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Abstract. The goal of image registration is twofold. One goal is to enforce a certain similarity of two images by
geometrically transforming one of the images. The second goal is to keep this transformation meaningful or regular.
There exists a large amount of approaches aiming for regularity. Most of those are based on certain regularization
techniques, others use so-called regridding options.

Here, we present a mathematically sound formulation that explicitly controls the deformation in terms of the
determinant of the Jacobian of the transformation. In contrast to similar work, we use pointwise inequality constraints,
i.e., the volume is controlled voxel by voxel and not by integral measures. This approach guaranties grid regularity
and prevent folding.

As it turns out, the discretization of the volume constraint inequality is not straightforward. Therefore, we present
a new type of discretization enabling the detection of twists in a pixel or a voxel. Such detection is crucial since a
twists indicates that a transformation is physically meaningless.

To solve the large-scale inequality constrained optimization problem, we present a numerical approach based on
an interior point method. We finally present some numerical examples that demonstrate the advantage of including
inequality constraints explicitly.

Keywords: image registration, image matching, image fusion, variational approach, constrained optimization

1. Introduction

Registration is the determination of a geometrical trans-
formation that aligns points in one view of an object
with corresponding points in another view of the same
or a similar object. There exist many instances in imag-
ing which demand for registration. This particularly

∗This work was supported by NSF grant CCF-0427094 and NIH
grant NIH R01 HL068904.

applies to medical imaging. Examples include the treat-
ment verification of pre- and post-intervention images,
the study of temporal series of cardiac images, and
the monitoring of the time evolution of an agent injec-
tion subject to patient motion. Another important ap-
plication is the combination of information from mul-
tiple images, acquired using different modalities, like
for example computer tomography (CT) and magnetic
resonance imaging (MRI), a technique also known as
fusion. The problem of fusion and registration arises
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whenever images acquired from different subjects, at
different times, or from different scanners need to be
combined for analysis or visualization. In the last two
decades, computerized non-rigid image registration has
played an increasingly important role in medical imag-
ing, see, e.g. Maintz and Viergever (1998); Peckar et al.
(1999); Fitzpatrick et al. (2000); Zitová and Flusser
(2003); Modersitzki (2004) and references therein.

A numerical treatment of the problem is typically
based on two basic building blocks. The first one is a
so-called distance measure D, quantifying distance or
similarity of two given images R and T and the sec-
ond one is a so-called regularizer S which penalizes
unwanted and/or unreasonable solutions. Since image
registration is an ill-posed problem (see, e.g. Moder-
sitzki (2004)), regularization is inevitable. A common
treatment of the registration problem is based on the
following variational approach. Find a smooth trans-
formation u = (u1, . . . , ud )" : Rd → Rd minimizing
the joint energy

J (u) := D(R, T (u)) + αS(u). (1)

Here, α > 0 is a regularization parameter and com-
promises between similarity and regularity. The func-
tional D measure the distance between the images and
can be based e.g. on the Sum of Squares Difference
(SSD), mutual information Wells III et al. (1996), or
normal gradient fields Maintz et al. (2000); Haber and
Modersitzki (2004). For ease of presentation, in this
paper we focus on SSD,

D(R, T (u)) = 1
2
‖T (u) − R‖2. (2)

The regularization operator is design to yield a unique
deformation field u. For ease of presentation, we focus
on the most common so-called elastic regularization
(cf., e.g. Broit (1981); Christensen (1994); Modersitzki
(2004)),

S(u) = ω

2

∑

j

‖ ∇ u j‖2 + λ + ω

2
‖ ∇ · u‖2, (3)

where λ, ω are the so-called Lamé-constants; cf., e.g.
Modersitzki (2004). It is worthwhile noticing that our
framework enables the usage of any distance measure
combined with any regularizer as long as the Gâteaux-
derivatives exist.

A registration result is typically evaluated by look-
ing at the image distance and the regularity of the dis-

placement; cf. Figure 5. If the displacement is more
or less regular, the mapping might be considered as
reasonable. If, on the other hand, the displacement is
irregular, one may want to reject the results and start
with a larger value of α. The worst case is that the dis-
placement shows twists (or folding), indicating that the
transformation is not even bijective. Note that the vari-
ational formulation (1) ensures a “smooth” solution but
has no build-in mechanism to prevent a very irregular
displacement.

