
Combining Homogenization and Registration

Jan Modersitzki and Stefan Wirtz

Institute of Mathematics, University of Lübeck, Germany
{modersitzki,wirtz}@math.uni-luebeck.de

Abstract. We present a novel approach for a combined homogenization
and registration technique. Medical image data is often disturbed by in-
homogeneities from staining, illumination or attenuation. State-of-the-
art approaches tackle homogenization and registration separately. Our
new method attacks both troublemakers simultaneously. It is modeled as
a minimization problem of a functional consisting of a distance measure
and regularizers for the displacement field and the grayscale correction
term. The simultaneous homogenization and registration enables an au-
tomatic correction of gray values and improves the local contrast. The
combined approach takes slightly more computing time for an optimiza-
tion step as compared to the non-combined scheme and so is much faster
than sequential methods. We tested the performance both on academic
and real life data. It turned out, that the combined approach enhances
image quality, especially the visibility of slightly differentiable structures.

1 Introduction

A generic task in modern image processing is the integration and/or comparison
of data obtained from different images. Particularly in a medical environment,
there is a huge demand for comparing pre- and post-intervention images, in-
tegrating modalities like anatomy (obtained, e.g., from computer tomography)
and functionality (obtained, e.g., from positron emission tomography), or recon-
struction of two-dimensional projections to a three-dimensional volume (applies
to all tomography techniques and histology).

This task is often disturbed by two sources. The first source is related to a ge-
ometrical change of the displayed objects. This change might be introduced, e.g.,
by motion and/or positioning of objects, distortions and/or changes of imaging
devices etc. A well-known technique to compensate these types of distortion is
the so-called image registration, see, e.g., [5, 7] and references therein. The second
source is related to a different appearance of the displayed objects. In histology,
e.g., the section typically shows inhomogeneities that are completely related to
staining. As a consequence, even after a perfect registration one still observes
differences of the displayed objects. While for some applications, e.g., the in-
tegration of different modalities, these differences are more or less the goal of
the image processing, for other applications, like histology or ultra-sound, these
differences are artificial. Typically, homogenization is used to compensate these
disturbances.



The state-of-the-art approach to the problem is to separate homogeniza-
tion and registration and to tackle them independently. The homogenization,
for example, might be treated based on morphological operations, illumination
models, and/or statistical approaches (Markov random fields). For the regis-
tration part, there exists a variety of different and well-understood similarity
measures in image registration like, for example the sum of squared differences,
cross-correlation, or mutual information [2, 11, 9, 7]. All these measures focus on
the maintenance of grayvalues and hence none of these measures allow for a
correction of grayvalues. There are also some heuristic based schemes for a com-
bined approach. However, these are based one a limited parametric model. A
typical example is a straightforward globally linear model, which allows for a
mean adaption and a contrast correction [8].

In this paper, we present a novel approach for a combined homogenization
and registration technique. Our new approach is based on a sound mathematical
formulation that attacks both troublemakers simultaneously. The new method is
attractive for grayvalue correction in a variety of applications, including histolog-
ical serial sectioning (staining), optical flow (illumination), digital radiography
(attenuation), and magnetic resonance images (device/user dependency).

The paper is organized as follows. In Section 2 we introduce our notation and
give a mathematical foundation of the new combined approach. In Section 3, we
describe particular homogenization approaches. Some implementation issues are
discussed in Section 4, results for academical as well as real life examples are
given in Section 5, and a discussion is given in Section 6.

2 The theoretical setup

For convenience, we prefer a continuous formulation of the problem. Therefore,
our reference R and template T images are mappings from Ω ⊂ Rd to the real
numbers R. The mathematical framework covers all image dimensionalities d.
However, since our main interest is in histology, we focus on d = 2.

A standard distance measure in image registration is the L2-norm of the
difference image, also called sum of square differences, which is basically the
energy of the difference image,

D(R, T ) := ‖T −R‖2 :=
∫

Ω

(
T (x)−R(x)

)2
dx, (1)

cf., e.g., [1, 7]. Introducing the deformation u and the deformed template

T [u], where T [u](x) := T (x + u(x)), (2)

the basic registration goal is to minimize D(R, T [u]) with respect to the geome-
try u. Note that this problem is ill-posed [3, 7] and thus needs to be regularized.
Since this regularizer is not central to this paper, for the sake of simplicity, we
only focus on the elastic potential S, see [7] for details and further regularization.
However, our approach has no limitations to this particular regularization.



In order to compensate inhomogeneities, we introduce a correction function c
which in addition enables a multiplicative gray value change of the deformed
template

cT [u], where (cT [u])(x) := c(x) · T (x + u(x)) (3)

and our final distance measure ‖cT [u] − R‖2 is to be minimized with respect
to the geometry u and the homogeneity correction c. For the particular choice
c ≡ 1, we get the “standard” registration problem back. Setting c(x) := 1 for
all x where T (x) = 0 and c(x) := R(x)/T (x) otherwise, we obtain a trivial
minimizer without any geometrical correction. It is obvious that this solution
is not helpful. Thus, an additional regularizer H for c has to be introduced.
We discuss choices in the next section. The final formulation of the registration
problem reads

J(u, c) := ‖cT [u]−R‖2 + αS[u] + βH[c] != min, (4)

where α and β are regularization parameters and the minimization is with re-
spect to u and c simultaneously. It is very important, that this formulation
already combines the minimization of geometry and homogeneity.

3 Homogeneity correction

The central and remaining question is, how to regularize the homogeneity cor-
rection c? The answer to this question is related to the variation of c. If c varies
to much (e.g., c = R/T ), the solution of (4) is meaningless. If on the other hand
c does no vary (e.g., c = 1) it will not compensate inhomogeneities. We therefore
propose a gradient based regularizer,

Hp[c] :=
∫

Ω

‖∇c‖pdx.

