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Universiẗatsklinik für Radiodiagnostik
SIP-Labor
Anichstraße 35
6020 Innsbruck, Austria
reto.bale@uibk.ac.at

Harald Grossauer
University of Innsbruck
Institute of Computer Science
Technikerstraße 21a
6020 Innsbruck, Austria
harald.grossauer@uibk.ac.at

Stefan Henn
Heinrich-Heine University of
Düsseldorf
Lehrstuhl f̈ur Mathematische Opti-
mierung
Mathematisches Institut
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SummaryImage registration is a fundamental task in today’s medical imaging. In
particular for histological serial sectioning, where a three-dimensional object is cut
into thin sections for a further microscopic analysis, registration leads to a three di-
mensional reconstruction of the sections. This reconstruction enables an exploration
of the digitized data in any direction, not only in the cutting direction. In this paper,
we describe cutting and reconstruction procedures. For the reconstruction, we use
linear as well as non-linear registration schemes. Moreover, we present some results
for a whole brain of aSprague Dawleyrat.

1 Introduction

Histological serial sectioning is a valuable and essential tool in visualizing micro-
scopic structures of tissue like, for example, cells. A three-dimensional object is
sectioned into thin (5–40µm) sections; cf. Fig. 1. These sections form the basis for
a microscopic investigation; cf. Fig. 2. It is important to note that the sections are
inevitable to deduce information about cells like, for example, size, position and
orientation. Alternative three-dimensional imaging devices like, for example, com-
puter tomography (CT) or (micro) magnetic resonance imaging (MRI orµMRI)
have resolutions that are far behind the visualization of cells [4, 11]. The infor-
mation obtained from the microscopic analysis is related to the coordinates in the
two-dimensional tissue section rather than the ones of the three-dimensional original
object. However, the sectioning process introduces all kinds of deformations to the
tissue and this results in distorted tissue sections; cf. Fig. 1(b). Therefore, the two-
dimensional information can not be used to perform an overall three-dimensional
analysis and visualization.

A remedy is provided by so-called image registration techniques; cf., e.g., [24,
17]. Image registration is one of the fundamental tasks in today’s image processing
and is used routinely in many medical applications; for an overview, see, e.g., [6,
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16, 22, 17] and references therein. The objective of image registration is to make
images which are taken at different times, from different perspectives, and/or from
different devices to be more alike.

Particularly in the context of histological serial sectioning, the aim is to recover
non-deformed versions of the tissue sections. Ideally, these non-deformed sections
can then be glued together to get a three-dimensional tissue back; see also [19, 8,
21, 2]. By knowing the deformations, one can map from the deformed to the non-
deformed tissue and vice versa. Therefore, one can also visualize cells in a three-
dimensional view and perform a three-dimensional structure analysis.

Here, we describe a registration procedure for images arising in the Human
NeuroScanning Project (HNSP) [23]. The overall goal of this project is a three-
dimensional reconstruction of a whole human brain down to particular neurons
based on microscopic modalities. This data will then be used as the basic struc-
ture for the integration of functional data based on stochastic mapping and later on
for modelling and simulation studies in a virtual brain; see [23] for details.

The production of the histological serial sectioning of a human brain is ad-
dressed in Section 2. As illustrated in Fig. 3, non-linear registration is essential
for the reconstruction of the brain sections. Fig. 3(a,b) displays two flat bed scans
of consecutive sections of a serial sectioning of a human brain. The scans have
been pre-registered using a principal axis transformation; cf., e.g., [1]. As it is ap-
parent from the difference image Fig. 3(c), intolerable differences with respect to
the geometry are observable (particularly near the cerebral cortex). Fig. 3(d) shows
the difference after an affine linear registration. Though the difference has been re-
duced considerably and especially with respect to the left hemisphere, the result
is still not convincing since large deformations are observable (particularly in the
right hemisphere). This example demonstrates that the deformations to be observed
are in general non-linear and therefore non-linear registration techniques have to be
used in addition. Fig. 3(e) finally displays the difference image after an additional
so-called elastic registration of these two slices. For elastic registration, we refer to
the extended literature; see, e.g., [5, 3, 7, 10, 9, 12, 17]

The remaining part of the paper is organized as follows. In Section 3 we de-
scribe the three phases of our registration scheme. The first phase is related to some
preprocessing: digitizing the tissue sections, segmentation, principal axis transfor-
mation (PAT) based pre-registration of the images (cf., e.g., [1]), and gray value
equalization. The second phase is an affine linear registration of the image stack and
the last phase is an elastic registration thereof.

