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Summary. Image fusion or registration is central to many challenges in medical
imaging today and has a vast range of applications. The purpose of this paper is to
give an introduction to intensity based non-linear registration and fusion problems
from a variational point of view. To do so, we review some of the most promising
non-linear registration strategies currently used in medical imaging and show that
all these techniques may be phrased in terms of a variational problem and allow for
a unified treatment.

A generic registration or fusion method depends on an appropriate chosen dis-
tance measure, a regularization, and some additional constraints. The idea of con-
straints is to incorporate higher level information about the expected deformation.
We examine the most common constraints and show again that they may be conve-
niently phrased in a variational setting. As a consequence, all of discussed modules
allow for fast implementations and may be combined in any favorable order. We
discuss individual methods for various applications, including the registration of
magnetic resonance images of a female breast subject to some volume preserving
constraints.
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1 Introduction

Registration is the determination of a geometrical transformation that aligns
points in one view of an object with corresponding points in another view of
the same object or a similar object. There exist many instances in a med-
ical environment which demand for a registration, including the treatment
verification of pre- and post-intervention images, study of temporal series of
cardiac images, and the monitoring of the time evolution of an agent injection
subject to patient motion. Another important area is the need for combining
information from multiple images, acquired using different modalities, like for
example computer tomography (CT) and magnetic resonance imaging (MRI).
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This problem is also called fusion. The problem of fusion and registration
arises whenever images acquired from different subjects, at different times, or
from different scanners need to be combined for analysis or visualization. In
the last two decades, computerized non-rigid image registration has played an
increasingly important role in medical imaging, see, e.g., [21], [11], [28], [22]
and references therein.

An optimal registration requires to incorporate characteristics of the un-
derlying application. Thus, each individual application should be treated by a
specific registration technique. Due to the wide range of applications a variety
of techniques has been developed and is used. We present a flexible varia-
tional setting for intensity driven registration schemes, which may be adapted
to a particular application. The building blocks of our variational framework
resemble user demands and may be assembled in a consistent and intuitive
fashion.

The idea is to phrase each individual block in terms of a variational formu-
lation. This not only allows for a unified treatment but also for fast and reliable
implementation. The various building blocks comprises five categories: image
model, distances and external forces, smoother and internal forces, “hard”
or “soft” constraints, and optimization procedures. The external forces are
computed from the image data and are defined to drive the displacement field
in order to arrive at the desired registration result. In contrast, the internal
forces are defined for the wanted displacement field itself and are designed to
keep the displacement field smooth during deformation. Whereas the internal
forces implicitly constrain the displacement to obey a smoothness criterion,
the additional constraints force the displacement to satisfy explicit criteria,
like for example landmark or volume preserving imposed constraints.

In Sec. 2 we summarize the most popular choices for the outlined building
blocks. Furthermore, we set up a general and unified framework for automatic
non-rigid registration. In Sec. 3 we show in more detail, how these building
blocks can be translated into a variational setting. It is this formulation, which
allows for a fast and reliable numerical treatment. In Sec. 3.4 we indicate on
how to actually implement the registration schemes. An example in Sec. 4
highlights the importance of adding constraints.

2 The variational framework

Given the two images, a reference R and a template T , the aim of image
registration is to find a global and/or local transformation from T onto R such
that the transformed template matches the reference. Ideally there exists a
coordinate transformation u such that the reference R equals the transformed
template T [u], where T [u](x) = T (x + u(x)). Given such a displacement u,
the registration problem reduces to an interpolation task. However, in general
it is impossible to come up with a perfect u, and the registration problem
is to compute an application conformal transformation u, given the reference
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and template image. Apart from the fact that a solution may not exist, it is
not necessarily unique. In other words, intensity based image registration is
inherently an ill-posed problem; see, e.g., [22].

A displacement u which does produce a perfect or nearly perfect alignment
of the given images is not necessarily a “good” displacement. For example,
a computed displacement which interchanges the eyes of one patient when
registered to a probabilistic atlas in order to produce a nearly perfect align-
ment, has obviously to be discarded. Also, folding and cracks introduced by
the displacement are typically not wanted. Therefore it is essential to have
a possibility to incorporate features into the registration model, such that
the computed displacement u does resemble the properties of the acquisition,
like for example the elastic behavior of a human brain. To mimic the elastic
properties of an objects under consideration is a striking example for internal
forces. These forces constrain the displacement to be physically meaningful.