The basic idea of the following new approach is
to integrate this evaluation practice directly into the
mathematical framework. In our new formulation, we
explicitly demand for transformation regularity and en-
sure bijectivity. Mimicking the human evaluation, we
constrain the wanted transformation in terms of mini-
mal and maximal expansion. For any set V ⊂ Rd and
ϕ(x) = x+u(x) we compute the volume and the trans-
formed volume

vol(V,ϕ) :=
∫

ϕ(V )
d y =

∫

V
det(Id + ∇u) dx (4)

and require that the ratio vol(V,ϕ)/vol(V, x) is rea-
sonable. For a smooth displacement u it is therefore
equivalent to require

0 < C(u) := det(Id + ∇u) < ∞ for all x ∈ $.

(5)

However, for most practical considerations, the above
bounds are not sufficient. Some registration algorithms
monitor the size of the Jacobian C(u) and re-initialize
or stop the registration if its value is small (cf., e.g.
Modersitzki (2004)). This monitoring is usually done
implicitly and is not a part of the mathematical formula-
tion. Therefore, registration algorithms require manual
intervention and visual inspection of the distorted grids
in order to achieve physically acceptable results. An-
other straightforward idea to prevent grid folding is to
use high values of the regularization parameter α. How-
ever such values can cause an inferior distance between
the images.

A seemingly simple approach to enforce a “reason-
able” Jacobian is to add an additional regularization to
the objective functional (1),

J (u) := D(R, T (u)) + αS(u) + β‖C(u) − 1‖2.

Similar approaches were suggested in Christensen
(1999); Rohlfing et al. (2003); Droske and Rumpf



Image Registration with Guaranteed Displacement Regularity 363

(2004). However, this approach has some disadvan-
tages. For a finite, not too large β, we have only an
overall penalty for “non-reasonable” transformations;
locally, the transformation can still be irregular. The
penalty approach with a moderate β’s does not pre-
vent vanishing Jacobians. On the other hand, it is
well-known that increasing β generally leads to ill-
conditioned optimization problems; see, e.g. Nocedal
and Wright (1999). Furthermore, for large β’s one gets
a volume preserving constraint which may be too tight
for many applications: in practice, one is often inter-
ested in a softer inequality constraint which allows parts
of the image to shrink in a prescribed band.

An alternative way of ensuring regularity of the
transformation is to use the framework of diffeomor-
phic or geodesic splines, see, e.g. Trouvé (1998);
Dupuis et al. (1998); Camion and Younes (2001);
Miller and Younes (2001); Miller et al. (2002); Twining
and Marsland (2003). Here, the basic idea is to add the
time as a further dimension and to establish an energy
minimizing flow of corespondent particles. A regular-
ization enforces that particles can not cross and as a
consequence, the flow and hence the transformation is
one-to-one. These techniques are of particular interest
for constructing transformation groups and performing
shape analysis.

In this paper we examine inequality constraints ap-
plied to the transformed volume. Thus, an additional
regularity of the transformation enters the mathemati-
cal formulation of the registration problem. As a conse-
quence, our numerical approach explicitly controls the
displacement and therefore no manual intervention is
required in order to obtain application conform reliable
displacements. Furthermore, this approach prevents
folding of the grid even for very small regularization
parameters α. Our approach is based on the inequality
constraint minimization problem

minimizeJ (u) := D(R, T (u)) + αS(u) (6a)

subject to κm(x) ≤ C(u) ≤ κM (x), (6b)

where we use non-negative compressibility functions
κm ≤ κM . For κm ≡ κM ≡ 1, we obtain equality
constraints and thus volume preserving image regis-
tration with hard equality constraints; cf. e.g. Rohlfing
et al. (2003); Zhu et al. (2003); Haber and Modersitzki
(2004).

The constraints are phrased as a determinant of the
Jacobian. Hence, the constraints are polynomials of
degree d in derivatives of u. The solution of continu-

ous optimization problems with differential inequality
constraints is not trivial. Here we use the discretize
then optimize approach. In the first stage we discretize
the optimization problem (6a) and the constraints (6b).
We then solve the finite dimensional (but relatively
large) discrete optimization problem. Although the
fundamental structure here may be considered discrete,
it is highly useful to view it as an instance of a family
of finer and finer discretizations of a continuous prob-
lem; see, e.g. Ascher and Haber (2001); Haber (2004);
Ascher and Haber (2004). In an abuse of notation,
we use the same notation for discrete and continuous
variables.