Section 4 presents some results, the reconstruction and visualization of a whole
brain of aSprague Dawleyrat. Moreover, we also present some timings for these
particular reconstructions. Finally, we conclude in Section 5 and comment on future
work.
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(a) paraffine embedded human brain
(sagittal sectioning)

(b) sliding microtome with tissue section on
the blade (axial sectioning)

(c) slicing workbench (d) high resolution FBS

Fig. 1. Sectioning machinery: (a) paraffin embed human brain; (b) sliding microtome with
tissue section on top of the blade; (c) part of the slicing workbench; (d) transparent flat-bed-
scanner (FBS) with microscopic slide.

2 Material

In order to locate the spatial positions of single neurons, the postmortem brain from
a 55 year old male human voluntary donor was prepared in several steps; cf. [23].
In the beginning, the brain was fixed in a neutral buffered formaldehyde solution.
After fixation an MR-scan of the brain was produced to obtain information of the
original topology; cf. Fig. 2(a). Finally, the brain was dehydrated and embedded in
paraffin; cf. Fig. 1(a).
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(a) slice of MRI scan (b) light microscope

(c) episcope image (d) cells

(e) scan of histological section

Fig. 2. Different image modalities of the brain: (a) MRI slice, (c) episcope image, (e) trans-
parent flat bed scan of a microscopic slide; (b) light-microscope with microscopic slides on
the table; (d) view through the microscope.
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(a) scan 3799 (b) scan 3800

(c) |TPAT −R| (d) |T lin −R|

(e) |T elas −R|

Fig. 3. Two consecutive axial scans 3799 (a) and 3800 (b) as well as difference images: (c)
after PAT registration, (d) after optimal affine linear registration, and (e) after elastic registra-
tion.



6 Jan Modersitzki1, Oliver Schmitt2, and Stefan Wirtz1

This preparatory work was followed by sectioning the brain in 20µm thick
slices (about 5000 for this brain) using a sliding microtome; cf. Fig. 1(b,c). A high
resolution episcopic image (1352×1795 pixels, three colors) was taken before each
slicing step; cf. Fig. 1(c) and Fig. 2(c).

Fig. 1(b) also displays a tissue slice after sectioning. The tissue slice was then
stretched in warm water at55◦C for flattening. Thereafter, it was transferred onto a
microscopic slide and dried. After drying, the sections were deparaffinized, stained
in gallocyanin chromalum, and mounted under cover-glasses.

A specialized light microscope with an extraordinarily large object range of
250×250 mm2 is used to visualize all cells of the large tissue sections (Fig. 2(b,d)).
Different neuronal entities were analyzed on different structural scales, i.e. from
macroscopic details down to the cellular level; see [23] for the image processing.
Although scanner technology has been improved tremendously within the last years,
yet light-microscopy represents the only possibility to visualize fine details, like, for
example, the exact spatial location of cells (Fig. 2(d)); cf. [23].

In order to relate the microscopic data to a macroscopic view of the slice and to
recover the geometrical deformation of the tissue introduced by the various section-
ing steps, flat bed scans of the slices were produced (Fig. 1(d) and Fig. 2(e)). These
scans form the basis for our numerical treatment. Note, the fixed and mounted tissue
sections can not be deformed whereas the scans (i.e. the digital images of the sec-
tions) can. Using a resolution of 2032 parts per inch in an 8 Bit gray-scale mode
the digitized images range between 5000×2000 and 11000×7000 pixels (about
196 MBytes storage for the largest scan).

3 Registration procedures

In this section we describe our reconstruction procedure for a stack ofn scans. We
use a continuous image model which enables us to use fast numerical schemes like,
for example, Gauss-Newton schemes.