Obvious choices for p are p = 2 (diffusivity) or p = 1 (total variation). Simple
tests show that the first choice leads to blurred images cT [u]. We thus prefer the
total variation approach, since it leads to piecewise continuous corrections.

Alternatively, one could also use an explicit regularized version. For example,
in histology we might change mean gray value and contrast by a parametric
model

(cT )(x) =
{

γ1T (x) + γ2, T (x) 6= 0
0, else .

Here, c is parameterized by γ1 and γ2 and varies basically over linear maps. Due
to this limitations, no additional regularization is needed and we may set β = 0
in (4).

4 Implementation

The new approach is based on a variational formulation of the combined reg-
istration problem. From this mathematically sound approach, we derive Euler-
Lagrange equations as a system of necessary conditions for a minimizer. The



efficient solution of these partial differential equations is the backbone of our
algorithm. However, any adequate numerical scheme can be used.

The Euler-Lagrange equations for (4) are given by

Ju = 2c(cT −R)∇T − 2α(µ∆u + (µ + λ)∇∇ · u) = 0, (5a)
Jc = (cT −R)T −∇ · ∇c

‖∇c‖ = 0. (5b)

This system of non-linear partial differential equations is discretized using stan-
dard finite differences. In principle, a fast multigrid solver has to be used in order
to solve these equations efficiently. However, a proper multigrid treatment of to-
tal variation - particularly if combined with the elastic operator - is non-trivial
and topic of current research and a forthcoming paper. Here, the particular so-
lution scheme is minor and we thus take the solution scheme based on [4] and a
straightforward solve for the total variation. Note that our limitation to periodic
boundary conditions for the displacement is only due to this particular solu-
tion scheme but not part of our method. For a solution of the discrete version
we use a non-linear Gauss-Seidel approach. The implementation is coded under
MATLAB [6] and executed on an AMD Athlon XP 2700+ with 2 GB RAM. The
overall computation time is about one minute for the academical and about three
minutes for the real life data. Note that this code runs completely under MAT-
LAB and is far away from being optimized or tuned. We basically aim to show
the ability of the new method rather than to focus on a smart implementation.

5 Results

We implemented our new scheme and tested the performance on a variety of
different examples ranging from academical to real life data. For the academical
examples, it is obvious, that the new method benefits from the combined ap-
proach. This manifests not only in a much faster execution time, but most impor-
tantly in significantly improved registration results. It is easy to construct exam-
ples where inhomogeneous regions lead to miss-registration of non-simultaneous
schemes. Particularly, we present detailed results for an academical and a real
life example.

We tuned our academical example in order to emphasize the power of the
simultaneous approach. Our reference image displays a disk, our template image
a smaller disk with a grayscale ramp in its interior. Without a simultaneous ap-
proach, the inner ramp immediately leads to displacements within these regions;
see Figure 1c. With the simultaneous approach, we are not only able to com-
pute a reasonable displacement field (Figure 1g) but also a grayscale correction
(Figure 1e and 1f). Only due to this correction we are enabled to display the
final cT [u], which in this example happens to be a perfect copy of the reference
image. Parameter used: α = 2e5, β = 1e3, λ = 0, µ = 1, ten iterations (for the
simultaneous approach, the minimizer was already obtained after 4 iterations).

Examples for a real life application are also presented. Here we show the
results of a registration of two images from consecutive sections within a serial



sectioning of about 800 sections; see [10] for an overview on the overall procedure.
As expected, the grayscale correction is not as important as in the academical
example. This can be observed from the two deformed grids (Figure 2e and
2h) which more or less look the same. However, a staining trend in this data
(visible in the difference image Figure 2f) has been resolved with our combined
approach. In contrast to the plain scheme, the combined registration approach
results in a visually more pleasing and anatomically superior three-dimensional
reconstruction. Parameter used: α = 5e5, β = 5e4, λ = 0, µ = 1, 40 iterations.

6 Discussion

We present a novel registration scheme which enables an unified and simultane-
ous treatment of the combined registration problem. Our numerical experiments
indicate, that the new approach outperforms the uncombined scheme. Our aca-
demical examples indicate that the results obtained from the combined scheme
are much more reliable. This also applied for the histological serial sectioning,
however, the phenomena are less pronounced. Still and most importantly, the
automatic homogenization enables an automatic correction of gray values and
improves the local contrast. Thus, it leads to a much better visualization of
otherwise non-differentiable structures.

Based on an additional solution step for the grayscale correction, the com-
bined scheme takes slightly more computing time for an optimization step as
compared to the non-combined scheme. However, this disadvantage is compen-
sated by the fact, that the registration and grayscale correction results are ob-
tained simultaneously. A faster and more efficient implementation of the com-
bined approach is topic of further research. In addition, we like to adapt the
combined approach to other areas of applications.
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Fig. 1. Academic example: (a) disk as reference, (b) smaller disk with ramp as tem-
plate, (c) deformed grid (no grayscale correction), (d) deformed template (no grayscale
correction), (e) 3d and (f) 2d visualizations of the homogenization correction, (f) de-
formed grid (with grayscale correction), (g) deformed and corrected template.
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Fig. 2. Histological serial section: (a) reference, (b) template: consecutive section, (c)
3d visualization of the homogenization, (d) deformed template (no grayscale correc-
tion), (e) deformed grid (no grayscale correction), (f) difference image (no grayscale
correction) (g) deformed template (with grayscale correction), (h) deformed grid (with
grayscale correction), (i) difference image (with grayscale correction).