The rest of the paper is organized as follows. In
Section 2 we discuss the underlying discretization. Par-
ticularly the discretization of the Jacobian is a delicate
matter and care must be taken in order to obtain mean-
ingful results.

In Section 3 we summarize and discuss an interior
point method for the solution of the optimization prob-
lem. We elaborate on the solution of the linear system
obtained in each iteration and describe a multilevel
approach that enable to accelerate the computation.
Finally, in Section 4 we present 2D and 3D examples
that demonstrate the effectiveness and superiority of
our approach.

2. Consistent Discretization

Choosing a stable discretization method for a system
of partial differential equations (PDE’s) with mixed
derivatives is a delicate matter. In particular, the dis-
cretization of the constraint is not straightforward.
We start by discussing the discretization of the dis-
placement field followed by the discretization of the
constraint which consists of the main difficulty. We
then briefly describe the discretization of the objective
function.

2.1. Discretizing the Displacement

We assume that our discrete images have m1 ×. . .×md

pixels, where d = 2, 3 is the image dimensional-
ity. We also assume that each pixel/voxel is a box of
lengthes h1, . . . , hd . In our description we allow for
half step indices. As usual in image processing, we
identify pixels/voxels with cell centered grid points
xi1+ 1

2 ,...,id+ 1
2
. Given a box centered at xi1+ 1

2 ,...,id+ 1
2
, the

four/eight corners are numbered by full integer in-
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dices ik, ik + 1, k = 1, . . . , d . The displacement
u = (u1, . . . , ud ) is discretized in the nodal grid
(corner of each box; see Figure 1.This discretiza-
tion is different from the one proposed in Haber and
Modersitzki (2004) and it is related to the special struc-
ture of the constraints; cf. Section 2.2.

2.2. Discretizing the Constraints

Similar to our previous work Haber and Modersitzki
(2004) we are motivated by a finite volume approach.
We discuss the difficulties of finite volume discretiza-
tion in 2D in some length. We then also discuss the
(non-trivial) extension to 3D.

In the volume preserving approach of Haber and
Modersitzki (2004), we demanded that the volume (or
area for 2D) of every deformed box is preserved. We
therefore discretized the volume of every deformed
box v, by the cross-product of the diagonals (cf.
Figure 1(a))

vol(v,ϕ) =
∫

ϕ(v)
d y ≈ 1

2
(C − A) × (B − D).

Here, for ease of presentation, we drop the dependency
on the location i1 + 1/2, i2 + 1/2. This approximation
is motivated by the fact that for smooth and small
deformations, the volume of the deformed box (gray
area in Figure 1(a)) can be approximated by order h2

by the volume of the box spanned by the deformed
corners (surrounded by the bold lines in Figure 1(a)).

For volume preserving registration, this discretiza-
tion is consistent. However, if we allow the transforma-
tion to shrink or enlarge volume in a certain amount,
the transformation is allowed to be much more irregu-
lar and the above discretization can cause difficulties.
An intuitive example is illustrated in Figure 1(b). Here,
the top left point A moved by more than the box diam-
eter to A′. This movement results in a “twist” of the
box. This twist can not be observed by measuring the
volume of the box: The volume is given by the volume
of the triangle (DC S) minus the volume of the triangle
(A′ BS). Particular, if A′ is close to B, the volume may
even be large although a twist has occurred. In fact, the
situation is unstable since an arbitrarily small shift of
A′ can result in a twists. Therefore, box based volume
measures do not detect twists.

It is obvious, that a twisted grid is physically in-
correct (at least for all applications we are aware off).
We therefore propose a different discrete measure that

can detect twists of the grid. This new measure is cru-
cial if we move from volume preservation equalities
to volume constraining inequalities. As in Haber and
Modersitzki (2004), we assume that the transforma-
tion is smooth enough such that a deformed box can
be approximated by the box spanned by the deformed
corners.

Based on the previous considerations, we based our
discretization on a triangulation. If a triangle (or tetra-
hedron in 3D) twists, its volume becomes negative.
Therefore, to prevent twists and singular Jacobians,
one has to consider a discretization based on triangu-
lation. Since a triangle cannot twist without its volume
to change sign, such a discretization is consistent even
in cases of large deformations.