In Section 3.1 we discuss the discretization and interpolation schemes. In Sec-
tion 3.2 we describe our preprocessing. The main objective is a segmentation of the
scan of the brain and a gray value homogenization. The latter is necessary because
the staining of consecutive section shows large variations. Section 3.3 summarizes
general remarks concerning the registration of a stack of preprocessed scans. The
second phase of our reconstruction, which may also be viewed as a further pre-
processing step, consists of an affine linear registration; cf. Section 3.4. Here, the
transformation can be phrased in terms of a small number of parameters and we
end up with a parametric registration problem. The third and final phase consists of
an elastic registration; cf. Section 3.5. For the affine linear and elastic registration
we exploit a multilevel approach; see also [13, 14]. Here, the smoothed images are
down-sampled and registration results obtained on a coarse level are used as starting
values for the registration on the next finer level.
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3.1 Discretization

Though the scans of the sections present discrete data, we prefer a continuous image
model. Using a continuous model, the numerical schemes become independent of
the actual image resolution and, most importantly, we are able to apply fast opti-
mization schemes which typically rely on at least first order derivatives. However,
for two reasons we ignore the need of differentiability of the transformed images
and use a bilinear interpolation scheme, only. One reason is that higher order in-
terpolation schemes, like, e.g. B-spline interpolations lead to oscillations and Gibbs
phenomenon which are very pronounced at the cerebral cortex, of course. The sec-
ond reason is that our numerical experiments strongly indicates that the benefit of
higher order interpolation is hardly noticeable but the price in terms of computing
time is quite high.

We assume all discrete data to be of the sizem-by-n. The images are interpo-
lated at pixel values(i, j) which are associated to points(i/(m + 1), j/(n + 1)) ∈
Ω :=]0, 1[2. For an arbitrary point(x, y) we setT (x, y) = b, if (x, y) 6∈ Ω. Here,
b is the gray value of the background which is typically zero. For the evaluation
of T (x, y), where(x, y) ∈ Ω, we use a bilinear interpolation scheme based on the
four closest pixels. Spatial derivatives are computed using central differences of the
pre-smoothed image, where a convolution with a discrete Gaussian kernel is used
for smoothing. For the computation of the two-dimensional integrals we use the
midpoint quadrature rule.

(a) before (b) after

Fig. 4. Scan before (a) and after (b) pre-registration. The solid and dashed lines illustrate the
first and second principal axis, respectively. The cross point is the center of gravity and the
lengthes indicate the standard deviations in principal directions.
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3.2 Preprocessing

The stack of scansS(j), j = 1, . . . , n, forms the basis for our numerical treatment.
In a preprocessing step, each image is segmented using a simple but robust threshold
based algorithm and it can be normalized using a PAT; cf., e.g., [1, 17].

Fig. 4 illustrates the normalization procedure for scanS(3800) of a human brain.
The solid and dashed lines illustrate the first and second principal axis, respectively.
The cross point is the center of gravity and the lengthes of the lines indicate the
standard deviations in the principal directions. Note that the PAT registration is
redundant. Moreover, particularly for scans resulting from corrupted sections, we
observed that a PAT normalization can lead to an inferior starting point.

Before registration we apply a gray value homogenization. We use the gray value
statistic to equalize the gray value variation of the image stack which are due to
staining variations. Letγ andσ denote the mean gray value and its standard devi-
ation with respect to the non-zero image, respectively. Withγ̂ andσ̂ we denote the
target values obtained from a sliding median filtering of the corresponding values of
the image stack. We replace the imageS by Ŝ := σ̂

σ (S − γ) + γ̂, where clipping is
applied to out of range values. Hence, by linearity of the expectation value we have

E[Ŝ] =
σ̂

σ
E[S − γ] + γ̂ = γ̂ and E[(Ŝ − γ̂)2] = (

σ̂

σ
)2E[(S − γ)2] = σ̂2.

To minimize notational overhead, we subsequently denote the normalized scans
also byS(j).

