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Summary

Objectives: In this paper we are concerned with elastic image registration. 
Usually, elastic approaches assume constant material parameters and result 
in a smooth displacement field. However, a constant choice has its 
shortcomings for images with varying elastic properties, like bones and soft 
tissue. The proposed method allows for spatially varying material properties.

Methods: The proposed variational registration scheme is based on a 
segmentation of the template image. Individual material properties can be 
assigned to each segmented region. The proposed variable elastic regulariser 
leads to a displacement field which is adapted to the locally chosen material 
properties.

Results: The capability of this approach is demonstrated by a synthetic and by 
real-life examples in two dimensions. For all examples the proposed method 
is compared to a conventional scheme where the material parameters are 
constants in the entire image domain. 

Conclusions: A method for non-parametric registration which supports 
spatially varying elastic properties such as (in)compressibility or Young’s 
modulus in certain image regions is proposed. It allows for registration results 
being more realistic compared to conventional approaches. Also, for a 
particular structure, an approximated preservation of volume or shape can be 
achieved.
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1  Introduction

Nonrigid image registration is a challenging field of growing importance in 
medical imaging. The task is to find a vector field of displacements such that 
each point in a template image can be mapped onto a corresponding point in 
a reference image in a ‘meaningful’ manner. 
By the notion ‘meaningful’ often a type of constraint is meant which prescribes 
identical elastic properties throughout the image domain. Typically, the 
displacement is computed subject to a smoothness constraint. A widely 
chosen constraint is realised by a regularisation based on the linear elastic 
potential of the displacement, see, e.g. [1] and references therein. Frequently, 
the constraint is applied globally with one global regularisation parameter and 
with elastic properties independent of the image position and, therefore, 
independent of the elastic behaviour of the corresponding anatomical 
structure. 
Often, a globally uniform constraint provides satisfactory results due to the 
underlying physical model. Nevertheless, there exist several cases where 
anatomical structures behave different from each other. Soft tissue, for 
instance, is of different elasticity compared to bone structures. Therefore, the 
prescription of a uniform elastic behaviour may lead to deformations which are 
either unnecessarily restricted (when choosing elastic properties typical of 
bone structures) or physically unrealistic (if bone structures get deformed as 
soft tissue). Another demand for non-uniform behaviour occurs within the 
treatment evaluation of tumors. Here, preservation of shape or volume may 
be a reasonable property in a certain image region, i.e. the tumor region, but 
not in the entire image domain.
Therefore, in our view a ‘meaningful’ transformation supports local material 
properties as well as possibly approximates shape or volume preservation 
and requires, to this end, a spatially varying regularisation. As a consequence, 
further a priori knowledge has to be added.

In the literature one can find several attempts dealing with nonrigid image 
registration in conjunction with spatially varying regularisation or material 
parameters. 
On the one hand, parametric approaches based on, for instance, damped 
spring models [2], radial basis functions [3], or B-splines with subsequent 
filtering [4] have been shown to allow for a locally varying deformability of the 
resulting displacement field. Although incorporating a kind of tissue constraint, 
these approaches tend to result in a displacement field interpolating smoothly 
across soft tissues, rather than to model the physics of tissue accurately. In 
particular, the elastic properties of tissue, such as its (in)compressibility or 
Young’s modulus, cannot be controlled. 
On the other hand, non-parametric approaches incorporating physical 
properties of tissue have been frequently proposed as part of a biomechanical 
model for brain applications. Here, based on a segmentation into (at least) 
bone and soft tissue structures, an initial estimate of the displacement field is 
computed. However, this estimate is restricted to the surfaces of the 
segmented regions. To model the displacement field in the entire domain, in a 
second step either the Navier-Lamé equations or the Navier-Stokes equations 
are employed. For the discretisation of the differential equations numerous 



schemes are used, e.g. a finite difference method [5], a finite element method 
[6] or a boundary element method [7]. A related approach [8] is based on a 
finite element discretisation of the Navier-Lamé equations. Instead of using 
segmented surfaces as an initial estimate, a set of homologous landmarks 
(here provided by application of a snake algorithm to both images) is required 
to drive the deformation of the template image. 
All these approaches have been reported to be accurate close to the 
segmented surfaces. However, since no volumetric information is exploited, 
the estimated displacement field may be less accurate far away from the 
surfaces. 
The drawback of a possibly reduced accuracy can be overcome by including 
volumetric information [9-11]. These methods differ in the type of a priori 
information and underlying model. Whereas the a priori information is 
provided either by a segmentation of both images [10,11] or by statistical atlas 
information [9], the underlying model is based on the demons algorithm [10] or 
the Navier-Lamé equations [9,11].
 