2.2.1. Triangulation in 2D. Every box is divided into
two triangles T 1,2; cf. Figure 2(a).We compute the vol-
ume of both triangles separately,

2
h1h2

V 1
i1+ 1

2 ,i2+ 1
2

= 1
h1h2

(C − B) × (B − A)

= 1 +
u1

i1+1,i2+1 − u1
i1,i2+1

h1
+

u2
i1,i2+1 − u2

i1,i2

h2

+
u1

i1+1,i2+1 − u1
i1,i2+1

h1

u2
i1,i2+1 − u2

i1,i2

h2

−
u1

i1,i2+1 − u1
i1,i2

h2

u2
i1+1,i2+1 − u2

i1,i2+1

h1
,

2
h1h2

V 2
i1+ 1

2 ,i2+ 1
2

= 1
h1h2

(D − A) × (C − D)

= 1 +
u1

i1+1,i2
− u1

i1,i2+
h1

+
u2

ii +1,i2+1 − u2
i1+1,i2

h2

+
u1

i1+1,i2
− u1

i1,i2

h1

u2
i1+1,i2+1 − u2

i1+1,i2

h2

−
u1

i1+1,i2+1 − u1
i1+1,i2

h2

u2
i1+1,i2

− u2
i1,i2

h1
.

and obtain 2m1m2 inequality constraints for d = 2.

2.2.2. Triangulation in 3D. In 3D, the computation
becomes more involved. The displacement field u is
discretized at the corner of each voxel. Once again, a
discretization based on the deformed voxel cannot de-
tect twists. Therefore, every voxel is divided into six
tetrahedrons; cf. Figure 2(b). The volume of a tetrahe-
dron with corners A, B, D, and E is given by

V A,B,D,E
i+ 1

2
= 1

6
det(D − A, B − A, E − A).
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Figure 1. Cell center xi1+ 1
2 ,i2+ 1

2
and transformed cell for d = 2.

Figure 2. Triangulation of a pixel (a) or voxel (b).

Similar formula are used for the remaining five
tetrahedrons. Hence, we end up with 6m1m2m3 in-
equality constraints for d = 3.

Remark 1. The number of constraints can be larger
than the number of unknowns. Particularly in 3D, we
have roughly 3m1m2m3 unknowns and 6m1m2m3 con-
straints. However, for κm < 1 < κM the constraints are
consistent, i.e., there exists a non-trivial transformation
satisfying the constraints.

2.3. Discretizing S

Since many regularizers are phrased in terms of the
more complex differential operators gradient ∇ and
divergence ∇· , we introduce the notation ∇h and ∇h ·
for the discrete analogs,

∇h u j = (∂h
1 u j , . . . , ∂h

d u j )", (7)

where with i = (i1, . . . , id ) and ek ∈ Rd the kth unit
vector,

(∂h
k u j )i+ 1

2 ek
:= 1

hk
(u j

i+ek
− u j

i ), j, k = 1, . . . , d.

The unknowns u j are discretized on the nodal grid,
whereas the derivatives are discretized on face stag-
gered grids; cf. Figure 3.

Note that the partial derivatives of u j are located
at different positions. Thus, for the divergence ∇h · ,
we average to the cell centered grid. Particularly, for
d = 3, we end up with

(4 ∇h · u)i1+ 1
2 ,i2+ 1

2 ,i3
1
2

= (∂h
1 u1)i1+ 1

2 ,i2,i3
+ (∂h

1 u1)i1+ 1
2 ,i2,i3+1

+ (∂h
1 u1)i1+ 1

2 ,i2+1,i3
+ (∂h

1 u1)i1+ 1
2 ,i2+1,i3+1

+ (∂h
1 u1)i1,i2+ 1

2 ,i3
+ (∂h

1 u1)i1,i2+ 1
2 ,i3+1

+ (∂h
1 u1)i1+1,i2+ 1

2 ,i3
+ (∂h

1 u1)i1+1,i2+ 1
2 ,i3+1

+ (∂h
1 u1)i1,i2,i3+ 1

2
+ (∂h

1 u1)i1,i2+1,i3+ 1
2

+ (∂h
1 u1)i1+1,i2,i3+ 1

2
+ (∂h

1 u1)i1+1,i2+1,i3+ 1
2
. (8)

Based on this discrete analogs, the elastic potential (3)
is discretized by

Sh(u) = ‖Bu‖2
2 := λ + ω

2
‖ ∇h · u‖2

+ ω

2

d∑

j=1

‖ ∇h u j‖2. (9)



366 Haber and Modersitzki

Figure 3. Edge staggered grids for 2D (a) and 3D (b).