3.3 Stack registration

Our registration is based on theL2-difference or Sum of Squared Differences (SSD)
(cf., e.g., [6])

D(A,B) :=
1
2

∫

Ω

(A(x)−B(x))2 dx, (1)

whereA,B are two given images. For any imageS(j) we consider an individual
transformationu(j), such that the joint distance

J(u(1), . . . , u(n)) :=
n∑

j=2

D(S(j−1) ◦ u(j−1), S(j) ◦ u(j))

=
1
2

n∑

j=2

∫

Ω

(
S(j−1) ◦ u(j−1) − S(j) ◦ u(j)

)2
dx

(2)

becomes minimal, where(S(j) ◦ u(j))(x) := S(j)(u(j)(x)) denotes the transformed
scan.

In order to avoid systematic scaling errors in the registration of the stack, the
imageS(ν) with largest number of non-zero pixels remains unaltered throughout
the registration, i.e.u(ν)(x) = x. Therefore, the above minimization problem (2)
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decouples into two parts. Moreover, for the linear registration part, we constrain the
transformationsu(e), e = 1, n, to be volume preserving, i.e.,

det∇u(e) = 1. (3)

Since a re-scaling of the imagesS(e) is already penalized by the elastic regularizer,
we do not constrainu(e) in the non-linear registration.

The constraints onu(e) to be volume preserving is crucial, particularly when
registering cone shaped objects. Without these additional constraints, one may ob-
tains a cylinder shaped result. However, not all shape problems can be cured by this
approach. Fig. 5 displays two three dimensional objects, a box and a twisted copy. If
we would produce coronal serial sectioning, we would obtain the same images for
both objects; cf. Fig. 5(c). Therefore one has to face ambiguity in the reconstruction
of three-dimensional objects from two-dimensional slices.

(a) box (b) twisted box (c) coronal section

Fig. 5. Two three-dimensional objects, a box (a) and a twisted copy (b); arbitrary non-empty
axial section through either of the two objects (c).

It is important to note that the registration discussed here aims to recover fine
level details. Registration can not compensate for global shape variations, which are
already introduced by removing the brain from the skull or by putting it onto a table.
In order to correct for these global shape deformations, additional information has
to be supplied. We will use an a priori taken magnetic resonance scan (MRI) of the
brain (Fig. 2(a)) as a non-deformed reference and finally register our reconstruction
to the MRI.

In the above discussion we assumed that the scan with maximal number of non-
zero pixels is uniquely defined. However, the approach can be extended easily to
the case when more than one scan take the maximum. As a matter of fact, we never
observed this situation in our numerical experiments.

For the numerical minimization ofJ in (2), we use an iterative multilevel non-
linear block Gauss-Seidel scheme. The iteration counter is denoted byk. Fork = 0,
we setu(j)

k such that the associated map becomes the identity,u(j)
k (x) = x, j =

1, . . . , n. Forj = 1, . . . , n , j 6= ν, we minimize
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Ĵj(u(j)) := J(u(1)
k+1, . . . , u(j−1)

k+1 , u(j), u(j+1)
k , . . . , u(n)

k ), (4)

with respect tou(j) only and the minimizer is denoted byu(j)
k+1. Settingk 7→ k + 1

we repeat the iteration until stagnation in the distance measureJ is observed.
Of course, other optimization strategies can be used as well. However, a discus-

sion is beyond the scope of this paper and we therefore refer to the optimization
literature; see, e.g., [18] and references therein.

Note that the minimization in (4) is only with respect tou(j). With Ŝ
(j)
k denoting

the deformed image,̂S(j)
k (x) = S(j)(u(j)

k (x)) and some constantsd we have

Ĵ1(u(1)) = D(S(1) ◦ u(1), Ŝ
(2)
k ) + d,

Ĵn(u(n)) = D(S(n) ◦ u(n), Ŝ
(n−1)
k ) + d,

Ĵj(u(j)) = D(Ŝ(j−1)
k+1 , S(j) ◦ u(j)) + D(S(j) ◦ u(j), Ŝ

(j+1)
k ) + d1

= D(S(j) ◦ u(j),
1
2
Ŝ

(j−1)
k+1 +

1
2
Ŝ

(j+1)
k ) + d2.