The method presented in this note is based on a non-parametric registration 
scheme [1]. Regarding the interpretation of a meaningful transformation, the 
Navier-Lamé equations are employed as underlying model. Since these allow 
to model the elasticity of different anatomical structures, they are well suited 
to registration problems including both bone structures and soft tissue. Finally, 
we aimed at reducing the amount of a priori information as much as possible. 
Compared to previous work (e.g. [8,10,11]) where the a priori information was 
provided by segmentation of both images, here, a segmentation of the 
template image is sufficient. 

The following section is concerned with the mathematical formulation of the 
registration problem whereas Section 3 reports on the application to a 
synthetic example as well as to real-life images.

2  Theory and Methodology

Let GRT →Ω:,  denote the template and the reference image, respectively. 
Here, G denotes a set of grey values and, for simplicity, 2ℜ⊆Ω  the image 
region. In addition, let a meaningful segmentation of T  be given. That is, a 
decomposition of Ω  into disjoint regions lΩ  is assumed, such that Ω  is equal 
to the union of all regions. 
The registration aims at finding a displacement field 2: ℜ→Ωu  such that 

)(: uidTTu +=  is similar to R , where id  denotes the identity mapping. In 
mathematical terms, the similarity is described by a functional [ ]RTuD ,; . It can 
be chosen as any popular distance (or similarity) measure provided its 
Gâteaux derivative exists. However, this note is restricted to the common sum 
of squared differences, 
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which assumes monomodal images.



A registration based on a similarity measure only, may yield a deformed 
template image which perfectly matches the reference image as long as all 
grey values are present in both images. However, the problem is ill-posed [1] 
and the underlying deformation does in general not make sense in a physical 
context. Therefore, an additional smoothness constraint (or regulariser) is 
considered which can be chosen to model the application specific physical 
properties. In this note we investigate a regulariser based on the popular 
linear elastic potential which is in addition equipped with spatially varying 
Lamé parameters µλ ,  (the so-called variable elastic regulariser),

[ ] ( ) ( ) ∫∫ ∑
ΩΩ =

=⋅∇+∂+∂= dxLdxuuuuS S
u

ji
jxixu ij

:2,; 2
2

1,

2
4
1 λµµλ , (2)

where uλ  and uµ  are defined in analogy with uT , e.g. )(: uidu += λλ . For other 
regularisers including diffusive-, fluidal- or curvature-based approaches we 
refer to, e.g., [1]. Generally, a regulariser may be interpreted as a penaliser: 
According to the underlying physical model, it is designed to keep the 
displacement field smooth during deformation. 
In contrast to a conventional approach, where λ  and µ  are global constants, 
both parameters are assumed to be spatially dependent. Here, the positive 
functions +ℜ→Ω:, µλ  are used to reflect the material properties. They can 
be related to the possibly more familiar Young’s modulus and Poisson’s ratio: 
From a qualitative point of view, µ  is inversely proportional to the elastic 
modulus and µλ /  is proportional to the incompressibility of the material. In [8] 
it is reported that for the same type of anatomical structure the values used in 
the literature differ a lot. Consequently, a choice of material parameters in a 
relative way rather than in an absolute one is suggested.
By knowing the segmentation of the template image we are now in a position 
to assign dedicated elastic properties to each subdomain lΩ . Thereby diverse 
elastic behaviour of different materials, like bones and muscles, can be 
simulated.
Note, that uλ  and uµ  depend on the displacement u . This dependency is 
indispensable due to the fact that nonlinear registration approaches mostly 
employ an iterative scheme and therefore the material properties at a fixed 
position do change in the course of the registration. As a consequence, the 
parameters at an intermediate stage can be deduced from u  applied to the 
initial setting which makes a segmentation of the reference image redundant.