In our registration process we like to exploit fast
optimization techniques. Therefore, we also have to
consider the derivative

Sh
u (u) = −(λ + ω)( ∇h · )" ∇h · u − ω(hu =: Au,

(10)

where A is a discretization of the well-known Navier-
Lamé operator [−(λ+ω) ∇ · ∇ · −ω(], (h the usual
seven points discrete vector Laplacian.

Remark 2. With the nodal discretization of u j , the
divergence operator is not the discrete adjoint (trans-
pose) of the gradient operator. The transpose of the
discrete divergence ( ∇h · )" is still an O(h2) ap-
proximation to the gradient but the resulting discrete
operator Ah is not h-elliptic. Therefore, we take
advantage of the above consistent and h-elliptic
discretization.

2.4. Discretizing T and D

Since we are heading for a continuously differentiable
objective function, we need to have an appropriate im-
age model. Particularly, d-linear image approximations
can not be used. As discussed in Haber and Modersitzki
(2004), we use a smoothing B-spline approximation
to the given discrete data. The smoothing parameter
is used for noise reduction and automatically chosen
according to the Generalized Cross Validation method
(GCV) Golub et al. (1979). For data interpolation using
B-splines see Wahba (1990). Since the grid is regular,

the spline coefficients can be computed efficiently us-
ing a discrete cosine transform. The continuous smooth
approximation is denoted by T spline.

Given the nodal grid representation of u we use av-
eraging operators P for the transfer to the cell centered
positions,

(Pu j )i1+ 1
2 ,...,id+ 1

2
:= 2−d

∑

k1,...,kd=0,1

u j
i1+k1,...,id+kd

,

the discretization of T is given by

T (u) := T spline(x1 + Pu1, . . . , xd + Pud ),

and the Jacobian Tu of T by

Tu := ∂T
∂u

(u) =
(

diag(P"∂1T ), . . . diag(P"∂d T )
)
,

(11)

where the partial derivatives ∂ j T are evaluated at the
spatial positions (x1 + Pu1, . . . , xd + Pud ). Note that
using a spline approximation for T , Tu is a sparse matrix
with only eight non-zero diagonals.

Our discretization of the SSD distance measure (2)
is straightforward,

D(u) : = 1
2
‖T (u) − R‖2

2 and thus

Du(u) = Tu(u)"(T (u) − R).
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3. Solution of the Optimization Problem

3.1. The Log Barrier Framework

To solve the discretized optimization problem 1,
we use a variant of a log-barrier method Fiacco
and McCormick (1991); Nocedal and Wright (1999).
Rather than solving the constrained optimization prob-
lem, we replace it by a sequence of unconstrained opti-
mization problems Jµ where µ is gradually decreased.
Here,

Jµ = D(u) + αS(u)

−µe"(log(C(u)−κm) + log(κM − C(u)), (12)

where µ is the barrier parameter and e = (1, . . . , 1)".
In classical optimization algorithms that barrier param-
eter is chosen large at first and slowly reduced to zero.
The algorithm for solving the optimization problem is
summarized in Algorithm 1.

In the following we discuss a few non-trivial steps
in this algorithm. Firstly, we discuss the minimization
of Jµ for a particular choice of µ (Step 1). Secondly,
we discuss the correction to the approximate solution
after µ is decreased (Step 3).

3.2. Solving the Optimization Problem for a Fixed µ

To solve the optimization problem for a fixed µ we use
a variant of Gauss-Newton’s method; see, e.g. Nocedal
and Wright (1999). The gradient of the objective
function is

∇u Jµ = Tu(u)"(T (u) − R) + αAu − µC"
u

×
(

1
C(u) − κm

− 1
κM − C(u)

)
. (13)

We approximate the Hessian of the objective function
Jµ using the Gauss-Newton approximation

Hµ = T "
u Tu + αA + µC"

u diag

×
(

1
(C(u) − κm)2

− 1
(κM − C(u))2

)
Cu.

(14)

The Gauss-Newton direction is then calculated by solv-
ing the linear system

Hµs = − ∇u Jµ. (15)

For the solution of the system (15) we use the Con-
jugate Gradient method with a multigrid V-cycle
preconditioner; see Trottenberg et al. (2001).