Therefore, a minimizer of (4) can be obtained by minimizing

J2(u) := D(R, T ◦ u), (5)

where

T := S(j) and R :=





1
2 (Ŝ(j−1)

k+1 + Ŝ
(j+1)
k ), 1 < j < n,

Ŝ
(2)
k , j = 1,

Ŝ
(n−1)
k , j = n.

As already pointed out, we apply a multilevel approach for the minimization
of (5). The images on the fine grid are smoothed by convolving with a discrete
Gaussian kernel and are down-sampled to a coarse grid. The registration results on
the coarse grid are mapped to the fine grid and serve as generally excellent starting
values for the registration on the fine grid.

3.4 Affine linear registration

Since an affine linear transformationu belongs to a finite dimensional space, it can
be parameterized like, for example,

u(x) :=
(

u1x1 + u2x2 + u3

u4x1 + u5x2 + u6

)
(6)

and we therefore associateu with the parameter vector(u1, . . . , u6). For the volume
preserving map we use the parameterization

u(e)(x) =
(

1 u
(e)
1

0 1

)(
cosu

(e)
2 − sin u

(e)
2

sin u
(e)
2 cosu

(e)
2

)(
x1

x2

)
+

(
u

(e)
3

u
(e)
4

)
,
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where the first matrix describes shear and the second rotation.
For a numerical solution of (5) we exploit a Gauss-Newton scheme, where only

first order derivatives of the images are needed; cf., e.g., [18]. Starting with an initial
guessu0, we obtainuk+1 = uk + δu, whereδu is the solution of the linearizedL2

approximation problem

‖R− T ◦ uk+1‖ ≈ ‖R− T ◦ uk −∇u[T ◦ u]u=uk
δu‖ = min .

The generic derivative∇u[T ◦ u] is given by

∂u1 [T ◦ u] = ∂1T · x1, ∂u4 [T ◦ u] = ∂2T · x1,
∂u2 [T ◦ u] = ∂1T · x2, ∂u5 [T ◦ u] = ∂2T · x2,
∂u3 [T ◦ u] = ∂1T, ∂u6 [T ◦ u] = ∂2T,

where the directional derivatives∂jT = ∂jT (u(x)) are approximated by cen-
tered finite difference approximation of the smoothed imagesT ; cf. Section 3.1. The
derivatives for the first and last section are given by

∂
u

(e)
1

[T ◦ u(e)] = ∂1T · (sx1 + cx2),

∂
u

(e)
2

[T ◦ u(e)] = ∂1T · ((ca− s)x1 − (c + as)x2)− ∂2T (−cx1 + sx2),

∂
u

(e)
3

[T ◦ u(e)] = ∂1T, ∂
u

(e)
4

[T ◦ u(e)] = ∂2T.

3.5 Elastic registration

As it is apparent from Fig. 3(d), an affine linear registration alone does not lead to
satisfying reconstruction results. Therefore, a non-linear registration becomes nec-
essary. Here, we use an elastic registration which has been studied for over 20 years;
see, e.g., [5, 3, 7, 10, 17].

The basic idea of elastic registration can be described as follows. Assume that
the template image has been painted onto a rubber. A deformation of the rubber
results in a deformed template image but also introduces a potential energy to the
rubber. The stronger the deformation the higher this potential becomes. The idea
is to find a deformation which minimizes both, the distance between reference and
deformed template as well as the elastic potential. Therefore, deformations leading
to a very high elastic potential become disregarded even if they lead to small values
of D. In other words, the distance measure (5) is regularized by the elastic potential
and the registration problem becomes

Jelas(u) = D(R, T ◦ u) + S(u) = min, (7)

where

S(u) =
∫

R2

λ

2
(div u)2 + µ

{
(∂1u1)2 + (∂2u2)2 +

1
2
(∂1u2 + ∂2u1)2

}
dx (8)

andµ andλ are the so-called Laḿe constants reflecting material properties; see,
e.g., [17] for details.
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This particular regularization in our registration scheme is motivated by the fact
that the histological sections originally consist of almost pure paraffin wax. The
deformation process due to sectioning is therefore expected to be dominated by the
elastic properties of the section. Note that also other processes like, e.g., drying or
mounting contributes to the overall deformations.