In contrast, the external forces are designed to push the deformable tem-
plate into the direction of the reference. These forces are based upon the
intensities of the images. The idea is to design a similarity measure, which is
ideally calculated from all voxel values. An intuitive measure is the sum of
squares of intensity differences (SSD). This is a reasonable measure for some
applications like the serial registration of histological sections. If the intensities
of corresponding voxels are no longer identical, the SSD measure may perform
poorly. However, if the intensities are still linearly related, a correlation (CC)
based measure is the measure of choice for monomodal situations. In contrast,
the mutual information (MI) related measure is based on the cooccurrence of
intensities in both images as reflected by their joint intensity histogram. It
appears to be the most successful similarity measure for multimodal imagi-
nary, like MR-PET. For a discussion or comparison see, e.g., [3], [4], [27], [23],
[19]. As compared to MI, the normalized gradient field (NGF) [13] measure is
more restrictive. Here, the basic idea is to reduce the image contents to edges
or contours and to ignore the underlying intensity information completely.
In contrast to MI, where some kind of probability enters into play, the NGF
approach is completely deterministic, easy to implement and to interpret.

Finally, one may want to guide the registration process by incorporating
additional information which may be known beforehand. Among these are
landmarks and fiducial markers; cf., e.g., [20] or [7]. Sometimes it is also desir-
able to impose a local volume-preserving (incompressibility) constraint which
may, for example, compensate for registration artifacts frequently observed by
processing pre- and post-contrast images; cf., e.g., [24] or [16]. Depending on
the application and the reliability of the specific information, one may want
to insist on a perfect fulfilment of these constraints or on a relaxed treatment.
For examples, in practise, it is a tricky (and time consuming) problem to
determine landmarks to subvoxel precision. Here, it does not make sense to
compute a displacement which produces a perfect one to one match between
the landmarks.
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Summarizing, the general registration problem may be phrased as follows.
(IR) image registration problem:

J [u] = D[R, T ;u] + αS[u] + βCsoft[u] = min,

subject to C[u] = 0 for all x.

Here, D models the distance measure (external force, e.g., SSD or MI),
S the smoother (internal force, e.g., elasticity), Csoft a penalization (soft con-
straints), and C hard or explicit constraints. The penalization and constraints
could be empty (unconstrained) or based on landmarks, volume preservation,
or anything else. The regularization parameter α may be used to control the
strength of the smoothness of the displacement versus the similarity of the
images and the parameter β controls the impact of the penalization. In the
following we will discuss these building blocks in more detail.

3 Building blocks

Our approach is valid for images of any spatial dimension d (e.g., d = 2, 3, 4).
The reference and template images are represented by the compactly sup-
ported smooth mappings R, T : Ω → R, where without loss of generality,
Ω =]0, 1[d. Hence, T (x) denotes the intensity of the template at the spatial
position x. For ease of discussion we set R(x) = bR and T (x) = bT for all
x 6∈ Ω, where, bR and bT are appropriately chosen background intensities.
The overall goal is to find a displacement u, such that ideally T [u] is similar
to R.

In this paper we use a continuous image model which is advantageous for
three reasons. Firstly, it allows the proper computation of the deformed image
at any spatial position. Secondly, it enables the usage of continuation, scale
space, or pyramidal techniques. However, the discussion of these techniques
is beyond the scope of this paper. Thirdly, and most importantly, it enables
the usage of efficient and fast optimization techniques, which typically rely on
smoothness. If the images are given in terms of discrete d-dimensional arrays
R and T , one typically uses interpolations or approximations R and T which
are based on localized functions like splines or wavelets.

3.1 Smoother and Internal Forces

The nature of the deformation depends strongly on the application under
consideration. For example, a slice of a paraffin embedded histological tissue
does deform elastically, whereas the deformation between the brains of two
different individuals is most likely not elastically. Therefore, it is necessary to
supply a model for the nature of the expected deformation.

We now present some of the most prominent smoothers S and discuss
exemplarily the Gâteaux-derivatives for two of them. An important point is,
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that we are not restricted to a particular smoother S. Any smoother can be
incorporated into this framework, as long as it possesses a Gâteaux-derivative.

In an abstract setting, the Gâteaux-derivative looks like

dS[u; v] := limh→0
1
h (S[u + hv]− S[u]) =

∫
Ω
〈B[u],B[v]〉Rd dx,

where B denotes the associated linear partial differential operator. Note that
for a complete derivation one also has to consider appropriate boundary con-
ditions. However, these details are omitted here for presentation purposes; see
[22] for details.

Typically, the operator B is based on first order derivatives. Therefore,
also affine linear deformation are penalized which unfavorable for many ap-
plication. There are two remedies: choose a higher order operator (like the
curvature regularizer below) or split the deformation space into a coarse (or
linear) and a disjoint fine part and regularize only with respect to the fine
space; see [12] for details.

