usual sequential linear/non-linear and
the Cofir registration appear to be very small, we prefer the Cofir scheme
for two reasons. The first reason is that the Cofir scheme is based on
a sound mathematical formulation. The second reason is, that this clear
approach comes almost for free: the computation times for a Cofir and a
sequential linear/non-linear registration are about the same.
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Table 1: SSD reduction and convergence results for the knee example. The
tables show the image sizes and the reductions of the image difference ver-
sus the discretization level. The reduction in the difference is obtained from
either the coarse grid correction, the coarse/linear, and the fine/non-linear
registration. The reduction is given in percent (%), where the initial differ-
ence on a particular level is considered as 100%. We also give the number of
iterations spend for the coarse/linear and fine/non-linear parts.

coarse/linear
level size coarse red. iter
1 16× 16 – 46.4% 21
2 32× 32 53.1% 52.0% 10
3 64× 64 58.4% 58.0% 29
4 128× 128 63.4% 62.8% 62
5 256× 256 66.7% 66.6% 100

sequential linear/non-linear
level size coarse red. iter
1 16× 16 52.1 35.2% 5
2 32× 32 38.5% 33.4% 5
3 64× 64 38.2% 34.1% 5
4 128× 128 39.1% 36.6% 5
5 256× 256 42.9% 41.6% 5

COFIR
coarse fine

level size coarse red. iter red. iter
1 16× 16 – 46.4% 21 28.2% 5
2 32× 32 35.5% 33.6% 8 29.9% 5
3 64× 64 37.2% 32.6% 5 29.9% 5
4 128× 128 34.4% 34.0% 9 32.2% 5
5 256× 256 38.8% 38.5% 17 37.0% 5
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Figure 1: Two MR images of a human knee (a,b) and the difference image
(c) as well as results for the linear or coarse (d,e,f), the non-linear (g,h,i),
and the new Cofir (j,k,l) registrations: final transformed images (first
column), difference image (second column), and deformed grid (third
column).
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