Note that in contrast to the affine linear registration whereu is described in
terms of at most six parameters, the deformation in the continuous formulation of the
nonlinear registration is not restricted to a finite dimensional search space. However,
in our implementation we use a discretization where values ofu(x) are computed
for each pixelx.

Following [9], a minimizer is characterized by the Euler-Lagrange equations

Au(x) + f(x, u(x)) = 0 for all x ∈ Ω, (9)

where the well-known Navier-Laḿe operatorA is related to the Ĝateaux-derivative
of S,

A[u] = µ∆u + (λ + µ)∇divu

= µ
(
∂1,1u1 + ∂2,2u1
∂1,1u2 + ∂2,2u2

)
+ (λ + µ)

(
∂1,1u1∂1,2 + u2
∂1,2u1∂2,2 + u2

)

and the so-called forcef is related to the Ĝateaux-derivative ofD,

f(x, u(x)) =
(
R(x)− T (x + u(x))

)
· ∇T (x + u(x)). (10)

For the computation of a numerical solution, we used the scheme proposed in [9].

4 Results

Fig. 6 displays some results for the registration of a stack ofn = 503 slices from a
Sprague Dawleyrat brain. Each scan has a resolution of 1900×1900 pixels, which
ends up in a total amount of 1.7 gigabytes (GB) of data. Heavily corrupted tissue
sections were automatically detected and disregarded, such that 474 scans (1.6 GB)
remained.

Fig. 6(a) displays a view of the non-registered stack and (b) a view of the elas-
tically registered stack. To illustrate the value of the reconstruction, we resampled
the data orthogonally to the direction of sectioning and show a virtual sagittal slice;
see Fig. 7.

In the virtual sagittal slice structures like, for example, the cerebellar fissures,
molecular and granular layer, and white substance of cerebellum are clearly recog-
nizable. Note that the initial fuzzy looking brain now offers morphological details
and obviously dramatic increase of surface smoothness. Overall, the displaced areas
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(a) no registration

(b) elastic registration

Fig. 6. Lateral view of the three-dimensional reconstruction of a whole rat brain; (a) no reg-
istration and (b) elastic registration.

are coherent again. It should be noted, that the registration is an indispensable tech-
nique for recognition, discussion and three-dimensional measurement of internal
and external morphologic entities.

For this reconstruction, a linear pre-registration based on the principle axis trans-
formation was performed. The error (cf. (2)) decreased by about 27%, i.e.

J(uPAT) ≈ 0.73 · J(u0).

For this reconstruction, it turned out that a pure elastic registration through five
levels of a Gaussian pyramid (coarsest images128×128 pixels) leads to a satisfying
convergence. No PAT pre-registration was applied. TheMATLAB [15] implemented
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(a) no registration

(b) elastic registration

Fig. 7. Reproduced virtual slice (sagittal, orthogonal to the sectioning direction, Bregma -
5.82 mm, Interaural 4.18 mm; see, e.g., Paxinos & Watson [20]). A column of the virtual slice
represents the intersection of the virtual slice with an original slice (axial); (a) no registration,
(b) after elastic registration. Note that registration enables the identification of anatomical
structure.
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registration algorithm lasted about ten hours for the high-resolution images on a
AMD Athlon XP 2700+, 1GB RAM, running Linux.

Only 35 iteration steps were needed and the error decreased by 79%, i.e.

J(uelas) ≈ 0.21 · J(u0).

In Tab. 1 the runtime results for the registration of images in different resolutions is
assembled.