Example 1 (Elastic registration). This particular smoother measures the elas-
tic potential of the deformation. In connection with image registration it has
been introduced by [2] and discussed by various image registration groups; see,
e.g., [1] or [10]. The partial differential operator is the well-known Navier-Lamé
operator. For this smoother, two natural parameters, the so-called Lamé-
constants can be used in order to capture features of the underlying elastic
body. A striking example, where the underlying physics suggests to look for
deformations satisfying elasticity constraints, is the three-dimensional recon-
struction of the human brain from a histological sectioning; details are given
in [25] and [22].

Example 2 (Curvature registration). As a second example, we present the cur-
vature smoother

Scurv[u] := 1
2

∑d
`=1

∫
Ω

(∆u`)
2

dx, (1)

introduced by [8]. The design principle behind this choice was the idea to make
the non-linear registration phase more robust against a poor (affine linear) pre-
registration. Since the smoother is based on second order derivatives, affine
linear maps do not contribute to its costs, i.e.,

Scurv[Cx + b] = 0, for all C ∈ Rd×d, b ∈ Rd.

In contrast to other non-linear registration techniques, affine linear deforma-
tions are corrected naturally by the curvature approach. Again the Gâteaux-
derivative is explicitly known and leads to the so-called bi-harmonic operator
Acurv[u] = ∆2u.

3.2 Distances and External Forces

Another important building block is the similarity criterion. As for the
smoothing operators, we concentrate on those measures D which allow for dif-
ferentiation. Moreover, we assume that there exists a function f : Rd ×Rd →
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Rd, the so-called force field, such that

dD[u; v] = lim
h→0

1
h (D[R, T ;u + hv]−D[R, T ;u]) =

∫
Ω

f>v dx.

Again, we are not restricted to a particular distance measure. Any measure
can be incorporated into our framework, as long as it permits a Gâteaux-
derivative.

The most common choices for distance measures in image registration
are the sum of squared differences, cross correlation, cross validation, and
mutual information. We give explicit formulae for only two of them; for more
information see, e.g., [23], [19] or [22]. We close this section by commenting on
a relatively new measure, the so-called normalized gradient field; see [13, 17].

Example 3 (Sum of squared differences). The measure is based on a point-wise
comparison of image intensities,

DSSD[R, T ;u] := 1
2

∫
Ω

(R− T [u])2 dx,

and the force-field is given by fSSD(x, y) = ∇T (x−y)>(T (x−y)−R(x)). This
measure is often used when images of the same modality have to be registered.

Example 4 (Mutual information). Another popular choice is mutual informa-
tion. It basically measures the entropy of the joint density ρ(R, T ), where
ρ(R, T )(r, t) counts the number of voxels with intensity r in R and t in T .
The precise formula is

DMI[R, T ;u] := −
∫

R2 ρ(R, T [u]) log ρ(R,T [u])
ρ(R)ρ(T [u]) d(r, t),

where ρ(R) and ρ(T [u]) denote the marginal densities. Typically, the density
is replaced by a Parzen-window estimator; see, e.g. [26]. The associated force-
field is given by

fMI(x, y) = (Ψσ ∗ ∂tL)(R(x), T (x + y)) · (∇T (x + y)>v(x),

where L := 1+ρ(R, T [u]) log ρ(R,T [u])
ρ(R)ρ(T [u]) and Ψ is the Parzen-window function;

see, e.g., [19] or [5]. This measure is useful when images of a different modality
have to be registered.

Example 5 (Normalized Gradient Field). Any reasonable distance measure de-
pends on the deformed image and can thus be written as D[R, T [u]]. Therefore,
the associated force-field contains the factor ∇T and edges enter inter play
naturally. A distance measure directly based on edges has been proposed by
[13, 17]. The basic idea is to use a directly accessible stable edge detector

ne(I, x) = ∇I/
√
‖∇I(x)‖2

2
+ e2,
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where the parameter e is related to the noise level and distinguishes between
important and unimportant structures within the images. The distance mea-
sure is based on the pointwise alignment of the regularized gradient fields,

DNGF[R, T ;u] := −
∫

Ω

((ne(R, x))>ne(T [u], x))2 dx,

see [13] for details.

3.3 Additional Constraints

Often it is desirable to guide the registration process by incorporating addi-
tional information which may be known beforehand, like for example markers
or characteristics of the deformation process. To incorporate such information,
the idea is to add additional constraints or penalization to the minimization
problem.