By combining the similarity measure and the regularising term, the problem is 
to find a displacement field u  which minimises the joint functional 
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Usually, the regularising term is weighted by an additional regularisation 
parameter [1] which is chosen with regard to the application dependent 
smoothness of the resulting displacement field. Here, the weighting of the 
regularising term is based on the Lamé parameters only and the additional 
parameter is omitted.
The computation of the Gâteaux derivative of (3) yields a necessary condition 
for a minimiser of (3), 
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where u∇  refers to the gradient with respect to u  whereas u∇∇  denotes the 
gradient with respect to the Jacobian of u . 
The outcome is a system of nonlinear partial differential equations equipped 
with associated boundary conditions,
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For the similarity measure and the variable elastic regulariser a 
straightforward calculation yields
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Note that )(ufAu =  corresponds to the Navier-Lamé equations. The 
boundary conditions in (4) are of Neumann type but clearly they may be 
chosen problem dependent. 
For a numerical treatment, (4) is embedded into an initial boundary value 
problem followed by a discretisation using second order finite differences as 
described in [12]. 
From a mathematical point of view, the scheme can be easily extended to 
three dimensions. However, from a computational point of view, an extension 
to three dimensions requires more care. Whereas for the conventional 
approach, where the Lamé parameters are constant, a fast solution scheme is 
available [1], it cannot be transferred to the proposed approach.  

3  Results

The proposed method has been applied to both synthetic and medical images 
in two dimensions. Here, we present two examples. At first, an elastic 
phantom is considered, where the aim is to define a parameter setting which 
can be used in medical applications. At second, slices from MR data sets are 
registered.

The elastic phantom (Fig. 1, top left) consists of two objects: a square object 
representing some soft tissue and in its inside a circle object taking the role of, 
for instance, a tumor. For the transition from the template to the reference 
image (Fig. 1, bottom left) we model a shrinkage of the tissue object. Due to 
the invisibility of the circle object in the reference image a conventional 
registration approach will tend to shrink its size in order to relate it as much as 
possible to a circle of zero size. 
The variable elastic regulariser has been employed with three different 
parameter settings. For the first setting, the Lamé parameters are constant (

4.0,01.0 ≡≡ µλ ), cf. the second column of Fig. 1. For the second and the third 
setting µ  (cf. third column) and λ  (cf. last column) are multiplied by 1000 , 
respectively. Here, the aim is to compare the conventional case with settings 
preserving either shape or volume of a certain image region. 



The resulting deformation fields have been compared with respect to the 
deformed template image and the displacement field (top row in Fig. 1) and 
the quantity u∇+1  (bottom row). Here, a volume preserved region 

(corresponding to 11 =∇+ u ) is depicted by medium grey, whereas a 
contracting (expanding) region appears in light grey (dark grey).
With no further material knowledge we observe in the second column a 
shrinkage of the tumor object (reduction in volume is 30%), indicated by a 
light grey of the circle object in the volume map. With a large µ  or λ  either a 
shape (and volume) preservation (third column) or an approximated volume 
preservation only (last column) can be seen. For both cases the change in 
volume is less than 0.3%.

As the medical example an application concerning the assessment of the 
kinematic motion of joints has been investigated. Template and reference 
image show sagittal slices from an MR exposure of a human knee at different 
degrees of flection. A series of such images is typically given in kinematic 
imaging [13]. Firstly, every pair of subsequent images is registered from which 
a mapping between any two images can be deduced. Secondly, in one image 
a number of positions is chosen by a physician such that, based on the 
mappings, the other images can be automatically aligned according to the one 
selected. 
Here, we investigate the first step which is the key part and determine a 
displacement field for each subsequent pair of a series consisting of five 
images (cf. Fig. 2, top centre, for a depiction of the first two images). For each 
transition from template onto reference image we expect a displacement field 
with the largest deformation in the region corresponding to the knee joint. In 
contrast, in the regions corresponding to femur and tibia, a rigid 
transformation is a reasonable assumption. 
Each pair of images is registered using the common elastic matching scheme 
with no spatially varying parameters and the proposed method based on a 
manual segmentation of femur, tibia, and femorotibial articulation in the 
template image (shown top right). For all experiments, the parameter setting 
was 0≡λ , 025.0≡µ  for the common elastic scheme while values of 0≡λ , 