Table 1.Computational costs of the registration versus data dimensions; MB gives the storage
requirements of the data, #levels the number of levels used in our multiscale approach,titer
is the CPU time in minutes needed for one iteration on the finest grid,ttotal is the total CPU
time needed for the registration, and #iter is the overall number of iterations on all levels. The
whole reconstruction process takes about ten hours CPU time usingMATLAB [15] on a AMD
Athlon XP 2700+, 1GB RAM, running Linux.

data dimensions MB #levelstiter (min) ttotal (min) #iter
128× 128× 474 8 1 0.5 9 19
256× 256× 474 30 2 1.9 32 24
512× 512× 474 119 3 10.7 125 28

1024× 1024× 474 474 4 42.9 240 32
1900× 1900× 474 1632 5 149.5 547 35

Beside measuring the registration results with the distance measureD, the re-
sults were evaluated by an anatomist. An important criterium is the improvement
of the representation of small structures (subcortical nuclei, cortical areas) and the
smoothness of inner and outer borders. The registered slices do fulfill this require-
ment. Generally, three classes of neuroanatomical structures are recognizable only
after registration: 1) subcortical nuclei, 2) ventricles, and 3) certain cerebral and
cerebellar cytoarchitectonic layers. More precisely, subcortical nuclei like the cau-
date putamen complex, medial geniculate nucleus - ventral part, anterior pretectal
nucleus - ventral part, ventral posterolateral thalamic nucleus, ventral posterome-
dial thalamic nucleus among other things can be localized. Furthermore, the lateral
ventricle and the aqueduct become visible. Finally, cytoarchitectonic layering at cer-
tain parts of the cerebral and the cerebellar cortex can be detected. In the forebrain
one can observe hippocampal substructures like the CA1, CA2, CA3 regions (CA:
cornu amonis) and the dentate gyrus, see Fig. 7. Moreover, in the entorhinal region
the layer II (external granular layer) and IV (internal granular layer) are distinguish-
able.

In Fig. 8 the results of the registration processes are visualized in detail for a
part of the rat brain. Fig. 8 depicts the three-dimensional reconstruction of 68 slices
before (a) and after (b) registration. The massively shifted images yield to an blurred
reconstruction without recognizable fine anatomic details (Fig. 8(c)). Fig. 8 also il-
lustrates the variation of the internal structures before (c) and after (d) registration



16 Jan Modersitzki1, Oliver Schmitt2, and Stefan Wirtz1

(a) original data (b) after elastic registration

(c) original data (d) after elastic registration

Fig. 8. Three-dimensional lateral view of a part of the rat brain and virtual orthogonal slices;
(a) original data, (b) after elastic registration. This part of the brain shows the brainstem at
the top and the cerebellum with folia at the bottom. The virtual slices (orthogonal to the
sectioning direction) demonstrate the morphologic effect of registration: (c) original data,
(d) after elastic registration. Recognizable structures after registration:a cerebellar fissures,
b molecular layer,c granular layer,d white substance of the cerebellum.

by means of virtual slice orthogonal to the sectioning direction. Note, that the reg-
istration results allows for a detailed discussion of the internal structures.

5 Conclusions

We presented the first fully reconstructed rat brain at a resolution at level of the
micrometer scale. The huge amount of data (≈ 1.6 GB) as well as the required
quality demand for a special registration technique. Only the use of a specific vari-
ational technique accompanied by strategies to incorporate special properties of the
underlying tissue enables us to match the high anatomical demands.

The backbone of the scheme is a super-fast solution technique for the inner linear
system. This technique is accompanied by sound strategies for accelerating the outer
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iteration. This includes a multi-scale approach based on a Gaussian pyramid as well
as a sophisticated estimation of the material constants for the elastic potential.

The results of the registration process enable the identification of histological
details that pertain to three distinct groups of neuroanatomical structures: subcor-
tical nuclei, ventricles and cerebellar or cerebral cytoarchitectonic layers. Before
registration the detection of these structures was impossible. Therefore, it is essen-
tial to apply elastic registration to this kind of non-linear problem. Furthermore,
now it is feasible to develop strategies for three-dimensional morphometric analysis
of specific areas in registered stacks of images derived from normal and pathologic
brains for experimental studies. Finally, the obvious advantages were quantified by
a distance measure leading to an improvement of about 79% after just 35 iteration
steps.

Currently we are working at a full reconstruction of a human brain. Here the
task is to align about 6000 slices of dimension (12000 × 7000) pixels (resolution:
31.75µm per pixel)! Preliminary results look very promising and indicate that the
outlined approach is capable of dealing with such an amount of data on a PC from
the shelf.
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