3.3. Prediction Step

The optimization problem (12) is approximately solved
for a particular choice of µ. To obtain an approxi-
mate solution of the underlying constrained optimiza-
tion problem 6a, µ has to be decreased to zero.

It is well known (Nocedal and Wright (1999)) that if
one initializes every optimization problem with the nu-
merical solution obtained for the previous µ and wants
to ensure fast converges of the algorithm, then small
changes of µ are required. In order to speedup the re-
duction process for µ, we use a predictor-corrector ap-
proach; see Nocedal and Wright (1999).

Since we relax µ by a fraction, it is natural to change
to a logarithmic scale. Replacing µ by e−t , for the so-
lution u(t) for a fixed t we have ∇u J (u(t), t) = 0 and
using the chain rule it follows that

e−t C"
u

(
1

C(u) − κm
− 1

κM − C(u)

)
+ Hµ∂t u = 0.

(16)
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Discretizing equation (16) we obtain the following rule
for the update s = u(tk+1) − u(tk),

e−tk C"
u

(
1

C(uk) − κm
− 1

κM − C(uk)

)

+ 1
tk+1 − tk

Hµs = 0. (17)

This results in a linear system with the same Hessian
matrix as in (15) but with a different right hand side.
This fact can be exploited if inexact factorization is
used as a preconditioner or a smoother.

4. Numerical Experiments

To demonstrate the effectiveness of our method we use
SPECT and MRI data provided by the Emory Hos-
pital in Atlanta. The SPECT data are 3D images of
128 × 128 × 36 voxels of the heart of a patient through
different phases of the cardiac cycle. The overall goal
of the clinical study is to evaluate and track cardiac
displacement from systolic to diastolic.

It is obvious, that the deformation of the heart is
highly non-linear and thus presents a great challenge
to any registration routine. Applying an unconstrained
registration algorithm results in a dilemma: Either the

Figure 4. Heart in two phases: diastolic (reference, left) and systolic (template, right); top: 3D visualization, bottom: two 2D slices.

image distance stays large or the grid folds. For this
application, volume or mass preserving equality con-
straints as considered in Zhu et al. (2003) or Haber and
Modersitzki (2004) are physiologically inappropriate.
On the other hand, it is common to assume that the heart
does not change its volume too much Faber (2005). We
therefore apply the volume constrained VCIR approach
presented in this paper.

We preform three sets of experiments. In the first set
of experiments we use a 2D SPECT slice which allows
us to visualize some of the concepts discussed above
in more detail. In the second set of our experiments we
process the 3D data and demonstrate that the concepts
carry over to 3D. Finally, we use the MRI data which
has a much higher resolution.

We experiment with different regularization param-
eters α. For both, the 2D and 3D example, we used
κm = κ−1

M ≡ 0.3. All computations are performed us-
ing MATLAB (MathWorks (1992)). For all algorithms
we start with µ = 1 and decrease it in a factor of 0.5.
We terminate the reduction when µ < 10−3.

4.1. 2D Cardiac SPECT Example

Figure 4shows two SPECT images of a heart in
systolic and diastolic phases. For the registration of
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the two phases, we attempt to use two different ap-
proaches. First, we run an unconstrained code that
uses elastic registration, cf. Haber and Modersitzki
(2004). Both algorithms are stopped as soon as
‖uk+1 − uk‖ < voxelsize/10. In addition, the un-
constrained algorithm is also stopped if the minimum
value of the determinant of the Jacobian C(u) is less
then 10−5.

Using the unconstrained code and starting with α =
10−2 we obtained a minimal value of the Jacobian of
0.28 which is close to the lower bound κm = 0.3. The

Figure 5. Left: grids obtained from the unconstrained algorithm; top: α = 10−2, red = 66%, min C = 0.28, middle: α = 10−3, red = 47%,
min C < 10−5, bottom: detail of the grid for 10−3; right: grids obtained from VCIR; top: α = 10−2, red = 66%, min C = 0.32, middle:
α = 10−3, red = 43%, min C = 0.31, bottom: detail of the grid for 10−3.

SSD reduction was 66%,

red := D(ufinal)/D(u0 = 0),

where D(u) = 1
2
‖T (u) − R‖2

2.
In order to decrease the image difference further, we

then rerun the unconstrained algorithm with a smaller
regularization parameter α = 10−3 and obtained a
47% reduction; the algorithm terminates because of
the Jacobian becoming close to singular. However, as
can be seen in Figure 5, the grid starts to degenerate,
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i.e. the minimum value of the determinant of the Jaco-
bian is less then 10−5.