25)( =xµ  and 005.0)( =xµ  are employed in the regions of femur/tibia and 
femorotibial articulation, respectively. For the purposes of stability and 
computational effort, a multi-resolution pyramid with four levels is used in all 
cases. 
For the first image pair, results are shown in the bottom row of Fig. 2 with a 
zooming on the bone area. The two images on the left-hand side correspond 
to the constant setting whereas the two images on the right depict the results 
for the varying setting. A comparison of the resulting deformations reveals no 
visible improvement for the deformed templates (first and third image) at a 
first glance. However, when filling the regions corresponding to femur and 
tibia (retrospectively the registration) with a chequerboard pattern, a non-rigid 
deformation of both regions becomes visible (second image in bottom row). 
Moreover, the shape of the femur near to the femorotibial articulation is 
deformed. This is caused by a structure included in the reference image but 
not in the template image leading to a downward movement of the femur. 
Such a failure of registration does not happen for the second experiment. 



Here, the bone structures are rigidly displaced and the result is not misled in 
the region of the femorotibial articulation (bottom right). For a quantitative 
evaluation of the displacement fields according to the bone structures, we 
inserted each related displacement field into a thin-plate spline and computed 
its bending energy as described by [14]. Here, a bending energy of zero is 
expected for a rigidly deformed object whereas its evaluation for a non-rigid 
deformation returns a positive value. Table 1 displays the normalised energy 
values with respect to femur and tibia for all the eight experiments. In each 
case we observe for the proposed method a reduction of energy to about 1% 
when compared to the common elastic scheme.

All experiments have been computed on a standard PC. The Matlab-
implementation takes about 10 minutes for an image of size 256x256.

4  Conclusion and Discussion

In this work, a scheme for image registration has been derived which allows 
for spatial variation of elastic properties. Possible medical applications include 
intrapatient applications such as kinematic motion of joints as well as follow-
up studies.
Based on a segmentation of the template image, individual elastic properties 
can be assigned to dedicated anatomical structures. The underlying physical 
model in conjunction with spatially varying material properties allows not only 
for prescribing an individual elastic behaviour but also for approximating a 
preservation of shape or volume in a certain image region. However, exact 
values for the material parameters are not known in general and, usually, are 
guessed for in vivo situations. Work is in progress to evaluate various 
parameter settings as being typical for specific applications.
Compared to previous results, now, the segmentation of the template image 
only is sufficient. This is an important issue for time-critical tasks, like brain-
shift, since an (often time-consuming) segmentation is required for the pre-
operatively generated image only. 
As a necessary condition for a clinical use of the proposed scheme, a fast 
implementation for three dimensions is required. For the conventional case, 
where the material parameters are constants, a numerical scheme to solve 
the arising system of linear equations with linear-logarithmic complexity is 
described in the literature [1]. Although the structure of the system coincides 
with the one in the case of variable parameters, the numerical scheme cannot 
be used for the proposed method. Instead, a multigrid scheme appears as an 
appropriate alternative. Beside from the numerical complexity, the storage 
amount is an important issue. Here, a fast implementation is required to avoid 
the additional storage of parameter maps (having the same size as the 
images) as well as, for a given image position, a costly computation of 
material parameters from the segmentation.
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Figure 1: The left column shows template (top) and reference image (bottom). Beside, the 
results from three different settings are depicted columnwise: in the top row with respect to 
the deformed template and overlayed with the displacement field (data are thinned out for 
better recognition) and in the bottom row with respect to the volume preservation indicator, cf. 
text for further details.

Figure 2: Template, reference, and segmented template image are shown in the top row from 
left to right (the grey-values are inverted for better recognition). Below, zooms into the 
deformed template are depicted. The first two images correspond to the case with constant 
parameters ( 0≡λ , 025.0≡µ ), the last two images result from the case with variable 
parameters ( 25)( =xµ  and 005.0)( =xµ  in the regions of tibia/femur and femorotibial 
articulation, respectively, as well as 0)( =xλ  everywhere). See text for further details.



image pair to 
be registered

common elastic scheme proposed method
femur tibia femur tibia

1 to 2 106.239 187.701 1.500 1.051
2 to 3 86.270 95.616 1.113 1.050
3 to 4 66.420 68.382 0.860 0.386
4 to 5 56.144 92.586 0.797 0.688

Table 1: Normalised bending energies with respect to the displacement fields within femur 
and tibia.
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