Example 6 (Landmarks). One may want to incorporate information about
landmarks or fiducial markers. Let rj be a landmark in the reference im-
age and tj be the corresponding landmark in the template image. Our setting
allows for either adding hard or explicit constraints

Cj [u] := u(tj)− tj + rj , j = 1, 2, . . . ,m,

which have to be precisely fulfilled Cj [u] = 0 (“hard” constraints), or by adding
an additional cost term

Csoft[u] :=
∑m

j=1 ‖Cj [u]‖2
Rd

(“soft” constraints, since we allow for deviations). For a more detailed discus-
sion of landmark constraints, we refer to [7].

Example 7 (Volume preservation). In some applications, like, for example, the
monitoring of tumor growth, a change of volume due to registration is critical.
Therefore one may restrict the deformation to be volume preserving, using the
point wise constraints

C[u](x) := det∇u(x)− 1.

[24] presented a penalized approach based on

Csoft[u](x) :=
∫

Ω

|log(C[u] + 1)| dx.

An extended discussion and the treatment of the constrained approach can
be found in [16], see also [15] for numerical issues.
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3.4 Numerical Treatment of the constrained problem

There essentially are two approaches for the minimization of (IR). The first
approach is to first discretize the continuous problem and to treat the discrete
problem by some optimization techniques; see, e.g. [15]. The second approach
which we discussed is this paper is to deal with a discretization of the so-
called Euler-Lagrange equations, i.e. the necessary conditions for a minimizer
of the continuous problem; see [9] for an extended discussion. It remains to
efficiently solve this system of non-linear partial differential equations. After
invoking a time-stepping approach and after an appropriate space discretiza-
tion, we finally end up with a system of linear equations. As it turns out, these
linear systems have a very rich structure, which allows one to come up with
very fast and robust solution schemes for all of the above mentioned building
blocks. It is important to note that the system matrix does not depend on
the force field and the constraints. Thus, changing the similarity measure or
adding additional constraints does not change the favorable computational
complexity. Moreover, fast and parallel solution schemes can be applied to
even more reduce the computation time; see also [18], [6], or [14].

4 An example: MRI mammography

In order to demonstrate the flexibility of the variational approach, we present
numerical results for the registration of magnetic resonance images (MRI). In
this application, MRI’s of a female breast are taken at different times (images
from Bruce Daniel, Lucas Center for Magnetic Resonance Spectroscopy and
Imaging, Stanford University). Fig. 1 shows an MRI section taken during the
so-called wash-in phase of a marker (c) and an analogous section during the
so-called wash-out phase (a). A comparison of these two images indicates a
suspicious region in the upper part of the images (b). A quantitative analysis
is a delicate matter since observable differences are not only related to contrast
uptake but also due to motion of the patient, like breathing or heart beat.

Fig. 1 shows the results of an elastic/SSD registration for the uncon-
strained (non) and volume preserving (VP) constrained approaches. Though
it is almost impossible to distinguish the two deformed image (d) and (g) and
even the difference images (e) and (h) are very much alike, there is a tremen-
dous difference in the deformations as can be see from (f) and (i), where a
region of interest is superimposed with the deformed grids. A further analysis
shows that the unconstrained solution unon does change tissue volume by a
factor of 2.36 (max |C[unon]| ≈ 1.36), whereas the VP solution uVP satisfies
the constraints up to a numerical tolerance (max |C[uVP]| ≤ 10−8).

Note that a comparison or discussion of the results from an application
point of view is beyond the scope of this paper. More generally, a general
setting does not answer the question, which particular combination of building
blocks leads to best results. However, the framework enables the computation
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of results for different choices and can thus be used to optimize the building
blocks.

5 Conclusions

In this note we presented a general approach to image fusion and registration
and thereby giving an overview of state-of-the-art medical image registration
schemes. The flexibility of the presented framework enables one to integrate
and to combine in a consistent way various different registration modules. We
discussed the use of different smoothers, distance measures, and additional
constraints. The numerical treatment is based on the solution of a partial
differential equation related to the Euler-Lagrange equations. These equations
are well studied and allow for fast, stable, and efficient schemes. In addition,
we reported on one example, showing the effect of constraints.
Part of the software is available via http://www.math.uni-luebeck.de/SAFIR.
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Fig. 1. Results for the unconstrained (non) and volume preserving (VP) elas-
tic/SSD registrations of a reference (a) and template (c) image; registered tem-
plates T [unon] (d) and T [uVP] (g); difference |T [0] − R| (b), |T [unon] − R| (e),
and |T [uVP] − R| (h); deformed grid on a region of interest x + unon (f) and
x + uVP (i); image of volume preservation of the unconstrained (j) and VP
constrained (k) solutions.