We than run our VCIR algorithm. For α = 10−2,
we obtain the same SSD reduction to 66% but here
the minimal value of the determinant of the Jacobian
is 0.32. Obviously, the results of the constrained and
unconstrained approaches are nearly indistinguishable,
both in terms of the image difference as well as in terms
of the displacements.

Spectacular results are obtained for α = 10−3. Here,
the SSD reduction of the constrained approach is 43%,
which is even better than the reduction of the uncon-
strained approach with the same α and much better
than the reduction for α = 10−2. Moreover, in contrast
to the unconstrained approach, the minimum value of
the determinant of the Jacobian was 0.31 ≥ κm . This
is of course not a surprise since our algorithm is de-
signed to fulfil the constraints. The regularity of the
transformations is visualized in Figure 5.

4.2. 3D Cardiac Example

In this example we test our algorithm on the 3D
data; cf. Figure 4. The results for various regulariza-

Figure 6. Logarithmic map of the determinant of the Jacobian, top: for all 20 slices; bottom slice 10, left: unconstraint with α = 10−5 and
min C = 0.014, right: VCIR with α = 10−7 and min C = 0.31.

Table 1. Results for 3D registration various
regularization parameters, unconstrained and
VCIR approaches.

α SSD red min C

Unconstrained

10−4 75% 0.29 · 100

10−5 68% 0.14 · 10−2

10−6 52% < 0

VCIR

10−7 47% 0.30 · 100

tion parameters, the unconstrained and the VCIR al-
gorithms are summarized inTable 1. Note that for the
constrained approach, we are able to reduce the regu-
larization parameter down to α = 10−7.

Figure 6 displays a visualization of the volume
change for the unconstrained and VCIR approaches.
We observed that the unconstrained approach does
change the volume significantly particularly in a small
area next to the heart wall (see zoom of slice 10). In an
integral measure this small spot is almost undetectable.
However, for this particular medial application the
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Figure 7. XD MRI image of the heart. Top: volume change obtained by the unconstrained (left) and VCIR (right approach); bottom: reference
(left), template (middle), and VCIR deformed template (right).

volume change of the heart wall is crucial and therefore
our VCIR approach is clearly preferable.

4.3. 2D MRI Example

We now apply our algorithm to 2D MRI cardiac images
of size 256 × 256. MRI images have more resolution
compared to SPECT images and therefore, volume con-
straints are more important. In particular, for the un-
constrained case, small features can expand in order to
generate a smaller fit, compromising grid quality.

In this case we aim to obtain the same fit of 40% using
both the constrained and the unconstrained code. We
have found that a regularization parameter of 3.1×10−3

was sufficient to reduce the fit to that level using the
unconstrained case. On the other hand, a regulariza-
tion parameter of 4.5 × 10−5 was needed to obtain the
same fit using the constrained case. Thus again, we
demonstrate that constraints have a regularizing effect,
reducing the need of other less obvious regularization.

5. Conclusions

Regularity of the displacement field is a very important
feature in image registration. In most applications,
an extreme expansion or shrinkage and particularly

folding of objects is non-physical. Therefore, regis-
tration algorithms should not produce such solutions.
Regridding strategies as introduced in Christensen
(1994) could be used. However, there is no physical nor
mathematical justification for this procedure. There
also exists approaches aiming for volume preservation
Rohlfing et al. (2003); Droske and Rumpf (2004);
Zhu et al. (2003); Haber and Modersitzki (2004). But
volume preservation is too restrictive for a wide range
of applications. For example, for problems arising in
cardiac imaging it is well-known that the volume of
the heart does change within some bands and a volume
preservation is not physically meaningful.

We present a novel registration approach, where the
main idea is to add additional explicit volume inequal-
ity constraints. Our mathematical model includes these
constraints and thus prevents large changes of the vol-
ume and folding. An analytic solution of the regis-
tration problem is not known and therefore numerical
schemes have to be applied. A major concern of this
paper is to point out that a proper treatment of volume
inequality constraints is not straightforward. Here we
suggest a nodal grid based discretization for the un-
knowns and evaluate the constraints on a triangulation.

Our numerical results indicate that there is a
tremendous difference between the unconstrained and
inequality constrained approach.
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